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Abstract 

Artificial Intelligence has attracted much of researchers’ attention in recent years. A 

question we always ask is: “Can machines replace human beings to some extent?” 

This paper aims to explore the knowledge learning for an image-annotation 

framework, which is an easy task for humans but a tough task for machines. This 

paper’s research is based on an assumption that machines have two systems of 

thinking, each of which handles the labels of images at different abstract levels. Based 

on this, a new hierarchical model for image annotation is introduced. We explore not 

only the relationships between the labels and the features used, but also the 

relationships between labels. More specifically, we divide labels into several 

hierarchies for efficient and accurate labeling, which are constructed using our 

Associative Memory Sharing method, proposed in this paper. 
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1. Introduction 

 

Many computer-vision applications, such as scene analysis and image segmentation, 

are ill-suited for traditional classification, in which each image can only be associated 

with a single class or label. However, in the real world, an image is usually associated 

with multiple labels, which are characterized by different regions of the image. Thus, 

image classification is naturally considered either as a multi-label learning or a 

multi-instance learning problem. Most of the recent work in multi-label classification 

task, such as scene recognition and multi-object recognition [1,2,3], has focused on 

the method of tagging a given image with multiple class labels. A serious problem 

with most of these existing approaches is that they do not exploit the correlations 

between the class labels. 

 

For multi-label learning, a straightforward method of achieving the goal of correctly 

classifying the multiple labels of an image is to consider images with the same 

multiple labels as a new class, and to build a model for this new, multi-label class. 

However, the problem with this approach is that the samples belonging to the 

multi-label classes are usually too sparse to build usable models. To solve this 

problem, the multi-label samples are used more than once during training. Each 

sample is considered a positive example of each of the label classes it belongs to. This 

training method is called ‘cross-training’ [4]. Another approach [5] to multi-label 

learning is to perform image segmentation first. As an image is divided into a number 

of non-overlapping regions, and each region may be described by one label, this can 

roughly determine the maximum numbers of classes it can fit. Image segmentation is 

the process of dividing an image into different regions such that each region is nearly 

homogeneous, whereas the union of any two regions is not. It serves as a key task in 

image analysis and pattern recognition, and is a fundamental step toward low-level 

vision, which is significant for object recognition, image retrieval and other 

computer-vision-related applications [6,7,8]. However, segmentation itself is a 

difficult, imperfect task. Segmentation always results in the problem of complexity, 

and unsuccessful segmentation also degrades the performance of the 

image-annotation task. Nevertheless, a lot of research is still being devoted to 

achieving a good segmentation performance. 
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Human beings see image-annotation tasks as an easy problem. The related tags that 

we assign to an image can be classified into two categories. As shown in Fig. 1, one 

category includes those basic or obvious tags that we do not need to think about, e.g. 

apple, sky, dog, etc. The other includes the more complex or abstract tags that we 

need to think over, e.g. market, African, indoor, etc. The book titled “Thinking, Fast 

and Slow” [36] surmises that humans have two systems; one is used to solve the 

problems without requiring thinking, while the other requires some thought. Can a 

machine have two such systems, like human beings, for the image-annotation tasks? 

Motivated by this book, we wondered if a machine could have two such systems, like 

human beings? Therefore, in this paper, we propose a hierarchical framework to 

mimic the two systems for handling tags, i.e. with solid concepts and abstract 

concepts, respectively. 

 

   

 (a) Apple (b) African 

Fig. 1. (a) An image with a simple, solid tag, and (b) an image with a confusing, abstract tag. 

 

In order to exploit the correlations between the class labels, we introduce a method 

called Associative Memory Sharing (AMS), which classifies image labels into 

different levels of a hierarchy according to their level of abstraction, for the purpose 

of constructing a tree structure in the learning framework. In other words, the labels or 

graphs of labels are linked to each other through the tree structure. In pursuit of the 

ultimate goal of building an intelligent image-annotation system, it is also necessary 

to incorporate human knowledge into our proposed framework. In the training part, 

we will use human knowledge interactively to help the system to choose 

representative images for each label class. 
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The remainder of this paper is organized as follows. In Section 2, a brief introduction 

to related works will be given. We present our proposed method in detail in Section 3. 

The experiment set-up and results, and a conclusion, are given in Sections 4 and 5, 

respectively. 

 

2. Related work 

 

In this section, we will give a brief overview of the different models for solving 

multi-label learning problems. We will also discuss feature extraction and image 

representation, which play an important role in image-annotation frameworks. 

 

2.1 Literature Review 

 

In recent years, various learning methods have been proposed for automatic image 

annotation. These methods have in common that they all rely on a set of labeled 

pictures to learn models, which can then predict the labels for unlabeled data. The 

literature can be grouped based on three models: generative models, discriminative 

models, and nearest-neighbor (NN)-based models. Most generative models [9, 10] 

construct a joint distribution over image contents and the associated keywords while 

finding a mapping between the image features and the annotation keywords. These 

generative models aim to learn a single model for all the vocabulary terms, which yields 

a better modeling in terms of dependencies. Some methods treat the task of image 

annotation as several binary classification problems. This means that the joint 

distribution of the unobserved variables and the observed variables is not needed. In 

this situation, discriminative models [11,12,13] can generally yield a superior 

performance. Discriminative models learn a separate classifier for each single label, 

and use the classifier to judge whether the test image belongs to a particular label or not. 

Although the training process is complicated and time-consuming, this approach can, 

with a smart design, achieve more promising performances than the generative models. 

