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ABSTRACT 

In the underwater environments, the captured underwater images are usually confronted with complex 

illuminations, severe turbidity of water, objects with large varieties in pose and spatial location, etc., 

which all present challenges to underwater vision research, in practice. In this paper, an extended large-

scale underwater image database for salient-object detection or saliency detection is introduced. This 

database is called the Marine Underwater Environment Database (MUED), which contains 8600 

underwater images of 430 individual groups of conspicuous objects, with complex backgrounds, 

multiple salient objects, and complicated variations in pose, spatial location, illumination, turbidity of 

water, etc. Specifically, this publicly available MUED provides researchers in relevant industrial and 

academic fields with underwater images under different types of variations. Manually labeled ground-

truth information is also included in the database, so as to facilitate the research on more applicable and 

robust methods for both underwater image processing and underwater computer vision. The scale, 

accuracy, diversity, and background structure of MUED can not only be widely used to assess and 

evaluate the performances of the state-of-the-art salient-object detection and saliency-detection 

algorithms for general images, but will also particularly benefit the development of underwater vision 

technology, and offer unparalleled opportunities to researchers in the underwater vision community, and 

beyond. 
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1. Introduction 

Recently, autonomous underwater navigation has been a hot area of research with broad commercial 

and military applications, and underwater image/video processing has drawn wide attention. On the one 

hand, with the development of underwater imaging systems, such as North-East Pacific Undersea 

Networked Experiments (NEPTUNE) sub-sea observatories, it becomes difficult and time-consuming to 

obtain useful information from massive amount of underwater video/image data. On the other hand, the 

exploration and development of marine resources take place all over the world. Thus, precise detection 

of underwater fatalness and salient objects is one of the primary and essential issues in underwater 

navigation research nowadays. Underwater saliency detection, serving as a pre-processing step like 

conventional visual saliency detection, aims to identify the most informative location of objects in 

underwater images and greatly benefits many practical computer-vision applications in image 

segmentation [1, 2], object retargeting [3, 4], automatic image cropping [5], scene classification [6], 

moving object detection [43], and motion detection [44, 45]. This detection can not only efficiently 

focus on the interesting underwater image regions or objects, but also particularly benefits the 

development of underwater vision technology in the future. 

Although significant progress has been made in the last two decades, visual saliency detection [9, 11, 

15, 19, 24, 34, 37, 40] remains a challenging issue, due to the interrelated and mutually influenced 

interaction in the underwater scenarios, such as complicated illumination conditions, low-contrast 

objects under complex background, light absorbing and scattering, severe turbidity of water, etc. 

Therefore, modeling the saliency-detection mechanism in underwater scenes is a tough and challenging 

task in the underwater vision domain. In particular, although there exists a data set of turbid underwater 

images for evaluating image-restoration methods [42], publicly available underwater databases can 

seldom be used for underwater saliency detection, and only limited research has been carried out to 

investigate how to tackle underwater salient-object detection [28, 29]. 

In this paper, for extending saliency detection into the underwater vision domain, an extended 

underwater image database based on the OUC-VISION database [33], which is called the Marine 

Underwater Environment Database (MUED), is constructed and presented. This database contains 

underwater images with pose variations (including the frontal, the opposite, the left, and the right views 

of each individual underwater object), changes of different spatial location (underwater object located at 

the top-left corner, the top-right corner, the center, the bottom-left corner, and the bottom-right corner), 

complicated illumination conditions, varying degrees of turbidity, complex background and multiple-



salient objects, in a single uniform database. The currently released underwater image data set contains 

8600 images, which were captured for 430 groups of underwater subjects, under different conditions. 

Furthermore, we will also describe the design, collection, labeling, and categorization of the samples for 

the database in detail. The advantages of the designed underwater image database are that there are a 

large number of images for each distinct subject, and the images are categorized according to the 

controlled variations of the different situations. In our experiments, we also compare and evaluate the 

performances of several state-of-the-art saliency-detection methods on this publicly available 

underwater database. 

The main contributions of this paper are summarized, as follows: 

 To the best of our knowledge, no large-scale underwater database for saliency detection and 

assessment is publicly available. For extending saliency detection to the underwater vision 

domain, a large-scale and diverse underwater image database is constructed and presented.  

