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Abstract: A scientific environmental investment prediction plays a crucial role in controlling environmental pollution and 

avoiding the blind investment of environmental management. However, effective environmental investment prediction 

usually has to fact three challenges about diversiform indicators, insufficient data, and the reliability of prediction models. 

In the present study, a new prediction model is proposed using the extended belief rule-based system (EBRBS) and 

evidential reasoning (ER) rule, called ensemble EBRBS model, with the aim to overcome the above challenges for better 

environmental investment prediction. The proposed ensemble EBRBS model consists of two components: 1) multiple 

EBRBSs, which are constructed on the basis of not only using various feature selection methods to select representative 

indicators but also data increment transformation to enrich the training data; 2) an ER rule-based combination method, 

which utilizes the ER rule to accommodate the weights and reliabilities of different EBRBSs with the predicted outputs of 

these EBRBSs to have an integrated environmental investment prediction. A detailed case study is then provided for 

validating the proposed model via extensive experimental and comparison analysis based on the real-world environmental 

data about 25 environmental indicators for 31 provinces in China ranged from 2005 to 2018. The results demonstrate that 

the ensemble EBRBS model can be used as an effective model to accurately predict environmental investments. More 

importantly, the ensemble EBRBS model not only obtains a high accuracy better than some existing prediction models, but 

also has an excellent robustness compared with others under the situations of excessive indicators and insufficient data. 
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Notations 

Rk kth extended belief rules Ai,j jth reference value of the ith antecedent attribute 

Ui ith antecedent attributes Bn nth consequent of the consequent attribute 

D Consequent attribute k
ji , Belief degree assigned to reference value Ai,j in the kth rule 

k Weight of the kth rule k
n Belief degree assigned to consequent Bn in the kth rule

i Weight of the ith antecedent attribute n Combined belief degree of consequent Bn 

rh Reliability of the hth EBRBS h
n Combined belief degree of consequent Bn in the hth EBRBS 

h Weight of the hth EBRBS hBn
m , Basic probability mass of consequent Bn in the hth EBRBS 

u(Ai,j) Utility values for reference value Ai,j )(,ˆ ieBn
m Combined basic probability mass of Bn in the ith aggregation 

u(Bn) Utility values for consequent Bn nBp Combined belief degree of Bn in the ensemble EBRBS model 

<xt, yt> tth input-output data pair fh(xk) Predicted output of the hth EBRBS to reply xk 

<xk, yk> kth input-output data increment pair F(xk) Predicted output of ensemble EBRBS model to reply xk 

1. Introduction

Environmental investment prediction is one of the most challenging tasks because of growing pollution emissions and 

ecological damages (Song et al., 2018; Ye et al., 2019a), and an accurate prediction of future environmental investment will 
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benefit resource allocation, pollution control, and cleaner production. Environmental investment prediction is also of vital 

significance to set a pollution control target for different decision-makers by the scientific investment planning. Although 

lots of researches have paid attention to investment prediction in the last few years under the aggravation of environmental 

pollution (Chen et al., 2017; Coast et al., 2017; Wang et al., 2018), including expert survey-based, information fusion-based, 

or feature selection-based indicator selection, and time series-based or input-output relationship-based investment prediction, 

however, those studies are limited in different aspects and constructing an effective environmental investment prediction 

model is still facing a certain number of challenges.  

Environmental indicator selection is the first challenge to construct an effective prediction model, and lots of previous 

studies based on singleton feature selection method have been done in the target of selecting a suitable set of representative 

indicators. However, due to the fact that there are various categories of indicators, e.g., air pollution-related, water pollution- 

related, and economic development-related indicators, and these indicators play different roles in environmental investment 

prediction, the indicators selected by singleton feature selection method usually fail to reflect real representative indicators 

(Ye et al., 2019a; Ye et al., 2020a). Moreover, the indicator selection means the loss of indicator information because the 

unselected indicators have to be discarded in the model construction. Consequently, it is likely to neglect the information of 

important indicators on environmental investment prediction in the previous studies. 

