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Joint Image Encryption and Compression Schemes Based on 16×16 DCT

PEIYA LI, The Hong Kong Polytechnic University

KWOK-TUNG LO, The Hong Kong Polytechnic University

Joint image encryption and compression schemes have shown their great potential values in protecting compressed images, which
are the most common form of Internet images. To achieve the protection, a trade-off between encryption ability and compression
ability needs to be considered. To satisfy different encryption/compression requirements, in this paper, we propose two new joint
encryption and compression schemes by incorporating scrambling techniques in different intermediate stages of the JPEG process,
where one scheme emphasizes compression performance and encryption efficiency, another highlights protection performance. In
order to enhance the protection ability against the chosen-plain-text attack, in both schemes, we use adaptive key for each plainimage’s
encryption/decryption, and the key is dependent on the plainimage. The initial encryption operation we make in the two proposed
schemes is to replace JPEG’s original 8×8 DCT with 16×16 DCT, which means that we raster scan the plain-image into non-overlapping
16×16 blocks, and the following encryption operations are all based on it. In the first encryption scheme, after applying order-16 DCT
for all 16×16 blocks, we do block permutation, and DC coefficients confusion for encryption, all controlled by the adaptive key. As
for our second encryption scheme, to further improve the protection power, we add the run/size and value (RSV) pairs’ shuffling
operation in the entropy coding stage, on the basis of the first scheme. Performance evaluations on these two encryption schemes
using various criteria are conducted, and the results have shown that the first scheme has better compression performance and higher
computational efficiency, while the second scheme has better defense ability against the differential attack and statistical attack.

Additional Key Words and Phrases: Image encryption, JPEG compression, 16×16 DCT, differential attack, statistical attack

ACM Reference format:
Peiya Li and Kwok-Tung Lo. 2017. Joint Image Encryption and Compression Schemes Based on 16×16 DCT. 1, 1, Article 1 (April 2017),
18 pages.
DOI: 0000001.0000001

1 INTRODUCTION

Due to the drastic development of network technology, approaches for communication have been taken to new era.
People communicate with each other anywhere, any-time through various devices, such as smart mobile phones, laptops,
and personal computers. Using these devices, multimedia content can be easily generated and transmitted over the
Internet to the specific people/group. However, this easy access mode and distribution convenience also increase the risk
of eavesdropping and intercepting when sensitive multimedia data are sent and received. Hence, securing multimedia
data through encryption has become more common to be adopted to guarantee the safety of these multimedia contents.

As an important research area of multimedia data protection, image encryption has four major objectives that will
help evaluating and comparing different image encryption algorithms. These four objectives are listed as follows:
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2 Peiya Li and Kwok-Tung Lo

Encryption security: This includes both perceptual security and cryptographic security (Lian 2008). The former
refers to the perceptual distortion of cipherimage with respect to the plainimage, which is commonly measured by
the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) (Wang and Bovik 2002). The latter represents
the encryption scheme’s resistance ability against cryptographic attacks, such as brute-force attack, differential attack,
statistical attack, etc.

Format compliance: Format information is generated after image data is encoded using some compression al-
gorithms. This information will be used by decoder to successfully recover the compressed data and to keep the
communication synchronized between the encoder and decoder (Lian 2008). When applying encryption algorithms to
images, the encrypted bit-stream should be compliant with the compressor, which means that the encrypted bit-stream
should be decoded by any standard decoder even without decryption. This property is essential since it can preserve
some good features of the corresponding compression standard (Massoudi et al. 2008).

Compression friendliness: Most of the images we see on Internet are compressed, thus in all cases, encryption
algorithms should have no or very little influence on the compression efficiency. Some algorithms may introduce some
overheads which is necessary for decryption, but the impact of these overheads on the final compression ratio should
be limited (Massoudi et al. 2008; Xu et al. 2014).

Encryption efficiency: Unlike text data, the size of image data is often very huge, encrypting these data in an
efficient way is particularly important for the real-time processing requirement (Xu et al. 2014).

Joint Photographic Experts Group (JPEG) is a commonly used method of lossy compression for digital images, it
can achieve a good trade-off between image quality and storage size. The general architecture for JPEG compression
standard is shown in Figure 1. From Figure 1, we can see that there are mainly four stages of JPEG, transformation stage,
quantization stage, zig-zag scan stage, and entropy coding stage. The lossy compression is realized at the quantization
stage, which is controlled by the quality factor (QF) to adjust compression ratio. Though JPEG can greatly save the
storage space and transmission bandwidth, it does not offer any protection ability for the images (Zhang and Zhang
2014). Therefore, on the basis of studying and analysing the compression procedure of JPEG image, many encryption
algorithms were proposed to provide protection for this kind of images. Considering the different potential positions
for the encryption algorithms to be embedded into the compression process, JPEG image encryption can be divided
into three categories: pre-compression encryption, in-compression encryption, and post-compression encryption.

Fig. 1. Block diagram of JPEG baseline coder.

