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Abstract: Due to the advancement of high-throughput sequencing technologies, it is now feasible for sequencing individual
genomes in a fast and affordable manner. With the significant increase in the number of individual genomes, compression
methods are needed to reduce pressure on data storage as well as enable effective data distribution and management. The
compression methods can generally be divided into two classes, namely reference-free methods and reference-based methods.
In reference-free methods, redundancies within the target DNA sequence to be compressed are explored. In reference-based
methods, redundancies between the target DNA sequence and other reference sequences are identified to achieve
compression. This type of method is applicable to population sequences which are highly similar to each other and have a small
number of mismatches. Some of the methods can also be applied to partially similar sequences such as chromosome
sequences or sequences having evolutionary relationship. The authors highlight recent developments in these methods. In the
comparative study, the authors’ simulation results reveal that the selection of a reference sequence is a crucial factor affecting
the compression performance. Use of multiple number of reference sequences and enhancement strategies such as reference
rewriting are important to achieve a large compression gain.

1௑Introduction
Sequencing techniques allow the DNA data to be represented as a
long string made up from four nucleotide bases. This facilitates the
computational analysis of our biological make-up for use in areas
such as forensics applications, crime investigation or parental
connection establishment [1–3]. Recent advancement in next-
generation sequencing (NGS) techniques enables sequencing the
individual genome in a fast and affordable manner. As a result, a
large number of genomic data are produced for various studies. For
example, the genomic data has been used for studying variations of
genetic diseases on individuals so that personalised medicines and
diagnostic tools can be developed [4]. Specific mutations within
the genomic data have been used to study the risk of developing
certain diseases [5, 6]. The collection of data has also been used to
study pattern about an organism's evolutionary history and aid in
phylogenetic tree reconstruction [7–10]. On the other hand, NGS
techniques have introduced a new challenge in which a lot of DNA
sequences have to be stored in various databases [11, 12]. Large
public databases for storing DNA sequences include the GenBank
at the National Center for Biotechnology Information (NCBI) [13],
the European Bioinformatics Institute EMBL database [14] and the
DNA Data Bank of Japan (DDBJ) [15]. Records in these three
databases are indeed synchronised so that each database contains a
copy of the others. Researchers can then download data
conveniently from these databases for study.

There are different file formats to store the DNA sequences.
Examples include Genbank, EMBL, BAM, SAM, FASTQ and
FASTA [16]. These file formats are used in different contexts, but
they can be converted to one another easily. Although the exact
details to be stored in these file formats may not be the same, they
often contain two distinct parts. The first part is metadata such as
sequence identifier, annotation and/or description. The second part
is the actual nucleotide sequence. Currently, only general-purpose
lossless compression methods such as gzip and bzip2 [17] are
applied to reduce the storage.

From 1982 to now, the number of the nucleotide bases in
GenBank is doubled approximately every 1.5 years [18]. In
projects such as the 1000-Genomes project [19] or the UK 10k
Project [20], thousands of genomes are sequenced to facilitate the

study of the genomic landscape of various diseases [5]. Consider
that the size of the genome sequence data of one person reaches
several gigabytes, a large storage is required to store the complete
genome sequences generated from these projects. To address these
issues, effective compression algorithms are needed for DNA
sequences.

Due to the different characteristics between the metadata and
the DNA nucleotide sequence, specific compressor for a particular
file format always adopts different principles in compressing the
metadata and the nucleotide sequence. For example, the
compressor for FASTQ adopts template compression method for
the header, LZ coding for the quality line and a combination of
substitution-based method and Huffman coding for nucleotide
sequence [21]. In this paper, we do not focus on any specific
format for storing DNA data. Rather, our focus is on the
compression of nucleotide sequences. Hence, the reviewed
methods can be applied to all types of file formats in which the
nucleotide sequence is part of the format. Readers may refer to [16,
17] for surveys of approaches for compressing different file
formats.

As mentioned in [22], the genome sequence for an individual
containing Adenine (A), Thymine (T), Cytosine (C) and Guanine
(G) is almost incompressible. Thus, special DNA sequence
characteristics have to be explored in its compression. The basic
idea in traditional DNA nucleotide sequence compression is to find
identical sub-sequences within the target DNA sequence to be
compressed so that they are encoded only once. Examples of
popular compression methods in this group of techniques include
BioCompress [23, 24], Cfact [25], GenCompress [26–28], CTW + 
LZ [29] DNACompress [30], DNASequitur [31] and GeNML [32,
33]. While these tools use different ways to identify and
characterise intra-sequence similarities, the compression rate is not
high. Recently, statistical methods have been proposed to explore
redundancies within the DNA sequence to be compressed. Various
models are used to predict the occurrence probability so as to
achieve compression. Examples include XM [34], GENBIT [35],
HuffBit [36], DNABIT [37], PRDNAC [38], SeqCompress [39],
DNABIT-2 [40] and the modified Huffman coding [41]. For these
reference-free methods that explore redundancies within the DNA
sequences, the storage size in most cases can be reduced by <40%.

IET Signal Process., 2019, Vol. 13 Iss. 6, pp. 569-580
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

569

http://crossmark.crossref.org/dialog/?doi=10.1049%2Fiet-spr.2018.5392&domain=pdf&date_stamp=2019-08-01


It is certainly insufficient for large-scale data distribution and
storage.