Limited number of data collected from historical environmental investments is the second challenge to construct an 

effective prediction model. This is because the input-output relationship-based prediction models have demonstrated their 

potential in environmental investment prediction over the time series-based models and they have a high requirement to 

initialize the parameters involved in the model construction. Consider that the experiences and knowledge of domain 

experts usually fail to ensure a desired accuracy due to the complicated process of environment investment prediction 

(Zheng et al., 2020), sufficient environmental data should be collected and utilized to train the parameters of the input- 

output relationship-based prediction models. However, owing to the regional distinctiveness of environmental management, 

the public environmental data that can be used for constructing investment prediction models are relatively limited. 

The use of reliability is the third challenge to construct an effective prediction model because there are many uncertain 

factors in environmental investment prediction, e.g., imperfect modeling mechanism, unreasonable indicator selection, and 

incomplete indicator data. Hence, the reliability is necessary to be considered to quantify these factors into an overall 

measurement for a prediction model. More importantly, in those existing prediction models, much attention have been 

focused on the model weight, which indicates the importance of a model and is a subjective property, but none of them took 

into consideration the model reliability, which is used to measure the quality of model objectively. It is clear that reliability 

and weight characterize the properties of a model in different aspects and thus should be distinguished from each other in 

constructing an effective environmental investment prediction model.  

According to the discussions above and the literature review shown in Section 2, three undisputed facts can be found as 

follows: (1) feature selection method is able to select representative environmental indicators from diversiform indicators, 

but it may bring some bias to the set of selected indicators; (2) environmental management data are relatively limited due to 

time and cost, especially for the indicator data that can be applied in environmental investment prediction, which will cause 

the over-fitting problem and decrease prediction models’ accuracy; (3) existing studies for environmental investment 

prediction have not taken into consideration model’s reliability in model construction, which mostly leads to inaccurate 

prediction results comparing with actual investments due to many uncertain factors related to indicators and data. 
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To overcome the above-mentioned challenges, in the present work, an ensemble environmental investment prediction 

model is proposed on the basis of the ensemble learning framework (Zhou, 2012; Yang et al., 2020) to integrate multiple 

extended belief rule- based systems (EBRBSs) into an ensemble model using the evidential reasoning (ER) rule and it is so 

called ensemble EBRBS model, where the EBRBS is a rule-based system (Liu et al., 2013) and has been successfully 

applied to various prediction problems, e.g., bridge risk assessment (Yang et al., 2017), pipeline leak detection (Yang et al., 

2018a), and environmental governance cost prediction (Wang et al., 2020); the ER rule (Yang and Xu, 2013) is a 

generalization of Dempster-Shafer theory (DST) and it is able to consider both evidence weights and reliabilities in a 

coherent framework.  

The construction of an ensemble EBRBS model consists of two processes: EBRBS-based construction process and ER 

rule-based combination process. The former process takes into consideration various kinds of feature selection methods and 

data increment transformation, indicating that diverse sets of representative environmental indicators should be selected and 

original environmental data should be transformed into data increments to enrich the training data; the latter process utilizes 

the ER rule to take into consideration both weights and reliabilities of different EBRBSs and also integrate the predicted 

outputs of these EBRBSs to predict environmental investments. Owing to these processes, the ensemble EBRBS model has 

the following advantages over other existing environmental investment prediction models: 

(1) The ensemble EBRBS model is able to overcome the first challenge, because various kinds of feature selection 

methods are used together to select representative environmental indicators, indicating that diverse sets of representative 

indicators can be selected from different perspectives and therefore integrates the strengths of different feature selection 

methods into the proposed ensemble prediction model. 

(2) The ensemble EBRBS model is able to overcome the second challenge owing to the data increment, which not only 

can enrich the scale of the training data used to approximate the complicated relationship between environmental indicators 

and investments, but also it is generated from a reversible data transformation process, so the ensemble EBRBS model can 

effectively predict environmental investments via the data increments. 

(3) The ensemble EBRBS model is able to overcome the third challenge, because it is required to independently 

calculate the reliability and the weight of each EBRBS and reflect these reliabilities and weights on the predicted 

environmental investments using the ER rule. Moreover, the use of the ER rule can help the ensemble EBRBS model to 

obtain unique predicted investments from different EBRBSs constructed by diverse sets of representative indicators. 