The third model  one of the oldest, simplest, and most effective methods for pattern 

classification  is the kNN-based model [14], which is accurate, especially with an 

increasing amount of training data. Recently, a NN-based keyword-transfer approach 

was proposed in [15]. In this method, the labels are transferred from neighbors to a 
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given image after a simple distance calculation. The nearest neighbors are determined 

using Joint Equal Contribution (JEC) only, which finds the average distance obtained 

from the differences in image features. The method was extended in [16] to filter out 

most of the irrelevant labels, with a promising result obtained. 

 

Although the learning stage plays an important role in an image-classification system, 

the features employed also affect the performance of the whole framework. In [17], a 

graph structure was proposed to describe the relationship between the features. In this 

approach, a pair-wise graph is constructed, with each vertex representing a single 

image that may be labeled or unlabeled. Two similar images are connected by an edge, 

and the edge weight is calculated as an image-to-image distance. In [18], a new 

graph-based model was proposed for recognition based on a semi-supervised 

framework, which can predict both the predefined labels and undefined labels. The 

concept of a simple graph was extended in [19] to a hypergraph, whose main argument 

is that the simple graph cannot completely represent the relations between images. 

Actually, a hypergraph can contribute to a better representation of the relations between 

images by considering not only the local grouping information, but also the similarities 

between the hyperedges that involve more than two images. The idea of a hypergraph 

was used in [20] to determine a suitable feature space for each class. It is a simple and 

efficient method for finding a good representative image patch for each label class, 

which can greatly enhance efficiency in the learning stage.  

 

With the ongoing development of consumer electronics equipment, image databases 

are becoming larger and larger, with a growing number of labels. In [21], millions of 

photos have been captured as informative reports, and utilized for computer-vision 

tasks, such as situation recognition. In their work, a visual analytics system was built to 

understand the information that could be collected from their photo report streams. To 

learn about thousands of objects from millions of images, a model with a large learning 

capacity and considerable efficiency is needed. Deep Convolution Neural Networks 

(CNNs) [22, 23, 24], which have achieved great success on single-label image 

classification in recent years, constitute this model. Because of their strong capability 

for learning representative features, CNN models yield breakthrough performance on 

many other computer-vision tasks, which have attracted attention in the research of 
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image understanding recently. Although many techniques that have been proposed in 

the last decade can give a reasonable performance, a large number of potential labels 

causes problems, in terms of decreasing their accuracy and efficiency. More and more 

researchers are now exploring the relationship between labels; many contributions, 

which represent a landmark in the research of image annotation. have been made 

regarding this. 

 

2.2 A Structured Framework for Image Understanding 

 

Recent progress on image annotation mainly focused on exploring semantic relations 

between different labels. Such relations can be modeled by graphical models [25, 26] 

or recurrent neural networks (RNNS) [27]. Despite the great improvements achieved 

by exploiting semantic relations, existing approaches cannot capture the spatial 

relations of labels, for the reason that their spatial locations are not annotated for 

training. To address the problem of a large number of labels required for an image 

multi-labeling framework, contextual modeling has become a recent focus. For 

example, in object-class recognition, the presence of one class may suppress (or 

promote) the presence of another class that is negatively (or positively) correlated, 

e.g. [28,29]. In [24], the object-detection task is achieved by modeling the object 

co-occurrences and spatial relationships using a graphical tree. Enforcing 

tree-structured dependencies among objects allows for the learning of the model in 

more than a hundred object categories; this can also be applied efficiently to image 

annotation. Even though the method does not explicitly impose a hierarchical 

structure in the learning procedure, the tree organizes objects into a natural 

hierarchy. In [28], structured prediction models, which explicitly take the 

dependencies among image labels into account, were proposed for image labeling. In 

the tree-structured models, the nodes represent image labels, and the edges between 

the nodes encode the dependency relations. To allow for more complex dependencies, 

labels are combined in a single node, and mixtures of trees are used. 
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This paper aims to devise a learning algorithm to handle labels in a human way. 

Although it is difficult for machines to handle labels in different ways according to 

each label’s nature, we can construct a hierarchical structure among the labels to 

facilitate this capability. Our proposed method will incorporate the correlations 

between labels into a learning framework. We will explore the relationship between 

labels that appear in the same images, and then build the hierarchy of those labels in 

the whole dictionary. Specifically, a word or label that frequently appears 

simultaneously with several other words will be located at a higher level in the 

hierarchy. For example, the label “Market”, which often appears with labels such as 

“People”, “Fruit”, “Outdoor”, and so on, will be higher in the hierarchy. The 

hierarchy will also be represented using a tree structure. Our proposed tree structure 

not only considers the hierarchy between the parent nodes to child nodes, but also 

introduces different levels of hierarchy, which is significantly different from the trees 

in [28, 29, 30]. In Section 3, we will introduce the details of how to construct the tree 

hierarchy using our Associative Memory Sharing algorithm.  

 

For image representation, we follow our previous work [31], which uses pools of 

features. We will learn the mapping between the tag space and the 

image-representation space. We aim to boost the performance of feature-label 

selection based on the constructed hierarchical structure. Our proposed approach can 

achieve a good balance between efficiency and accuracy. Moreover, deep learning 

features are also employed in our framework on the NUS-Wide dataset.  

