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Abstract

We present an attention-weighted loss in a photo-
metric stereo neural network to improve 3D sur-
face recovery accuracy in complex-structured ar-
eas, such as edges and crinkles, where existing
learning-based methods often failed. Instead of us-
ing a uniform penalty for all pixels, our method em-
ploys the attention-weighted loss learned in a self-
supervise manner for each pixel, avoiding blurry
reconstruction result in such difficult regions. The
network first estimates a surface normal map and an
adaptive attention map, and then the latter is used
to calculate a pixel-wise attention-weighted loss
that focuses on complex regions. In these regions,
the attention-weighted loss applies higher weights
of the detail-preserving gradient loss to produce
clear surface reconstructions. Experiments on real
datasets show that our approach significantly out-
performs traditional photometric stereo algorithms
and state-of-the-art learning-based methods.

1

3D shape recovery is a fundamental problem in computer vi-
sion [Jian er al., 2019]. Tt is well known that photometric
methods prevail in recovering fine details of objects and play
an essential role in machine vision and highly accurate 3D re-
covery. Photometric stereo recovers the dense surface normal
of the object under different illumination directions, with a
fixed camera [Woodham, 1980]. The multiple images, under
different illumination directions, provide the varying shad-
ing cues to recover 3D surface normals based on Lamber-
tian assumption. To make photometric stereo applicable to
real-world objects, subsequent methods focus more on non-
Lambertian surfaces with more flexible reflectance functions
[Chung and Jia, 2008; Ruiters and Klein, 2009].

Recently, deep learning frameworks have shown great suc-
cess in handling non-Lambertian surfaces, because of their
powerful fitting ability [Santo et al., 2017; Chen et al., 2018],
which achieves state-of-the-art performance. However, as
shown in Figure 1, the majority of the errors still exist in some
complex-structured regions, such as the edges and crinkles of
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Figure 1: An example of the errors in complex-structured regions.
The results compare our method with the DPSN [Santo ef al., 2017]
and re-render learning [Taniai and Maehara, 2018] methods.

the objects. Unfortunately, these areas are where we focus
on and require to be reconstructed accurately. The failure
in predicting these areas is caused by the estimated surface
normal, which is not complex enough (blurry). This result
is due to the use of unsuitable receptive fields in the convolu-
tional networks and the sampling in conventional losses [Isola
et al., 20171, such as the mean angular loss. This remains
a challenging problem to develop an efficient photometric
stereo method, which can accurately handle these complex-
structured regions.

To achieve this goal, we propose an adaptive attention pho-
tometric stereo learning framework, called Attention-PSN,
which put more emphasis on those areas with high-frequency
information. Our framework can significantly reduce the er-
rors that are caused by the unchanged conventional penalty.
As shown in Figure 2, Attention-PSN is composed of two
parts, which are the normal recovery network and atten-
tion network, respectively. The first part of Attention-PSN
takes multiple images and illumination directions as the in-
put, and then estimates the surface normals. The second part
of Attention-PSN generates an adaptive attention map from
the corresponding input images. Then, the adaptive atten-
tion map provides the weights for the pixel-wise attention-
weighted loss. The adaptive attention map is learned in a self-
supervised way, by minimizing the attention-weighted loss.
The attention-weighted loss is composed of the angular loss
and the gradient loss. A pixel, which has a large value in the
attention map, should be paid with more attention anf should
have a high detail-preserving level. Consequently, a higher
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Figure 2: An overview of Attention-PSN. The adaptive attention
map provides the weights for the pixel-wise attention-weighted loss.
The surface normal and the corresponding adaptive attention map
are learned jointly by minimizing the attention-weighted loss.

weight on the gradient loss and a higher penalty on the high-
frequency information should be applied. In these complex-
structured regions, the conventional mean angle error loss and
Euclidean loss may bring more blurred results [Isola et al.,
2017]. In these complex-structured areas, our Attention-PSN
learns the pattern from the attention-weighted loss, main-
taining the completeness of the high-frequency information.
Therefore, Attention-PSN outperforms existing state-of-the-
art methods. Extensive experiments on public real datasets
show that Attention-PSN achieve promising state-of-the-art
results, compared with existing approaches.