In order to demonstrate the effectiveness of the proposed ensemble EBRBS model, the environmental data about a total 

of 25 environmental indicators of 31 provinces in China ranged from 2005 to 2018 are used to provide an experimental 

study. The development procedure of an ensemble EBRBS model is introduced firstly based on EBRBS-based construction 

process and ER rule-based combination process, followed by the comparative analysis to demonstrate that the ensemble 

EBRBS model can accurately predict environmental investments better than some existing prediction models. 

The novelties and contributions of this study are depicted below: (1) use of various feature selection methods to select 

representative indicators; (2) use of data increments to enrich training data; (3) taking into consideration prediction model’s 

reliability; (4) combining the above three aspects to propose an ensemble model using the EBRBS and the ER rule. 

The structure of this work is organized as follows: Section 2 is the literature review and challenges of environmental 

indicator selection and investment prediction. Section 3 proposes an ensemble environmental investment prediction model. 

Section 4 provides a case study to perform model validation. Section 5 finally concludes this study. 
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2. Literature Review and Challenges 

In this section, the previous studies of environmental indicator selection and environmental investment prediction are 

reviewed firstly, and then the challenges of these studies are summarized to illustrate the necessity of this study. 

2.1. Previous studies on environmental indicator selection 

Previous studies on environmental indicator selection can be divided into three categories: expert survey-based, feature 

selection-based and information fusion-based indicator selection. The related literatures are reviewed as follows: 

(1) Expert survey-based indicator selection. The main feature of the expert survey-based indicator selection is based 

on the analysis and experience of experts on environmental indicators to select representative indicators. So far, this way has 

been widely used in the field of environment-related indicator selection. For instance, according to the prior knowledge on 

environmental indicators, Chen et al. (2017) selected seven indicators, like the total volume of sulphur dioxide, chemical 

oxygen demand, and carbon dioxide, as environmental indicators to carry out the investment analysis of China’s sustainable 

development; Song et al. (2019) investigated the impact of knowledge trade on sustainable development and environmental 

biased technical progress based on the environmental indicators selected by experts’ experience; Zhang et al. (2019) chose 

environmental indicators also based on experts’ experience to analyze the impact of environmental regulation and foreign 

investment behavior on the amount and intensity of carbon emissions; additionally, on the basis of the expertise of public 

health professionals, Mulenga and Siziya (2019) used indoor air quality measured by PM2.5 and VOC to study the indoor air 

pollution-related respiratory health. From the above review, it was found that the experience of experts is a commonly used 

solution to select environmental indicators, but this way usually depends on experts’ subjective judgment and therefore 

leads to some disputes on the objectivity and rationality of indicator selection. 

(2) Information fusion-based indicator selection. The feature of the information fusion-based indicator selection is 

based on a composite operators/algorithm/function to integrate the information of different environmental indicators, thus it 

not only can reduce the number of indicators used in environmental investment prediction, but also ensure the integrity of 

environmental indicator information to the greatest extent. For instance, Jiang et al. (2018) presented a three-dimensional 

sustainability assessment methodology based on principal component analysis (PCA) method, in which the sustainability 

assessment is based on the integration of economic, environmental, and social indicators; Ye et al. (2019a) introduced the 

classical ER approach to integrate desirable and undesirable output indicators, respectively, for better environmental cost 

prediction. The results verified that the indicator integration could improve the accuracy of environmental cost prediction. 

Furthermore, for the air pollution management with interval uncertainty, Ye et al. (2020b) introduced the interval ER (IER) 

approach to integrate air pollution-related indicators. Recently, Deus et al. (2020) developed an aggregate indicator to assess 

the environmental impact of municipal solid waste management, in which the aggregate indicator is integrated from the per 

capita waste generation and the waste quality index using the geometric mean of the indicators. From the review of existing 

studies, it was found that although the information fusion can guarantee the integrity of indicator information, it is also easy 

to integrate useless indicators due to lack of pre-selection of effective indicators. 