 

The concept of Associative Memory Sharing (AMS) proposed in this work is an 

extension of our previous work [32], where we determined the labels of an image by 

making use of statistical data and prior knowledge of the dataset, and also by 

considering the relationships between the labels. In order to accommodate more 

dependencies between labels in a model, [30] considered the extension of grouping 

label variables, and then defined a tree covering these groups. A label group can be 

viewed as a fully connected set of variables in the graphical model. However, a 

certain structure in this cyclic, graphical model contains local cycles only (i.e. among 

the neighboring groups in the tree). [30] also extended the tree to a mixture-of-trees, 

which allows for more label dependencies. The mixtures are defined either to cover 
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trees with different group sizes, or to cover trees with different structures over a fixed 

set of nodes. A tree model was used to learn the dependencies among object 

categories, rather than class labels. Before the work in [30], [29] have used a 

fully-connected conditional random field to model object dependencies, which is a 

time-consuming process when handling a large number of object categories. [33] 

distinguishes a scene from objects and from model dependencies among objects using 

scene-object relationships. In that way, the direct dependencies among objects may be 

ignored. [30] described a prior model that captures the co-occurrence statistics and 

spatial relationships between objects, which may provide a richer representation of 

object dependencies. However, one class or one object represented by a single node 

may still lead to a complex connection between labels and a high computational cost. 

In this paper, we employ probability functions in our tree structure. Instead of 

representing one label using one node, we introduce a totally different form of 

representation. Our method allows for either assembled labels or a simple label only. 

We will present the details of our algorithm in next section. 

 

3. Associative Memory Sharing 

 

Associative memory in computer organization is the memory unit accessed by the 

content of data. It is also the memory unit, where the storage locations are identified 

by their contents. In our work, labels are considered as different contents of data 

located in a tree. We want to make use of the transfer knowledge from one node to 

another node. In other words, associated memory can be shared among the nodes. 

 

In this paper, the labels of the same images are assumed to be associated, and have 

their associations modeled by our AMS algorithm. 

 

3.1 Construction of a Tree Hierarchy 

 

Suppose that the set  = {l1, l2,…, ln} represents the dictionary of the labels for the 

whole image dataset. The training images are denoted as {i1, i2,…, iN}, while lSi (Si  

{l1, l2,…, ln}) represents the labels of the image I in the training set. Then, assuming 
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that each image contains no more than 4 labels, a tree structure can be constructed 

using the following steps: 

 

Step 1. Only images containing label pairs (i.e. two labels) are considered in this step. 

We count the frequency of each of these label pairs (e.g. Fruit-Apple, assigned to 

Layer 1 in Fig. 2), which appears in the same training images. Sort these label 

pairs in descending order according to their frequencies. 

 

Step 2. Only images containing label triplets (i.e. three labels) are considered in this 

step. We count the frequency of each of these label triplets (e.g. 

Person-Bottle-Dining table, assigned to Layer 3 in Fig. 2), which appears in the 

same training images. Sort these label triplets in descending order according to 

their frequencies. 

 

Step 3. We count the frequency of each single label, which appears with a label pair 

(e.g. Garden-(Fruit, Apple), assigned to Layer 2 in Fig. 2, where the label 

"Garden" appears with the label pair "Fruit, Apple"). Sort these labels in 

descending order according to their frequencies. 

 

Step 4. We count the frequency of each single label which appears with a label 

triplet (e.g. Dinner-(Person-Bottle-Dining table), assigned to Layer 4 in Fig. 2). 

Sort these labels in descending order according to their frequencies. 

 

Step 5. We can now construct a 6-layer tree-hierarchical structure. The bottom layer, 

namely "Layer 0", consists of all the individual class labels (n classes), and each 

node in this layer contains a class label. Then, Layer 1 to Layer 4 are constructed 

according to Steps 1 to 4, such that each node in each of the layers contains 

different combinations of the labels. Finally, the top layer, i.e. Layer 5, contains 

all the labels in a single cluster. 

 

The above steps illustrate the construction of a hierarchy for a number of labels. 

Specifically, the single labels, label pairs, and label triplets will form individual small 

clusters. Each of these clusters is considered a node in the tree structure. The 
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constructed tree structure represents the relationships between the labels and the 

corresponding image features. The tree structure can be extended to include images 

having even more labels. However, the number of these types of images is usually 

small. 

 

Based on our previous work [20, 31], we can learn image exemplars for each of the 

label classes (i.e. single label, label pairs, single + label pairs, label triplets, single + 

label triplets, etc.). These image exemplars can be obtained by incorporating image 

patches into a hypergraph. The exemplars are good representations of each class label, 

which are used to represent the nodes in the tree structure in our proposed framework. 

Then, we can extract the corresponding image features relating to each node in the 

constructed hierarchical graph. 

 

3.2 Tree Learning and Classification 

 

In this paper, we propose a novel algorithm which incorporates different feature pools 

for a hierarchical training of node classifiers. Unlike our previous work [31], 

classifiers are not trained for each label class. We learn a classifier for each node in 

the tree structure instead of learning a classifier for each single label. As was done in 

[34], we train a regression model with the use of the tree structure. But unlike [34], 

we extend the nodes which combine labels in different ways in our proposed 

framework. 

 

Assume that the correlations among the labels can be represented using a tree 

structure consisting of a set of vertices or nodes V. In the tree structure, each 

bottom-leaf node corresponds to a single label (i.e. a, b, c, d, e, X, Y, and Z in Fig. 2) 

in the dictionary, while the middle nodes represent the label pairs (e.g. ab), label 

triplets (e.g. bcd), and two types of extended nodes, which are formed by combining a 

single label with either a label pair (e.g. X-(ab)) or a label triplet (e.g. Y-(bcd)), as 

illustrated in Fig. 2. 

