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Abstract

Inspired by speech recognition, most of the recent state-of-the-art works convert

scene text recognition into sequence prediction. Like most speech recognition

problems, context modeling is considered as a critical component in these meth-

ods for achieving better performance. However, they usually only consider using

a holistic or single-scale local sequence context, in a single dimension. Actually,

scene texts or sequence contexts may span arbitrarily across a two-dimensional

(2-D) space and in any style, not limited to only horizontal. Moreover, contexts

of various scales may synthetically contribute to text recognition, in particular

for irregular text recognition. In our method, we consider the context in a 2-D

manner, and simultaneously consider context reasoning at various scales, from

local to global. Based on this, we propose a new Two-Dimensional Multi-Scale

Perceptive Context (TDMSPC) module, which performs multi-scale context

learning, along both the horizontal and vertical directions, and then merges

them. This can generate shape and layout-dependent feature maps for scene

text recognition. This proposed module can be handily inserted into existing

sequence-based frameworks to replace their context learning mechanism. Fur-

thermore, a new scene text recognition network, called TDMSPC-Net, is built,

by using the TDMSPC module as a building block for the encoder, and adopting

an attention-based LSTM as the decoder. Experiments on benchmark datasets

show that the TDMSPC module can substantially boost the performance of

existing sequence-based scene text recognizers, irrespective of the decoder or

backbone network being used. The proposed TDMSPC-Net achieves state-of-

the-art accuracy on all the benchmark datasets.
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1. Introduction

Scene text recognition is a critical task for many real-world applications,

such as street-sign reading for driverless vehicles, robot navigation, assistive

technologies for the blind, etc. Although extensive studies have been carried out

in the past few years, text recognition in natural scenes is still challenging, due5

to several difficulties, e.g., variations of text layout; view distortion, including

perspective, curved, and complex geometric deformations; and oriented text.

Inspired by speech recognition, most of the recent algorithms[1][2][3][4][5][6]

converted scene text recognition into sequence prediction, which greatly simpli-

fies the problem and leads to promising performance. These sequence-learning-10

based methods usually employ the encoder-decoder architecture, learning the

mapping between the text image and the character sequence. Therein, the

encoder converts the input images into a feature sequence, and then captures

context information from the sequence. The decoder transcribes the encoded

sequence of feature vectors to generate the target strings by using Connectionist15

Temporal Classification (CTC)[1][2][6] or attention mechanism [4]. Like most

speech recognition problems, context dependency is a nontrivial component to

provide critical information in these methods, aimed at learning context-aware

representation. Recurrent neural networks (RNNs) have been broadly used as

context modeling, given their capability in capturing long-range dependency20

through recurrent computation. However, these RNN context modeling meth-

ods are just for 1-D signals, without considering 2-D spatiality of the context.

Moreover, these recurrent methods are hard to train, because of gradient dis-

persion and requiring high computation, due to difficulty in parallel computing.

Recent research has shown that convolutional architectures outperform re-25

current networks in the sequence modeling tasks, such as audio synthesis and

machine translation [7][8]. Inspired by this, [9][10][5] attempted to adopt stacked
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convolutional layers to capture the contextual dependency in scene text images,

which overcomes the drawbacks of RNN and serves as a faster alternative to

recurrent networks. However, these approaches learn context by using a single30

fixed receptive field, and regular rectangular convolution kernels, so there is no

difference in handling horizontal and vertical context.

Actually, context reasoning in scene text recognition has some intrinsic char-

acteristics, summarized as follows:

(1) Two-dimensional (2-D) context: A character sequence in a text image35

is essentially extended in the 2-D space, which may appear as an irregular or

distorted text. Therefore, encoding context information in the horizontal direc-

tion only, or in a single direction, will definitely make the encoder bias towards

extracting context features in the dominant direction of the text sequence. How-

ever, text patterns may be at any orientation, so they should be decomposed40

orthogonally and more than one dominant orientation should be considered.

In our method, we simultaneously consider the sequence context in both the

horizontal and vertical directions, i.e. the 2-D attribute of a context.

(2) Multi-scale context: During the encoding of a text image into a sequence,

fixed-size slice segmentation is applied, due to the great difficulty in accurate45

character segmentation. Each slice is expected to be corresponding to a single

character. However, a slice may not be corresponding to a character, because

each character may have a different scale and shape. Thus, two basic types

of sequential context, namely inter-slice for character and inter-character for

word, must be considered for understanding a text string, which involve context50

dependencies of different sizes. To this end, we propose to capture multi-scale

contextual information, with a set of perceptive fields of feasible scales. To the

best of our knowledge, almost all the existing encoders are configured with a

fixed receptive field, which cannot capture the complete information of a context

with varying scales and layouts.55

In order to realize the intrinsic characteristics of scene text into a context

computing model, we propose a new Two-Dimensional Multi-Scale Perceptive

Context (TDMSPC) module for scene text recognition, which can interpret
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scene text more effectively and thus, achieve better performance. This mod-

ule takes any semantic-level feature map as input, and outputs a feature map60

with the same size, facilitating the merging of 2-D multi-scale perceptive con-

text at any semantic level. As a simple Convolutional Neural Network (CNN)

unit, it is compatible with all existing sequence-based recognizers. By inserting

this module into a sequence-based recognizer, a unanimous boost in terms of

recognition accuracy can be achieved. Moreover, with the TDMSPC module65

as a core building block, we build up a new scene text recognition network,

namely TDMSPC-Net, which achieves state-of-the-art recognition performance

on existing benchmark datasets.