2 Related Work

In this section, we briefly review photometric stereo al-
gorithms and learning-based photometric stereo methods.
Please refer to [Shi ef al., 2019] for a more comprehensive
survey of photometric stereo algorithms.

Conventional photometric stereo [Woodham, 1980] suffers
from the limitations of the Lambertian reflectance model, fail-
ing to meet the need of real-world complex objects. There-
fore, a variety of methods have been proposed to handle
non-Lambertian surfaces, such as expectation-maximization
[Wu and Tang, 2009], rank minimization [Wu et al., 2010],
and sophisticated analytical models [Chung and Jia, 2008;
Ruiters and Klein, 2009; Holroyd et al., 2008]. However,
these approaches can only handle limited classes of non-
Lambertian surfaces and cost numerous computations.

Recently, several deep learning methods have been intro-
duced to surface normal recovery [Ju et al., 2019; Chen et
al., 2018]. Santo ef al. [Santo ef al., 2017] first proposed a
fully-connected network to learn the surface normal by using
photometric stereo images, whereas it fails to utilize the adja-
cent information embedded in images, which leads to unsat-
isfactory errors, especially in areas with complex structures.
Afterwards, Taniai and Maehara [Taniai and Maehara, 2018]
applied a self-supervised learning framework to estimate both
the surface normal and albedo of an object. Chen er al. [Chen
et al., 2018; Chen et al., 2019] devoted efforts to handling an
arbitrary number of inputs to photometric stereo networks.
These subsequent methods are able to perform better surface
normal estimation, because they take advantage of the infor-
mation embedded in the neighborhood by using the convolu-
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Figure 3: An example of a surface with complex structure, where a
surface point with a normal vector 7 is illuminated by the light I,
and observed by a camera in a direction v. In this instance, shadows
and inter-reflections exist widely, accompanied by a general non-
Lambertian BRDF (where the green example can be seen as the in-
tensity of reflection in different directions).

tional network. However, the above methods fail to satisfa-
corily handle complex-structured areas, owing to the smooth
effect of convolutional layers, as well as the deficiency in the
detail-preserving loss. In contrast, in this paper, our proposed
Attention-PSN utilizes the adaptive attention map, which de-
termines the weights of the attention-weighted loss, providing
suitable penalty strategies for the different areas of a surface
with varying complexity.

3 Preliminaries of Photometric Stereo

Before presenting our approach, we recap the theory formula-
tion in photometric stereo, following the common notations.
Suppose that a pixel on a reflective surface with a unit nor-
mal n € R? is illuminated by the j-th light source with in-
tensity e; € R, and the illumination direction I € R? in the
j-th image, sequentially. When this surface is observed by a
linear-response camera in a view direction v € R3, the image
formation model can be expressed as follows:

m; =ejp(n,l;,v)max (nle, 0) +¢;

(D

where m; represents the measured intensity of a pixel on the
surface in the j-th image, p is a bidirectional reflectance dis-
tribution function (BRDF), max (n"1;,0) accounts for the
attached shadows, and e represents the noise and global il-
lumination effect. Facing the non-Lambertian surface exist-
ing widely in real-world applications, a general anisotropic
BRDF is hard to be solved by using common methods, such
as linear least square [Woodham, 1980]. Fortunately, it has
been better solved by deep learning methods with stronger
fitting capabilities. However, complex-structured areas still
suffer relatively larger angle errors. Figure 3 illustrates such
a complex-structured area. Therefore, we propose a powerful
method that introduces the attention-weighted loss to handle
different areas on an object.

4 Proposed Method

In this section, we introduce our method, called Attention-
PSN, for better handling calibrated photometric stereo with
complex-structured areas and general reflectance. We first
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introduce the attention network and the normal recovery net-
work, as shown in Figure 2. Then, we illustrate the attention-
weighted loss, the implementation details and datasets.