(3) Feature selection-based indicator selection. The main feature of the feature selection-based indicator selection is 

based on statistics or machine-learning techniques to select a subset of original environmental indicators as representative 

indicators. For instance, Salcedo-Sanz et al. (2018) analyzed and discussed the feature selection problems found in some 

renewable energy applications. They suggested that wrapper feature selection problem approaches are those mostly used in 

renewable energy prediction systems; Ye et al. (2019b) utilized PCA method to extract the top four principal components as 
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new indicators to construct a fuzzy rule-based system (FRBS)-based investment prediction model. In addition, the previous 

studies on the feature selection-based indicator selection also include using the interrelation of indicator (Niemeijer and de 

Groot, 2008; Roshani and Gerami, 2018) and using environmental impact to determine indicators (OECD, 2003; Issa et al., 

2015). Recently, Wang et al. (2020) introduced correlation feature selection (CFS) method to select representative indicators 

for environmental governance cost prediction modeling. The results showed that the CFS method can effectively reduce 

model complexity and improve prediction accuracy. From the review of existing studies, it was clear that the feature 

selection-based indicator selection mainly focused on singleton feature selection method. To best of our knowledge, there 

are few studies on the application of multiple feature selection methods to select representative indicators. 

2.2. Previous studies on environmental investment prediction 

Investment prediction is the key factor that affects the efficiency of environmental management, but how many 

specific investments are needed in environmental management is still an urgent problem to be solved. For this reason, many 

studies have been done to propose an effective investment prediction model for improving environmental management. The 

related literatures are reviewed as follows: 

(1) Time series-based investment prediction. Time series forecasting is a commonly used method in environmental 

investment prediction. Basically, by analyzing the time series data of previous environmental investments, the analogy of 

environmental investment can be carried out to predict the amount of environmental investment that may be achieved in the 

next period or years. For example, Valipour et al. (2013) introduced the auto regressive integrated moving average (ARIMA) 

model for the prediction of future investment scheme, but the prediction investment schemes proposed in their study only 

reflected the trend changes of investment in time series rather than the consideration of input-output relationship; Kaytez 

(2020) proposed a hybrid approach based on ARIMA model and least square support vector machine (LSSVM) for long- 

term forecasting of net electricity consumption. The results showed that the proposed approach is able to accurately predict 

net electricity consumption. As another common time series forecasting method, the grey model (GM) was also applied in 

the field of investment prediction, i.e., Xu et al. (2017) developed a novel GM model with nonlinear optimized time 

response method to predict future energy consumption. They demonstrated that the proposed GM model is able to promote 

modeling accuracy; Chen et al. (2017) also provided an investment prediction scheme based on GM model and inverse data 

envelopment analysis (DEA) model for Chinese environmental governance in the next ten years. Recently, Tong et al. 

(2020) applied time series forecasting to predict the target-availability of China’s investments for green growth. From the 

review of the above studies, the investment prediction processes were mainly based on time series forecasting, which 

ignored the influence of environmental pollution and economic development on investment prediction.  

(2) Input-output relationship-based investment prediction. Input-output relationship-based investment prediction is 

a novel model which takes the indicators of economic development and environmental pollution as inputs and the indicators 

of environmental investment as outputs to construct prediction models. More importantly, this kind of model considers the 

relationship among regional economy, environmental pollution, and environmental investment in prediction process. In this 

respect, Ye et al. (2019a) proposed a genetic program model to construct a new environmental investment prediction 

scheme by considering the indicator integration and the risk coefficient of decision makers. The results showed that the 

proposed model has higher accuracy than GM model in investment prediction. Meanwhile, by using IF-THEN rules to 

describe the input-output relationship found in environmental investment prediction, fuzzy rule-based system (FRBS) and 

adaptive network-based fuzzy inference system (ANFIS) were applied to provide new solutions of input-output relationship 
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-based investment prediction modeling (Ye et al., 2019b; Ye et al., 2020a). The results further demonstrated that the input- 

output relation-based investment prediction outperforms the time series-based investment prediction. Recently, based on the 

same idea of using IF-THEN rules for investment prediction, EBRBS was introduced to construct input-output relationship 

-based investment prediction model, i.e., Wang et al. (2020) proposed an EBRBS with joining learning for the investment 

prediction of environmental management. The results revealed that the EBRBS can be applied in investment prediction and 

has higher accuracy than other models; Wang and Ye (2020) used EBRBS as a core theory to propose a cost prediction 

model for the environmental governance of transportation industry under technological constraints. From the review of the 

above studies, the input-output relationship-based investment prediction is becoming the principal method and EBRBS is 

one of representative methodologies used for environmental investment prediction. 

2.3. Challenges to face for developing an investment prediction model 

According to the literature review shown in Sections 2.1 and 2.2, many studies have been done to construct models for 

environmental investment prediction. However, the following challenges still need attention. 