For the past decade, different effective reference-based
compression algorithms have been proposed. Instead of
considering only redundancies within the target sequence to be
compressed, similarities among different DNA sequences are
considered. This is often termed ‘inter-sequence similarities’. For
example, similarities among different chromosome sequences of
the same species [42, 43], similarities between sequences that may
be related through evolution [44] and similarities between
individual genomes within a population of the same species [17,
22, 45] can be considered. Compression can then be achieved
through referencing instructions. In other words, similar sub-
sequences are encoded once only which act as references to their
occurrence at other locations of the same sequence or other
sequences. Examples of methods in this group include DNAzip
[12], RLCSA [46], RLZ [47, 48], GRS [49], GReEn [50],
iDoComp [51], COMRAD [52, 53], ERGC [54], CoGI [55], MSC
[56], GDC [57, 58], FRESCO [59] and RCC [60]. With the use of
appropriate reference sequences, the storage size reduction in some
cases can be over 90%.

The objective of this paper is to present an up-to-date account
of recent research done in DNA sequence compression. Existing
DNA sequence compression surveys focus mainly on those
algorithms using intra-sequence similarities [61–63]. Our focus is
on the recent development of compression algorithms considering
not only intra-sequence similarities, but also statistical
redundancies and inter-sequence similarities. We surveyed
publications on DNA compression mostly from 2010 to 2018. This
paper addresses the basic rationales, techniques and their important
results. This study highlights the principles of different
compression algorithms. Besides, we have performed a
comparative study of compression methods in terms of the
compression gain and the computational requirements for two
population datasets. It will be beneficial to individuals who are
interested in DNA compression as well as general signal
processing researchers who may want to know more about DNA
compression methods.

This paper is organised as follows. We will first give an
introduction to DNA sequences and describe their characteristics in
Section 2. After that, important properties of DNA sequences and
how these properties can be characterised in a computational
manner will be discussed in Section 3. Then descriptions about two
kinds of compression methods are given. In particular, Section 4
describes methods that explore redundancies within a DNA
sequence while Section 5 considers those reference-based methods
for highly similar population sequences. Some of the reference-
based methods can be extended to work on partially similar

datasets and are discussed in Section 6. Finally, Section 7
concludes the paper.

2௑Characteristics of DNA sequences
Biological information of living organism is encoded in the

long DNA sequence which is made up from only four different
nucleotide bases, namely A, T, C and G. Fig. 1 shows a short 60
bases sub-sequence from the chromosome 19 of the human Homo
sapiens genome. From a signal processing point of view, we can
simply consider DNA to be a long string consisting of four
different ‘symbols’. Hence, without compression, 2 bits are needed
to encode one symbol in a lossless manner. By encoding the base
‘A’ as ‘00’, ‘T’ as ‘11’, ‘C’ as ‘01’ and ‘G’ as ‘10’, the encoded
sequence requires 120 bits as shown in Fig. 1b.

Typically, a DNA sequence contains bases in the order of
millions. For example, the human genome has around 3 billion
bases while yeast has around 12 million bases. Hence, the storage
will be around 0.75 billion bytes for a human genome and 3 million
bytes for a yeast sequence without any compression. Although
DNA should not be a random sequence, the occurrence frequencies
of the four bases are rather uniform. General purpose compression
algorithm cannot compress the sequence. In some cases, these
general purpose compression algorithms even expand the sequence
in the sense that more than 2 bits are used to encode a base.
Certainly, DNA sequence characteristics have to be considered to
achieve compression.

2.1 Intra-sequence repetitions

Studies find that there are many repetitions in DNA sequences. It is
estimated that the human genome has around 50% of repeat
sequences within itself [64]. For example, the human genome
contains over 100 million copies of the Alu repeat which is about
300 bases long [65]. All modern mammals contain a highly
repeated family of long interspersed repeated DNA called the L1
family [66] which is made up from >6000 bases. Hence, these sub-
sequences sharing similar bases compositions and arrangement can
be explored for compression purpose. 

To illustrate the idea, consider the short segment of the
chromosome 19 of the human Homo sapiens sequence in Fig. 1a.
The sub-sequence ‘CTTG’ (highlighted by the green colour) can be
found at two different base positions, the first occurrence from
positions 1 to 4 and the second occurrence from positions 48 to 51.
Similarly, ‘GCCC’ can be found at three different locations
(highlighted by the orange colour): first from positions 7 to 10,
second from positions 14 to 17 and third from positions 45 to 48.
Hence, this kind of intra-sequence similarities can be explored to
achieve compression. In particular, repeats are encoded only once.

Fig. 1௒ A simple example illustrating DNA sequence representation
(a) Short segment of the chromosome 19 of the human Homo sapiens genome, (b) Its lossless encoded representation with ‘A’ represented as ‘00’, ‘T’ as ‘11’, ‘C’ as ‘01’ and ‘G’ as
‘10’, (c) Resultant segment after the first referencing instruction is applied
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Its occurrence at other locations can be constructed through using
referencing instructions. Consider ‘GCCC’ which is found from
positions 7 to 10 (highlighted by the orange colour in Fig. 1a), a
referencing instruction can be used to denote its second occurrence
from positions 14 to 17 as follows:

Referencing instruction at position 14:
 sub-sequence with (start: 7, end: 10).

In this way, the second occurrence of ‘GCCC’ can be removed
from the original sequence in Fig. 1a. Fig. 1c shows the resultant
sub-sequence that needs to be encoded. Through using the
referencing instruction, the number of bases that needs to be
encoded then reduces from 60 to 56. Similarly, the following two
referencing instructions can be added to remove the remaining two
similar sub-sequences ‘GCCC’ and ‘TTG’ in the last row of
Fig. 1a.

Referencing instruction at position 45:
 sub-sequence with (start: 7, end: 10).
Referencing instruction at position 49:
 sub-sequence with (start: 2, end: 4).

After having these two referencing instructions, we only need to
encode 49 bases as shown in Fig. 2 instead of 60 bases. The
referencing instructions, however, need to be encoded to achieve
lossless compression. A list containing the starting and the ending
positions of all the referencing instructions can be constructed. The
list can then be encoded further using methods such as arithmetic
coding.