4.1 Network Architecture

Attention Network

Given a tensor I € R7¢*H>*W (where .J represents the num-
ber of input images, C' = 3 is the number of color channels
of images, and H x W is the spatial resolution), we obtain a
combined feature map ¥ € R7P*H'*W" at the end of the ex-
tractor (where D is 128 in our network, which is the number
of feature maps generated) as:

qj:fae(I7fed(I);9ae)7 (2)

where f, is a three-layer CNN with learnable parameters 6.
Here, foq is an edge-preserving layer, which is calculated by
the gradient of I. Following [Chen et al., 2018], we use max-
pooling for multi-feature fusion from ¥ € RYPXH xW" 1o |/
€ RPXH'XW' "and then output an adaptive attention map P
given ¥, as follows:

P= far(\:[l/;ear)v (3)

where f,, is a three 3x3 convolutional layers regressor net-
work with learnable parameters 6, .

Normal Recovery Network

The normal recovery network estimates surface normals of
objects. Note that the light direction [ is expanded to the same
spatial size as the input image, and is concatenated with the
image as I’ € R7C" *H*W (where ¢’ = 6 is composed of the
RGB channels and the light direction channels.) Then the
extractor can be expressed as follows:

o :fre(I/;ere)> (4)

where [ is the first 118 layers of the ResNet152 [He et al.,
2016] with learnable parameters 6,.. In particular, we aban-
don the first pooling layer in ResNetl52, considering that
excessive pooling layers would lead to a loss of spatial in-
formation for the regression task. Similar to attention net-
work, we apply max-pooling to fuse the combined feature ¢
€ RID'XH"XW" 4 &' ¢ RD'*H"XW" (where D’ is 512)
and then output a surface normal IV, given &', as follows:

N:frr((bl;err)z (5)

where f, is a four 3x3 convolutional layers regressor net-
work with learnable parameters 6,,, ending with an L2 nor-
malization that makes each pixel’s normal 72 a unit vector.
4.2 Attention Weighted Loss

We optimize the network parameters 6 by minimizing an
attention-weighted loss, as follows:

HW

>

where L; is the loss at the pixel ¢, with resolution H x W,
which can be expressed as:

Li = piLlgradient(Mi, 1) + A1 — pi) Lnormal (1, 7i)  (7)

1

Cattention =
HW

(6)
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The first part of the 1oss, Lgradient (12:, 72 ), defines the gra-
dient loss between the ground-truth n; and the estimated sur-
face normal n;, at pixel ¢, and is given as follows:

(®)

where (z,y) are the coordinates of <. We define the gradient
g(ni(z,y)a 6) as:

Egradient (nza ﬁz) = ”g(nz(zy)7 5) - g(ﬁ’l(f,y)a §)||2

5 1
f 1

In our method, ¢ is set to 1. Gradient loss can sharpen the
discontinuous normal surfaces and prevent these areas from
being blurred [Ummenhofer et al., 2017]. We utilize the gra-
dient loss to constrain the completeness of the high-frequency
information. However, applying the same gradient loss with-
out using adaptive weights will result in larger errors. This is
due to the consequence of suppressing the penalty from other
losses in smooth, flat areas (see details in Section 5.1).

The second loss Ly ormal (724, ;) is @ commonly used co-
sine similarity loss, which directly optimizes the angular error
between the ground-truth n; and the estimated surface normal
71;. We define Lyormal (12, ;) as follows:

L

g(nz(z,y) ) 6)
)

Jer(

T

£normal (ni7 ﬁz) =1~ n, n; (10)

As is illustrated in Eq.(7), p; is the value of the adaptive
attention map at the pixel 7. )\ is a protective threshold, which
is set to 8 in our experiments and aims to prevent inadequate
penalty on surface normals. By minimizing the attention
weighted loss, we learn a self-supervised pattern for differ-
ent regions and brings the smallest angular error.