2. Related work

Many methods have been proposed for scene text recognition [2][11][10][9]70

[12][13][14][15][16], among which sequence-based methods are especially note-

worthy. Examples include [2][1][3][5][15][16], which firstly encoded the input

text image into a feature sequence, and then apply the feature sequence to

decoders to generate a label sequence. Shi et al. [2] proposed an end-to-end

trainable sequence recognition network, which combines CNN and BiLSTM[17]75

to learn the sequential dependencies, and uses CTC to translate the per-slice

prediction into a label sequence. As well, Lee et al. [5] and Cheng et al. [18]

constructed an attention-based recurrent network to decode feature sequences

and predict labels recurrently. These encoder-decoder frameworks adopt the

CNNs to transform images into 1-D sequences, on top of which the recurrent80

neural network BiLSTM is used to reconfigure these sequence frames for robust

sequence transcription. These methods achieve performance gain by integrating

contextual information, however, they consider learning context dependencies in

one dimension only. In addition, in these existing scene text recognition frame-

works, feature extraction and context modeling are processed in two successively85

separated stages, as summarized in [19], making that the context information is

simply integrated into the highest level of semantic feature map. Nevertheless,
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both high and low-level features provide rich context information that should

be fully utilized. We build the encoding network for the text recognizer by in-

terlacing semantic extraction and context learning from low to high level, thus90

implementing layer-wise integration of context and semantics.

A text sequence in a scene image may span over a 2-D region, instead of

along a single direction. This spatially extended text sequence can be decom-

posed into two orthogonal directions, and context dependencies can be consid-

ered horizontally and vertically. With this insight, the convolution structure is95

a reasonable option to capture the contextual information, which applies 2-D

filters over the entire text image or over the combined maps of all the sequence

elements. Recent studies[9][20][21][22][5] show that CNNs are effective to learn

the contextual information and demonstrate their advantages over the recurrent

connection because of their highly parallelizable convolution computation. Gao100

et al. [9] applied a sequence-to-map operation to transform a feature sequence

into a 2-D map to form the input of stacked multiple CNNs. This can extract

the contextual representation of the input sequence to model the global depen-

dencies. Liu et al.[10] developed a multi-scale convolutional encoder to generate

a sequence of context vectors and used a scale attention network to select fea-105

tures from the most relevant scales. All these methods capture context from two

dimensions unintentionally. However, they treat the context modeling equally

along the two orthogonal directions, due to using regular square-shaped kernel

filters only. In contrast, our algorithm applies different sets of dilation factor

pairs to implement the dilated convolutions, so as to differently handle con-110

text modeling in the two dimensions. Furthermore, using dilated convolutions

can effectively expand the receptive field, yet the size of the output remains

unchanged.

Multi-scale contextual information is always emphasized in modern vision-

analysis tasks[23][24][25][26][27], including image classification and semantic seg-115

mentation, for performance improvement. However, to the best of our knowl-

edge, no previous works have highlighted multi-scale contextual reasoning to

improve scene text recognition. Even though the work of [10] employed multi-
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scale information for the scene text encoder, the method simply generated a

number of scaled versions of the text image as the input of the network, which120

introduces expensive computing costs. [21][22] proposed using a multi-scale slid-

ing window, corresponding to different perceptual spans, so as to capture more

accurate context information. Except for these two methods, all other existing

approaches to scene text recognition capture single-scale context only.

3. TDMSPC Module125

We begin by describing the architecture of the proposed TDMSPC module,

which is designed to capture 2-D multi-scale perceptive contextual information

and to merge them. It is a simple yet effective fully convolutional module,

and can be used conveniently to boost the performance of existing scene text

recognition methods. The distinguishing characteristics of TDMSPC include:130

1) Contextual capturing is realized from the 2-D perspective simply by using

dilated convolutions, with different dilation factors to deal with text context in

the horizontal and vertical directions. 2) Dilated convolutions are used, with

different pairs of dilation factors, to capture contextual information of different

scales and shapes. 3) Residual connections are used to merge the 2-D multi-135

scale context information, without requiring extra parameters. Furthermore,

the module can take feature maps of any size as its input, and map them into

output feature maps of the same size, which makes it possible to be handily

plugged into existing sequence-based text recognizers.

Our module is informed by the recent convolutional architectures for sequen-140

tial tasks [7] and semantic segmentation [26][23], but is distinct from all of them.

Bai et al[7] adopted a one-way causal convolution to look into the past to make

a prediction, whereas our model is bidirectional. Furthermore, [7] emphasized

covering a global context, whereas our method learns multi-scale context rea-

soning, and then fuses the multi-scale information. In [26], the context module145

treated context dependencies in the different dimensions equally. However, our

method uses pairs of dilation factors to capture context in the two dimensions
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differently, so as to better adapt to the intrinsic characteristics for scene text

recognition.

3.1. Architecture150

Fig. 1 shows the structure of the proposed TDMSPC, which stacks four

dilated convolution layers successively, with different pairs of dilation factors.

The dilation factors are increased progressively over the four layers, allowing

the module to capture the complete context information in a local-to-global

manner. Each of these convolutions is followed by batch normalization[28] and155

ReLU activation[20], which are not illustrated in the figure for brevity. Finally,

by using simple lateral connections, the outputs of all four layers and the input

feature maps are added in the element-wise fashion, to produce the output. If

the height of the input feature map is less than 4 pixels, the dilation factor for

the height or vertical direction is constantly set at 1.160

Figure 1: Structure of the TDMSPC module. F1 is a (1,1)-dilated convolution, and each

element of the F1 output has a receptive field of 3×3. F2 is a (3,2)-dilated convolution, and

each element in the F2 output has a receptive field of 9×7. F3 is a (8,4)-dilated convolution,

and each element in the F3 output has a receptive field of 25×15. The number of parameters

associated with each layer is identical. Above the TDMPSC also illustrates the traditional

BiLSTM method for context learning, which operates on 1-D sequence in a single scale.

3.2. Two-Dimensional Dilation

Dilated convolution can apply the same filter at different regions controlled

by different dilation factors, using distinct interval patterns along the horizon-
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tal and vertical directions. Therefore, using dilated convolution facilitates the

aggregation of contextual information of different scales more efficiently in the165

2-D space. The density of aggregation is determined by the dilation factor.