Pre-compression encryption means to perform encryption before compression, which is realized at position (1)
of Figure 1. Encryption algorithms, like the permutation-only encryption methods (Indrakanti and Avadhani 2011;
Mitra et al. 2006; Younes and Jantan 2008) or some chaos-based encryption schemes (Faragallah 2015; Kumar et al.
2015; Ponnain and Chandranbabu 2016) which are directly operated on raw images, can be classified into this category.
However, this class of algorithms is generally inapplicable for lossy compression, because under lossy compression, pixel
value in cipherimage cannot be fully recovered to the same value as the plainimage. Additionally, performing encryption
Manuscript submitted to ACM
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Joint Image Encryption and Compression Schemes Based on 16×16 DCT 3

before compression often destroys the correlation in plainimage, little space can be exploited for compression, thus
pre-compression encryption schemes are usually not compression friendly.

In-compression is to perform encryption and compression jointly, which can be implemented at positions (2)-(5) of
Figure 1. Encryptions realized at various intermediate stages are listed as below:

Encryption at position (2): In (Yeung et al. 2009, 2011a,b; Zeng et al. 2014), they realized partial video encryption at
the transformation stage by replacing the original 4×4 or 8×8 DCT with new orthogonal transforms, which could also
be applied for JPEG image encryption. This encryption scheme could achieve good protection performance without
sacrificing compression efficiency too much, but its protection degree was limited because they only modified the
transformation stage for encryption, and the processing unit remained the 4×4 or 8×8 block, little diffusion property
was possessed by this encryption idea, which was vulnerable to the differential attack.

Encryption at position (3): For encryption at quantization stage, (Ong et al. 2015; Qian et al. 2014) proposed to change
the magnitude of entries in quantization table (QT), however only the quantization table change may not offer enough
encryption security, it often accompanies with other stages’ encryption, and the changed entries’ magnitudes may have
an impact on the final compression ratio.

Encryption at position (4): In (Jha 2014; Maniccam and Bourbakis 2004), they proposed a joint encryption and
compression system based on the SCAN language, which is a family of formal languages-based two-dimensional spatial
accessing methodology, was capable of representing and creating a great variety of 2-D array scanning paths from a
small set of primitive ones. This type of encryption scheme has high security level with good confusion and diffusion
properties, but its main drawback is that the high computational overheadwill cause delay in the compression/encryption
procedure and is not so compression friendliness.

Encryption at position (5): Encryption algorithms realized at the entropy-coding stage include using multiple Huffman
tables (Wu and Kuo 2005), shuffling the identifiers of zig-zag scan encoded sequences (Ji et al. 2015), etc. Nonetheless,
these algorithms suffered from the not format compliant problem.

Encryption algorithms from post-compression class perform encryption after compression, which corresponds to
position (6) in Figure 1. Xu et al.(Xu et al. 2014) proposed to encrypt the JPEG compressed data stream using the variable
modular encryption method, which was based on spacing mapping. This scheme was compression friendly, because it
mapped each codeword to another codeword with same code length. But it may confront the format non-compliance
problem, since adopting its mapping strategy, the number of elements in each 8×8 block may exceed 64.

In our work, we propose two different encryption methods to achieve joint encryption and compression for JPEG
image. Both of them are format-compliant to JPEG standard, and are performed in the intermediate stages of JPEG,
which mainly focus on positions (2), (3) and (5) of Figure 1. To enhance the diffusion ability of the two cryptosystems
with respect to the plainimage, we use adaptive keys for different images’ encryption, and the key is plainimage-
dependent. Our first scheme mainly includes three encryption techniques: 16×16 blocks’ transformation using order-16
DCT, 8×8 blocks’ permutation, and DC coefficients confusion. It can maintain the good compression ability of JPEG,
and meanwhile offer a certain level of protection. For the second scheme, we add the Run/Size and Value (RSV) pairs
shuffling operation in the entropy coding stage, thus it has higher protection level, but the compression performance and
encryption efficiency are little compromised. Therefore, the proposed two schemes are suitable for different applications.
For applications paying more attention on compression friendliness and encryption efficiency, first encryption scheme
can be adopted; while for applications putting more emphasis on the security of images, second encryption scheme can
be used.

Manuscript submitted to ACM
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4 Peiya Li and Kwok-Tung Lo

The rest of this paper is organized as follows: Section 2 introduces how we generate the plainimage-dependent
secret key and the pseudorandom key-stream. Section 3 explains the implementation details our first encryption
method. Section 4 presents the added RSV shuffling operation in the second encryption scheme. Detailed performance
evaluations of these two encryption schemes are given in Section 5, and Section 6 gives a conclusion.

2 KEY PROCESSOR

To introduce diffusion property in the encryption process with respect to the plain-image, in both our encryption
schemes, we first use the SHA-384 hashing function (YASUDA and SASAKI 2010) taking the plain-image as input to
output a 384-bit random hash value, denoted as σ . Then we use Chen’s chaotic system (Chen and Ueta 1999) to produce
three pseudo-random key sequences, which can be described as follows:

Ûx = a(y − x),

Ûy = (c − a)x − xz + cy,

Ûz = xy − bz.

(1)

where a, b and c are parameters which determine system’s chaotic attractors and bifurcations. x , y and z make up the
system’s state, and x ′0, y

′
0, and z

′
0 are the initial states. When a = 35, b = 3, c ∈ [20, 28.4], the system is chaotic as shown

in Figure 2.