The above illustration considers only exact repetitions. In fact,
more repeats can be found if approximate repeats are also explored.
The approximate repeats mean that the two matched sub-sequences
have similar base compositions except at a few base positions.
These mismatched bases can be characterised through substitution,
deletion and/or insertion operations. For example, ‘GCCT’
(highlighted in blue colour in Fig. 1a) is similar to ‘GCCC’ except
at the last base position. In this case, we can perform the
substitution operation at the last position to replace ‘C’ by ‘T’. In
approximate repeats, in addition to the starting and the ending
positions of repeats, the referencing instructions should also
contain:

• the types of operations to be performed such as substitution,
insertion and deletion;

• the relative positions at where the bases are different in the
approximate repeats; and

• the replacement base for a substitution operation and the
inserted base for an insertion operation.

The information can be concatenated and compressed using
methods such as arithmetic coding. As long as similar sub-
sequences are long, it would be advantageous in terms of
compression to perform approximate matching.

DNA sequence contains a special kind of repetition called
complementary repeat or palindrome. Due to its double helix
structure, base in one DNA strand would bind to its complementary
base in the other DNA strand. The base ‘A’ is complementary to
‘T’ while ‘C’ is complementary to ‘G’. Hence, the sub-sequence
‘GCCC’ is complementary repeat of ‘GGGC’ as the complement
bases of ‘GCCC’ are ‘CGGG’ and their reverse ordering are
‘GGGC’. Similarly, ‘GCCT’ is complementary repeat of ‘AGGC’.
By considering the approximate complementary repeats, we can
see that the sub-sequence ‘GGGA’ (purple colour in Fig. 1a) is

complementary repeat of ‘GCCC’ with the last base substituted by
‘A’. Thus sub-sequence ‘GGGA’ can be represented through
referencing and substitution operations. In summary, all types of
repeats including the exact repeat, the approximate repeat and the
complementary repeat can be explored in DNA sequences to
achieve compression.

2.2 Inter-sequence repetitions

In addition to intra-sequence similarities, DNA sequences contain
other kinds of similarities. For example, different chromosome
sequences of a species can be similar to each other. Genomes of
different individuals in the same species can have high similarities
as well. To illustrate these kinds of inter-sequence similarities, the
short segment of the chromosome 19 of the human Homo sapiens
in Fig. 1a is considered. Figs. 3 and 4 show, respectively, the sub-
sequences in the chromosome 19 that can be found in different
chromosome sequences of the human Homo sapiens and the two
chromosome sequences of the mouse genome. In Fig. 3a, a sub-
sequence from positions 38 to 57 of the chromosome 19 is
essentially same as that of the chromosome 3 except at position 51
where the base ‘G’ in the chromosome 19 should be substituted by
‘A’ to obtain the corresponding sub-sequence in the chromosome 3.
Similarly, from Figs. 3b–d, we can see that chromosomes 5, 8 and
11 contain approximate repeats of sub-sequences in the
chromosome 19 with a few number of mismatched bases. Figs. 4a
and b show the similarities between the chromosome 19 of the
human Homo sapiens and chromosomes 5 and 16 of the mouse
genome. With the use of referencing instructions similar to the case
of intra-sequence similarities, part of the sequence can be encoded
by referencing to the chromosome 19 of the human Homo sapiens
for all these chromosome sequences. This example shows that
similarities can commonly be found from other sequences in
addition to it. 

3௑Signal processing techniques for identifying
sequence similarities
Existing DNA-oriented compression methods are based on the
ideas of finding various types of repeats in DNA sequences. In fact,
searching of these repeats can be time-consuming. It is often not a
trivial task to find all these repeats in a very long DNA sequence
efficiently and effectively. Various methods have been proposed for
identifying similar sub-sequences. These methods can generally be
grouped into five classes, namely suffix-based array methods,
optimisation methods through dynamic programming, seed
extension methods, rule-based methods and parsing methods. A
brief description of these methods is given here for completeness.
For detailed discussion, readers may refer to previous survey
papers on DNA compression methods [61–63].

A suffix tree is a kind of data structure that is used to
characterise exact matches. In suffix-based methods, repeats are
considered as common prefixes and a suffix tree is constructed so
that similar sub-sequences are represented as the longest common
prefix. Compression methods such as Cfact [25], RLCSA [46],
iDoComp [51] and FRESCO [59] have used suffix tree-based
methods for identifying and characterising repeats.

The identification of similar sub-sequences can also be
formulated as an optimisation problem which is solved iteratively
through dynamic programming. The compressed size can be
considered as a cost function for minimisation. It has been used in
methods such as GenCompress [26–28] and CTW + LZ [29].
However, the computational complexity of dynamic programming
is often very high. To reduce the complexity, various seed-based

Fig. 2௒ With consideration of three referencing instructions at positions shown using blue arrows, the number of bases to be encoded reduces to 49
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methods can be used. Short seed matches considering only sub-
sequence pairs with a small fixed length are first searched. These
short matches are then extended to longer sub-sequence matches
progressively. Seed-based methods are used frequently in DNA
compression methods. Examples include DNACompress [30],
MSC [56] and RCC [60].

The rule-based methods use grammar rules to characterise
repeats. Consider a short DNA sequence S = {ACTGCTACTG}. S
can be represented as R1R2R1 where the two rules are defined as
R1→AR2G and R2→CT. These rules are then entropy encoded.
Example rule-based compression methods are DNA Sequitur [31]
and COMRAD [52, 53]. In parsing methods, the DNA sequence is
usually divided into a number of phrases using a greedy strategy
where the phrases denote repeats in the sequence. Parsing methods
have been used in RLZ and RLZ-opt [47, 48] and LZ77 [67].