 This released underwater image database can identify the strengths and weaknesses of the 

existing state-of-the-art saliency-detection algorithms for underwater images. The experiments 

with the algorithms on the underwater image database provide reference-evaluation results for 

researchers working on underwater computer vision.  

 This database can not only offer unparalleled opportunities to researchers in the underwater 

vision community and beyond, but also will particularly benefit the development of underwater 

vision technology in the future. 

A preliminary conference version of the released database was published in [33]. In contrast to the 

previous work in [33], which contained 4400 underwater images of 220 individual objects, the new 

MUED includes 4200 more underwater images of 210 conspicuous underwater objects. Furthermore, 

this database also considers the complex underwater background variations, underwater floating debris, 

and multiple salient objects, so as to construct a larger and more comprehensive data set. We also 

provide the baseline evaluations to researchers in the underwater vision community, to facilitate the 

research on more applicable and robust methods for both underwater image processing and underwater 

computer vision. 

The remainder of this paper is organized as follows. In Section 2, we will introduce the related work 

on saliency detection and underwater salient-object detection. In Section 3, we introduce the imaging 

set-up and the lighting system for capturing underwater images. Then, the design and the consents of the 

MUED are presented in Section 4. In Section 5, the designed database is described in detail. The 



performances of several state-of-the-art saliency-detection methods on the MUED are evaluated in 

Section 6. Section 7 describes how to obtain the MUED. Finally, the paper closes with a conclusion and 

discussion in Section 8. 

2. Related Work 

Visual saliency detection, aiming at locating salient regions or conspicuous objects in an image, has 

recently drawn extensive attention, and has also been extensively studied in both the fields of image 

processing and computer vision [7]. Practical applications of saliency detection include image 

segmentation, automatic image retargeting, visual tracking, object recognition, etc. Generally, saliency-

detection computational models fit into two categories: those based on the bottom-up model and those 

based on the top-down model, according to the design and the technology route of modeling. The 

bottom-up approaches [1, 12-29] consider low-level stimuli, such as color, contrast, location and texture, 

and are usually data-driven. The top-down approaches [30, 31], which use supervised methods with 

high-level cues, are often task-dependent and goal-driven. 

Over the past decades, most of the bottom-up computational schemes, which simulate primate 

perceptual abilities, use low-level visual features to estimate image saliency. The pioneering model, 

which simulates the Human Visual System (HVS) for visual saliency detection, by Itti et al. [7] utilized 

a center-surround operator to compute saliency across three low-level cues. Later, lots of bottom-up 

salient-object detection methods were developed, which are based on low-level handcrafted features, 

such as image contrast [8], pattern distinctness [9], texture [10], etc. In [11], a novel graph-based method 

was proposed to estimate saliency map in order to make salient-object detection more precise. However, 

the graph-based method usually generates low-resolution saliency maps. Thus, a spectral residual-based 

saliency-detection method was proposed by Hou and Zhang in [12]. These early methods found it hard 

to handle the cases with complex image scenes or backgrounds. To soften this problem and acquire 

accurate salient regions, Ma et al. [13] presented a local contrast-based method for saliency detection, 

which increases the accuracy of saliency detection for the images with complicated background. In [14], 

a special color-appearance method, based on a non-parametric low-level vision model, was proposed for 

saliency detection. In [15], a visual-attention-aware model was proposed to mimic the HVS for salient-

object detection. Song et al. [16] proposed a RGBD co-saliency method, which uses bagging-based 

clustering to detect salient objects. In [17, 18], a saliency-detection method was devised, which utilizes 

both visual-directional stimuli and two low-level object cues. In order to take object boundary 



information into account, a novel hierarchical model incorporating probabilistic object boundaries was 

presented for salient-object detection in [19]. Recently, deep learning has delivered superior 

performance in the saliency-detection task. Wang et al. [24] proposed a deep neural network, which 

integrates local estimation and global search, for saliency detection. In [25], an end-to-end deep contrast 

network was proposed to predict the saliency degree of each superpixel. However, these deep-learning-

based saliency-detection models contain fully connected layers, which are computationally expensive. In 

addition, the fully connected layers drop the spatial information of input images. To alleviate these 

issues, Li et al. [26] proposed a multi-task deep model based on a fully convolutional neural network 

with global input and global output for saliency detection. Later, in order to improve the accuracy of the 

saliency results and address the problem that salient objects may appear in a low-contrast background, 