Fig. 2. Chen’s chaotic system.

We convert the 384-bit hash value σ to 8-bit decimal form: σ = k1k2 . . .k48, where each ki ranged in [0, 255]. Then
these 48 decimal numbers are used to modify the initial states of Equation (1) as follows,

x0 = x ′0 +
(k1 ⊕ k2 ⊕ . . .k16)

256
,

y0 = y
′
0 +
(k17 ⊕ k2 ⊕ . . .k32)

256
,

z0 = z′0 +
(k33 ⊕ k2 ⊕ . . .k48)

256
,

(2)

and x0,y0, and z0 are the new initial states of Equation (1). Iterate Chen’s chaotic system for N0 times, we set N0 = 10000
in our experiment, for each iteration, three values xi , yi , and zi can be obtained, i = 1, 2, ..., 10000. We pre-process these
Manuscript submitted to ACM
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Joint Image Encryption and Compression Schemes Based on 16×16 DCT 5

values using the following formula,

Xi = dec2bin(((abs(xi ) − f loor (abs(xi ))) × 1014) mod (M × N )),

Yi = dec2bin(((abs(yi ) − f loor (abs(yi ))) × 1014) mod (M × N )),

Zi = dec2bin(((abs(zi ) − f loor (abs(zi ))) × 1014) mod (M × N )),

where function dec2bin(x) converts decimal number x into binary number, abs(x) returns the absolute value of x ,
f loor (x) rounds the element of x to the nearest integers less than or equal to x . M and N is the row number and
column number of the plain-image. Therefore, in our proposed two schemes, the encryption key has two parts: 1) the
384-bit hash value σ ; 2) the three initial states x ′0, y

′
0, and z

′
0. The three binary sequences X , Y , and Z are taken as the

pseudo-random key-streams to control following encryption operations.

3 FIRST ENCRYPTION SCHEME

In this scheme, we realize encryption in JPEG’s transformation stage and after quantization stage, which are denoted
at positions (2) and (3) in Figure 1. We explain the implementation details of the in-transformation encryption and
after-quantization encryption separately.

3.1 In-transformation Encryption

The modification we made for encryption in this part is to replace the original 8×8 DCT transformation by 16×16 DCT
transformation. Hence, we initially raster scan the input plain-image to sequential 16×16 blocks, then apply 16×16 DCT
for these blocks’ transformation. In our encryption scheme, we still use JPEG’s 8×8 quantization table, thus before the
quantization procedure, the 256 coefficients of one 16×16 transformed block need to be distributed into four 8×8 blocks.
And this work is controlled by the pseudo-random keystream X . For each transformed 16×16 block (denoted as B16),
we distribute its 256 coefficients into four 8×8 blocks, represented by a 3-D array B8. In the coefficients distribution
process, information denoting which one of the four 8×8 blocks possesses the 16×16 block’s DC coefficient is saved as
DCIndex , and this information will be used in the following after-quantization encryption. We explain the coefficients
distribution process using Pseudo-codes 1.

In Pseudo-codes 1, i represents which 8×8 block is participated in this time’s coefficients distribution, since there
are four 8×8 blocks, 2 bits are needed from key-stream X each time. j indicates the number of coefficients that will be
distributed into ith 8×8 block, and we use 3 bits from X to decide this number. The reason why we choose 3 bits is to
avoid one 8×8 block possessing too many low frequency coefficients from the 16×16 block. After finishing all 16×16
blocks’ coefficients distribution work, we quantize all 8×8 blocks using JPEG’s quantization table, and do next step
encryption.

3.2 After-quantization Encryption

In this part, we permute all quantized 8×8 blocks and confuse the DC coefficients in original 16×16 blocks through XOR
operation using key-stream Y . The reason why we do not confuse DC coefficients in 8×8 block unit is because after
16×16 DCT transformation and 8×8 blocks’ quantization, most DC coefficients in 8×8 blocks are zero. If we confuse the
DC coefficients in all 8×8 blocks, then when inverse 16×16 DCT is performed on the decoder side for de-compression,
many DC coefficients in 8×8 blocks will exceed the range of [0,255], which means that after the normalization process,
the cipher-image will contain large scale of white/black pixels, a great amount of image information will be missing.

Manuscript submitted to ACM
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6 Peiya Li and Kwok-Tung Lo

Pseudo-codes 1: Coefficients Distribution
Input: One 16×16 block B16, and keystream X
Output: Four 8×8 blocks (B8), and DC information (DCIndex )
CoeIndex ← 1;
DCIndex ← first 2 bits of X , and convert to decimal;
B8Number ← 1 × 4 vector with four elements being zero;
while CoeIndex ≤ 256 do

i ← pick 2 bits from X , and convert to decimal;
j ← pick 3 bits from X , and convert to decimal;
if B8Number (i) < 64 then

