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Abstract

Speaker recognition has seen impressive advances with the ad-
vent of deep neural networks (DNNs). However, state-of-the-
art speaker recognition systems still rely on human engineering
features such as mel-frequency cepstrum coefficients (MFCC).
We believe that the handcrafted features limit the potential of
the powerful representation of DNNs. Besides, there are also
additional steps such as voice activity detection (VAD) and cep-
stral mean and variance normalization (CMVN) after comput-
ing the MFCC. In this paper, we show that MFCC, VAD, and
CMVN can be replaced by the tools available in the standard
deep learning toolboxes, such as a stacked of stride convolu-
tions, temporal gating, and instance normalization. With these
tools, we show that directly learning speaker embeddings from
waveforms outperforms an x-vector network that uses MFCC
or filter-bank output as features. We achieve an EER of 1.95%
on the VoxCeleb] test set using an end-to-end training scheme,
which, to our best knowledge, is the best performance reported
using raw waveforms. What’s more, the proposed method is
complementary with x-vector systems. The fusion of the pro-
posed method with x-vectors trained on filter-bank features pro-
duce an EER of 1.55%.

Index Terms: Speaker verification; end-to-end speaker embed-
ding; deep neural networks; temporal gating

1. Introduction

For years, machine learning had relied on human knowledge to
derive useful features from raw input signals such as speech,
images, and text. The human-derived features are referred to
as handcrafted features in the literature, such as scale-invariant
feature transform (SIFT) [1] in computer vision and mel-
frequency cepstrum coefficients (MFCCs) in speech. MFCCs
utilize the spectra and human perception of sound. It has long
been the de facto features for speech and speaker recognition. In
speaker recognition, it has been used in conjunction with Gaus-
sian mixture models, i-vectors, x-vectors, and more recently
ResNet and DenseNet speaker embeddings [2-6]. Deep neural
networks (DNNs) learn to transform the input data into more
abstract and composite representations in successive layers [7].
It has been found that DNNs perform better with raw input than
with human engineering features [7].

In the speech community, there is also various success in
learning from waveforms. In [8], Zeghidour ef al. initialized the
bottom convolutional layers as an approximation of mel-filter-
banks and then fine-tuned the layers jointly with the remaining
convolutional layers. They showed that models trained on time-
domain filter-banks consistently outperform the ones trained on
mel-filter-banks on the phone recognition task. In [9], Ravanel-
lis and Bengio argue that to learn useful features, CNNs should
behave like a bandpass filter. They derived a form of CNN
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kernels that behaves like a bandpass filter in the frequency do-
main. The network is called SincNet and has shown competi-
tive results in the LibriSpeech dataset for speaker verification.
In [10], the authors proposed to first train a CNN based identi-
fication network and replace the fully connected layers by a bi-
nary classification network for speaker verification. They found
that the two-stage approach works better and that the CNN can
automatically learn the fundamental frequencies. In [11], an
end-to-end speaker verification system was proposed. The au-
thors used a learnable pre-emphasis layer before the first con-
volutional layer. The method was improved in [12], where the
authors used a ResNet architecture and removed inefficient as-
pects of the multi-step training scheme. Different backend clas-
sifiers and losses were also investigated in [12]. In [13], the au-
thors proposed a wav2vec architecture to learn speech features
in an unsupervised manner. The network consists of a feature
encoder and a feature aggregator. The encoder is used to extract
features to replace MFCCs. The encoder is designed in such a
way that the outputs correspond to 30ms of speech with a 10ms
frame shift, which is consistent with the MFCC features.

In this work, we propose a simple DNN architecture for di-
rectly learning speaker embeddings from waveforms. We refer
to the proposed DNN architecture as “wav2spk” in the rest of
the paper. Our wav2spk includes three components that are de-
signed to replaced MFCC, VAD, and CMVN. Firstly, we follow
the design of wav2vec [13] using a feature encoder that is com-
posed of convolutional layers with large stride and kernel size.
The kernel size and stride are chosen such that each output sam-
ple corresponds to 30ms waveform with 10ms frame shift. Sec-
ondly, we introduce a temporal gating unit to replace the role
of a VAD. The gating unit chooses the output of the previous
layer based on the network objective instead of other arbitrary
criteria. Thirdly, inspired by CMVN, we use an instance nor-
malization scheme that normalizes a feature along the temporal
axis for each batch and channel.

2. Wav2Spk

2.1. Feature Encoder

Typically, the MFCC features for speaker recognition are com-
puted using a 30-ms window with 10-ms frame shift. As a re-
sult, the first layer of the x-vector network already has a large
temporal span. The x-vector network is not designed for pro-
cessing waveforms. If we directly use waveforms as input to
the x-vector network, the effective receptive field will be too
small. To use waveforms as input to a DNN, it is necessary to
use the convolutional layer with large strides and kernel sizes.
Here we adopt the encoder used in the wav2vec model, which
consists of 5 convolutional layers with kernel sizes (10, 8, 4, 4,
4) and strides (5, 4, 2, 2, 2). As a result, the output of the en-
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Table 1: Summary of the wav2spk architecture.