In fact, these different methods can be combined to search for
repeats. For example, GDC [57, 58] has used both seed-based
methods and parsing methods for repeats identification. Besides,
several homology search engines are available for searching
repeats in DNA sequences. Examples include Blastn [68] and
PatternHunter [69]. Blastn stands for the basic local alignment
search tool for nucleotides. It is freely available online [70].

4௑Reference-free DNA compression methods
In reference-free compression methods, the DNA sequence is
compressed through various ways of exploring the redundant
information within the sequence itself. Table 1 summarises these
reference-free compression algorithms by listing their publication
year, the types of redundancies explored, the characteristics of the
compression method as well as the bits per base (bpb)
performance. Traditionally, the redundant information is the
repetitive sub-sequences existed within the DNA sequence itself.
This type of redundancy has been explored by many DNA
compression algorithms. They generally use the five different
classes of methods discussed in Section 3 (i.e. suffix-based
methods, dynamic programming, seed-based methods, rule-based
methods and parsing methods) to identify and represent the similar
sub-sequences found within the target DNA sequence to be
compressed. The repeats are encoded by referencing to its previous
occurrence while the non-repetitive part is encoded using
arithmetic coding, context-tree weighting (CTW) or the 2-bit
lossless representation. 

Starting from 2007, statistical methods are getting popular for
reference-free DNA sequence compression. Some of these methods
develop models to identify the unbalanced symbol occurrence

Fig. 3௒ Similar sub-sequences among the chromosome 19
(a) Chromosome 3, (b) Chromosome 5, (c) Chromosome 8, (d) Chromosome 11 of the human Homo sapiens. The highlighted entries show the different base compositions at certain
positions

 

Fig. 4௒ Similar sub-sequences among the chromosome 19 of the human Homo sapiens
(a) Mus musculus strain C57BL/6J chromosome 5, GRCm38.p4 C57BL/6J (denoted as A), (b) Mus musculus strain C57BL/6J chromosome 16, GRCm38.p4 C57BL/6J (denoted as
B). The highlighted entries show the different base compositions at certain positions
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Table 1 Summary of reference-free DNA sequence compression methods that explore redundancies within the DNA sequence
Publication
year

Name Redundancies
considered

Characteristics of the compression method bpb

1993, 1994 BioCompress [23,
24]

Exact match One of the early approaches for DNA compression. A sub-sequence is
encoded by referencing to an identical sub-sequence occurring in the

past. Only the position of the previously occurred similar sub-sequence
and the repetition length are encoded. BioCompress-1 uses 2 bpb for

non-repetitive sequences while BioCompress-2 uses arithmetic coding.

1.785

1996 Cfact [25] Exact match Uses suffix tree to characterise the repeats. The suffix tree is built in the
first pass while LZ-based coding is done in the second pass. As building
the suffix tree is time-consuming, the compression time of Cfact is longer

than that of BioCompress.

Around
1.8

1999, 2000 GenCompress [26–
28]

Exact and
approximate match

Uses dynamic programming method to identify repeats. In approximate
repeats, substitutions are considered in GenCompress-1 while deletions

and insertions are also explored in GenCompress-2.

1.7428

2000 CTW + LZ [29] Exact and
approximate match

Uses dynamic programming method to identify repeats. Long repeats
are encoded by a LZ77-based algorithm while short repeats are

compressed using CTW (context-tree weighting).

1.7389

2002 DNACompress [30] Exact and
approximate match

Uses short seed matches method to find repeats. In particular, a tool
called PatternHunter is used for searching repeats. Then repeats and

non-repeat regions are encoded using LZ-based compression scheme.

1.7254

2004 DNASequitur [31] Exact and
approximate match

Uses grammar-based method to characterise repeats. 2.12

2005 GeNML [32, 33] Exact match and
substitutions in

approximate match

Fixed-size blocks are encoded by referencing a previously encoded sub-
sequence with a minimum Hamming distance.

1.6882

2007 XM [34] Statistical method A statistical approach that attempts to use a shortcode to represent a
frequent symbol. A mixture of models is used for predicting the

occurrence probability of a base. Adaptive coding is then used for
encoding the predictions.

1.6560

2010 GENBIT [35] Statistical method A segment containing four bases is replaced by an 8-bit binary number.
If the consecutive segments are the same, a specific bit ‘1’ is introduced

as the ninth bit to achieve compression.

2.2335

2010 HuffBit [36] Statistical method Extended binary trees are constructed for compression. NA
2011 DNABIT [37] Exact match (block-

based)
Binary bits are assigned to exact repetitive fragments of DNA

sequences. The sequence is sub-divided into blocks and compressed by
referencing to its previous occurrence.

Around
1.6

2012 PRDNAC [38] Exact match A symbol table about the repeats and a table about the reverse
complement repeats are formed and encoded. The procedure of forming

the tables is performed iteratively until an optimum compression is
achieved.

1.5170

2014 SeqCompress [39] Statistical method Statistical models and arithmetic coding are used to achieve
compression. The statistical model is developed to find frequent repeats

of certain length. They are then encoded using arithmetic coding.

NA

2014 Runlength + ASCII
[71]

Statistical method A modified run-length coding is applied which is then represented using
ASCII values.

1.6860

2014 DNAC-K [72] Clustering of sub-
sequences

The DNA sequence is divided into a number of sub-sequences. These
sub-sequences are clustered iteratively to group similar sub-sequences

together. The result of clustering is encoded by Huffman coding.

1.6620

2016 Optimal seed [73] Exact and
approximate match

The seed based method is used to identify repeats. These repeats are
then stored onto a dictionary which is encoded together with the parsed

sequence.