Temp ← B8Number (i) + j;
if (Temp − 64) > 0 then

j ← j − (Temp − 64);
end
ith 8×8 block of B8← pick j elements from B16 in zigzag scan order;
B8Number (i) ← B8Number (i) + j;
CoeIndex ← CoeIndex + j;
Remove the first j elements from B16 in zigzag scan order;
Remove the first 5 bits from X ;

else
Remove the first 5 bits from X ;

end
end
return B8,DCIndex

The permutation method we use is the two key-driven cyclical shift (Zhou et al. 2014), where circular shift is operated
on each column and each row separately, and the number of shift positions is controlled by Y . For a given input
sequence, we first reshape it into a square matrix, then downward circular shift each column’s element according to
the shift position decided by the first half key-stream of Y . After shifting all columns, rightward circular shift each
row’s element according to the shift position decided by the second half key-stream of Y . We call the final produced
permutation vector as P. In Figure 3, we give two examples to illustrate this permutation method. The two examples
explain separately how we produce permutation vector when the length of input sequence S has square root or not.
When using this permutation method for our 8×8 blocks’ permutation, the input sequence S is the original order of all
8×8 blocks, and the output sequence S ′ is the permutation vector we need.

After performing block permutation, positions for original 16×16 blocks’ DC coefficients (DCIndex) are changed.
Finding the permuted DCIndex under the permutation vector S ′, we perform XOR operation on these permuted DC
coefficients using Equation (3), to further improve the diffusion and confusion properties of our first encryption scheme.

dci = dci ⊕ dci−1 ⊕ · · · ⊕ dc1, (3)

where dci is the DC coefficient of the ith permuted 8×8 block who has the original 16×16 block’s DC coefficient,
i = 1, 2, . . . ,M × N /256. For recovering these confused DC coefficients, Equation (4) can be used:

dc j = dc j ⊕ dc j−1, (4)

where j starts fromM × N /256, and ends with 2.
Manuscript submitted to ACM
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Joint Image Encryption and Compression Schemes Based on 16×16 DCT 7

Fig. 3. Two examples of circular shift.

3.3 Encryption and Decryption Algorithms for The First Scheme

Encryption algorithm of our first method mainly contains four parts: a) pseudo-random key-stream generation using
SHA-384 and Chen’s chaotic system; b) 16×16 DCT transformation, and coefficients distribution; c) block permutation
and DC coefficients confusion; d) entropy encoding.
Encryption Algorithm-1

Step-1: Take plain-image as the input of SHA-384 algorithm to generate a 384-bit hash value, use this data to modify
the three initial values (x ′0, y

′
0, and z

′
0) by Equation (2), then run Chen’s chaotic system for 10000 times to produce the

pseudo-random key-streams X , Y , and Z ;
Step-2: Level shift the plain-image by subtracting 128 from each pixel, and segment the level shifted image into
non-overlapping 16×16 blocks. For each 16×16 image block, do

Step-2.1: Transform the block using 16×16 DCT;
Step-2.2: Distribute the 256 coefficients into four 8×8 blocks controlled by key-stream X , quantize these 8×8 blocks
by JPEG’s original order-8 quantization table;

Step-3: Repeat Step-2 until all 8×8 blocks are quantized, permute these blocks using the two key-driven cyclical shift
and key-stream Y , and do DC coefficients confusion according to Equation (3);
Step-4: Perform JPEG’s entropy coding procedure for all processed 8×8 blocks, transmit the encrypted bit-stream,
and encryption keys (384-bit hash value σ , three initial values x ′0, y

′
0, and z

′
0) securely to decoder for decryption and

Manuscript submitted to ACM
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8 Peiya Li and Kwok-Tung Lo

decompression.

For decrypting the encrypted bit-stream, if encryption keys are not known, we just follow JPEG’s decompression
process to obtain the cipher-image, because of the format-compliant property. When keys are available, then the
decryption algorithm is as follows:
Decryption Algorithm-1

Step-1: Use σ to modify x ′0, y
′
0, and z

′
0 by Equation (2), run Chen’s chaotic system for 10000 times produce the pseudo-

random key-streams X , Y , and Z ;
Step-2: Perform entropy decoding procedure of JPEG, and generate the 8×8 blocks’ permutation vector S ′ using the two
key-driven cyclical shift and key-stream Y ;
Step-3: Recover the confused DC coefficients using Equation (4), and then put the permuted 8×8 quantized blocks back
to their original positions;
Step-4: For each four 8×8 blocks obtained in Step-3, do

Step-4.1: Perform JPEG’s de-quantization process and coefficients re-distribution to construct the plain transformed
16×16 block according to key-stream X ;
Step-4.2: Do inverse transformation using 16×16 DCT;

Step-5: Repeat Step-4 until all 16×16 blocks are recovered, add 128 to all pixels to obtain the decrypted image.

4 SECOND ENCRYPTION SCHEME

In our first encryption scheme, we do not modify the entropy coding stage of JPEG, which means that to distinguish
each 8×8 block, the end-of-block (EOB) identifiers are embedded into the zigzag-scan encoded sequence and this
will bring a risk to encryption (Ji et al. 2015). In (Ji et al. 2015), they pointed out that these position seldom changed
identifiers will leak the profile of the plain-image, correlation in 8×8 blocks cannot be efficiently removed. Hence they
proposed to shuffle the positions of identifiers in the zigzag scan encoded sequence, to make the 8×8 pixel blocks
different after encryption. Nevertheless, when shuffling these EOBs, they processed them independently, constraint that
each block could only have 63 AC coefficients was not considered well in their cryptosystem, which may lead to the not
format-compliant to JPEG problem, when the encryption key is not available and only decompression is performed.