4.3 Implementation Details and Datasets

Our network is implemented in PyTorch and the Adam op-
timizer is used with default settings, where the learning rate
is initially set to 0.001 and divided by 2 every 5 epochs. We
train the model using a batch size of 64 for 40 epochs and
choose a fixed number (j = 16) of images as input, whereas
the model accepts an arbitrary number of images in testing.
In our experiments, we use the MERL dataset [Matusik
et al., 2003] to render the synthetic 3D model Blobby and
Sculpture datasets for training [Johnson and Adelson, 2011].
The MERL dataset contains 100 different BRDFs of real-
world materials. Following the settings[Chen et al., 2018],
for each sample, 64 images are rendered by random light di-
rections in a half-sphere. We randomly split these samples
into aratio of 99 : 1, for training (84360) and validation (852).
In testing, we apply the DiLiGenT dataset [Shi ez al., 2019]
and the Light Stage Data Gallery [Einarsson et al., 2006].

S Experimental Results

We perform network analysis for our method and compare
our method with the existing state-of-the-art methods on real
datasets. To evaluate the accuracy of the estimated surface
normals, we adopt the widely used mean angular error (MAE)
in degree, denoted as mean(arccos(n; - 71;)). Furthermore,
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Variants MAE erriso errsgo
Normal loss only 13.10 81.25% 92.32%
Gradient loss only 8241 0.33% 2.93%
Normal + Gradient 1548 8091% 92.80
Attention-weighted loss  11.77  83.07%  93.49%

Table 1: Comparison of the different losses. The numbers represent
the average MAE on all samples in the validation set in degrees (the
lower the better). The percentages represent the ratio of pixels with
the angular error of less than 15° or 30° (the higher the better).

we apply errise and errsgo, which is the ratio of angular
error less than 15° and 30°, respectively. MAE measures
the average error of all pixels in an image, while errys. and
errsoo indicate the ability of a method to handle complex-
structured regions with large errors.

5.1 Network Analysis

We quantitatively analyze Attention-PSN using the MAE,
errise, and errsgo metrics, based on all the samples in the
validation set (using 64 input images). We evaluate the ef-
fectiveness of the attention-weighted loss in surface normal
recovery by comparing it with fixed combination losses as
well as the conventional loss. For the conditions without us-
ing attention-weighted loss, we only use the normal recovery
network. Results are summarized in Table 1.

As shown in Table 1, the attention-weighted loss consis-
tently performs better than the others in all the metrics. It can
also be seen that using the gradient loss only fails to make
the network converge. Interestingly, in terms of the fixed
loss combining both the gradient and normal, we find that the
MAE is worse, but errsgo is improved compared with using
the normal loss only.

Discussion on the Attention-weighted Loss
In Table 1, we compare the results based on four types of loss.
Now, we discuss the effect of the attention weighted loss.

Firstly, we find that the combined use of both the normal
loss and the gradient loss improve errsge, compared with us-
ing the normal loss only. The gradient loss is activated when
there is a large, discontinuous difference between adjacent
pixels. It is known that larger angular error mainly exists
along edges and the complex-structured regions of objects.
Therefore, gradient loss can bring a better constraint on these
regions. However, it also shows a worse MAE, which mea-
sures the accuracy of all the pixels in an image, compared to
using normal loss only.

Furthermore, we witness a non-convergence of the network
by using the gradient loss only. We infer that the gradient
loss only provides the difference between adjacent pixels, ig-
noring the pixel’s value. This can also explain why MAE
becomes worse in mixed losses, because the gradient loss di-
lutes the penalty in flat areas.

As for attention-weighted loss, a higher erry5. and errsgo
mean that fewer pixels suffer from the large angular error. In
these complex-structured areas, Attention-PSN learns the pat-
tern from the attention-weighted loss, maintaining the com-
pleteness of the high-frequency information. Meanwhile,
attention-weighted loss also performs the best in terms of
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MAE. This is because Attention-PSN learns the pattern from
lower weights of the gradient loss on flat (low-frequency) re-
gions, avoiding the adverse impact to the surface normal.

