
Elastic Net with Adaptive Weight for Image
Denoising

Jun Xiao Rui Zhao Kin-Man Lam∗

Department of Electronic and Information Engineering
The Hong Kong Polytechnic University

Hong Kong SAR, China
jun.xiao@connect.polyu.hk, rick10.zhao@connect.polyu.hk, enkmlam@polyu.edu.hk

Abstract—Sparse model has been widely used in image de-
noising, and has achieved state-of-the-art performances in past
years. Dictionary learning and sparse code estimation are two
key issues for the sparse model. When a dictionary is obtained,
sparse code estimation is equivalent to a general least absolute
shrinkage and selection operator (LASSO) problem. However,
there are two limitations of LASSO: 1). LASSO gives rise to
a biased estimation. 2). LASSO cannot select highly correlated
features simultaneously. In recent years, methods for dictionary
construction based on the non-similarity property and weighted
sparse model, relying on noise estimation, have been proposed.
These methods can narrow the biased gap of the estimation,
and thus achieve promising results for image denoising. In this
paper, we propose an elastic net with adaptive weight for image
denoising. Our proposed model can achieve nearly unbiased
estimation and select highly correlated features simultaneously.
Experimental results show that our proposed method can obtain
better performance compared with other state-of-the-art image
denoising methods.

Index Terms—Image denoising, weighted sparse model

I. INTRODUCTION

Image denoising is a classic problem in low-level vision
tasks, and it has been drawn researchers’ attention in the past
decades because of its high practical value. Noise removal
is a necessary component in imaging systems, because noise
is inevitably introduced and the quality of generated images
is degraded. Image denoising aims to recover a latent clean
image x from the observed corrupted image y, i.e. y = x+n,
where n denotes the noise component and it is commonly set
to the additive white Gaussian noise (AWGN).

Due to the ill-posed nature of the image-denoising prob-
lem, prior information plays an important role in denoising
algorithms. The sparsity property of natural images has been
proven to be useful for denoising algorithms, which assumes
that the main energy of an natural image is sparsely distributed
in some transformed domains, such as wavelet [1] and curvelet
[2]. For the sparse model, there are two key points for image
denoising: 1). The construction of a good transform domain
or dictionary, and 2). The accurate estimation of the sparse
code. For the dictionary construction, similar image patches
are grouped to form a dictionary for image denoising in [3],
which leverages the non-local similarity property. In [4], the
Gaussian mixture model (GMM) is applied to image patch
groups to learn their distribution, and then singular value
decomposition (SVD) is employed to learn the statistical

properties of the image patch group. An orthogonal dictionary
is then obtained for image denoising. For learning the sparse
code, a weighted sparse model [5] was proposed based on
the singular matrix obtained from SVD, and achieved a better
performance for image denoising. However, this reweighted
strategy relies on the noise estimation techniques to update the
weight iteratively. In this paper, we propose an adaptive weight
strategy based on an elastic net for image denoising. Different
from the traditional sparse models, our proposed method has
two distinguished properties:

1) The proposed model can give rise to a nearly unbiased
estimation for sparse code learning.

2) The proposed model can select two highly correlated
features simultaneously, while those traditional sparse
models can only select one feature.

Experimental results show that our proposed method can
obtain the best performance for image denoising, compared
with other state-of-the-art image denoising models.

II. SPARSE MODEL ANALYSIS

Sparse model has been well studied for image denoisinig in
past years. In generally, given an degraded image y and the
dictionary D, the sparse model is formulated as follows:

x̂ = arg min
x
‖y −Dx‖22 + λ‖x‖0, (1)

where x ∈ Rn,D ∈ Rp×n,y ∈ Rp, x̂ is the estimated
sparse code and λ controls the trade-off between the sparsity
of the solution and the minimization error. Eq.(1) assumes that
the dictionary D is fixed, and solving Eq.(1) is equivalent to
solving the best subset selection problem, A good estimation
can be obtained by existing subset selection methods, when
the dimension p is small. However, when p is large, the best
selection problem becomes an NP-hard problem. Instead of
the L0 norm penalty, the L1 norm penalty is usually adopted
to approximate the solution. Therefore, Eq.(1) can be rewritten
as

x̂ = arg min
x
‖y −Dx‖22 + λ‖x‖1. (2)

From the view of bayesian estimation, the L1 norm penalty
can be considered as the Laplacian prior, and thus it can
effectively preserve the sparsity of the solution, and obtain
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a better approximation of the L0 norm penalty. Eq.(2) as-
sumes that the dictionary is fixed, and solving the equation
is equivalent to solving a general least absolute shrinkage and
selection operator (LASSO) problem. In addition, a closed-
form solution can be obtained by applying the soft-threshold
operator, when the dictionary D is orthorgonal.