In our second encryption method, we add an extra encryption step in JPEG’s entropy coding stage on the basis of
the first method. The major objective of this added encryption technique is to enhance the correlation removal ability,
and meanwhile keep format compliance. Following the idea in (Ji et al. 2015), we change the position of EOBs by first
shuffling the RSV pairs of AC coefficients, then embedding certain number of EOBs to keep format compliance. The
shuffling operation is controlled by key-stream Z .

4.1 Shuffling RSV Pairs

In JPEG, after zigzag scanning quantized DCT coefficients, the DC and AC coefficients are entropy coded using Huffman
coding separately. For DC coefficients, their differences are encoded, because DC coefficients of neighbouring blocks
are highly correlated. While for AC coefficients, they are encoded using variable-length codes (VLC) in the form of RSV
pairs. For example, given the following zigzag scan sequence of AC coefficients in two blocks:
Manuscript submitted to ACM
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0,−2, 0, 1,−1, 0, . . . , 0︸  ︷︷  ︸
58 zeros

, 0, 0, 0, 5, 0, . . . , 0︸  ︷︷  ︸
59 zeros

,

The resulting RSV pairs are
(1,−2), (1, 1), (0,−1), (0, eob), (3, 5), (0, eob).

where (0, eob) is the stopping tag of one 8×8 block, which is essential for ensuring format compliance.
In the second encryption method, we first save all RSV pairs of the nonzero AC coefficients to form a list Lac , the

stopping tag (0, eob) is not included in Lac . To show where each 8×8 block ends, we count the number of nonzero AC
coefficients in each block, denoted by ζ (i, j), for 1 ≤ i ≤ M/8 and 1 ≤ j ≤ N /8. Each element in ζ (i, j) is mapped to a
unique RSV pair in JPEG’s huffman table for AC coefficients, using the method proposed in (Ong et al. 2015). In the
default table for AC coefficients, (Run/Size, Value)=(0, 1) and (0, -1) in category 1 are the shortest codewords, followed by
(0, -3), (0, -2), (0, 2), and (0, 3) in category 2, and so forth. To maintain the final encrypted bit-stream size, we represent
each of the possible 64 values (since 0 ≤ ζ (i, j) ≤ 63) by a codeword in category 1, 2, . . ., and 6. Specifically, we map (0,
-1) to ζ (i, j) = 0, (0, 1) to ζ (i, j) = 1, (0, -3) to ζ (i, j) = 2, (0, -2) to ζ (i, j) = 3, and so on. We name these newly generated
RSV pairs as LacNum , which is used to distinguish each 8×8 block, and its length isM × N /64. Concatenating LacNum

to the end of Lac to form a new list L, we perform a permutation on L using key-stream Z to achieve AC coefficients
encryption. The permutation vector is also produced through the two key-driven cyclical shift, and the permuted RSV
pairs’ list is denoted as Lp .

4.2 Embedding End-of-block Identifiers

Now we have obtained the permuted RSV pairs’ list Lp , if the decoder knows key-stream Z , after JPEG’s entropy
decoding process, he/she just uses Z to produce the permutation vector to de-permute Lp , and gets L. Taking the final
M ×N /64 RSV pairs to distinguish how many nonzero AC coefficients are included in each 8×8 block, he/she can easily
put all nonzero AC coefficients’ RSV pairs into their original 8×8 blocks. However, for someone who do not know the
secret key, he/she cannot distinguish where each 8×8 block ends, then JPEG’s decompression procedure may not be
run successfully, which is the not format-compliant problem.

To ensure format-compliant when only JPEG de-compression process is performed, we embed M × N /64 EOB
identifiers into Lp . These embedded EOBs must satisfy three conditions: 1) the number of AC coefficients in each 8×8
blocks cannot exceed 63; 2) element before the embedded EOB must be nonzero AC coefficient, otherwise some zeros in
Lp will be missing when the with-key decryption and decompression procedures are performed; 3) one EOB must be
placed at the end of Lp . Our method is to embed theM ×N /64 EOBs one by one. For each embedding, we use two arrays:
a forward-array and a backward-array, in which the forward-array is to ensure the currently embedded EOB satisfies
the above three conditions, while the backward-array is to make sure that the remaining (M × N /64 − 1) EOBs can
be successfully embedded into the left RSV pairs under the three constraints. Additionally, to evenly segment all RSV

pairs of Lp into
M × N

64
8×8 blocks, we use a poisson distribution with λ =

lenдth o f Lp

(M × N )/64
to produce a random number

Numavд ∼ P(λ). Then combining Numavд with the previous two arrays, we can determine the specific position for
the current EOB’s embedding.
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10 Peiya Li and Kwok-Tung Lo

Pseudo-codes 2: End-of-block Identifiers Embedding
Input: Permuted RSV pairs (Lp ),