Group \ Layer | Size, Stride | Channel_in x Channel_out
Conv0 10,5 1 x 40
Convl 5,4 40 x 200
Feature Encoder Conv2 5,2 200 x 300
Conv3 3,2 300 x 512
Conv4 3,2 512 x 512
Temporal Gating | - \ - \ -
Conv5 3,1 512 x 512
Frames Aggregator Conv6 3,1 512 x 512
Conv7 3,1 512 x 512
Conv8 3,1 512 x 512
Stats pooling ‘ - ‘ - ‘ -
FCO - 1024 x 512
Utt. Layers FC1 - 512 x 128
AM-softmax [14] - 128 x N_SPK

coder network corresponds to 30ms of speech with 10ms frame
shift (assuming 16kHz sampling rate).

2.2. Temporal Gating

The feature gating mechanism has been very popular in com-
puter vision [15]. Given an input feature vector x € R, the
gating mechanism produces an output feature vectory € R¢ as
follows:

y =0(Wx+b) Ox, (1)

where ® denotes element-wise multiplication, W is a d X d
weight matrix, and b is a bias term. The idea is that the elements
of o(Wx + b) can be regarded as weights that signify which
features are more useful to the task and thus weight the features
accordingly. The idea can be extended to other axis besides the
channel.

When using waveforms as input, we can weight each sam-
ple in the waveform or individual frames in any layers of the
CNN. Let v be a weight vector of d-dimension and x; be the
hidden activation in a CNN layer at frame #; we have

Y, = O'(VTXt + b) * x¢, 2)

where o (v'x;+b) is a scalar term that indicates the importance
of frame x; and * denotes the multiplications across all of the
feature dimensions. If o(.) is a binary unit, Eq. 2 acts as a VAD
inside the network. The difference is that the unit is trained to
minimize the network loss instead of other arbitrary criterion.
Because the binary unit is not differentiable, we use a sigmoid
function. This module can be used in any layer in the network.
We experimented with putting it after the feature encoder and
before statistics pooling.

2.3. Instance Normalization

An important step after computing the MFCC features is cep-
stral mean and variance normalization (CMVN). CMVN nor-
malizes the samples across the temporal axis within the window.
To replace CMVN, we propose to use instance normalization in
each layer of the feature encoder. A normalization layer typi-
cally computes the following [16,17]:

1
%= — (xi — ;) 3)

A

where x is a feature vector produced by the preceding layer, ¢
is a multi-tuple index, and the division is element-wise. For
speech signal in a 1-dimensional convolutional layer, i =
(in,ic, i) is a 3D vector indexing a feature element in a ten-
sor with axes (N, C,T'), where N is the batch axis, C is the
channel axis, and 7" is the time axis. The mean g, and standard
deviation o; are computed by:

o= 3 % @

kES;
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kes;

where S; is the set of 3-tuples from which the statistics are com-
puted and m is the size of S;, and € is a constant term for nu-
merical stability. In case of batch normalization, the set S; is

81' = {kl“i’c = iC}7 (6)

where k¢ is a running index iterating over the channel axis [17].
Eq. 6 implies that normalization is performed across the batch
and time axes at channel ic. In the case of instance norm, the
set is

Si = {klkn =in,kc =ic}, @)
where kn is a running index along the batch axis. Eq. 7 im-
plies that normalization is performed across the temporal axis
for each batch and channel and that the batch and channel axes
are normalized independently.

2.4. Loss Function

Margin-based loss has been very successful in face recognition
and speaker recognition [14]. Additive-margin loss enforces
a minimum margin m between the target class and non-target

classes:
1 n es~(cos 6?11‘ —m)
EA]WS = _E Zlog s (0059 m) c ]
- i S§-COSs i
i=1 e Yi + E =1,y © J
T
1 n es~(Wyix1;—m)
:_ﬁZlOg s (W], xi—m) WTx;
N . s Xi— c sWix,;
=1 e AT + s €
(8)
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where s is a scaling constant, W is a weight matrix (W is the
j-th column of W), and x is an embedding vector. Both W ;
and x; are normalized to have unit length.

3. Experiments
3.1. Data Preparation

The training data include the VoxCelebl development set and
the VoxCeleb2 development set [5, 18]. We followed the data
augmentation strategy in the Kaldi SRE16 recipe. The train-
ing data were augmented by adding noise, music, reverb, and
babble to the original speech files in the datasets. After fil-
tering out the utterances shorter than 400ms and the speakers
with less than 8 utterances, we are left with 7,302 speakers. For
the networks that use hand-crafted features as input, we used
MFCC and filter-bank features implemented in Kaldi with a
frame length of 30ms. The number of mel-scale filters is 40 and
the lower and upper cutoff frequencies covered by the triangular
filters are 20Hz and 7,600Hz, respectively. Mean normalization
was applied to the filter-bank and MFCC features using a 3-
second sliding window. Non-speech frames were removed by
Kaldi’s energy-based voice activity detector.