 

To train a node classifier, a feature pool will first be selected from a set of feature 

pools, and then a specific classifier is trained using the feature pool for the node. In 

the first step of our algorithm, the transferable knowledge between nodes and the 
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common features among the different nodes are not considered. Only the most 

suitable feature pool for each node is identified. It should be noted that the same 

feature pool may be selected and used for a number of nodes. In the second step of 

our training, we incorporate the multi-task learning algorithm in [35] in our 

framework to train the node classifiers. Fig. 3 shows the details of our 

tree-structure-based feature-label selection algorithm, which consists of a training 

stage and a testing stage. In testing a query input, we aim to find the likelihood of a 

test image belonging to each node. Then, the final score for each label class is 

computed according to hierarchical factors (i.e. the weights learned for the nodes). 

Further details will be given in Sections 3.3 and 3.4. For convenience, the 

mathematical symbols used in our algorithm are tabulated in Table 1. 

 

Training Step: 

 

Step 1: Feature Selection (AdaBoost)  A classifier is trained for each node used to 

find the feature pool that results in the best performance for the class labels, 

with the help of the hierarchical factors. 

  

Step 2: Use the multi-task learning algorithm in [35] to learn a classifier for each node 

based on the selected feature pool. 

 

Step 3: Train a biased classifier, based on each of the feature pools, for labeling novel 

images. 

 

Testing Step: 

 

Step 1: Use the biased classifier trained for each feature pool to judge which of the 

feature pools is the most suitable for classifying a test image. 

 

Step 2: Use the node classifiers to output scores (in the form of probabilities), which 

represent how likely it is that the test image belongs to the corresponding 

node. 

 

Step 3: Consider the hierarchical factor for each node in computing the final score for 

each label class, and choose the labels with the highest scores. 

 
Fig. 3. The algorithm for training the nodes and for label selection. 
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Table 1 Meaning of the mathematical symbols used in our algorithm. 

Math Symbol meaning Math Symbol meaning 

I image p probability 

l label K Kernel function 

S label set N number of training images 

t tag w, s, g weighting factors 

X feature Wc common regularization 

f feature pool Vk specific regularization 

b offset α optimization factor 

c penalty term β regularization parameter 

d dimension λ tuning parameter 

n number of labels ρ memory sharing factor 

v nodes ξ error rate 

Gv groups of nodes Ф nodes in layers 

 

 

 

Layer 0

Single Label

Leaf node

Layer 1

Label Pair

Internal node

Layer 2

Single Label-

(Label Pair) 

Extended node

Layer 3

Label Triplet

Internal node

Layer 4

Single Label-

(Label Triplet)

Extended node

Layer 5

All Labels

e.g. 

Layer 1 : (ab) = (apple, fruit)
      (bc) = (fruit, person)

Layer 2 : (X-(ab)) = (garden-(apple, fruit)) 

Layer 3 : (bcd) = (fruit, person, diningtable)
      (cde) = (person, diningtable, bottle)

Layer 4 : (Y-(bcd)) = (party-(fruit, person, diningtable))
       (Z-(cde)) = (dinner-(person, diningtable, bottle)) 

a

ab

b dX

X-(ab) 

Z -(cde)  

cde

abcdeXYZ   

Y

Y-(bcd)  

bc

bcd

c Ze

apple garden fruit party person diningtable bottle dinner  

Fig. 2. The tree structure constructed using our proposed model, where Layer 0 contains eight 

bottom-leaf nodes corresponding to eight labels (a, b, c, d, e, X, Y, and Z in the dictionary; Layer 1 and 

Layer 3 contain label pairs and label triplets, respectively; Layer 2 and Layer 4 are the extended nodes, 

which are those nodes composed of a single label with either a label pair or triplet, respectively; and 

Layer 5 is a single node, which contains all the labels. A leaf node represents a single label, which may 

be a simple label (e.g. a, b, c, d, e) or an abstract label (e.g. X, Y, Z). An internal node represents a 

combination of simple labels, while an extended node represents a combination of abstract and simple 

labels.  
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3.3 Problem Statement and Formulation 

 

In the image-annotation problem, upon receiving a query or test image Iq, the 

annotation algorithm will output its corresponding labels l(Iq, t), where l(Iq, t) refers to 

the set of tags t related to the query image Iq. Assume that the label set S contains n 

classes, so l(Iq, t) is a subset of S. The aim of annotation is to find the tags t
*
 that 

maximize the conditional distribution p(t|Iq). The feature pool used in learning is 

denoted as F = {f1, ..., fj, ..., fM}, where fj represents one type of features (e.g. color 

histogram, local shape descriptors, etc.). Denote dj as the dimension of the feature fj. 

Then, the total dimensionality of all the image features in the feature pool F is d, 

where 
1

M

jj
d d


 . We can form a feature matrix jdn

jX


  to represent the 

features of n’ training images using the j
th

 feature pool. Then, we can learn a 

corresponding regression coefficient vector jd
kj   for the j

th
 feature of the k

th
 

node. Since we have to output the final scores for each label class in the last step, we 

have 1( , ... , )T T T

k k kM   . The groups of regression coefficients associated with each 

node of the tree can be obtained by a method called tree-guided group lasso, which 

applies group lasso to groups of output variables, defined in terms of a hierarchical 

clustering tree. The detail is illustrated by Equation (7) to Equation (10) below. 