Maximum number of coefficients for 8×8 blocks (T ),
EOBs number (Numeob )

Output: Encrypted AC sequence with EOBs (Sac )

λ←
lenдth(Lp )

(M × N )/64
;

T ← 63;

Numeob ←
M × N

64
;

while Numeob ≥ 1 do
Produce Numavд ∼ P(λ);
Generate Af and Ab from Lp ;
Indexclosest ← index of element x in Af satisfying x is the most closest element to Numavд ;
Indexend ← max(f ind(Af ≤ T ));
Indexstar t ← max(f ind(Ab > (Numeob − 1) ×T ));
if Indexclosest > Indexend then

Indexeob ← Indexend ;
else

if Indexclosest < Indexstar t then
Indexeob ← Indexstar t ;

else
Indexeob ← Indexclosest ;

end
end
Put the first Af (Indexeob ) elements of Lp and one EOB identifier into Sac ;
Numeob ← Numeob − 1;
Lp ← remove the first Af (Indexeob ) elements from Lp ;

end
return Sac

We take the example in Section 4.1 to explain how we produce the forward-array (denoted as Af ) and the backward-
array (denoted as Ab ) for each EOB’s embedding. Suppose the permuted RSV list Lp is

(1,−2), (1, 1), (0,−1), (3, 5)
↓

0,−2, 0, 1,−1, 0, 0, 0, 5

No EOBs are included in this list. Create a new array Anum to count how many coefficients (including zero AC
coefficients) are contained in each RSV pair, then Anum for the above example is

Anum = (2, 2, 1, 4)

Generate the forward-array Af by adding each element in Anum with its previous elements starting from Anum ’s
first element, while the backward-array Ab is produced by adding each element in Anum with its following elements
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Joint Image Encryption and Compression Schemes Based on 16×16 DCT 11

starting from Anum ’s last element. Then Af and Ab will be

Af = (2, 4, 5, 9),

Ab = (9, 7, 5, 4),

Specific realization of our EOB embedding method is given in Pseudo-codes 2.

4.3 Encryption and Decryption Algorithms for The Second Method

For our second encryption scheme, its encryption and decryption algorithms can be obtained by modifying Step-4 in
Encryption Algorithm-1 and Step-2 in Decryption Algorithm-1, respectively. Other steps remain the same.
Encryption Algorithm-2

Step-4: Use variable-length codes to represent AC coefficients in the form of RSV pairs, then
Step-4.1: Concatenate all RSV pairs to form a list Lac , in which EOB identifiers are not included;
Step-4.2: Count the number of nonzero AC coefficients in each 8×8 block (ζ ), and map these numbers to unique RSV
pairs, according to the mapping table, to form another new list LacNum withM × N /64 elements;
Step-4.3: Add LacNum to the end of Lac , denoted as L, apply cyclical shift and key-stream Z to permuting L, and
generate a new permuted RSV pairs’ list Lp ;
Step-4.4: Embed M × N /64 number of EOB identifiers into Lp to obtain the final encrypted AC coefficients with
end-of-block labels, denoted as Sac ;
Step-4.5: Perform JPEG’ entropy coding procedure for Sac and DC coefficients, transmit the encrypted bit-stream
and encryption keys (384-bit hash value σ , three initial values x ′0, y

′
0, and z

′
0) securely to decoder for decryption

and decompression;

Decryption Algorithm-2

Step-2: Perform entropy decoding procedure of JPEG, discard all EOB labels, and obtain the permuted RSV pairs’ list Lp ,
then

Step-2.1: Use key-stream Z and cyclical shift to de-permute Lp , and get L;
Step-2.2: Take the finalM × N /64 RSV pairs, and map them to the specific number of nonzero AC coefficients (ζ );
Step-2.3: Use ζ to put those remaining RSV pairs in L into their original permuted 8×8 blocks;
Step-2.4: Generate the 8×8 blocks’ permutation vector S ′ using the two key-driven cyclical shift and key-stream Y ;

For decryptionwithout encryption keys, JPEG’s decompression steps can be adopted directly on the encrypted bit-stream,
because of the added EOB identifiers.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performances of our proposed two encryption schemes, according to the four objectives
of image encryption introduced in Section 1. In our experiment, parameters of Chen’s system are: a = 35, b = 3, and
c = 28. The three initial states are: x ′0 = 10, y′0 = −6, and z

′
0 = 37.

Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

12 Peiya Li and Kwok-Tung Lo

5.1 Encryption Security

Two kinds of security are included: perceptual security and cryptographic security. For perceptual security, we use
PSNR value to evaluate cipher-image’s distortion degree, and the results of the two encryption schemes are given
in Figure 4. The tested plain-image is ‘Baboon’. All images used in our schemes are taken from the USC-SIPI image
database available on the website “http://sipi.usc.edu/database”. It can be seen that when encryption keys are not
known, Algorithm-2 achieves a larger PSNR drop than Algorithm-1, which means a better image distortion ability.
However, when the keys are available, the quality drop in the decrypted image of Algorithm-2 is more serious than that
of Algorithm-1, both compared with JPEG compressed image.