5.2 DiLiGenT Benchmark Comparisons

The DiLiGenT benchmark [Shi ez al., 2019] contains ten real-
world scenes of photometric stereo, which is challenging for
its strong non-Lambertian surfaces and complex structures.
We show our results on the DiLiGenT benchmark in Table
2, where we compare our method with existing methods in
terms of MAE. We also show the estimations and attention
maps, compared with learning-based approaches in Figure 4,
including DPSN [Santo et al., 2017], PS-FCN [Chen et al.,
2018], Re-render Learning [Taniai and Maehara, 2018], the
best non-learning-based method ST14 [Shi er al., 2014], as
well as the baseline using least square [Woodham, 1980]. In
this experiment, we use 96 observed images for each scene
provided by the DiLiGenT dataset as an input.

Table 2 and Figure 4 compare the normal estimation re-
sults of Attention-PSN with previous state-of-the-art cali-
brated photometric stereo methods on the DiLiGenT bench-
mark. Attention-PSN achieves state-of-the-art results on most
of the objects, with an average MAE of 7.92 (trained with 16
images per-sample and tested with all the 96 images for each
object). As for the object “Bear”, our method significantly re-
duces MAE by 16.1%, compared to the sub-optimal method
[Taniai and Maehara, 2018].

Discussion on Benchmark Comparisons

We show some examples in Figure 4 with red boxes, such as
the waistband of “Buddha”, as well as the flower of “Pot2”.
It can be seen that attention maps are activated by these com-
plicated areas, where the values are higher. Accordingly, the
error maps of our method show a lower angular error in these
regions, compared with others. In these regions, the weights
for gradient loss in the attention-weighted loss are larger, it
indicates that Attention-PSN have learned the pattern of the
completeness of high-frequency information. In this way, the
estimated normal will keep clear edges with less blur. In
contrast, the blur can be easily found in Re-render learning
[Taniai and Maehara, 2018], PS-FCN [Chen et al., 2018], and
DPSN [Santo et al., 2017]. In these methods, only the single
angular loss is used, whereas it performs poorly in the re-
gions with sharp surface normal. This is because the sampling
by conventional losses smooths the high-frequency informa-
tion [Isola er al., 2017]. Furthermore, the excessive receptive
filed of deep convolutional neural networks aggravates blur,
such as Re-render learning [Taniai and Maehara, 2018] and
PS-FCNI[Chen et al., 2018]. Instead, we match the detail-
preserving gradient loss with the deeper ResNet152 (first 118
layers) extractor through the attention-weighted loss. Thus,
Attention-PSN achieves lower MAE while maintaining good
high-frequency information.

We also notice that the proposed method does not achieve
the best performance on the object “Ball”, which is a par-
ticularly simple structure. As shown in the yellow boxes in
Figure 5, It can be seen that the attention map of Ball is
less convincing. The reasonfor this may be that the specu-
lar misleads the attention network in handling very simple



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Method Avg. bear buddha goblet harvest pot2 potl cat cow  reading ball
L2 (Baseline) 15.39 839 14.92 18.50  30.62 14.65 8.89 841 2560 19.80 4.10
W12 13.74 732 11.11 16.25 29.26 14.09 7774 7.21 2570 16.17 2.54
WG10 13.35 650 1091 15.70  30.01 13.12 7.18 6.73 25.89 15.39 2.06
AZ08 12.61 596 12.54 13.93  30.50 11.03 723 6.53 2148 14.17 2.71
IA14 10.60 7.11 1047 9.71 25.95 877 6.64 674 13.05 14.19 3.34
ST14 10.30 6.12 10.60 10.09 2544 878 651 6.12 1393 13.63 1.74
DPSN 941 631 12.68 1128 1686 7.86 7.05 654 8.01 15.51 2.02
Re-render Learning 883 579 10.36 1147 2259 776 6.09 544 632 11.03 1.47
PS-FCN 839 755 7091 8.60 15.85 725 713 6.16 7.33  13.33 2.82

Attention-PSN (Proposed) 7.92  4.86 7.75 8.42 15.44 6.97 6.92 6.14 6.86 12.90 2.93