The four layers in the TDMSPC module employ 3×3 convolutions with dif-

ferent dilation factors. Specifically, the dilations along the width dimension are

1, 3, 8 and 23, while those along the height dimension are 1, 2, 4 and 8. Using

different dilation factors is due to the fact that a scene text usually has a wider170

span in the horizontal direction than that in the vertical direction. Actually,

these dilation factors serve as hyper-parameters and can be set according to the

size of the input feature maps. The dilation rates determined in our method are

according to the size distribution of the feature maps of the existing sequence-

based text recognizers[4][2][16]. The dilated convolutions operate on the four175

layers, from the input to the output, using a different pair of dilation factors,

i.e. (1,1), (3, 2), (8, 4), and (23, 8), respectively. They capture context depen-

dencies of different scales and shapes in the 2-D text space. Unlike [26], all the

convolutions operate in the width and height dimensions, not in the channel

dimension. This makes the contextual information conceptually clearer.180

Let Fi, where i=1,2,3 and 4, denote the ith layer of the TDMSPC module,

and ki be the convolution filter associated with Fi. For the regular convolution,

the output is given as follows:

(Fi ∗ ki)(pw, ph) =
∑

sw+tw=pw

sh+th=ph

Fi(s
w, sh)ki(t

w, th) (1)

where (pw, ph) represents the coordinates of a point in the output feature map,

(sw, sh) a point in the input, and (tw, th) a point of the filter.185

In our method, we replace the regular convolution with the dilated convolu-

tion, with dilation factors (dwi , d
h
i ) for i = 1, 2, 3 and 4. The dilated convolution

∗(dw
i ,dh

i )
is defined as

(Fi ∗(dw
i ,dh

i )
ki)(p

w, ph) =
∑

sw+dw
i tw=pw

sh+dh
i t

h=ph

Fi(s
w, sh)ki(t

w, th) (2)
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The receptive field of the element (pw, ph) in the output map of Fi is defined as

the set of elements Fi (sw, sh) in (2). Denote the size of the receptive field for190

(pw, ph) as ri = rwi × rhi . The size of the receptive field ri of the center unit in

the output of Fi can be computed as follows:

ri = (2

i∑
j=1

(dwj ) + 1)× (2

i∑
j=1

(dhj ) + 1) (3)

for i=1,2,3 and 4.

From (3), the receptive field becomes wider from the first layer to the last

layer, which corresponds to using an increasing span for capturing contextual195

information. The dilation factors are increased monotonically through the lay-

ers. However, we do not follow the practice used in dense prediction[26], which

increases the dilation factor exponentially with the depth of the network. The

reason for this is that dense prediction requires pixel-level accuracy, so the di-

lation factor is set finer, i.e. 2i. The dilation factors used in our method are200

increased more aggressively, according to the feature-map size adopted in exist-

ing scene text recognition methods [2][29]. Typically, the original text images

are resized to 100×32, which are then reduced to 50×16, 25×8, 25×4, 25×2, and

25×1, by the successive convolutional stages[2][3]. The output feature map of

most semantic levels has a width of 25, comparable to the length of text strings.205

The minimum height can be down to 1, corresponding to 1-D sequences.

The edge units at the output layer will have its range of perceptual context

successively decreased due to the boundary effect introduced by convolution.

The minimum context range of the edge units in the output of Fi can be for-

mulated as follows:210

(

i∑
j=1

(dwj ) + 1)× (

i∑
j=1

(dhj ) + 1) (4)

As above, further analysis of the receptive field of the edge units at the

output layer considers multi-focus characteristics of the image text recognition

task. In other words, whether central or boundary characters in a text string

should be attention-focused. Therefore, all the output units, rather than the

center one only, should consider large or global context for reasoning. In our215
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case, the maximum receptive field of the center element in the output layer

is 71×31, while the minimum receptive field size of the element at the border

is 36×16. Therefore, the edge output unit of the last layer of the TDMSPC

module basically covers the input field globally, given the feature map of the

higher semantic stages, with a width of 25 as input.220

Assuming that the input length is 25, with the dilation factors set in our

method, the center unit of the 2nd, 3rd and 4th layers of TDMSPC covers 12%,

36% and 100%, respectively, of the global context. What we want to emphasize

here is that our method can obtain multi-scale contextual information, but the

context scale is very discrete. If the scale of the context is to be more fine-grained225

so as to handle the diversity of irregular text, a feasible way is to implement more

combinations of different scales. To this end, we design a recognition network

by cascading multiple TDMSPCs continuously or discontinuously, where each

module can be plugged into different semantic stages.

4. TDMSPC-Net Recognition Network230

Taking the TDMSPC module as a context perception block, we construct

a new recognition network, called TDMSPC-Net. We use ResNet-34[30] as our

base network, whose architecture is shown on the left of Fig. 2. Inserting a

TDMSPC module after each residual block forms the backbone of TDMSPC-

Net, as shown on the right of Fig. 2.235

The following subsections analyze how the receptive field is affected by s-

tacking the TDMSPC modules and visualize if the feature map adapts to fit

irregular text after the module is used. Finally, the GRU attention decoder is

briefly described for the sake of completeness.

4.1. More Fine-grained Receptive Field240

Superficially, the module takes a feature map as input, and produces a fea-

ture map of the same size as output. The input and output have the same

form. Inside the TDMSPC module, context of different ranges is captured, and
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Figure 2: Architecture of the recognition networks. Left: The ResNet34 model, denoted as

‘Block1,2,3,4’ in Fig. 7. Middle: ‘PlainN’ defined in Section 5 and used in Tab. 2, and Right:

the proposed TDMSPC-Net. Inside the dotted box, the structure of each block is given, and

more details can be referred to [30].

then merged. Assuming that the input is denoted as x, and the output is o, we

formulate the mapping between them as follows:245

o = x+

l∑
i=1

(Fi ∗(dw
i ,dh

i )
ki)(p

w, ph), l = 4 (5)

where all the symbols follow the definition defined in Section 3. Taking the

center unit at the Fi output as an example, we analyze how the receptive fields

are combined to produce finer scales.

Using one TDMSPC module obtains a collection of receptive field scales R =

r0, ri, i ∈ 1, ..., l, where r0 = 1 × 1 corresponds to the input feature map itself.250

The output of the module assembles all the scales in R. By stacking multiple

TDMSPCs, the receptive fields of different scales are combined to produce more
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scales. Consider that two TDMSPC modules are cascaded and x is the input.