 

Following our previous work, the weak classifier for the k
th

 node, Tk, can be defined 

as follows: 

 
( ) ,

T

T kk
X W X b     (1) 

where Wk = Wc + Vk, ||Wc|| is a common regularization term shared by those classifiers 

using the same feature pool, and ||Vk|| is the specific regularization term for the 

individual node class. X is the feature vector of the training samples (which will be 

described in Section 4), and b is an offset. For the second and third steps of our 

training algorithm, we aim to learn a classifier for each node using the same feature 

pool, and then we train a biased classifier for each feature pool. Following are the 

specific details of our training algorithm. 

 

The training samples which result in the best performance with the same feature pool j 
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are denoted as { }
j jk jk

f W= X ,Y | j = 1,...N;k = 1,...,L： , where L is the number of training 

samples using the j
th

 feature pool, X is the feature vector, Y is the label, and k is the 

node index. Training a multiple number of classifiers for each node using the same 

feature pool fm is then transformed into a joint optimization problem as follows:  

 

2 2
min{ }

L N L

ij 1 k 2 c

k=1 j=1 k=1

C + V + W     (2) 

subject to: 

 1 1
: ( ) 1 , 0

N L

j k jk c k jk jk jk
Y W V X b  

 
        , 

where 0jk   represents the training error rate, 
1  and 

2  are positive 

regularization parameters, and C is the penalty term. The dual optimization problem 

for the above equation is to determine the optimal jk   by: 

  ,

1 1 1 1 1 1

1
max ( )

2

L N L N L N

ij ih ih kl kl kh jh kl

k j k j h l

Y Y K X X  
     

   (3) 

subject to 

1 1

1 1

: 0 , 0

L N

N L

j k jk jk jk

k j

C Y 
 

 

     , 

where Kkh(.,.) is the underlying kernel function. Our multi-task learning algorithm is 

able to handle the visual similarity among the node classes using the same feature 

pool. 

 

In our method, a regression model is trained using a tree-structure-based feature-label 

selection algorithm, which is then used for annotating test images. This means that we 

have to consider a weight for each node in the tree structure. We can introduce the 

group lasso [15] into our algorithm, since we also have M subsets which can be 

considered as M positive definite matrices. The group lasso estimate is defined as the 

solution to: 

2 2

1 2 2
1 1 1 1

min{ }
k

L N L M

jk k c j kj

k j k j

P V W d


    
   

     , (4) 

where 0   is the tuning parameter. 
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3.4 Weighting the Nodes in the Tree Structure 

 

Since we have solved the first part of the equation (2) in Sec.3.3, we can now explore 

the regression part in (4). As we have a tree structure representing the correlations 

between the labels, we compute the hierarchical relationships between the nodes. 

With the tree structure constructed, each node will output the probabilities of the 

prediction labels for a testing image. Fig. 2 illustrated the construction of a 6-layer 

graph. Suppose that {l1, l2,…, ln} form the label set of all the training images, where 

each of the labels forms a leaf node in the tree structure. Putting the leaf nodes in the 

first layer (i.e. Layer 0) of the tree structure, we denote 0 1 2{ , ,..., },layer nv v v   

where vt represents the t
th

 node in Layer 0 of the tree structure. For the Layer 1, Layer 

3, and Layer 5, we have: 

1 1 2 '{ , ,..., },layer n n n lv v v      

3 ' 1 ' 2 ' ''{ , ,..., },layer n l n l n l lv v v         and 

5 ' '' 1{ }.layer n l lv      (5) 

where l' and l" represent the number of nodes in Layer 1 and Layer 3, respectively. 

 

As Layer 2 and Layer 4 are treated differently from Layer 1, Layer 3 and Layer 5, we 

call these two layers the extra branches. The corresponding extended nodes are 

distributed on these two branches. Similarly, we have 

'1 22
{ , ,..., },e elayer e
v v v


   

'
1 2' '4 '

{ , ,..., }.e elayer e
v v v




                               (6) 

where α
’
 and β

’
 represent the number of nodes in Layer 2 and Layer 5, respectively. 

 

In Fig. 2, it seems that there is no difference between the normal layers and the extra 

branches. However, in our algorithm, they are located at different levels in the 

hierarchy. Motivated by the book “thinking, fast and slow” [36], authored by a Nobel 

Prize winner, we devise a framework to deal with the annotation problem like humans 

do. This means that we classify the label-dictionary into 2 clusters. One contains 

simple words which do not require much thinking, while the other one contains 

complex or abstract words that need more thought. For example, when humans need 
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to solve the annotation work, we can label a picture having an “apple” in it in no time. 

However, if the ground-truth label of a picture is either “Africa” or “Tropical”, we 

need to think it over before we decide its labels. It is reasonable for our system to treat 

these two clusters separately: one cluster contains simple, basic words, while the other 

contains complex, abstract words. Then, different weighting factors are assigned to 

these nodes, so we can treat the different words unequally. 

 

Following [34], given an arbitrary tree Tr, each node v ∈ V of the tree Tr is 

associated with the group of children nodes Gv, whose members consist of all of the 

leaf nodes in the subtree rooted at node v. We recursively apply the operations below, 

starting from the root node and moving towards the leaf nodes, as follows: 

 
2

( )
v

k

v G k root

k v k

w W v 


  , (7) 

where 
2

( )

( ) ( )
v

k

k v k v G

c Childen v

W v s W c g 


     if v is an internal node, and 

( )
v

k

k m

m G

W v 


   if v is a leaf node. Specifically, sv and gv are associated with the 

internal node and the extended node, respectively, in the tree Tr. Moreover, sv 

represents the weight for selecting the labels associated with each of the children 

nodes of v individually, and gv represents the weight for selecting them jointly. 
v

k

G  

is a vector of regression coefficients { : }.k

vG   Each group of regression 

coefficients 
v

k

G  is weighted with wv, which reflects the strength of the correlation 

within that group. 