3.2. DNN Training

The networks were trained using additive-margin softmax with
a margin of 0.35 and a scaling factor of 30. The networks were
optimized using stochastic gradient descent (SGD). For each
mini-batch, we randomly selected 64 utterances from the train-
ing set and then randomly cropped a 400ms speech segment
from each utterance. We define one epoch as looping through
120,000 segments. We trained the networks for 320 epochs.
The learning rate was set to 0.005 and was divided by 10 at
Epoch 80, Epoch 120, and Epoch 160. All networks were im-
plemented in PyTorch [19]. After training, we extracted the
speaker embedding and used cosine similarity to produce veri-
fication scores. No LDA nor PLDA was used.

Table 2: Performance on the VoxCelebl test set. The differ-
ence between our x-vector network and Kaldi’s is the loss func-
tion. We used additive-margin softmax while Kaldi’s uses regu-
lar softmax. We placed the temporal gating unit after the feature
encoder in the wav2spk model.

Input Model EER minDCF
MFCC Kaldi’s x-vector 3.12 0.325
MFCC our x-vector 2.54 0.231
Fbank our x-vector 2.20 0.226
Waveform wav2spk 1.95  0.203

Table 3: Effect of temporal gating on the wav2spk network.

EER(%) minDCF
No gating 2.17 0.225
Gating after encoder 1.95 0.203
Gating before stats-pooling 1.97 0.215
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3.3. Evaluation

We used the VoxCeleb dataset [20] to evaluate the performance
of the proposed wav2spk. VoxCeleb includes VoxCelebl and
VoxCeleb2. Together, the corpus contains over one million ut-
terances from over 7,000 celebrities extracted from the YouTube
videos. We used the whole VoxCeleb2 and VoxCeleb1’s train-
ing data for training and VoxCeleb1’s test data for performance
evaluation. The test utterances from VoxCeleb1 were spoken by
speakers from a wide range of ethnicities, professions, and ages
in a variety of environments, including red carpets, outdoor sta-
diums, and indoor studios. The recordings contain real-world
noise, such as background chatter, laughter, and room acous-
tics. There are equal numbers of target and impostor trials in
the VoxCelebl test set. We report results in terms of equal error
rate (EER) and minimum cost function (DCF) with Pigrget =
0.01.

4. Results
4.1. Comparing with MFCC and filter-bank Features

In this section, we compare the proposed wav2spk with the
x-vector networks trained on MFCC and filter-bank features.
When MFCC and filter-bank features were used, VAD and
CMVN were applied. For the wav2spk systems, we used the
DNN architecture presented in Table 1, with instance norm be-
ing applied to every layer in the feature encoder and temporal
gating being applied after the encoder. Figure 1 shows the de-
tection error trade-off curves of the three systems and Tables 2
shows the performance of the three systems. We can see that
the filter-bank features outperform the MFCC features slightly,
while the proposed wav2spk system performs the best among
the three systems.

4.2. Effect of the Gating Mechanism

In this section, we investigate the effect of the gating mecha-
nism proposed in Section 2.2. We also investigate two potential
places to put the gating unit: after the feature encoder or be-
fore the statistics pooling layer. Table 3 shows the performance
of the wav2spk system under three configurations: (1) without
gating mechanism, (2) using temporal gating after the feature
encoder, and (3) using temporal gating before statistics pool-
ing. We can see that using temporal gating indeed improves the
performance and placing it after the feature encoder works best.

4.3. Investigation of Fusion Systems

Because the proposed wav2spk system is very different from the
x-vector networks trained on MFCC and filter-bank features.
We expect that system fusion will improve performance. Ta-
ble 4 shows the results of the fusion systems. “Our x-vector
fbank™ refers to the x-vector network with AM-softmax using
filter-bank features as input. For the fusion of the same model
type, we trained two models of the same type independently.
Then, the scores from the two models were linearly combined
with equal weights. For the fusion of different model types, two
different models were trained using the same data set. Then,
their scores were linearly combined with equal weights. The re-
sults show that fusion of the x-vector trained on filter-bank fea-
tures and the wav2spk gives the most significant performance
gain, which suggests that they are more complementary than
the two identical systems with independent training.
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Figure 1: Detection error tradeoff plots of the proposed wav2spk, the x-vector network trained on MFCC features and the x-vector
network trained on filter-bank features.

Table 4: Performance of fusion systems. “Our x-vector fbank” refers to the x-vector network trained using AM-softmax on filter-bank
features. For the fusion of the same model type, we conducted two independent trainings. The scores of all fusion systems are produced

by simple score averaging.

Modell

Model2

Our x-vector fbank
wav2spk
Our x-vector fbank

Our x-vector fbank
wav2spk
wav2spk

EER(%) minDCF
2.14 0.225
1.81 0.192
1.55 0.174

5. Conclusions

In this paper, we investigate the possibility of learning deep
speaker embeddings directly from waveforms. The results
show that with a properly designed architecture, the proposed
wav2spk network can directly process waveforms and performs
better than the convention x-vector network. There are several
crucial components in the wav2spk network that attribute to this
superior performance. These components include (1) a feature
encoder that converts raw waveforms into frame-level features,
(2) an instance norm that performs mean and variance normal-
ization across the time, and (3) a gating mechanism that selects
important frames from the feature encoder. In the future, we
will investigate using different network architecture to see if the
performance of wav2spk can be improved further.
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