The output of the first TDMSPC module is denoted as o1, and that of the

second module as o2. The mappings are then given as follows:255

o1 = x+

l∑
i=1

(F 1
i ∗(dw

i ,dh
i )
k1i )(pw, ph), l = 4 (6)

o2 = o1 +

l∑
i=1

(F 2
i ∗(dw

i ,dh
i )
k2i )(pw, ph), l = 4 (7)

where F 1
i and F 2

i denote the ith layer of the first and the second TDMSPC

modules, respectively. k1i and k2i are the convolution filters associated with

layers F 1
i and F 2

i , respectively. The first module obtains a collection of receptive

field scales R1 = {rx,10 , rx,1i , i ∈ {1, ..., l}} for the input x, and the number of260

scales is denoted as |R1|. In rx,10 or rx,1i , x represents the input feature map of the

module and the ‘1’ implies the first module. Similarly, the second module has

a set of receptive field scales R2 = {ro1,10 , ro1,1i , i ∈ {1, ..., l}}, whose input is o1.

The number of scales is denoted as |R2|. It is easy to find that |R1|,|R2| ∼ O(l).

However, when two TDMSPC modules are stacked, a more accurate definition265

of the receptive fields should be given. The receptive field of an element (pw, ph)

in the output of the jth layer of the second module is the set of elements in input

x, instead of o1, and the size of the receptive field, i.e., rx,2j,i (i = 0, 1, ..., l), of the

center unit in the output of F 2
j is the number of corresponding input elements

in x. rx,2j,i is given as follows:270

rx,2j,i = (2(

j∑
m=1

d2,wm +

i∑
n=1

d1,wn ) + 1)× (2(

j∑
m=1

d2,hm +

i∑
n=1

d1,hn ) + 1) (8)

It is easy to see that the jth layer of the second module outputs l+1 different

receptive field scales, as i = 0, 1, ..., l. In summary, the second module aggregates

to provide a collection of receptive field scales, R = {rx,2j,i , i, j ∈ {0, 1, ..., l}},

where |R| ∼ O(l2). Therefore, the number of receptive-field scales, after stacking

the two modules, is exponentially expanded with l, which is much more than275

that obtained by using a single TDMSPC. Likewise, as in Section 3, a similar

example is shown in the following. Assuming that the length of the input is 25,
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and aggregating all the receptive-field scales of the center unit of all the layers

in the second module, the degree of contextual coverage will be 4%, 12%, 20%,

36%, 44%, 68%, and 100% of the global context. For brevity, we only give the280

calculation along the width dimension in this example.

A similar derivation can be generalized to obtain the set of receptive-field

scales when more modules are stacked. When the TDMSPC modules are in-

serted into the different convolution stages, the combined effect of the receptive-

field scales becomes more complicated, which makes the explicit derivation in-285

tractable. This is because the conventional convolution performs striding or

pooling, which essentially changes the input semantics to the module. In spite

of this, the feasible and diversified effect of combining receptive field scales is

still implicit by plugging multiple modules into different convolution stages.

In summary, introducing multiple TDMSPC modules to a recognition net-290

work will provide more fine-grained receptive fields. This means that more

patterns of the context dependencies will be learned for reasoning.

4.2. Visualizing the Fitted Feature Map

To demonstrate that the feature maps learned by using the TDMSPC module

can adapt better to diversified irregular image text, we follow the method of [31]295

to visualize the output feature maps.

Fig. 3 compares the feature maps of PlainN (described in Section 5.4) and

those of TDMSPC-Net at different stages. Two conclusions can be drawn. The

first one is that stacking more TDMSPC modules can make the distribution of

strong response in the learned feature map gradually fit with the distribution of300

character regions in the text better. The second one is that the feature map from

each stage of TDMSPC-Net fits to the text regions better compared to that from

the corresponding stage of PlainN, in particular at the higher semantic stages.

Fig. 4 illustrates the output feature maps at Stage 3, i.e. all the feature maps

are extracted from Plain3 or the TDMSPC3 output. This figure shows more305

examples, and a similar conclusion can be reached that our TDMSPC modules

can adapt the feature maps well to irregular text, including character layout,
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orientation and shape. In contrast, the feature map from the plain convolution

is not well adapted to irregular text.

Figure 3: Visualization and comparison of the feature maps from PlainN and TDMSPC-Net

at different semantic stages

Figure 4: Comparison of the feature maps extracted from the last 2-D semantic layer of (a)

PlainN and (b) TDMSPC-Net.

4.3. Attention-based Decoder310

After our recognizer is enhanced with layer-by-layer context integration us-

ing the TDMSPC module, we obtain an enriched feature map, denoted as V =

{vi, i = 1, ..., L} ∈ RL×D, where D is the channel number and L is the sequence

element number. Following most of the existing recognizers[29][15][32], we fur-

ther adopt attention-based GRU (gated recurrent units) decoders to translate315

the context enhanced features V into the character sequence y = (y1, y2, ..., yT ).

At step t, the decoder starts by computing a vector of attention weights,

αt,i, as follows:

st,i = ST (tanh(Wvi + Uht−1)) (9)

αt,i =
expst,i∑L

j=1 exp(st,j)
(10)

14



where ST , W , U are the parameter matrices, and ht−1 is the last GRU hidden320

state. Then, we can obtain the weighted sum of the sequential feature vectors,

which focuses on the most relevant features:

ct =

L∑
i=1

αt,ivi (11)

After that, the GRU hidden state is updated and the probability distribution

p(yt) is estimated as follows:

ht = GRU(yt−1, ht−1, ct) (12)

325

p(yt) = softmax(Y Tht) (13)

where Y T is also learnable parameters. Following [29] and [16], we exploit a

bidirectional decoder with the ‘fractional pickup’ training method to further

improve our attention GRU decoder.

5. Experiments

This section gives the implementation details and evaluates the performance330

of the proposed TDMSPC module, as well as the recognition network TDMSPC-

Net.