Hou et al. [27] proposed a novel saliency-detection approach by integrating short connections and the 

skip-layer structures within the Holistically-Nested Edge Detector (HED) architecture. Zhang et al. [28] 

designed a novel deep fully convolutional network model, which learns deep uncertain convolutional 

features (UCF), for accurate salient-object detection. Pang et al. [45] presented a CiC (convolution in 

convolution) method, which has a stronger capability for feature representation and hence can be used to 

extract the image’s saliency. 

Compared to the bottom-up saliency-detection models, which utilize low-level visual features in 

images, another saliency-detection mechanism is the top-down model, which is a learning-based 

framework, and relies on high-level cues and prior knowledge. In [20], an efficient top-down saliency-

detection model based on a Bayesian framework, which incorporates the object-appearance cues and 

scene context, was proposed to estimate saliency maps of input images. Later, a top-down visual 

saliency model, which combines dictionary learning and the Conditional Random Field (CRF), was 

proposed in [21]. Murabito et al. [22] presented an approach for top-down saliency detection guided by 

visual classification. In [23], a novel locate-by exemplar top-down framework, which incorporates deep 

association and background discrimination, was proposed to detect the saliency of images.  

Although many saliency-detection models have made great progress, their performances are still 

unsatisfactory when the images considered contain complex backgrounds or low-contrast objects, such 

as images captured underwater. In particular, modeling the saliency-detection mechanism in underwater 

scenes is a difficult and challenging task, owing mainly to the following reasons. Images captured with 

underwater objects are usually confronted with variations of complicated illumination conditions, low-

contrast object appearances, turbidity of water, light absorbing and scattering, lack of color information, 



etc., which are all challenges to the state-of-the-art saliency-detection models. Currently, only limited 

research has been carried out to investigate how to tackle underwater salient-object detection. In [29], a 

vision-based system for underwater object detection was presented to detect objects on the sea bed. 

Zhang et al. [30] proposed a method for underwater image detection based on the discrete fractional 

Brownian random field. In [31], an underwater target detection method was proposed, which combines 

active polarization imaging and optical correlation-based approaches. Wang et al. [32] presented a 

saliency-based adaptive object-extraction algorithm for underwater images.  

However, to the best of our knowledge, no public underwater database is available for underwater 

saliency detection, which is perhaps the primary reason for attaining little improvement in the area of 

underwater saliency detection. To address this problem, in this paper, we introduce a large-scale and 

diverse underwater image database, which can not only be widely used to assess and evaluate the 

performances of the state-of-the-art saliency-detection algorithms for general images, but also will 

particularly benefit the development of underwater image processing [46-48], underwater image 

enhancement/restoration algorithms [49-52], and underwater vision technology in the future. 

3. Underwater Imaging Set-Up  

In order to mimic the environment of the ocean floor and capture underwater images with different 

variations in pose, spatial location, illumination, turbidity, background and the number of salient objects, 

we set up a special cube pool, whose dimension is 1.5×1.5×1.5 m3. The cube pool is full of water, with 

sand and weed put on its bottom, so as to simulate the ocean floor. The necessary facilities are installed 

in the underwater photographic room in the OUC-VISION laboratory, including a camera system and a 

lighting system. Fig. 1 illustrates the imaging set-up of the camera and the lighting system for capturing 

underwater images. The details are described in the following sections. 



 
Fig. 1. The sketch map of the imaging set-up for the camera and lighting system. 

 

3.1. Camera system 

In our underwater photographic room, a camera system is made up of an MV-GE500C camera and a 

computer. The underwater camera, MV-GE500C, with resolution 2592×1944 pixels, is used to capture 

underwater images, and the computer is elaborately designed for collecting and storing the images. The 

camera is connected to the computer through a USB interface. In order to control the camera and capture 

the images in a shot, we developed a software system to implement this function. When we click on the 

capture button, the software will direct the camera to collect the underwater images of an object and 

store the images in its memory device.  