Challenge 1: Various environmental indicators must be considered in prediction models. 

A large number of environmental indicators, e.g., waste gas, waste solid, and wastewater in a rough category, carbon 

dioxide, sulfur dioxide, chemical oxygen demand, and gross domestic product in a specific category, have been commonly 

used in previous studies. However, none of existing studies could contain all environmental indicators in a prediction model 

because too many indicators easily decrease the accuracy of the prediction model due to the curse of dimensionality. For 

this dilemma, a common strategy used in the previous studies was that a well-known feature selection method is introduced 

to select representative environmental indicators, but any feature selection method actually has its inherent weaknesses and 

it would also affect the accuracy of the prediction model. 

Challenge 2: Constructing prediction models have to depend on a limited number of environmental data.  

A limited number of environmental data is a serious but common problem in environmental investment prediction and 

this problem would result in the over-fitting and low accuracy of environmental investment prediction models because of 

lack of enough training data for model construction. Although many previous studies collected the environmental data of 

different regions into a whole to enlarge the scale of training data, e.g., using the environmental data of Beijing, Fujian, and 

Xinjiang in China as training data to predict the environmental investment of Beijing, it would result in a new issue that the 

collected environmental data fail to reflect the differences in environmental investment between different regions and finally 

affect the accuracy of the prediction model. 

Challenge 3: Reliability of prediction models should be considered in environmental investment prediction. 

In the actual practice, various kinds of factors would affect the effectiveness and accuracy of environmental investment 

prediction, e.g., the reliability of collected data, selected indicators and methodologies. All these reliabilities usually can be 

summarized into the reliability of the environmental investment prediction models. However, to best of our knowledge, 

previous studies have not yet taken in consideration the reliability of the models because the existing methodologies used 

for environmental investment prediction are lack of a necessary parameter to quantify reliabilities. In the case of providing 

an effective and accurate environmental investment prediction, it is necessary to design a new parameter to quantify these 

factors into an overall measurement of the reliability for a prediction model.  

For the above three challenges, it is clear from the literature review shown in Sections 2.1 and 2.2 that existing studies 

still failed to construct an effective environmental investment prediction model, because all these attempts cannot meet the 
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requirement of the three challenges. Although the model based on EBRBS (Wang et al., 2020) has shown its advantages 

over other models in the terms of accuracy and efficiency, how to further enhance this model and overcome the three 

challenges needs to be studied. Therefore, the purpose of the present study is to propose a novel model based on EBRBS for 

better environmental investment prediction, as well as overcome the above three challenges. 

3. Ensemble Environmental Investment Prediction Model 

To overcome the three challenges detailed in Section 2.3, an ensemble environmental investment prediction model is 

proposed based on EBRBS and the ER rule. Firstly, a generic framework of the proposed model is introduced in Section 3.1, 

followed by the introduction of its two main modeling processes in Section 3.2 and Section 3.3. Finally, the environmental 

investment prediction process of the proposed model is introduced in Section 3.4. 

3.1. Generic framework of ensemble EBRBS model 

In this section, a generic framework based on the EBRBS (Liu et al., 2013) and the ER rule (Yang and Xu, 2012) is 

proposed to illustrate how to construct an ensemble environmental investment prediction model. As shown in Fig. 1, the 

ensemble model mainly consists of multiple EBRBSs and all these EBRBSs are combined by the ER rule, so the ensemble 

model is also called an ensemble EBRBS model. Additionally, it is clear from Fig. 1 that the construction of the ensemble 

EBRBS model includes two critical processes: EBRBS-based construction process and ER rule-based combination process, 

in which the target of the former one is to construct multiple EBRBSs and the target of the latter one is to combine the 

results from all these EBRBSs. 
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The Hth EBRBS

The hth EBRBS

Ensemble EBRBS 
model

ER
 rule-based com

bination m
ethod

(To overcom
e C

hallenge 3)

Ensemble EBRBS model

Predicted 
investments

Extended belief rules



Activated rules

Representative indicator selection
(To overcome Challenge 1)