5.1. Datasets

We evaluate the performance using the case-insensitive word accuracy. Two

synthetic datasets, Synth90k[33] and ST[34] are used for training. Unless spec-335

ified, otherwise, all the models in the following experiments are trained using a

single Synth90k dataset. Seven benchmark datasets are used for testing, which

are grouped into ‘Regular’ datasets (IIIT5K, SVT, 1C03, IC13) and ‘Irregular’

datasets (IC15, SVT-P, CUTE). To be noted, ‘Regular’ and ‘Irregular’ in Tab.

1, Tab. 2, Tab. 4 and Tab. 5 indicate the average accuracies on these two group340

of datasets. Following is a brief introduction to the datasets.

15



IIIT5K[35] was collected from Google image search-es using query words that

potentially return text images. It has 3,000 cropped word images for testing.

SVT[36] was collected from Google Street View. The test set consists of 647

word images, some of which are noisy, blurry, or of low-resolution.345

IC03[37] contains 867 text images, which are cropped out from 251 scene

images and do not contain any nonalphanumeric characters or text that has less

than three characters.

IC13[38] is the successor to IC03, so most of its data is inherited from IC03.

It contains 1,015 cropped text images, in which words shorter than 3 characters350

are included.

IC15[39] contains 2,077 text images, most of which are noisy, blurry and

rotated, and some are also of low resolution.

SVT-P[40] contains 645 test images, which are specially picked from the side-

view angles in Google Street View. Most of them suffer from a large perspective355

distortion.

CUTE was proposed in [41], focusing on curved text. It contains 80 high-

resolution images taken in natural scenes, from which the annotated words are

cropped to form a test set of 288 text images.

5.2. Implementation Details360

We implemented our network on Pytorch. Experiments were performed on a

computer equipped with Intel i7-7700K, 64G RAM and a NVIDIA GTX 1080Ti

GPU. The networks are optimized with the stochastic gradient descent (SGD)

algorithm, with the initial learning rate 0.1 and momentum 0.9, and the learning

rate was decayed by 10% at 0.6 million and 0.8 million iterations, respectively.365

The size of the training mini-batch is 64. The training is stopped after 0.85

million iterations.

5.3. Ablation Study

In this section, we investigate the effectiveness of the multi-scale receptive

field fusion of the TDMSPC module. We also analyze how the plugging of the370

TDMSPC modules affects the recognition performance.
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Setting of dilated factor pairs. We fixedly set the dilation factor along

the height dimension as 1, 2, 4 and 8, which is exponentially increasing dila-

tion factor adopted in most existing work[7][23][26]. We adjust dilation factor

along the width dimension, combining with dilation factor in the height to form375

different dilation factor pairs to explore how the setting affect the recognition

performance. Here, we only adjust the dilation factor in the width direction

because width direction is the principle extending direction for most scene text

images. Tab. 1 list different setting of dilation factor pairs, which are denoted

as R1, R2, R3 and R4, respectively. Herein, ‘R3’ is the adopted setting in our380

paper. ‘MaxField’ and ‘EdgeField’ in this table indicate the size of the recep-

tive field of the center unit and edge unit, as computed using equation (3) and

(4), respectively. By comparing ‘MaxField’ or ‘EdgeField’ and the size of input

feature map, we know the scales of context range of TDMSPC module. For

clarity and simplicity, we report the average recognition accuracy on regular385

and irregular datasets, respectively, as well as on all the datasets. They are

separately denoted as ‘Regular’, ‘Irregular’ and ‘Average’ in the Tab. 1.

From the table, ‘R1’ is a traditional dilated convolution, which handles t-

wo dimensions equally. It gives the lowest ‘Regular’, ‘Irregular’, and ‘Average’

accuracy of 84.5%, 65.2%, and 77.7%, which are 4.1%, 5.6%, and 4.7% lower390

than optimal ‘R3’, respectively. These results imply the remarkable advantage

of handling two dimensions differently in TDMSPC compared with handling

them equally. Different from our setting ‘R3’, ‘R2’ increases the dilation fac-

tor not so aggressively, thus can’t cover the input field globally, according to

the size distribution of the feature maps of the existing sequence-based text395

recognizers[4][2][16]. It is observed that ‘R2’ obtain an ‘Average’ accuracy of

81.5%, which is 0.9 percentage points lower than that of ‘R3’. As for ‘R4’,

much larger dilation factor in the width direction makes context range much

larger than input field, which results in a significant decrease in the recognition

performance.400

In summary, it is optimal to designing the dilation factor to make our TDM-

SPC module to capture the complete context information in a local-to-global
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manner. Also, the idea of two-dimensional dilation promotes the significant

increase of scene text recognition performance.

Dilated factor pairs(W, H) MaxField EdgeField Regular Irregular Average

R1 (1,1),(2,2),(4,4),(8,8) 31 16 84.5 65.2 77.7

R2 (1,1),(3,2),(5,4),(8,8) 35 18 87.9 69.8 81.5

R3 (1,1),(3,2),(8,4),(23,8) 71 36 88.6 70.8 82.4

R4 (3,1),(8,2),(14,4),(29,8) 109 55 85.4 67.2 80.0

Table 1: Results of different setting of dilation factor pairs. ‘H’ indicates the dilation factor

in the height direction, and ‘W’ indicates the dilation factor in the width direction. ‘Average’

indicates the average accuracies on all the seven benchmark datasets (IIIT5K, SVT, 1C03,

IC13, IC15, SVT-P, CUTE).

Multi-Scale Receptive Field Fusion. We keep the TDMSPC module405

that is after Block1, and remove all the other TDMSPC modules in TDMSPC-

Net (Fig. 2 Right) to obtain a reduced version. The lateral connections are

adjusted to simulate the fusion of different receptive scales inside the TDMSPC,

as is illustrated in Fig. 5.

Figure 5: Different schemes of fusing multi-scale receptive fields inside the TDMSPC module.

On (n=0,1,2,3,4) denotes the output of the nth layer inside TDMSPC. Especially, O0 is the

input of TDMSPC. O4,3,2,1,0 represents fusing the output of all the layers along with the

module’s input. Other symbols, including O4,3,2,1, etc., follow similar interpretations.