However, LASSO is a biased estimation [6], which can
severely degraded the performance of some applications in the
high-dimensional space, such as image denoising. In order to
diminish the biased gap and further improve the performance
of image denoising, an unbiased estimation and effective
processing method for image denoising is necessary.

III. PROPOSED METHOD

Learning of dictionary and sparse code are the two cores in
a sparse model. In this section, we will first describe how to
construct the dictionary by applying the non-local similarity
property, and then our proposed model will be presented.
Finally, we will describe our denoising algorithm in detail.

A. Orthogonal Dictionary Design

Dictionary learning is very important for a sparse model,
but online dictionary update is time consuming. Therefore,
we utilize non-local similarity property of natural images to
construct the dictionary.

We define a patch group (PG) as a group of similar local
image patches. Given a noisy image y, each image patch is
extracted from a RGB image with the patch size of p× p× 3.
Then, N similar local patches are searched within a region
of the size W × W , and each patch is stretched to form a
vector yn ∈ R3p2×1 and create a PG, denoted as {yn}Nn=1.
We define the mean of a PG as µ = 1

N

∑
n yn, and each patch

in a PG is subtracted by its PG mean, which is then denoted
as Ŷ = {ŷn = yn − µ}.

Assumed that L demeaned PGs are obtained, and the l-th
PG is denoted as Ŷl = {ŷl,n}Nn=1, for i = 1, 2, · · · , L. In order
to better describe the statistical property of each demeaned PG,
SVD is applied to each Ŷl, as follows:

Ŷl = UlSlVl, (3)

where Ul is the eigenvector matrix of the l-th demeaned mean
PG, and is an orthogonal matrix. This matrix also forms the
dictionary in our proposed sparse model. Sl represents singular
value matrix of the l-th demeaned mean PG.

B. Elastic Net with Adaptive Weight

Consider a noisy demeaned local patch ŷl,n, and its corre-
sponding Ul. The proposed sparse model can be formulated
as

x̂l,n = arg min
xl,n

1

2
‖ŷl,n −Ulxl,n‖2 + λα‖ωTxl,n‖1

+ λ(1− α)‖ωT x̂l,n‖2,
(4)

where ŷl,n,xl,n ∈ R3p2 ,Ul ∈ R3p2×3p2 , and x̂l,n represents
the estimated sparse code of the n-th local patch in the l-th PG.

λ and α are tuning parameters. The L1 norm penalty can give
rise to a sparse solution, and the L2 norm penalty promotes to
group those highly correlated features. When α = 0, Eq.(4) is
equivalent to a ridge regression problem. When α = 1, Eq.(4)
is degraded to a weighted sparse problem.

In this paper, we propose a simple and effective strategy
for the weight setting. We set the i-th weight for the ith
element of the sparse code ωi = 1

|xiniti |γ , where γ is a hyper
parameter. The xiniti can be obtained by solving a least squared
regression, unless the matrix Ul is co-linear (in this case, ridge
regression is preferred). From the weight setting, we can see
that the initial estimation xiniti contains zero components, and
this will make some of the weights become infinite. We can
formally handle this by introducing equality constraints into
the problem of Eq.(4). In other words, those elements with
infinite weights are not selected automatically when Eq.(4) is
minimized. Hence, the active set of our proposed sparse model
is always a subset of that of xiniti . In addition, the weight
setting does not rely on any noise estimation techniques, and
only utilizes the information of ŷl,n and Ul due to the use of
the least squared regression. Therefore, weights are adaptively
updated according to the absolute value of the sparse code.

Since the dictionaryUl is orthogonal, Eq.(4) has a analytical
solution by performing the soft-threshold operation

x̂l,n =
1

I + ωλ(1− α)I
⊗ Sωλα(UT

l ŷl,n), (5)

where ω = 1
|xiniti |γ , and Sλ(·) is the soft-threshold operator.

Sλ is defined as

Sλ(x) = sgn(x)⊗max(x− λ, 0), (6)

where sgn(·) is the sign function. The threshold function of
our proposed model is shown in the Fig.1. Compared with
the soft-threshold function and the hard-threshold function, we
can see that our proposed method can achieve nearly unbiased
estimation, and eventually converge to the hard threshold
function with increasing γ.