Fig. 4. Perceptual security results of two encryption schemes.

For the cryptographic security, we evaluate the performance of the two schemes under four cryptanalysis techniques:
brute-force attack, differential attack, key sensitivity analysis, and statistical attack.

5.1.1 Brute-force attack. This attack is a typical attacking method in the ciphertext-only attack, in which only the
encrypted data is available to attackers, and all cryptosystems should be designed to at least withstand this type of
attack. Attackers try to recover the encrypted data through guessing all the possible keys. To make brute-force attack
infeasible, the key space of a cryptosystem should be large enough. In both our two encryption schemes, the encryption
keys are: 384-bit random hash value σ generated from SHA-384, three initial states of Chen’s chaotic system x ′0, y

′
0, and

z′0. For SHA-384 hash function, complexity of the best attacking method against this function is 2192 (YASUDA and
SASAKI 2010). For the three initial values, if the precision is 1014, the key space size is 1042, thus the total key space
size will be 2192 × 1042, which is impossible for attackers to guess. Moreover, for each different plain-image, SHA-384
will produce a different 384-bit σ , and this also increases the attacking difficulty.

5.1.2 Differential attack. Differential attack is a chosen-plaintext attack, in which attacker is assumed to have the
ability of modifying one pixel of the plain-image and observing the resulting cipher-image. By computing the difference
between the chosen plain-images and the corresponding cipher-images, attacker tries to deduce a statistical relationship
between them (Taneja et al. 2012). If such a minor change results in a significant change in the cipher-image, then the
cryptosystem is considered as resistance against the differential attack. Two statistical evaluation parameters, net pixel
change ratio (NPCR) and unified average change in intensity (UACI) (Wu et al. 2011), are widely used for checking the
Manuscript submitted to ACM
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robustness of an image encryption scheme against differential attack. NPCR denotes the change rate of the number of
pixels in the cipher-image while one pixel in plain-image is changed. The higher the value of NPCR, the more secure
is the encryption scheme. UACI measures the average intensity difference between two cipher-images. To get higher
security, the value of UACI should be close to 33%. The calculations of these two parameters are defined as

D(i, j) =

{
0, i f C1(i, j) = C2(i, j),

1, i f C1(i, j) , C2(i, j).

NPCR : N (C1,C2) =

∑
i, j D(i, j)

M × N
× 100%,

UACI : U (C1,C2) =

∑
i, j

��C1(i, j) −C2(i, j)
��

255
M × N

× 100%,

where C1 and C2 are two cipherimages corresponding to two plainimages differing by one single pixel.
We have computed the NPCR and UACI values for several images with their last pixel increased by 1, and the results

for our two encryption algorithms are listed in Table 1. From Table 1, we can observe that Algorithm-2 has better
defence capability against differential attack than Algorithm-1, indicating a better diffusion property.

Table 1. Results of differential attack tests on different images

Image Algorithm-1 Algorithm-2
NPCR% UACI% NPCR% UACI%

Lena 0.9665 0.2289 0.9646 0.2868
Clock 0.9430 0.2287 0.9646 0.2744
Resolution chart 0.8719 0.2733 0.9406 0.3614
Chemical plant 0.9765 0.2292 0.9661 0.3305
Couple 0.9680 0.2228 0.9675 0.2827
Aerial 0.9778 0.2390 0.9685 0.3446
Stream and bridge 0.9812 0.2409 0.9661 0.3564
Peppers 0.9605 0.2081 0.9666 0.2638
Sailboat 0.9702 0.2238 0.9701 0.3017
Baboon 0.9702 0.2645 0.9505 0.3788

5.1.3 Key sensitivity analysis. An ideal cryptosystem should be extremely sensitive to the key used in the encryp-
tion/decryption algorithm, and it can be observed in two ways: (i) completely different cipherimages should be produced
when slightly different encryption keys are used to encrypt the same plainimage; (ii) the cipherimage should not be
correctly decrypted even if there is a minor difference in the encryption and decryption keys.

In our proposed two schemes, the encryption keys include two parts: 1) the 384-bit random hash value σ generated
from SHA-384 and the plain-image; 2) three initial states x ′0, y

′
0, and z

′
0. In key sensitivity analysis, the plain-image is

not changed, thus the 384-bit σ does not change, only the encryption/decryption results come from changes made in
these three initial states need to be evaluated. To evaluate the first case of key sensitivity, we slightly change the three
initial values x ′0 = 10, y′0 = −6, and z

′
0 = 37 into x ′0 = 10.00000000000001, y′0 = −6, and z

′
0 = 37, and use these two keys

to encrypt ‘Baboon’ image under Algorithm-1 and Algorithm-2. The encrypted two images (C1 and C2) by Algorithm-1

and Algorithm-2 using two different keys and their difference image are presented in Figure 5. For the second case of
key sensitivity, if a minor change is occurred in encryption keys during transmission, in both decryption algorithms,
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14 Peiya Li and Kwok-Tung Lo

the three pseudo-random key-streams X , Y , and Z will change, and this will consequently lead to wrong permutation
vectors produced and wrong coefficients distribution results, thus the final decrypted cipher-image cannot be correct.