Fig. 6 compares the performance of five different fusion schemes of the re-410

ceptive field scales, based on three irregular datasets, SVT-P, IC15 and CUTE.
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The results show that the accuracies become higher, when more receptive field s-

cales are merged. Specifically, O4,3,2,1,0 outperforms all the other fusion schemes,

while using a single scale of receptive field, i.e. O4, obtains significantly lower

accuracy. This proves that the multi-scale context learning and fusion yield a415

performance gain on the three irregular datasets.

Figure 6: Ablation study of different multi-scale receptive field fusion schemes.

Plugging TDMSPC modules. With the basal ResNet-34 convolution

network (Fig. 2 Left), we plug the TDMSPC modules into its different seman-

tic layers. Specifically, we use ‘Block1+’ to represent inserting one TDMSPC

after Block1, ‘Block1,2+’ means inserting one TDMSPC module after Block1420

and Block2, respectively, and so forth. ‘Block1,2,3,4’ means that no TDMSPC is

inserted, i.e. a pure ResNet-34 is used as the encoder network. TDMSPC-Net

represents the full version with one TDMSPC plugged after each residual block

of ResNet-34. In addition, ‘Block4++++’ indicates that four TDMSPC mod-

ules are continuously inserted after the highest semantic level, i.e. the fourth425

residual stage of ResNet-34. The designed ‘Block4++++’ is to compare the dif-

ference between the way of context enhancement coding centrally implemented

at the highest semantic level and the way of layer-wise interleaved coding of se-

mantics and context. Two regular datasets, SVT and IIIT5K, and two irregular

datasets, IC15 and CUTE, are selected for this part of the experiment. Fig. 7430

summarizes all the results. We can see that Block1,2,3,4, without any TDMSPC

inserted, performs the worst compared to that with TDMSPC modules insert-
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ed. When more and more of the proposed TDMSPC module is inserted into

the low-to-high semantic layers of ResNet-34, the recognition performance per-

sistently improves. When the context module is plugged, respectively, after the435

four residual stages of ResNet-34, our encoder of the TDMSPC-Net recognizer

is formed, which achieves the highest accuracy on all the benchmark dataset-

s. Comparing Block4++++ with TDMSPC-Net, the accuracy of the former

is significantly lower than that of the latter, demonstrating that the proposed

stage-wise interleaved coding of semantics and context benefits the recognition440

performance. This idea differs from that adopted in all the existing scene rec-

ognizers, in which the context coding is implemented only at the highest layer,

e.g. in the Convolutional Recurrent Neural Network (CRNN) methods[4][2][16].

Figure 7: Ablation study of the effect of plugging TDMSPC modules.

5.4. Insight into Performance Gain445

As proved previously, the TDMSPC module and its stage-wise insertion into

different ResNet-34 semantic levels contribute to the performance improvement

of our scene text recognizer. However, it may be questioned if the performance

gain is attributed to the number of parameters, the network depth, or the re-

sulting additional computation cost, rather than the TDMSPC module itself450

and the interleaved semantic-context encoding design. To this end, we design

a counterpart, called PlainN, with the same number of convolution layers and

model parameters, as TDMSPC-Net. In PlainN (in Fig. 2 Middle), Plain1-4
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Method TDMSPC-Net PlainN ResNet-50 ResNet-101

No. of Parameters, layers and Flops

Para(107) 2.9 2.9 2.8 4.7

Layers 49 49 49 100

FLOPS(109) 4.2 4.2 3.9 7.7

Accuracy on benchmark datasets

IIIT5K 87.1 83.5 84.5 85.6

SVT 85.3 83.2 84.5 85.5

IC03 93.0 91.6 91.7 92.5

IC13 91.3 88.3 89.3 90.3

IC15 68.9 63.9 65.7 68.0

SVT-P 77.2 70.8 73.3 74.9

CUTE 71.2 66.0 68.1 69.8

Regular 88.6 85.6 86.5 87.5

Irregular 70.8 65.6 67.6 69.7

Table 2: Recognition accuracies (%) on seven datasets. Models are trained with Synth90k.

are formed by removing all the lateral connections inside a TDMSPC module,

and replacing 3×3 dilated convolutions with the regular 3×3 convolutions. Fur-455

thermore, we choose two mature deep residual networks, i.e., ResNet-50 and

ResNet-101, to serve as the encoder and adopt the same attention GRU de-

coder to construct the baseline recognizers. Tab. 2 tabulates the results. From

the table, TDMSPC-Net has exactly the same number of parameters and con-

volution layers, as well as computation cost, as PlainN. However, TDMSPC-Net460

achieves substantially higher accuracies on all the benchmark datasets. We can

observe that a performance gain of about 5% and 3% can be achieved on the

irregular datasets and regular datasets, respectively. Compared with TDMSPC-

Net, ResNet-101 has 62% more parameters, twice as many layers, and 83% more

computation. Nevertheless, TDMSPC-Net still achieves significant performance465

advantages. From the results, TDMSPC-Net achieves an average accuracy of
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88.6% on regular datasets, and 70.8% on irregular datasets, both of which are

1.1% higher than that of ResNet-101. In summary, the excellent recognition

accuracy of TDMSPC-Net is not attributed to the increase in the number of

parameters, network depth or computation cost, but due to the proposed 2-D470

multi-scale context fusion, implemented in the TDMSPC module, and the in-

terleaved semantic-context encoding structure of the TDMSPC-Net recognizer.

5.5. Boosting the Performance of Existing Recognizers

We selected two state-of-the-art sequence-based scene text recognizers, CRNN[2]

and MORAN[29], to verify the boosting effect by plugging the proposed TDM-475

SPC modules. CRNN uses VGG as its backbone network, and adopts CTC as its

decoder, without using a spatial transformer to rectify text images. MORAN[42]

uses ResNet[30] as its backbone, and adopts attention decoder, with the use of

the spatial transformer, MORN, for text rectification. As the structure of these

two recognizers are very different, they are good choices for evaluating the per-480

formance boosting effect of TDMSPC.