Fig. 1. Threshold function of L0(hard), L1(soft), and our proposed method
with different γ.



C. Denoising Algorithm

When the sparse codes of PGs are obtained by solving
Eq.(6), the latent clean image ȳl,n in Yl is reconstructed as
follows:

ȳl,n = UT
l x̂l,n + µl, (7)

where µl is the group mean of Yl. Then, aggregating all the
reconstructed local patches to form a latent clean image. We
perform the above denoising procedure, for several iterations,
to obtain better denoising outputs. The proposed denoising
algorithm is described in Algorithm 1.

Algorithm 1 Reweighted l1 Norm Penalty of Sparse Model
for Image Denoising
Input: Noisy image y
Initialization: x̂(0) = y

for i=1:IteNum
1. Extracting PGs {Yn}Nn=1

for each PG Yn
2. Compute the group mean µn and form mean subtracted
PG Ȳn;
3. SVD is applied to each mean subtracted PG;
4. Recover each patch in all PGs via Eq.(6) and Eq.(7)

end for
5. Aggregate the recovered PGs of all subspaces to form the
recovered image x̂(Ite).
end for
Output: The denoised image x̂

IV. EXPERIMENTAL RESULTS

A. Numerical Results on Solution Paths

In this session, a simulated experiment is set up for the
standard LASSO problem and our proposed method. In both
models, λ is a very important regularization parameter, and
different λ causes to different results of feature selection. We
use 442 simulated data samples (the diabetes dataset provided
by sklearn), and each samples has 10 dimensions. For our
proposed method, γ is set to 1.0. Fig.2 plots curves of elements
variance of each sparse code with respect to λ.

Fig. 2. The solution path of LASSO(left) and our proposed method(right).

We can see that our proposed method can active highly
correlated features because of the L2 norm penalty, while
traditional LASSO does not hold this property. In other words,
the blue curve and the red curve in the right side of Fig.2
have similar trend, and eventually converges as λ is increased.
The green curve and the purple curve are also activated

simultaneously and have similar behaviors. Detail proof about
grouping correlated features of elastic net has been presented
in [7].

B. Image Denoising

In this session, our proposed method is applied for image
denoising. 24 color images from Kodak dataset are used in this
experiment. The noisy image is synthesized by adding AWGN
to R, G, and B channels respectively. Noise level set for R,
G, B channels are σr = 40, σg = 20, and σb = 30. Local
image patches is extracted with the size of 6 and step size of
1, and 15 similar local patches are searched within the local
region of 30 × 30. The number of iteration is set to 2. Peak
signal to noise ratio (PSNR) is adopted for assessment. We
compare our proposed model with the traditional sparse model
(benchmark), CBM3D [8], GMM-weighted sparse model [9]
(GMM-sparse), nest image (NI), and Noise Clinic (NC) [10].
CBM3D is a classic noise removal algorithm for color images.
GMM-weighted sparse model leverages external image prior
to construct dictionary, and applies it to weighted sparse
model for image denoising. NC is a blind image denoising
method, and NI has been embedded into Photoshop and Corel
PaintShop.

PSNR results of different denoising methods are listed in
Table 1. The best PSNR result of each image is highlighted
in bold. Compared with benchmark sparse model and GMM-
sparse model, our proposed adaptive weighted elastic model
greatly improves the performance, because the weighted strat-
egy can achieve nearly unbiased estimation, and L2 norm
penalty effectively groups correlated features in the feature
selection, which is a very useful property for processing high-
dimensional data. In addition, our proposed method outper-
forms other state-of-the-art denoising models in most of testing
images. Visual results of different methods are shown in the
Fig.3. Compared with other denoising methods, our proposed
method can effectively remove the noise while the detail of
the image can be preserved.

V. CONCLUSION

Sparse model has been well studied for image denoising,
but the L1 regularized term causes to biased estimation in
sparse code learning. It also cannot select highly correlated
features simultaneously in high-dimensional applications, such
as image denoising. In this paper, we have proposed an
adaptive weighted elastic net for image denoising, whose
weight updating only relies on the initial estimated value
obtained from the least squared regression. Our experimental
results have shown that our proposed method can achieve
nearly unbiased estimation, and has the property of correlated
features activation. Compared with other state-of-the-art image
denoising models, our proposed method can obtain the best
performance.
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