1.6190

2016 Runlength + 
Huffman + ASCII [74]

Statistical method Each base is represented using 2 bits. A modified run length encoding is
then applied. This is followed by Huffman coding. Finally, the encoded

sequence is converted into ASCII values.

1.3740

2016 DNABIT-2 [40] Exact blocks match Multiple bit pattern representations are developed to encode repetitive
block patterns. These representations are then encoded using ASCII

characters.

1.5930

2017 Context modelling
approach [75]

Exact and
approximate match

Context models among adjacent bases with different orders are
obtained. These models are then combined through weighting to obtain

one coding model for compression.

Around
1.7

2018 Modified DNABIT
[76]

Exact blocks match The original DNABIT method is modified to use extended ASCII
encoding to further compress the encoded sequence.

1.4330

2018 Modified HuffBit [77] Statistical method Huffman coding is applied to encode the extended binary tree. Each
base is then replaced by binary bits generated from the tree.

NA

2018 Modified Huffman
coding [41]

Statistical method By analysing frequent repeats, multiple ‘skewed’ Huffman trees are
developed to achieve compression.

NA
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frequencies and predict their occurrence probabilities. In some
cases, the 2-bit lossless representation is used to represent a base.
The resultant binary sequence is then compressed through run-
length coding, Huffman coding and arithmetic coding. The
encoded sequence can further be compressed by using ASCII
representation. To reduce the computational complexity, a long
DNA sequence can also be divided into blocks (i.e. short segments)
before statistical methods are applied. These blocks can be
clustered to group similar ones together for compression.

Source codes of these algorithms are generally unavailable.
Most researchers use standard benchmark DNA sequences from
http://www.cs.tut.fi/∼tabus/genml/ to compare their work. Through
collecting the published results available in the literature, Fig. 5 is
drawn to study the bpb performance of these different methods.
Without compression, 2 bits are required for encoding a base.
Through identifying redundancies within the DNA sequence, all
these methods could reduce the bpb to be smaller than 2. It is
interesting to see that statistical-based methods proposed recently
(such as the modified DNABIT [76]) generally have better
performance than methods exploring intra-sequence similarities
(such as the optimal seed method [73]). 

From 1993 to 2018, the bpb drops from around 1.88 to 1.42.
This implies that the compression ratio increases from 1.06 to 1.41
where the compression ratio is defined as the ratio between the
uncompressed bpb and the compressed bpb values. In contrast to
the development in multimedia data compression, images can
always be compressed two or three times losslessly. The
compression performance of DNA sequence needs further
improvement before large scale distribution and management of
this kind of data is possible.

5௑Reference-based DNA compression methods
for population sequences
Due to the advancement in NGS, population sequences are
abundant [11, 19, 20, 78, 79]. Population sequences contain DNA
sequences collected from different individuals within a population
of the same species. The most recent development in DNA
compression indeed targets at population sequences. Studies find
that sequences within the same species are highly similar among
themselves. For example, only ∼0.1% of the 3 GB human genome
is specific to an individual. The other 99.9% is shared among all
people [57]. Therefore, reference-based compression methods can

be used to explore this kind of redundancy for effective
compression.

Consider an example of a set of population sequences
consisting of 3615 Home sapiens mitochondrial sequences. By
comparing these 3615 sequences with the revised Cambridge
reference sequence (GenBank accession number of AC_000031)
[80], the average number of different bases between a DNA
sequence within the population and the revised Cambridge
reference sequence is only 33.8. Out of the sequence length of
around 16,000 bases, the average similarity in bases is over 99.7%.
Hence, it will be highly effective if these sequences are compressed
by referencing to the revised Cambridge sequence so that only the
base differences are encoded. This forms the basic assumption in
all the recent population-based DNA compression algorithms
exploring inter-sequence similarities.

In this part, compression methods for population sequences are
reviewed in Section 5.1. Then our comparative study of these
compression methods in terms of both the bpb performance and
computational concerns is presented in Section 5.2.

5.1 Compression methods for population sequences

Table 2 summarises the DNA compression methods for population
sequences. We can see that all these methods were proposed within
the last ten years. Due to the highly similar nature of sequences
within the population dataset, some methods simply encode the
base-to-base difference with respect to a reference sequence. In
some other approaches, inter-sequence similarities are searched
using the five classes of techniques outlined in Section 3. 

As shown in Table 2, all the compression methods for
population sequences rely on the use of a highly similar reference
to achieve compression. The reference sequence needs to be a good
representation of all sequences within the population and should be
highly similar to all of these sequences. As shown in [22, 59], a
change of the reference sequence can have a big impact on the
compression performance.

We also believe that one key factor affecting the performance is
the way to select the reference sequence. Based on the differences
in reference selection, we classify these algorithms into three
groups. The first group uses one fixed genome as the reference
sequence. The second group enhances the choice of the reference
sequence through either constructing a consensus sequence or
using more than one reference sequences. The third group uses

Fig. 5௒ bpb performance of various reference-free compression methods against the publication year
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various heuristics to define one or multiple number of reference
sequences which is then modified and enhanced progressively to
further improve compression.

Through collecting the published results available in the
literature, the bpb performance of some of the reference-based
compression methods for the dataset S. paradoxus [60] is studied
as shown in Fig. 6. Comparing the reference-based methods in
Fig. 6 with the reference-free methods in Fig. 5, we can see that the
bpb for reference-based methods is in the range of 0.11–0.80. In
contrast, the bpb for reference-free methods is in the range of 1.40–
1.88. This shows that the use of a reference sequence can
potentially improve the bpb. For compression methods in Group 1,
the reference is specified by the user with prior knowledge on the
dataset. Some methods choose an external genome as the reference
while others choose one sequence within the population as the

reference. Ideally, a way to find the best reference sequence is to
perform compression by selecting one sequence within the
population as the reference sequence one by one. The one that
yields the lowest bpb can then be selected as the best reference
sequence. However, it would be very time-consuming and might
not be practical for large datasets. Hence, the performance of
Group 1 methods depends greatly on the ability of the user in
finding a suitable reference sequence. 