Fig. 5. Key sensitivity analysis for encryption process.

5.1.4 Statistical attack. In this type of attack, attackers try to predict the plain-image without the knowledge of
key through studying the predictable relationship of some data segments between plain-image and cipher-image. It is
obvious that most natural images have high correlation between adjacent elements, hence if an encryption scheme can
reduce such correlation, the relationship between plain-image and cipher-image will be decreased, and the encryption
scheme is deemed to be efficient. In Figure 6, we show the correlation distribution of two horizontally adjacent pixels,
two vertically adjacent pixels and two diagonally adjacent pixels of the plain Baboon image and the encrypted images
by Algorithm-1 and Algorithm-2. From Figure 6, we can observe that correlation existed in Algorithm-2 encrypted
Baboon image are much less than that in plain Baboon image and Algorithm-2 encrypted image, which illustrates
Manuscript submitted to ACM
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the second encryption scheme has better decorrelation ability and superior defence ability against statistical attack,
compared with the first encryption scheme.

Fig. 6. Correlation charts of plain ‘Baboon’ image and encrypted image.

5.2 Format Compliance

In our first encrypted scheme, we only perform encryption in transformation stage and after quantization stage of
JPEG, the entropy coding method for DC and AC coefficients remains the same, thus even without the encryption
keys, decoder can still successfully recover the encrypted and compressed data using JPEG’s original de-compressor,
and finally obtains the encrypted plain-image. In the second scheme, we shuffle all RSV pairs for AC coefficients and
number of non-zero AC coefficients in each 8×8 block, if someone does not know the key to generate the shuffling
vector, he/she cannot correctly recover the encrypted and compressed bit-stream data, because the side information
of 8×8 blocks is missing. Hence, we propose to embed certain number of EOB identifiers to keep format compliance.
Experiment results have confirmed that the embedded EOBs can ensure format-compliant when the key is not available
to decoder.

5.3 Compression Friendliness

To evaluate the compression performance of the two schemes, we use bit-stream size (BS) and compression ratio
(CR) as the evaluation criteria. The tested plainimage is ‘Baboon’, and the BS and CR values with different PSNR of
JPEG, Algorithm-1, and Algorithm-2 are given in Figure 7. We can observe from Figure 7 that, when PSNR is fixed,
Algorithm-1 has lower BS value and higher CR value than Algorithm-2. This is because in Algorithm-2, some overheads
are introduced in the final encrypted bit-stream, and these overheads are the M × N /64 EOB identifiers which are
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16 Peiya Li and Kwok-Tung Lo

essential for the format compliant objective. Therefore, our second encryption scheme is less compression friendliness
than the first encryption scheme.

Fig. 7. Compression performance of two encryption schemes.

5.4 Encryption Efficiency

Apart from the security consideration, efficiency is also an important evaluation criterion for a good image cryptosystem,
especially for real-time Internet application. In Table 2, we have listed the encryption speed of gray images with different
sizes by using our proposed two encryption schemes and the well-known DES algorithm using electronic codebook
(ECB) mode. The JPEG compression-only execution time is also given in the table as a reference. The simulation
environment is MATLAB R2014a in 64 bit operating system, 3.50 Ghz, 16 GB RAM, Intel Core i7-4770K. From Table
2, we can see that the speed of our proposed two encryption schemes is much faster than the classic DES algorithm.
However, Algorithm-2’s encryption speed is a little lower than Algorithm-1, and this is because in Algorithm-2, in
order to enhance the security level and to keep format-compliant, we add the RSV shuffling and EOB labels embedding
operations, which result in longer processing time.
Manuscript submitted to ACM
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Table 2. Efficiency comparison for different encryption schemes

Image size Encryption
time of
Algorithm-
1 (s)

Encryption
time of
Algorithm-
2 (s)

Encryption
time of
DES (s)

JPEG com-
pression (s)

256×256 1.41 1.74 33.49 0.81
512×512 5.83 7.93 240.56 1.54
1024×1024 23.89 36.97 2634.91 5.53

6 CONCLUSIONS

This paper presents two image encryption schemes based on 16×16 DCT, which are realized at the intermediate stages of
JPEG. They both have their own advantages and disadvantages. For the first encryption scheme, it is more compression
friendliness and needs less execution time, but its security level are not so high, hence it may suitable for applications
where real-time interaction is more important than confidentiality. While for the second scheme, it obtains a higher
protection ability against the differential attack and statistical attack compared with the first scheme, at the price of
sacrificing compression performance and encryption efficiency.

In both of our encryption schemes, we use adaptive key to control the whole encryption techniques, and the key is
different for each different plain-image. For the first encryption scheme, we realize encryption in transformation stage
and after quantization stage of JPEG, which includes the 16×16 DCT transformation, 8×8 block permutation and DC
coefficients confusion. For the second scheme, after finishing all encryption operations in the first scheme, we add the
entropy coding stage encryption to enhance the security level by shuffling all RSV pairs of nonzero AC coefficients,
according to the secret encryption key. Finally, to maintain the format-compliant property, EOB identifiers denoting the
side information of each 8×8 block are embedded into these shuffled RSV pairs.
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