To capture the images of a whole object, the seabed surface and camera are fixed, and the object is 

placed completely within the field of view of the camera. Furthermore, the object is moved to different 

positions, i.e. the center and the four corners of the images, when images are being captured. 

 

3.2. Lighting System 

A special lighting system, with six high-power LED (Light Emitting Diode) lights, is used to simulate 

the underwater ambient illumination, which can be controlled to obtain underwater images under various 

lighting conditions. The six LED lights are mounted on a hexagon with the same distance apart, as 

shown in Fig. 1. They are labeled as L0–L5, in their clockwise direction, with 60 separation between 

adjacent lights. Each light has its own switch, so we can control them separately. Fig. 1 shows a sketch 

map of the lights’ set-up, arranged in a hexagon. 



In our photographic room, we used the symmetrical lights of L0, L2, L4 to capture underwater images 

to mimic different illuminations. By combining the three LED lights, different lighting conditions can be 

simulated. In our implementation, the illumination variations are not strictly controlled, but these 

lighting variations can be easily distinguished. 

4. Design of the Marine Underwater Environment Database  

Six variations, namely pose, spatial location, illumination, turbidity, background, and the number of 

salient objects, are considered simultaneously in the construction of the MUED. The salient objects in 

the images were also labelled by different people, so as to provide ground truths for evaluation and 

assessment purposes. The following sections will describe the six variations and the labeling process in 

detail. 

4.1. Pose Variations 

To capture underwater images with various poses of an object, we consider four sides (the frontal, the 

opposite, the left, and the right) of each underwater object. In each side, an underwater image is 

collected from the camera in one shot. Thus, a total of four underwater images for each subject will be 

captured. Fig. 2 shows an example of the four sides of an underwater object, namely, the frontal image, 

the opposite image, the left image, and the right image of an underwater object. 

 

                                  (a)                             (b)                          (c)                          (d) 

Fig. 2. An underwater object at different poses: (a) frontal-, (b) opposite-, (c) left-, and (d) right-side, of 

an underwater object. 

 

 

 



 4.2. Spatial Location Variations 

In order to reflect the variations in terms of spatial locations in our presented underwater database, 

each underwater object is placed at five different locations, including the top-left corner, the top-right 

corner, the center, the bottom-left corner, and the bottom-right corner of the image. Therefore, for each 

of the poses, five underwater images, with the object at different spatial locations, are captured. Fig. 3 

shows the five images of an underwater object with the same pose. 

 

                            (a)                        (b)                     (c)                       (d)                    (e) 

Fig. 3. The spatial-location variations of an underwater object. The object is placed at (a) the top-left 

corner, (b) the top-right corner, (c) the center, (d) the bottom-left corner, and (e) the bottom-right corner, 

of the respective images. 

Each object is captured with four different poses (the frontal, the opposite, the left, and the right views 

of each underwater object) and at five different locations (the underwater object is located at the top-left 

corner, the top-right corner, the center, the bottom-left corner, and the bottom-right corner). Therefore, 

each underwater object is captured with twenty images when both the pose and spatial-location 

variations are considered. Twenty example images of an underwater object, with four poses and five 

spatial locations, are illustrated in Fig. 4. 



 

Fig. 4. An underwater object in four poses and five spatial locations.  

4.3. Lighting Variations 

As described in Section 3.2, the L0, L2 and L4 LED lights (per 60) in the lighting system are 

controlled to simulate different underwater lighting conditions. During the capture of an underwater 

image, four different illumination conditions are generated, by turning on all the three LED lights, two 

of the LED lights, one LED light, and turning off all the three LED lights, respectively. Fig. 5 shows 

some sample underwater images under the four different lighting conditions.  

 

Fig. 5. The underwater images captured with four different lighting variations. 



4.4. Turbidity Variations 

The variations in water turbidity are an important factor influencing saliency detection of underwater 

images. The turbidity is subject to change in the ocean in real applications. In order to evaluate its effect 

on underwater-image saliency detection, three degrees of variations in water-turbidity, i.e. limpidity, 

medium, and turbidity, are considered, as illustrated in Fig. 6. We change the water turbidity by adding 

soil and milk to the cube pool. From Fig. 6, it can be seen that the appearances of the underwater images 

are highly dependent on the turbidity of the water. When the turbidity of the water is stronger, the 

images become more blurred and unclear in the complex underwater environment. 