Selecting one sequence as the reference might not be optimal as
this sequence might not be highly similar to all sequences within
the population simultaneously. For compression methods in Group
2, the reference sequence can be constructed by considering base
compositions of all the sequences within the population or by using
repeats found within sequences in the population. The number of
reference sequences can also be more than one, i.e. a set of

Table 2 Summary of DNA sequence compression methods for population sequences. These algorithms are divided into three
groups, depending on how the reference sequence is defined
Year Name Compression method Choice of reference sequence

Group 1
2009 DNAzip [12] http://

www.ics.uci.edu/∼dnazip/
Base to base difference between a DNA sequence and a reference
sequence is identified. The difference is then encoded in the form
of single nucleotide polymorphisms (i.e. substitution operation), or

insertions and deletions of multiple consecutive bases.

One external genome is used as
the reference.

2010 Run length compressed suffix
array (RLCSA) [46]

Compressed suffix array is adapted to compress a group of highly
similar sequences together. Run length coding is then applied to

the compressed suffix array.

The reference sequence is
selected to be one of the DNA

sequences inside the population
dataset.

2010,
2011

Relative Lempel–Ziv (RLZ) [47,
48]

Lempel–ziv (LZ77) approach for general data compression is
applied for parsing the DNA sequence into substrings. The

compression is then done by encoding the sub-sequence with
respect to a reference sequence. Correlations between the starting

points of the sub-sequences and their positions in the reference
sequence are exploited to further improve the compression

performance.

The reference sequence is
selected to be one of the DNA

sequences inside the population
dataset.

2011 Genome ReSequencing (GRS)
[49]

Difference between a target sequence to be compressed and a
reference sequence is evaluated. The longest common sub-

sequence is obtained and the part of the sub-sequence that is
different from the reference is extracted and compressed by

Huffman coding.

One reference sequence is
selected by the user.

2012 Genome Resequencing
Encoding (GReEn) [50] http://
bioinformatics.ua.pt/software/

green/

Two models are considered in compression: a copy model for
similar sub-sequences and a static model for non-repeats. The
copy model achieves compression through using a pointer to a
position in the reference sequence that has high probability of

containing a repeat.

One genome sequence is chosen
as the reference sequence.

2015 iDoComp [51] https://
github.com/mikelhernaez/

iDoComp

The representation in FRESCO is adapted to consider substitution
and insertion operations in each approximate sub-sequence

match. An adaptive arithmetic coding is then used to compress the
approximated matches.

The reference sequence is
selected to be one of the DNA

sequences inside the population
dataset.

Group 2
2009 Reference-based compression

approach [45]
Variations from a reference sequence including single nucleotide

polymorphisms and contiguous insertions and deletions are
encoded.

The reference sequence is a
consensus sequence constructed
by considering statistics at each

base position of all the DNA
sequences inside the population

dataset.
2012,
2015

Compression using
Redundancy of DNA

(COMRAD) [52, 53] https://
sourceforge.net/projects/

comradmpi/files/COMRADMPI/

A dictionary that stores repeats of all sequences in the population
dataset is constructed iteratively. The repeats are encoded into

short words to achieve compression.

The reference sequence is
constructed based on the

dictionary of repeats.

2015 Referential Compression
Algorithm [81]

The longest matching prefix of the sequence is replaced by the
matches present in the reference set to achieve compression.

The reference set is constructed
from similar sub-sequences found

in a set of randomly selected
sequences in the population

dataset.
2015 ERGC (Efficient Referential

Genome Compressor) [54]
Sequences are divided into segments. Hashing is used to match

repeats in these segments. Finally, repeats and non-repeat regions
are fed into the PPMD (prediction by partial matching) compressor

for further compression.

The reference set is constructed
from fixed-sized repeats found

within sequences in the population
dataset.

 

IET Signal Process., 2019, Vol. 13 Iss. 6, pp. 569-580
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

575

 17519683, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-spr.2018.5392 by H

ong K
ong Poly U

niversity, W
iley O

nline L
ibrary on [10/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



sequences that has been compressed during the progressive
compression can be used as references. The flexibility of selecting
and constructing the reference sequence can improve the overall
compression in the population dataset. Generally, the bpb values in
methods in Group 2 are lower than those in Group 1 as depicted in
Fig. 6.

To further enhance the performance, methods in the third group
enhance the selected/constructed reference sequence by using

knowledge such as the most frequently occurring mismatches or
any significantly long sub-sequence that cannot be matched. In this
way, the reference sequence could be modified progressively when
sequences in the population dataset are compressed. As shown in
Fig. 6, the bpb performance of Group 3 methods is generally better
than that of Group 2 methods.

Irrespective of how the reference sequence is selected, most of
these methods rely on the use of a single reference sequence in the

 
Year Name Compression method Choice of reference sequence
2015 CoGI [55] http://

admis.fudan.edu.cn/projects/
cogi.htm

Sequences are converted into bit-streams using a
static coding scheme. Exclusive-or operations is then

applied between a sequence and the reference
sequence. The whole bit-streams are then re-

arranged in a matrix form like binary images which
are compressed by a rectangular partition coding

method.

The reference sequence is selected using
techniques based on co-occurrence entropy and

multi-scale entropy.

2015 MSC [56] http://
www.eie.polyu.edu.hk/∼nflaw/

DNAComp/index.html

Approximately matched sub-sequences of all
sequences in the population are performed. These

matched sub-sequences are then encoded together
to achieve compression.