 

Different to the common trees, there are extra branches in our proposed structure. 

Thus, the weighting factors for these extended nodes are also considered, as follows: 

 
2

( )

( ) ( )
v

k

k v k v G

c Childen v

W v s W c g 


    , (8) 

where   is the Memory Sharing Factor in our algorithm. This means that the 

weighting factors of extended nodes are derived from internal nodes. In other words, 

we share the memory from several simple words to a complex word. Then, we have 

the relationship between wv and (sv, gv) as follows: 
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 

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 (9) 

As proved in [34], for each of the k
th

 outputs, the sum of the weights wv for all the 

nodes v V  in Tr whose group Gv contains the k
th

 output as a member equals one. 

In other words, we have: 

 
'

'

Ancestors( ) Ancestors( )
: Ancestors(v )

Ancestors( )
Ancestors(v )

1.

k k
v k

k
k

v m l m
m v m v

v k G l

ml m v
l

w s g s

g s

 
 




   

  

 

  (10) 

Equation (10) states that the sum of the weights over all of the groups that contain the 

given output variable is always one. After selecting the weights for the nodes in the 

tree, we can solve (4) using a multi-label boosting method [37]. 

 

The proposed framework aims to construct a node-based classifier in the first stage. 

Our tree divides labels into different categories by means of internal nodes and 

extended nodes. Different weights given to different clusters of labels make our 

system treat simple words and complex words differently. To the best of our 

knowledge, this work is the first to solve image annotation based on two layers of 

thinking, with the help of a tree structure. Experiments, analyses and experiment 

results are given in the following section to show the performance of our proposed 

annotation framework. 

 

4. Experiments and Results  

 

4.1. The Databases Used 

 

Four benchmark image databases are used in our framework. The first database used 

in the experiments is Corel 5K, which contains 5,000 images comprising 4,500 

training samples and 500 testing samples. Each image in the dataset is annotated with 

about 3.5 keywords on average, and the dictionary has a total of 374 words or labels. 

Another dataset used is Corel 30K, which is similar to Corel 5K except that it is 

substantially larger, containing 31,695 images and 5,587 words or labels. The third 

dataset used is the ESP Game dataset, which contains 18,689 training images and 
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2,081 testing images. The last database is NUS-Wide [38], which has 269,648 images 

and the associated tags from Flickr, with a total number of 5,018 unique tags. Since 

the images and tags are downloaded from websites, NUS-Wide is a real-life image 

dataset. We choose 1,000 common labels, and randomly sampled about 25,000 related 

images from the NUS-Wide. 

 

To make a fair comparison with other state-of-the-art methods, we choose the mean 

precision rate (P %), the mean recall rate (R %), and the number of total keywords 

recalled (N+) as our evaluation criteria on Corel 5K, Corel 30K and ESP Game. The 

precision rate and recall rate for each test image are measured by comparing the 

annotation results to the ground truth, and then the average precision and recall of all 

the test images are computed to form the final results. Mean Average Precision (MAP) 

is also employed for performance comparison on the Nus-Wide database. 

 

4.2. Methods of Comparisons 

 

We have evaluated the performance of our proposed framework and compared it to 

the following methods. 

 

1. Multiple Bernoulli Relevance model (MBRM) [39], a method follows a mixture 

distribution that models the joint distribution of annotation labels and image 

features. 

2. Supervised Multiclass Labeling (SML) [40], a probabilistic formulation for 

semantic image annotation. 

3. Joint Equal Contribution method (JEC) [15], a method allows each individual 

basic distance to contribute equally to the total combined cost from different 

features. 

4. L1-Penalized Logistic Regression (Lasso) [15], an approach that combines feature 

distances by identifying those features that are more relevant for capturing image 

similarity. 

5. Tagprop [12], a discriminatively trained nearest neighbor model, where the 

keywords of the test image are predicted by a weighted nearest neighbor model 

with the image similarity metrics learned by a metric learning method. 
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6. HPM [41], a method making use of prior knowledge (i.e. some labels already 

known), and completing labels from a probabilistic model. 

7. Label filtering algorithm (LFA) [16], an approach firstly removes most of 

irrelevant labels and then annotate test images using those remaining relevant 

labels. 

 

4.3. Features Pool Used  

 

Like our previous work in [31], the feature pools used in the following experiments 

can be divided into three parts: global features, local features, as listed below. The 

order of the features listed represents the different feature-pool types used in the 

experiments. 

 

Global features: 

(1) Color feature: RGB color moment (3×3 grid, color mean, variance, skewness for 

R, G, B), 

(2) Edge histogram (edge-orientation histogram, Canny edge detector), and 

(3) SIFT (based on a regular grid). 

 

Local features: 

(4) Gabor wavelets (5 scales and 8 orientations, 3 moments for each sub-image), 

(5) Local binary patterns (59-dimensional LBP histogram), 

(6) SIFT (based on the interesting points), and 

(7) R-CNN (region-based convolutional neural network, only used on the NUS-wide 

database). 

(8) Faster-RCNN (region-based convolutional neural network, only used on the 

NUS-wide database) 

 

4.4 Results Based on the Corel 5K Dataset 

 

Figure 4 shows the relative performances of the above six types of feature pool used 

for classifying the class labels. For each feature pool, the number of class labels that 

can be best classified is measured. It can be observed that the different feature pools 

have different performances in the various node classes, which means that we can 
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identify and use the most suitable feature pool for each single node in this step. We 

also believe that the same feature pool can best be used to describe a number of label 

classes. Combining the features may not always increase the performance of 

image-classification tasks; in some situations, combining a large number of features 

may cause the problem of redundancy and lead to a decreased performance. Therefore, 

rather than combining the features, our algorithm finds the most suitable feature type 

for each single node. 