 

                                        (a) Limpidity             (b) Medium             (c) Turbidity 

Fig. 6. Underwater images captured with different degrees of water turbidity. 

4.5. Background Variations 

Although many saliency-detection algorithms have achieved great progress, their performances are 

still unsatisfactory when the images contain complex backgrounds, especially for those images captured 

from a complex and adverse underwater environment. Thus, background variations are essential for the 

database to assess and evaluate the performances of the underwater saliency-detection methods.  

Six background variations, including coarse sand, medium sand, silver sand, and three degrees of 

variations in weed quantity (morsel, medium, and mickle), are considered in our underwater database. 

Fig. 7 shows some sample underwater images, under the six different backgrounds.  



 

Fig. 7. An underwater object at different background variations: (a) coarse sand, (b) medium sand, (c) 

silver sand, (d) a morsel of weed, (e) a medium amount of weed, and (f) a mickle of weed. 

To reflect the real environments where an underwater object usually resides, we also take the floating 

debris into consideration in the construction of the underwater database. This will benefit the research on 

developing robust underwater saliency-detection algorithms for real applications, under real underwater 

circumstances. Fig. 8 illustrates some examples of underwater salient objects, partly enveloped by some 

weed. 

 

Fig. 8. Examples of underwater images, where the salient objects are partly enveloped by some weed. 

 

 



4.6. Multiple Salient Objects 

The number of salient objects in an image has an important influence on the saliency-detection results. 

In reality, multiple salient-object detection is a more challenging issue than the single salient-object 

detection. In order to evaluate the performance of an algorithm on multiple salient-object detection for 

underwater images, three different scenarios, namely a single salient object, two adjacent salient objects, 

and two detached salient objects, are included in the MUED. Fig. 9 shows some of the underwater 

images captured with a single salient object, two adjacent salient objects, and two detached salient 

objects. 

 
 (a) (b) (c) 

Fig. 9. Underwater images captured with (a) a single salient object, (b) two adjacent salient objects, and 

(c) two detached salient objects. 

4.7. Image Labeling  

The salient objects in the captured underwater images were manually labeled to form the ground-truth 

set. We have five participants for labeling the ground-truth set. They are postgraduate students with 

knowledge of object detection and saliency detection.  

We cropped all the images to the size of 486×648 pixels (one quarter of the original size), retaining 

most of the important information in order to increase the speed of labeling. Each of the students was 

asked to draw a rectangle to specify the most salient object in each image, in the process of manually 

labeling the images. Each student spent about 30 seconds drawing a rectangle on an image, and entered 

the coordinates of the rectangle in a text file. In order to obtain accurate results, each person was asked 

to label one fifth of all the images independently, and check the labeling results done by the other four 



students. The whole labeling process took about two weeks for the five students. Fig. 10 shows some 

images with the labeled ground-truth information. 

 

Fig. 10. Some example images with labeled ground-truth information, where each salient object is 

surrounded by a red rectangle. 

5. Publicly Released Marine Underwater Environment Database 

The MUED is now publicly accessible, and it is useful for researchers who are working on 

underwater salient-object detection or saliency detection. This database provides researchers and the 

industry, working on underwater computer vision, with underwater images under different types of 

variations, especially pose, spatial location, illumination, turbidity of water, background, and multiple 

number of salient objects, in a uniform database. Manually labeled ground-truth information is also 

provided in this large-scale underwater database. We will introduce this publicly released MUED in 

detail in this section. 

 

5.1. Contents of the Marine Underwater Environment Database 

The MUED contains 8600 underwater images of 430 underwater distinct objects, which have one or 

more salient objects, relatively complex background and complicated variations in pose, location, 

illumination, and turbidity. Each object was captured by considering four poses (described in Section 

4.1) and five spatial locations (described in Section 4.2), so that 20 images are available. To represent 

the environments that underwater images generally fall into, three degrees of water turbidity, four 

illumination variations, and seven background variations are also considered in the database. In addition, 

multiple salient objects and ground-truth information are included in this database for the research of 

more applicable and robust methods for both underwater salient-object detection and underwater 



computer vision. Thus, the released database has the advantages of containing large quantity of 

underwater subjects, captured under different controlled variations. 