Through approximate sub-sequence matches of
all sequences inside the population, the concept

of reference sequence is based on selecting
appropriate sets of sequences that have been

compressed during the progressive compression.
2017 Reference-based Inter

Chromosomal Similarity
compression [82]

DNA sequences are partitioned into pre-defined sized
blocks. Blocks are then coded using dictionary-based

coding method.

The reference set is constructed from fixed-sized
repeats found within the chromosome sequences.

Group 3
2011,
2015

Genome Different Compressor
(GDC) [47, 58]

LZ-77 is used for compression where short seed
matches with a number of single base mismatches

are considered before long seed matches. Parsing of
the target sequence into the reference sequence is

performed through hashing.

The reference sequence is selected as the one
which has the maximum number of distinctive

sub-sequences within the population. The
reference is then extended by adding to it any
significant long sub-sequence that cannot be
matched during progressive compression of

sequences inside the population dataset.
2013 A Framework for Referential

Sequence Compression
(FRESCO) [59] https://

github.com/hubsw/FRESCO

A reference based compression method in which a
mutated base is combined with its preceding exact
sub-sequence matches to achieve compression.
Besides, suffix tree of the reference sequence is

constructed to match prefixes of a target sequence to
be compressed with sub-sequences of the reference.

The reference sequence is constructed based on
single mutations. Two methods are used to select
and/or enhance the reference sequence: 1. It is

selected by analysing a reference-based
compression performance with an arbitrarily
chosen reference sequence taken from the

population dataset. 2. The reference sequence is
rewritten by analysing the most frequently
occurring mismatches in the sub-sequence

matches.
2018 RCC [60] http://

www.eie.polyu.edu.hk/
∼nflaw/RCC/index.html

Feature-based clustering is first performed to group
similar sequences inside the population into a number

of clusters. Then one reference is constructed for
each cluster to perform reference-based compression

within that cluster. Second-level reference-based
compression is performed for all reference sequences

in different clusters.

A number of reference sequences are
constructed which depend on the number of

clusters found in the population. The reference
sequence is constructed by analysing the

statistics of variants obtained from sub-sequence
matches.

 

Fig. 6௒ bpb performance of various compression methods for the S. paradoxus dataset
 

576 IET Signal Process., 2019, Vol. 13 Iss. 6, pp. 569-580
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

 17519683, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-spr.2018.5392 by H

ong K
ong Poly U

niversity, W
iley O

nline L
ibrary on [10/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



compression. Essentially, it is assumed that a single reference
sequence is sufficiently representative for all sequences inside the
population. This, in fact, might not be true. For example, there are
big variations between the southern group and the northern group
of Han Chinese. One reference sequence may not provide good
representation for both southern and northern groups at the same
time. Hence in RCC, feature-based clustering is first performed to
sequences within the population before applying reference-based
compression. In this way, different reference sequences can be used
in different clusters to describe the sub-structure found in particular
groups within a population. With the use of multiple reference
sequences, RCC gives the smallest bpb as shown in Fig. 6.

5.2 Comparative studies

To demonstrate the effect of the choice of reference sequence on
the compression performance, we have performed a comparative
analysis of some recent methods in Groups 1–3. In Group 1, where
the reference sequence is pre-selected, RLCSA, RLZ-opt and
iDoComp are chosen. In Group 2, MSC is considered in which the
reference is based on the idea of sub-sequence matches among
different DNA sequences within the population. In Group 3, GDC,
FRESCO and RCC are tested. These three methods involve
modifying the reference through adding extra phrases or long
unmatched sub-sequences. RCC uses more than one reference
sequences in its compression.

Two datasets are considered. The first dataset is s.aureus which
contains a genome of bacteria Staphylococcus aureus of 17
samples. The second dataset is e.coli which contains 33 genome
samples of bacteria Escherichia coli. Both datasets can be
downloaded at Ensembl (http://ensemblgenomes.org/). Windows

system was adopted for implementation. All experiments were
conducted on a computer with 2.66 Hz dual core CPU.

Table 3 summarises the compression performance in terms of
the bpb. We can see that methods in Group 1 have bpb ranging
from 0.51 to 1.66. In contrast, methods in Group 3 range from 0.23
to 0.77. This shows the importance of the selection of reference
sequences. In RLCSA, RLZ-opt and iDoComp methods, the user
has to select one sequence as the reference. But methods such as
GDC and FRESCO enhance the selected reference sequence using
extra phrases or rewriting. This has a positive effect on the
compression performance. 

However, it is always advantageous to use more than one
reference sequence. We can see that the use of clustering and
multiple reference sequences in RCC significantly outperform all
other methods in population sequence compression. This shows
that finding sub-structures within a set of population sequences is
crucial for the compression performance. The flexibility in defining
the set of reference sequences such as using statistical models for
predicting the base composition can further be considered in the
design of future compression method. 

Figs. 7 and 8 show, respectively, the plots of the time taken for
compression and decompression against the bpb performance for
s.aureus and e.coli. The best algorithm should be the one that has
small bpb and short compression/decompression time, i.e. the point
locates at the lower left corner of the plot. RCC has the smallest
bpb but the highest compression/decompression time. GDC has the
second smallest bpb and its computations are significantly lower
than RCC. Despite the fact that FRESCO allows reference
rewriting while iDoCOMP simply chooses one sequence as the
reference, their performances are comparable. In general, methods
in Group 3 perform better than methods in Group 1. Note that the

Table 3 Performance of different DNA compression algorithms on two sets of population sequences: s.aureus and e.coli
Group 1 Group 2 Group 3

RLCSA [46] RLZ-opt [48] iDoCOMP [51] MSC [56] GDC [57, 58] FRESCO [59] RCC [60]
2010 2011 2015 2015 2011/2015 2013 2018

bpb for s.aureus 1.45 0.64 0.51 0.46 0.27 0.36 0.23
bpb for e.coli 1.66 0.91 0.70 0.46 0.38 0.77 0.28

 

Fig. 7௒ Plots of
(a) Log of the compression time, (b) Log of the decompression time against bpb for s.aureus
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decompression time is much faster than the compression time for
all methods. Hence, in large-scale data distribution where
compression is done once in the server, but decompression is
performed by the user, all these methods are practical to be applied
in the actual data distribution and sharing. 