Representative indicators







Data increment transformation
(To overcome Challenge 2)

 hth EBRB ER algorithm-based
inference method

Investment 
increments

ER rule-based combination process
Environmental indicators Environmental data

EBRB construction

EBRBSs’ weight training

EBRBSs’ reliability calculation

Reliabilities

Data increments

EBRBS-based construction process

All indicators All data
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Investment 
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Fig. 1. Generic framework of ensemble EBRBS model for environmental investment prediction 

From Fig. 1, the following descriptions are provided for the proposed ensemble EBRBS model: 

(1) EBRBS-based construction process for constructing the ensemble environmental investment prediction model 

Constructing an effective environmental investment prediction model usually depends on representative indicators and 

adequate training data. Hence, on the basis of EBRBS as the core foundation of environmental investment prediction model, 

feature selection methods are introduced to select representative indicators from original indicators, and a new data form, 

named data increment, is proposed to ensure adequate training data, in which the data increment can be generated by the 

increments of any two environmental data, so the total number of training data is T×(T-1) when there are T collected data, 

and the predicted environmental investments can be calculated according to the sum of previous investments and predicted 

data increments. According to the above-mentioned viewpoints, the EBRBS-based construction process is proposed for 

ensemble environmental investment prediction model and its details can be found in Section 3.2. 

(2) ER rule-based combination process for constructing the ensemble environmental investment prediction model 
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Any kind of feature selection methods inevitably has its strength and weakness; thus it is usually a challenge to select 

an appropriate feature selection method. For this challenge, a smart strategy is to select indicators based on various kinds of 

methods so that all of them can take their respective advantages in selecting representative indicators. When there are H 

kinds of feature selection methods used to select representative indicators, H different EBRBSs should be constructed for 

environmental investment prediction. To make full use of these EBRBSs, an ER rule-based combination process is proposed 

as a cooperative scheme. More importantly, owing to the ER rule’s advantages, the proposed ER rule-based combination 

process can consider both EBRBS’s weight and reliability in a coherent framework. The details of the ER rule-based 

combination process can be found in Section 3.3. 

(3) Environmental investment prediction based on the ensemble EBRBS model 

Based on the EBRBS-based construction process and ER rule-based combination process, an ensemble EBRBS model 

can be constructed for environmental investment prediction and it includes H EBRBSs and the ER rule-based combination 

method. Considering that data increment is the basic data form used for constructing the ensemble EBRBS model, data 

increment transformation should be also included in the process of environmental investment prediction. In other words, 

when a new input data is provided for the ensemble EBRBS model, the first step is to transform the new input data into 

input data increments, the second step is to predict investment increments through H EBRBs and their ER algorithm-based 

inference method, the third step is to integrate the H predicted investment increments via the ER rule-based combination 

method, and the final step is to transform integrated investment increments into predicted investments. 

3.2. EBRBS-based construction process for ensemble EBRBS model 

In this section, the EBRBS-based construction process is introduced to illustrate how to construct an EBRBS based on 

excessive environmental indicators and insufficient environmental data, in which the related flowchart is showed in Fig. 2. 

EBRBS

EBRB

ER algorithm-based inference method

Environmental indicators

To select representation indicators

Environmental data

To generate data increments

To generate belief distributions for extended belief rules

To calculate rule weights for extended belief rules

Input data 
increments 

Predicted 
investment increments

 

Fig. 2. Flowchart of the EBRBS-based construction process 

From Fig. 2, there are four main steps to construct an EBRBS and their targets are related with representative indicators, 

data increments, and extended belief rules, respectively. Apart from the representative indicators, which are a subset of 

original environmental indicators, the data increments and extended belief rules are intermediate results during the EBRB 

construction. Thus, in order to provide a clear introduction of the EBRBS-based construction process, the definitions of data 

increment and extended belief rule are given as follows: 

Definition 1 (Data increment). Consider a case of a M-dimensional function y=f(x) with x={x1,…,xM} and its definition 

domain [a, b], where a and b are all M-ary vectors, respectively. When there exists an input-output data pair <x0, y0> in the 
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function y=f(x), for any x1[a, b], the data increment regarding the input and output data can be written as x=x1-x0 and y 

=f(x1)-f(x0)=f(x0+x)-f(x0), respectively. 