5.2. Image Format 

The original 8600 underwater images are in RGB color format, with resolution 2592×1944 pixels, 

captured by the camera MV-GE500C. The storage capacity required for the whole database is about 

134.7 GB, which is too large to download and store. To alleviate this issue, we cropped all the images to 

the size of 486×648 pixels (one quarter of the original image), while retaining most of the important 

information. 

6. Evaluation on the Marine Underwater Environment Database 

The main purposes of evaluating baseline algorithms on the Marine Underwater Environment 

Database are as follows: 

 First, we want to assess the difficulty of saliency-detection algorithms on underwater images; 

 Second, we want to provide reference evaluation results for researchers working on underwater 

object detection and computer vision; and 

 Third, we want to identify the strengths and weaknesses of existing state-of-the-art saliency-

detection algorithms for underwater images. 

In the experiments, we compare our method with nine state-of-the-art methods, which were published 

in the past five years and achieved promising performances on normal images, including the Graph-

Regularization (GR) [34], Patch-Distinctness (PD) [35], Dense and Sparse Reconstruction (DSR) [36], 

Nonlinearly Covariance (NC) [37], Multi-Scale Superpixel (MSS) [38], Cellular Automata (CA) [39], 

Quaternionic Distance Based Weber Descriptor (QDWD) [19], Multiple Instance Learning (MIL) [40], 

and Pattern distinctness and Local contrast (PL) [41].  

 

6.1. Qualitative evaluation 

In order to qualitatively compare the nine state-of-the-art saliency-detection methods, Fig. 11 shows 

their saliency-detection results on the MUED. We can see that hardly any of these state-of-the-art 

saliency-detection algorithms can produce promising and satisfactory performances. The results, based 

on the PD [35], DSR [36] and MSS [38] methods, are lacking in some aspects, as some background 

regions are not suppressed completely, and are falsely recognized as salient regions, which lead to the 

final saliency map containing many noisy results. These three methods mainly rely on low-level priors, 



which cannot achieve satisfactory performances when applied to underwater images with complicated 

illumination conditions, low contrast, turbidity of water, and lack of color information. Some methods, 

such as GR [34], NC [37] and QDWD [19], produce inconspicuous boundaries, miss homogeneous 

regions of the underwater salient objects, and cannot even detect the salient objects completely, as 

illustrated in Fig. 3. The CA [39] method, which detects salient objects based on cellular automata, is 

easily affected by illumination variations. This method erroneously detects the bright area and some 

backgrounds as salient regions. In addition, the turbidity of water has significant influence on the 

performance of the MIL [40] method. This approach hardly distinguishes salient objects from the 

background when the underwater images are captured under the condition of severe turbidity of water. 

The PL [41] method, which integrates directional stimuli, pattern distinctness, and local contrast to 

obtain the final saliency maps, can detect almost the entire salient objects, with obvious boundaries and 

less background pixels. Consequently, the PL method produces slightly superior performance to other 

state-of-the-art saliency-detection algorithms. However, the background is not suppressed completely 

when the underwater images contains complicated lighting conditions, serious turbidity of water, and 

complex background. 



 

Input           GR              PD            DSR             NC            MSS            CA          QDWD         MIL             PL  

Fig. 11. Some visual results based on the nine state-of-the-art saliency-detection algorithms. 

6.2. Quantitative evaluation 

To quantitatively assess the nine state-of-the-art saliency-detection models, the average precision, 

recall, and F  measure are utilized. Precision measures the proportion of the detected salient-object 

rectangle overlapped with the ground-truth rectangle, over the detected salient-object rectangle, while 

recall is defined as the ratio of the detected salient-object rectangle overlapped with the ground-truth 



rectangle, over the ground-truth rectangle. The F
 measure is an overall evaluation, which provides a 

comprehensive measurement to weigh precision more than recall, and is defined as follows: 

Precision Recall

Precision+Recal

(1 )

l
F





 




 ,                                                (1) 

where   is a real positive value and is set at 0.3. 