Methods
CRNN MORAN

Origin TDMSPC+ Origin TDMSPC+

IIIT5K 83.1 83.9 82.5 83.5

SVT 80.2 82.2 82.1 82.8

IC15 62.8 63.0 64.1 65.3

CUTE 61.8 63.2 63.9 64.9

Table 3: Boosting effect of TDMSPC modules (%)

Both CRNN and MORAN use BiLSTM to capture 1-D sequence dependen-

cies in their encoders. Whereas in this experiment, we remove all the BiLSTM

layers in the encoding part, and insert the TDMSPC modules to capture context

information. Specifically, TDMSPC is inserted immediately after those convo-485

lution stages that have 64, 128 and 256 output channels, and with the channel

number increased at the next stages. All the inserted TDMSPC modules are

operated on 2-D feature maps, emphasizing 2-D contextual learning at multiple
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semantic levels. Tab. 3 tabulates the results, where ‘TDMSPC+’ stands for

the boosting scheme, while ‘Origin’ stands for the original methods, without490

making any changes.

The results show that ‘TDMSPC+’ unanimously out-performs ‘Origin’. This

implies that TDMSPC can effectively replace BiLSTM for extracting context

information and can achieve performance boosting

5.6. Comparison with State-of-the-Art Methods495

We collected all the available published results of deep-learning-based scene

text recognition methods for comparison. In view of the fact that some recog-

nizers were trained on the Synth90k dataset only, while others were trained on

the combined Synth90k and ST, we carried out the comparative experiments

for these two cases. The results are summarized in Tab. 4 and Tab. 5. In500

addition to TDMSPC-Net, we construct a multi-stage scene text recognition

system, called TDMSPC-System, by attaching the spatial transformer MORN,

before our recognition network.

As shown in Tab. 4 and 5, TDMSPC-Net and TDMSPC-System outperform

all the listed deep-learning-based methods on all the datasets, with the excep-505

tions of CUTE in the two tables and IC13 in Tab. 5. TDMSPC-System performs

well, on par with TDMSPC-Net, on the benchmark datasets, which indicates

that adding an extra spatial transformer at the front end of TDMSPC-Net is

not always necessary for helping to improve the accuracy.

We compare TDMSPC-Net with RARE[3], STAR-Net[4], Char-Net[12], ASTER[16],510

MORAN[29], ESIR[13], AEG[32], TextSR[43] and ScRN[15], which are specifi-

cally designed for recognizing distorted text. These methods employ a spatial

transformer, such as STNs[3], MORN, etc., in their encoders. From the recog-

nition results in Tab. 4 and Tab. 5, we found that TDMSPC-Net, without

using any rectifier, outperforms all the above nine models by a large margin on515

almost all the public databases. The exceptional cases, including TDMSPC-Net

and ESIR, achieved an accuracy of 71.2% and 72.1% on CUTE, respectively, in

Tab. 4; TDMSPC-Net, AEG and ScRN obtained accuracies of 93.3%, 95.3%
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Method RN IIIT5K SVT IC03 IC13 IC15 SVT-P CUTE Regular Irregular

CRNN[2] No 81.2 82.7 91.9 89.6 - 66.8 - 84.6 -

RARE[3] Yes 81.9 81.9 90.1 - - 71.8 - - -

R2AM[5] No 78.4 80.7 88.7 90.0 - - - 82.4 -

STAR-Net[4] Yes 83.3 83.6 89.9 89.1 - 73.5 - 85.4 -

Char-Net[12] Yes 83.6 84.4 91.5 - 60.0 73.5 - - -

S-SAN[10] No 85.2 85.5 92.9 90.3 65.7 74.4 - 87.3 -

ACSM[9] No 81.8 82.7 89.2 88.0 - - - 84.2 -

SCCM[22] No 81.6 76.5 84.5 85.2 - - - 82.1 -

SCAN[21] No 84.2 85.0 92.1 90.4 - - - 86.7 -

ASTER-B[16] Yes 83.2 81.6 92.4 89.7 - 75.4 67.4 85.6 -

ESIR[13] Yes 82.9 85.9 - 89.1 - 75.8 72.1 - -

TDMSPC-Net No 87.1 85.3 93.0 91.3 68.9 77.2 71.2 88.6 70.8

TDMSPC-System Yes 86.4 86.7 92.7 90 69.8 77.7 70.1 88.1 71.5

Table 4: Recognition accuracies (%) on seven datasets. These models are trained with

Synth90k.‘RN’ means rectification network.

and 93.9%, respectively, on IC13, in Tab. 5. TDMSPC-Net and ScRN achieved

an accuracy of 84.7% and 87.5%, respectively, on CUTE, in Tab. 5. It is note-520

worthy that those methods using a rectification network are particularly prone

to achieving prominent results on specific databases. In contrast, TDMSPC-

Net focuses on realizing 2-D multi-scale context learning and fusion based on

the characteristic of context dependencies, achieving consistently excellent per-

formance on various databases. This is convincingly proven by the observations525

that the average accuracy of TDMSPC-Net on ‘Regular’ and ‘Irregular’ datasets

outperforms all the methods equipped with a rectification network, as shown in

Tab. 5.

For those datasets, such as IC15, and SVT-P, characterized with many ir-

regular text images, the gain in terms of accuracy with TDMSPC-Net is more530

prominent. For example, the accuracy of TDMSPC-Net in Tab. 4 is up to
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Method RN IIIT5K SVT IC03 IC13 IC15 SVT-P CUTE Regular Irregular