   
  

Fig. 4: The number of class labels which results in the best performance based on the same feature-pool type. 
 

After identifying the most suitable feature pool for each single node, we have to 

explore the tree structure used in the next step for label prediction. Figure 5 shows the 

performance of our learning framework with and without using the tree structure. 

 

 
Fig. 5. Percentages of the testing images that can be annotated correctly by at least one word among the 

top n words using our proposed learning framework, with and without using the tree structure. 
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Table 2 Performances based on the Corel 5K dataset for some existing methods and our proposed 

method. 

Methods P% R% N
+
 

MBRM[39] 24 25 122 

SML [40] 23 29 137 

JEC [15] 27 32 139 

LASSO[15] 24 29 127 

TagProp[12] 33 42 160 

HPM(with prior knowledge)[41] 33 47 162 

HPM(without prior knowledge)[41] 25 28 136 

LFA[16] 31 40 151 

Proposed Method 36 44 165 

 

Table 2 shows the performances of our proposed method versus some state-of-the-art 

methods. Three performance indices are measured: the mean precision rate (P %), the 

mean recall rate (R %), and the number of total keywords recalled (N+), respectively. 

Our method outperforms all the other methods in terms of the mean precision rate, 

which is the most important measurement. Our method also achieves a better 

performance than most of the other methods in terms of the mean recall rate. 

Although the recall of HPM is slightly better than ours, it is unfair to compare ours 

directly to those methods using already-known labels. Nevertheless, our method is 

still better in terms of other performance indices. 

 

The tree structure has hierarchical relationships among the nodes. Our system treats 

the different labels (simple or complex) in their own ways. With the help of the tree 

structure, the normal layers and extra branches are weighted differently. Figure 6 

shows the performance with and without using the tree, as a trade-off between 

precision and recall for this dataset. 
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Fig. 6. Precision-recall plots generated by varying the number of keywords assigned to an image with 

and without using the tree structure. 

 

We also control the number of layers in our tree structure, which may affect the 

performance. Our tree consists of label pairs and label triplets placed at different 

layers. Table 3 shows the results of our tree structure with (WT) and without (WO) 

including label triplets. The most important factor of performance, i.e. mean precision 

rate, is given.  

 
Table 3 Performance of our algorithm on Corel5K with and without including label-triplets. 

 WO label-triplets WT label-triplets 

mean precision rate (P %) 32 36 

 
 

We also analyze the complexity of our annotation algorithms. We assume that there 

are N training images, and that each image is represented by an R-dimensional visual 

feature vector. The complexity of MBRM [39] is O(NR), while SML [40] has the 

complexity of O(TR), where T is the number of semantic classes. TagProp, which can 

achieve a good performance, has the same time complexity as MBRM, since it is 

based on the KNN-based model. The framework in [16] filters most of the irrelevant 

labels, resulting in a reduction of complexity by almost 20% compared to SML. Since 

the method proposed in this paper is also based on feature-pool selection, with the 

help of the tree structure, the complexity of our method is about O(TNR), where TN is 

the number of nodes in the tree structure. Figure 7 presents the per-image annotation 

time required by each of the methods on the Corel dataset as a function of N. The time 

complexity of our method is acceptable, and our performance is the best among all the 
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methods. 

 

 
Fig. 7. Comparison of the time complexity for annotating a test image on Corel 5K. 

 

 

4.5 Results on the Corel 30K Dataset and ESP Game Dataset 

 

In this section, a larger dataset is used to evaluate the performance of our framework. 

We follow the same procedure as in [41]: we choose only those words that are used as 

labels for more than 10 images in Corel 30K to form the semantic vocabulary. The 

average number of labels per image is about 3.6. To evaluate our method for 

large-scale annotation tasks, we compare the performance of our algorithm with HPM 

[41], SML [40], and our previous work on the Corel 30K dataset. The results are 

tabulated in Table 4. We can see that our proposed method is better and that its 

performance is very promising. 

 

Table 4 Performance comparison on the Corel 30K dataset. 

Method SML[40] HPM, Given 0 HPM, Given 1 LFA[16] Prop. Work 

Avg. Prec. 0.12 0.10 0.16 0.13 0.17 

Avg. Recall 0.21 0.19 0.31 0.24 0.33 

Rate
+
 44.63% 46.21% 55.71% 49.89% 57.13% 

 

 

Fig 8 shows the precision and recall rates when the annotation length changes from 1 

to 10 on the Corel 30K dataset. Table 5 shows some predicted labels, as well as the 
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corresponding ground-truth, on the Corel 30K database. Those incorrect predicted 

labels are in italics. Table 6 compares the performances of the different methods in 

terms of precision, recall, and number of recalled keywords. The results show that our 

method always achieves better results on the ESP Game dataset. 

 

 
(a) 

 
(b) 

Fig. 8. Performance of our proposed method based on a test set of 1500 tags: (a) Precision, and (b) 

Recall. 
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Table 5 Predicted labels versus ground-truth (the differences are marked in italics) on Corel 30K. 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 Performance comparison on the ESP Game dataset. 