Table 2: Comparison of different methods on the DiLiGenT benchmark. All methods are evaluated with 96 images. Here, we measure MAE
in degrees. The methods listed are L2 (Baseline) [Woodham, 19801, IW12 [Ikehata et al., 20121, WG10 [Wu et al., 20101, AZ08 [Alldrin et
al., 2008], TA14 [Tkehata and Aizawa, 2014] ST14 [Shi et al., 20141, DPSN [Santo et al., 20171, PS-FCN [Chen et al., 2018], and Re-render
Learning [Taniai and Maehara, 2018].
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Figure 4: Visual comparisons for Buddha, Bear, Pot2, and Harvest scenes. The red boxes are regions with complex structures (high-frequency
information). We adjust the contrast of observed images for easy viewing. From left to right columns in each scene, we show 1) observed
images and ground-truth, 2) estimated surface normals and angular error maps by our method, 3) attention maps of our method, and 4-8)
estimated surface normal and angular error maps by four state-of-the-art methods and baseline. Numbers under angular error maps show their
MAE in degree.
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Figure 5: Our results on Ball and Reading. The yellow boxes are re-
gions of specular. We adjust the contrast of observed images for easy
viewing. Numbers under Error maps show their MAE in degree.

structures, where the specular is the only high-frequency in-
formation. Moreover, our method obtains sub-optimal perfor-
mance on “Reading” and “Cow”, where the structures are not
very complicated, but existing strong non-Lambertian and in-
tricate BRDFs. It means that the normal maps (ground-truth)
are not as high-frequency as the observed images. Therefore,
we infer that the mismatch of the level of the high-frequency
information between ground-truths and observed images may
impact our results to some extent.

5.3 Testing on the Light Stage Data Gallery

Figure 6 shows the results of Attention-PSN using the Light
Stage Data Gallery [Einarsson e al., 2006]. We qualitatively
evaluate Attention-PSN on this dataset to further demonstrate
the transferability of our method. Due to the absence of
ground-truth, we qualitatively show our performance. Light
Stage Data Gallery consists of six objects, and 253 images
and corresponding light directions, as well as intensities, pro-
vided for each object. In this experiment, we choose j = 144
as the number of input images.

Discussion on the Light Stage Data Gallery

As shown in Figure 6, the estimations reflect the shapes of the
objects, compared with the calibrated sphere. For instance,
the skirt of the object “Knight fighting” is made of lumpy-
looking material. It can be seen that our results also show
the corresponding surface in this area, as well as the higher
weights in the attention map. Similarly, we prove the accu-
racy of our method on the sleeve of the Knight, which also
illustrate the effectiveness of our method.

We also observe that the estimated surface normal and at-
tention map of the object “Knight standing” is with some
noise. It might be due to the poor quality of the observed
images. The Charge Coupled Device (CCD) of the camera
can not suppress the noise in the dark environment (higher
photo-sensitivity). Thus, the high-frequency noise existing in
input images may impact the performance of Attention-PSN.

6 Conclusions

We proposed a deep learning framework, called Attention-
PSN, for photometric stereo. Ablation experiments have il-
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Figure 6: Qualitative results of Attention-PSN for the Light Stage
Data Gallery. The red boxes are regions with high-frequency infor-
mation. We adjust the contrast of observed images for easy viewing.

lustrated that the attention-weighted loss results in higher ac-
curate reconstruction, especially in areas with complex struc-
tures. Extensive experiments on the public DiLiGenT bench-
mark have shown that Attention-PSN outperforms state-
of-the-art methods in calibrated photometric stereo. We
achieved an average MAE of 7.92 on the DiLiGenT bench-
mark. Also, visual comparisons have shown the ability of
our method in handling complex-structured areas, where our
method can achieve the best estimation and reconstruction at
high-frequency regions, with minimum blur. Our method ob-
tains promising results with clear details. This demonstrates
the robustness of Attention-PSN.

Furthermore, the proposed attention-weighted loss can also
provide a framework for other regression tasks, such as depth
estimation and image enhancement. In these tasks, the atten-
tion weighted loss can learn an adaptive penalty , and recover
a clear estimation with less blur.
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