Figs. 7, 8 and Table 3 show that the use of multiple reference
sequences can achieve the smallest bpb at the expense of
computations. In RCC, normalised histogram is used to
characterise a DNA sequence. K-means clustering is then
performed on the normalised histogram in sequences clustering. In
fact, other features such as k-mer frequencies can be used to
characterise a DNA sequence and perform sequence similarity
analysis. The combination of k-mer with the wavelet transform
provides good characterisation of DNA sequences which can be
explored for sequence clustering [83].

Further study is required to investigate the effect of using
different combination of features and clustering on the compression
performance in terms of both bpb and complexity considerations.
Besides, as clustering is performed on the population sequences,
the compression time is significantly increased. Various methods to
improve the computational complexity can be investigated, such as
the use of parallel computing platform [53].

6௑Reference-based DNA compression methods
for partially similar sequences
Partial similarities between two different DNA sequences are well
known [42–44] and have been discussed in Section 2.2. These
kinds of similarities are significant for compression because the

size of inter-sequence repeats can be twice of the size of intra-
sequence repeats [N43]. However, not all the methods in Section 5
can provide effective compression for sequences which only share
partial similarity in certain portions. Methods that can be applied
for characterising partial similarity include COMRAD [52, 53],
ERGC [54], CoGI [55], MSC [56] and referential compression
algorithm [81].

These algorithms could be extended to work as reference-based
compression for a single sequence. In particular, sub-sequence
matches are first performed between the target sequence to be
compressed and reference sequences(s). The reference sequence
can be the target sequence itself exploring intra-sequence similarity
or another sequence exploring inter-sequence similarity. The sub-
sequence matches are encoded which are then combined with the
code of the residue to form an output bitstream. Both exact and
approximate matches are considered by these methods.

The performance of these methods depends on the degree of
similarities among sequences in the dataset. Table 4 shows the
results of MSC in compressing a group of DNA sequences sharing
a different degree of similarities [56]. For the chromosome
sequences of S. cerevisiae, they have a certain degree of
similarities, but the similarities are not too high. Despite that, the
bpb still reduces from 1.92 to 1.86 if these chromosome sequences
are compressed together rather than separately. ECA contains four
DNA sequences of E. coli and its related species, while ECB
contains six DNA sequences of three different groups of E. coli.
We can see that the use of partial similarities is able to reduce the
bpb significantly. 

In fact, the bpb reflects the similarities of the group of DNA
sequences to be compressed. ECB contains different groups of the
same species, while ECA consists of sequences of related species.
Thus, sequences in ECB should be more similar than those in ECA.
This is in line with the findings that the bpb in ECB is significantly
lower than that in ECA. Indeed, this property enables compression
methods to be used for quantifying the relationship among different
species. For example, the compression method has been used to
build the evolution tree of mammalian DNA sequences [84]. It has
also used to discover new sub-families of Alu-sequences [85, 86].
Hence, the main purpose of using compression methods in these

Fig. 8௒ Plots of
(a) Log of the compression time, (b) Log of the decompression time against bpb for e.coli

 
Table 4 bpb of different groups of sequences by
compressing them separately and by using MSC

bpb in separate
compression

bpb achieved by
MSC

S. cerevisiae: 6
chromosomes

1.9226 1.8625

ECA 1.8886 1.2742
ECB 1.9037 0.4461
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cases are not to reduce the storage size, rather they are used to
discover the hidden relationship among the sequences, such as
whether they are coming from the same family tree.

7௑Conclusion
Advances in biological and sequencing technologies have been
providing us an explosive growth in genome data. The large-scale
distribution and management of DNA sequences are challenging
without a compression framework. In this paper, we have reviewed
the properties of DNA sequences that can be exploited for
compression. Two classes of DNA sequence compression methods
have been discussed. The first class of methods considers similar
sub-sequences found within the target DNA sequence to be
compressed only. The second class extends the intra-sequence
similarities to consider similarities from other sequences as well. It
mainly focuses on population sequences generated from the NGS
techniques. For each class of method, their basic principles and
compression performance have been discussed.

For population sequences compression, one key issue is the
choice of the reference sequence. The reference sequence can be
selected as one sequence within the population or can be
constructed by considering the statistics of all sequences within the
population. Besides, the reference sequence can also be modified
during progressive compression of sequences in a population
dataset. Our experimental results show that by having a strategy to
flexibly select, construct and modify the reference sequence, the
compression performance can be significantly improved. Besides,
the use of more than one reference sequences always improves the
compression gain because the sub-structure exist in the population
sequences can be characterised by different reference sequences.
Further study is, however, required to develop an efficient
framework of choosing more than one reference sequence in
population sequences. Strategies such as parallel computing can be
used to reduce the computational complexity. With these
improvements, large-scale DNA sequence storage and distribution
should be possible. Besides, other signal processing techniques
such as compressive sensing could be explored for DNA sequence
compression. For example, in reference-based compression
methods for population sequences, the difference between the
target sequence to be compressed and the reference sequence can
be considered to be a ‘sparse’ signal if these two sequences are
highly similar to each other. In this way, compressive sensing can
be applied to the sparse signal to achieve compression. This would
be a future direction for further study by the signal processing
community.
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