EP[44] No 88.3 87.5 94.6 94.4 - - - 90.3 -

FAN[18] No 87.4 85.9 94.2 93.3 - - - 89.4 -

AON[45] No 87.0 82.8 91.5 - 68.2 73.0 76.8 - 70.1

S-SAN[10] No 91.5 89.6 94.9 93.8 73.4 81.6 - 92.2 -

MORAN[29] Yes 91.2 88.3 95.0 92.4 68.8 76.1 77.4 91.7 71.2

ASTER[16] Yes 93.4 89.5 94.5 91.8 - 78.5 79.5 92.8 -

EPAN[46] No 91.9 88.9 95.0 94.5 73.9 79.4 82.6 92.5 75.9

ESIR[13] Yes 93.3 90.2 - 91.3 - 79.6 83.3 - 78.1

AEG[32] Yes 94.6 90.4 95.3 95.3 77.4 82.8 81.3 94.3 78.9

TextSR[43] Yes 92.5 87.2 93.2 91.3 75.6 77.4 78.9 91.8 76.3

ScRN[15] Yes 94.4 88.9 95.0 93.9 78.7 80.8 87.5 93.8 80.0

TDMSPC-Net No 94.9 90.6 95.7 93.3 80.7 85.1 84.7 94.2 82.0

TDMSPC-System Yes 95.2 90.7 95.4 93.7 80.6 85.0 86.5 94.4 82.1

Table 5: Recognition accuracies (%) on seven datasets. Models are trained with Synth90k

and ST. ‘RN’ means rectification network.

68.9% on IC15, which is 3.2% higher than the second-ranked S-SAN. Similarly,

TDMSPC-Net achieves an accuracy of 77.2% on SVT-P, while the accuracy of E-

SIR is 75.8%, 1.4% less than that of our TDMSPC-Net. Similar conclusions can

be drawn from Tab. 5. Specifically, the most striking example is that TDMSPC-535

Net achieves a high accuracy of 85.1% on SVT-P, which is 5.7%, 5.5%, 2.3%,

7.7% and 4.3% higher than the recent methods EPAN, ESIR, AEG, TextSR and

ScRN, respectively. This analysis further proves that our TDMSPC-Net adapts

well to irregular text images, due to the use of a simple 2-D multi-scale context

learning and fusion scheme. More experiment results on the Clean Benchmark540

Datasets and further trade-off analysis of accuracy-speed and accuracy-memory

are included in the Appendix, providing a baseline for the future research.
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Figure 8: Examples of correct recognition results.

5.7. Exemplar analysis of recognition results

Some correct results based on our method are illustrated in Fig. 8. As can

be seen, our method demonstrates an excellent ability for recognizing irregular545

texts, including curved shape, perspective distortion and arbitrarily-oriented

placement, which are common, but challenging in the scene recognition task.

Furthermore, we show that the proposed method is capable of recognizing text

with large variations in the aspects of illumination, blur, text font, color, etc.

These superior results are mainly due to our method’s strong ability to lever-age550

multi-scale context in a 2-D manner.

Figure 9: Examples of false recognition results.‘GT’ stands for the groundtruth annotation,

and ‘Pred’ denotes the predicted results
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Some failure cases are presented in Fig. 9. There are a variety of reasons for

failure, including: 1) heavily occluded, 2) overly artistic or distorted, 3) blurry

and low-resolution text images, all of which are hardly recognizable to human

eyes. This will motivate the future research to solve these cases.555

6. Conclusions

In this paper, we have presented a new TDMSPC module, which is a simple

yet effective design, by employing two-dimensional multi-scale context percep-

tion and fusion. This fully convolutional module can act as a faster alternative

to the recurrent network BiLSTM for context modeling in the task of scene560

text recognition. This module takes any semantic-level feature map as input,

and outputs a feature map with the same size as the input, and therefore can

be handily plugged into any existing sequence-based scene text recognizers, to

boost their performance. Furthermore, we propose to interleave the semantic ex-

traction and context learning, thus implementing gradual integration of context565

and semantics, from low to high level. Based on this, we build a new, enhanced

context encoding network, together with an attention GRU decoder to form

our text recognizer TDMSPC-Net. The excellent performance of TDMSPC-Net

proves the validity, indicating that both high and low-level feature maps provide

rich context information, which should be fully utilized. The experiments on570

the scene text recognition benchmarks demonstrate that TDMSPC-Net achieves

superior or highly competitive performance, compared with the state-of-the-art

algorithms. Actually, the advantages of our recognizer are more prominent for

the irregular text, demonstrating that the challenges brought by the irregular

text can be handled effectively by considering the multi-scale and spatiality of575

context, without requiring any rectification network to explicitly transform the

text into a regular one.
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Appendix A. Experimental Results on the Cleansed Bench-marks

We found noisy (incorrect) labels existing in the seven benchmark datasets,

which make us confusing on the performance analysis of the proposed method.580

Thanks to the work in [47], all the cleansed labels are open-sourced, which

can be used for the following supplementary evaluations in Tab. 6. It can be

observed that the ratio of incorrect label in CUTE dataset is particularly high.

The new test accuracy of our proposed TDMSPC-Net on the cleansed CUTE is

up to 88.2%, which is higher than that currently reported best result of 87.5%.585

We are hoping that our reported results here can be used for comparison with

other further researches.

TDMSPC-Net TDMSPC-Net+Clean

IIIT5K 94.9 95.3

SVT 90.6 90.7

IC03 95.7 95.7

IC13 93.3 93.4

IC15 80.7 81.7

SVT-P 85.1 85.6

CUTE 84.7 88.2

Table 6: The experimental results on the cleansed benchmark datasets.

Appendix B. Analysis of Trade-offs

In order to provide a thorough analysis on the proposed TDMSPC-Net in

terms of accuracy, time, and memory aspects altogether, we measure the per-590

image average clock time (in millisecond) in testing and as well conduct memory

assessment by counting the number of trainable floating point parameters in

the entire TDMSPC-Net. We summarize the results into the trade-off figure,

(Fig. 4 in [47]), for comprehensive comparison. The following Fig. 10 illustrate

the comparison. From the figure, the red star is significantly above the frontier,595
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Figure 10: Accuracy versus time trade-off and accuracy versus memory trade-off of the pro-

posed TDMSPC-Net. Black points represent the performances of combinations of all scene

text recognition modules in [47]. Red solid curves indicate the trade-off frontiers found among

scene text recognition combinations in [47]. Red star indicates the proposed TDMSPC-Net.

indicating that the proposed TDMSPC-Net achieve excellent accuracy-time and

accuracy-memory trade off. This further proves the contribution of the proposed

TDMSPC-Net.
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