Method JEC [15] TagProp [12] AICDM [42] LFA[16] Prop. Work 

Avg. Prec. 0.22 0.39 0.24 0.35 0.44 

Avg. Recall 0.25 0.27 0.26 0.25 0.30 

N
+
 224 239 231 228 261 

 

4.6 Results on the NUS-Wide Dataset 

 

The NUS-WIDE dataset is a huge dataset, which consists of 269,648 images. In this 

experiment, we choose 1,000 common labels, and randomly sample about 25,000 

related images from NUS-Wide. Three experiments have been done on this database. 

Besides the traditional features utilized in our first experiment, the R-CNN [43] 

features were employed in our second experiment. Since many baseline methods 

cannot be applied to such a large dataset, we show only the results for TagProp, HPM, 

and our proposed method in the first experiment. The average precision and recall for 

the first 5 and 10 returned tags, respectively, for the NUS-Wide dataset are shown in 

Table 7. We can observe that our proposed framework outperforms most of other 

methods on this huge dataset. Although HPM (given 2) has a slightly better 

performance than ours, our performance is promising without the help of any prior 
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knowledge (i.e. labels already known). 

 

In the second experiment, a deep feature is utilized in our framework. Specifically, 

R-CNN is employed to generate the deep feature. We implemented R-CNN as follows. 

The proposal network (RPN) [44] is trained based on the images for each node in our 

tree, which is further used to predict the bounding boxes for each ground-truth label. 

These predicted boxes play an important role of node-independent proposals. Like 

[45], the highest scored 200 proposals are extracted as training samples to train an 

R-CNN classifier. In this part, we compare it with state-of-the-art methods on the 

dataset, including CNN-RNN [23], WARP [46], and R-CNN [43]. The MAP results of 

all these methods are listed in Table 8, which shows that the proposed framework with 

deep features substantially outperforms all the deep learning methods compared. 

Although it is just an attempt to combine deep learning with our framework, it proves 

that efficient and accurate annotation can be achieved by the use of handcrafted 

features, while the performance will be further improved with the help of deep 

features. 

 

In the third experiment, Faster-RCNN [47] is utilized in our framework. In this part, 

our annotation system is composed of two modules. In the first module, the 

Faster-RCNN helps predict the simple object label with the bounding box in the 

output images. The obtained labels in this part are considered as the simple labels in 

our tree. The tree-learning model is introduced in our second module. The input of our 

tree-learning module consists of two label categories. The first category is the simple 

labels output from the Faster-RCNN, and the second category is the other labels 

collected from the NUS-WIDE dataset, which is called extended label in our 

framework. The output of the tree-learning model is composed of single labels and 

complex labels. 

 

As shown in Figure 9, the training process is divided into two steps. The 

Faster-RCNN network, trained on the NUS-Wide dataset, firstly employs the original 

images with a single label. Then, the tree-learning model is also trained on NUS-Wide, 

with the introduction of all the labels including the simple and complex labels. After 

the training process, Faster-RCNN detects the simple labels in the original images, 
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while our tree-learning model groups the simple labels output from the Faster-RCNN, 

and the most suitable complex labels together and outputs the final annotations. An 

example is shown in Figure 9, where an original image is fed into Faster RCNN and 

simple object labels (car, dog, horse, person) are obtained. Then, the complex label 

(hunter) is output from our tree-learning model after that. 

 

Table 9 illustrates the predicted labels produced by the Faster-RCNN module and our 

AMS tree-learning module. Traditional deep-learning models can only detect simple 

object labels, as shown in the single label row of Table 9 (bus, person, road, sofa, dog, 

train, fence, sheep, etc.). With the help of our AMS tree-learning module, the complex 

labels with abstract and confusing meaning can be achieved (cityscape, pets, hunter, 

apartment, race, farm, etc.). The combination of Faster-RCNN and our AMS 

tree-learning module shows the success of our annotation system, which also proves 

the promising performance of our framework. 

 

 

Table 7 Average precision and recall on the NUS-Wide dataset. 

 TagProp [12] HPM(given 0) HPM(given 2) Proposed 

AP@5(%) 

AR@5(%) 

AP@10(%) 

AR@10(%) 

29 ± 2.5 

38 ± 1.6 

21 ± 2.2 

41 ± 1.8 

19 ± 2.0 

25 ± 2.4 

13 ± 1.5 

29 ± 1.0 

33 ± 1.4 

41 ± 2.1 

24 ± 1.7 

44 ± 1.3 

31 ± 1.2 

39 ± 1.0 

23 ± 1.8 

42 ± 1.3 

 

 
Table 8 Mean Average Precision (MAP) on the NUS-Wide dataset. 

Method MAP(%) 

CNN-RNN [23] 70.3 

WAPR [46] 65.7 

R-CNN[43] 71.1 

Proposed+R-CNN 76.2 
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Fig. 9. The flow path of our AMS+Faster-RCNN framework on NUS-Wide. 
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5. Conclusions 

 

This paper presents a new hierarchical model for efficient image annotation, which 

employs an adaptive learning algorithm to select an optimal feature subset for each 

label. A tree structure is constructed using our proposed Associate Memory Sharing 

(AMS) algorithm, and a regression model is trained using the tree structure based on 

our proposed feature-label-selection algorithm. Making use of the tree, the 

relationships among the labels are considered, which can highly improve the 

performance of our multi-task learning algorithm. Our model treats simple words and 

complex words separately by assigning different weights to different clusters of labels. 

By imitating the thinking of human beings in a simple way, our system can alleviate 

the semantic-gap problem. Our proposed method works well on all four well-known 

datasets in terms of annotation benchmarking. The experiment results of our 

framework have not only shown promising performance, but that it can achieve both 

efficiency and accuracy in image annotation. 
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