Fig. 12 shows the experimental results of the nine state-of-the-art methods, in terms of the average 

precision, recall, and F  measure. For these three measures, we can see that all of the methods, except 

PL [41], have their values lower than 50%, which indicates that underwater image saliency detection is 

still a very challenging issue for existing methods. In underwater environments, the recall rates of most 

methods are lower than 45%, except for QDWD [19], MIL [40], and PL [41]. For the precision rate, 

only PD [35], QDWD [40], and PL [41] exceed 45%. For the overall F  measure, only PD [35], QDWD 

[40], and PL [41] achieve higher than 45%, but lower than 50% except PL [41]. These performances are 

much lower than when the methods are applied to simple conditions, i.e. not under an underwater 

environment. The experimental results also show the difficulty of saliency detection in the underwater 

vision domain. 

 

 

Fig. 12. Comparison of the nine saliency-detection methods, in terms of average precision, recall, and F  

measure on the MUED. 



Objects captured underwater are always blurred, like being surrounded by fog. Therefore, in this 

experiment, a defogging algorithm [53] is applied to preprocess the underwater images, and then the 

nine saliency-detection models are evaluated. From the saliency-detection results, we found that the 

saliency maps are similar to those presented in Fig. 11, and the distinction between with or without 

preprocessing by the defogging algorithm is not obvious or conspicuous. Besides that, to compare the 

performances more precisely, we also compute the average precision, recall and F  measure of each 

saliency-detection methods, with and without using defogging. Fig. 13 shows the experimental results of 

the nine state-of-the-art methods, in terms of the average precision, recall, and F measure. A 

comprehensive comparison, as shown in Figs. 12 and 13, indicates that the variations, as well as the 

effect of applying the defogging algorithm, are very small, ranging from -0.0024 to 0.0217. 

Experimental results show that applying a defogging algorithm cannot improve saliency detection in 

underwater images. 

 

Fig. 13. Performances of the proposed model, compared with state-of-the-art methods, based on the 

results of defogging preprocessing [53], in terms of average precision, recall, and F  measure. 

6.3. Generalization analysis on the Marine Underwater Environment Database 

In recent years, some state-of-the-art methods have been proposed to improve the performance for 

saliency detection, and have achieved excellent performance on simple images. However, modelling the 



saliency-detection mechanism in underwater scenes is a new research direction and still a challenging 

task. Most of the state-of-the-art saliency-detection models scarcely adapt to the complex and severe 

underwater environments. The primary causes of the failure of existing saliency-detection algorithms are 

that the complex underwater environment makes the captured underwater images suffer, due to: 

 variations of complicated lighting conditions, 

 low-contrast objects with the background, 

 light absorbing and scattering in water,  

 complex seabed environments, with influence of water plants, 

 severe turbidity of water, and 

 lack of color information of underwater objects.  

All of these effects are combined and interacted mutually, which form an open and challenging problem 

to be solved by the state-of-the-art underwater saliency-detection algorithms. In other words, further 

efforts for underwater saliency detection must be made for the future development of underwater 

computer vision. 

 

7. Obtain the Marine Underwater Environment Database 

The information on how to obtain a copy of the MUED can be found on the website 

http://cs.sdufe.edu.cn/info/1162/2389.htm. 

8. Conclusion and Discussion  

In this paper, we have described the set-up and the contents of the Marine Underwater Environment 

Database (MUED). We have also presented the detailed description of the released MUED, which 

contains 8600 underwater images of 430 underwater objects, with different types of variations, 

especially pose, spatial location, illumination, turbidity of water, multiple salient objects, and the diverse 

background. Manually labeled ground-truth information is also included in the underwater database for 

the research of more applicable and robust methods in both underwater salient-object detection and 

underwater computer vision. The large-scale and diverse underwater database, which contains a large 

quantity of distinct objects captured under different underwater environments, offers unparalleled 

opportunities to researchers working on underwater computer vision. A number of the state-of-the-art 



saliency-detection algorithms have also been evaluated on the database. Experimental results show that 

existing algorithms achieve unsatisfactory performances on underwater images. 
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