Definition 2 (Extended belief rule). Suppose that there are M antecedent attributes Ui (i=1,…, M) with each attribute 

having Ji reference values Ai,j (j=1,…, Ji) and one consequent attribute D with N consequents Bn (n=1,…, N). Hence, the kth 

(k=1,…, L) extended belief rule Rk in the EBRB is written as: 
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According to Definition 1 and Definition 2, the corresponding steps of the EBRBS-based construction process are 

introduced as follows: 

Step 1: To select representative indicators. Suppose that environmental investment D is related with a large number of 

original environmental indicators {Ui; i=1,…, +∞}. In order to construct an effective investment prediction model, a feature 

selection method is introduced to select representative indicators. Without of loss generality, the selected representative 

indicators are signed as {Ui; i=1,…, M}. Hence, a corresponding EBRBS can be constructed, in which {Ui; i=1,…, M} and 

D are regarded as antecedent and the consequent attributes of the EBRBS, respectively. Additionally, in order to describe 

these antecedent and consequent attributes, assume that there are Ji referential values {Ai,j; j=1,…, Ji} for the ith antecedent 

attribute and N consequents {Bn; n=1,…, N} for the consequent attribute D. 

Step 2: To generate data increments. Suppose that there are T input-output environment data pairs <xt, yt> (t=1,…, T) 

for the selected M antecedent attributes {Ui; i=1,…, M} and the consequent attribute D, where xt={xt,1,…, xt,M}. Considering 

that original input-output environment data pairs are usually insufficient for system modeling. Based on Definition 1, the 

data increments of any two environmental data pairs, e.g., <xt, yt> and <xs, ys> (t, s=1,…, T; ts), are generated as follows: 

stst, xxx −=                                            (2) 

stt,s yyy −=                                            (3) 

Here, it is worth noting that the new set of training data has T×(T-1) input-output environmental data increment pairs. 

For the sake of descriptions, these T×(T-1) data increment pairs are denoted as < kx , ky > (k=1,…, L; L= T×(T-1)). 

Step 3: To generate belief distributions for extended belief rules. Suppose that the basic parameters, including utility 

values u(Ai,j) (j=1,…,Ji; i=1,…,M) for antecedent attributes, utility values u(Bn) (n=1,…, N) for consequent attribute, and 

attribute weights i (i=1,…, M), are predetermined by using expert knowledge or prior information. Accordingly, L groups 

of belief distributions can be generated from L input-output environmental data increment pairs by using the utility-based 

information transformation technique (Yang 2001), in which the belief distribution of the ith antecedent attribute at the kth 

extended belief rule, namely },...,1);,{( ,, i
k

jiji JjA = , is generated from input data increment ikx , by: 
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Similarly, the belief distribution of consequent attribute at the kth extended belief rule, namely },...,1);,{( NnB k
nn = , 
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can be generated from output data increment ky by using the utility-based information transformation technique. 

Step 4: To generate rule weights for extended belief rules. Based on the belief distributions generated from L input- 

output data increment pairs, the rule weight of each extended belief rule should be calculated. Taking the kth (k=1,…, L) 

extended belief rule as an example, the similarity of rule antecedent (SRA) and the similarity of rule consequent (SRC) are 

calculated as follows: 
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Then, the inconsistency degree of the kth extended belief rule is calculated as follows: 

 =












































































−

−−=
L

kll

kl

kl

kl

k

RRSRA

RRSRC
RRSRA

RIncons
,1 2

2

),(
1

1
),(
),(

exp1)(                         (8) 

Finally, the rule weight of the kth extended belief rule is calculated as follows: 
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For the above EBRBS-based construction process, the following two key points should be provided: 

(1) Basic parameters are vital importance to construct an effective EBRBS, but domain experts are not always 

available to provide an optimal value for each basic parameter. Hence, a better way is to train basic parameters using the 

parameter learning model (Yang et al., 2019) as follows: 
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where lbi and ubi are the lower and upper bounds of the ith input indicators, respectively; lb and ub are the lower and upper 

bounds of investment indicator, respectively; kx and ky are the kth (k=1,..., L) input data and investment increment; and 

)( kxf  is the predicted investment increment of the EBRBS for the given input data increment kx . 

(2) In order to solve parameter learning models, various kinds of parameter learning algorithms have been proposed in 

previous studies, e.g., DE algorithm, GA algorithm, and optimization toolbox at MATLAB. All of them are available to get 

a high-quality solution to optimize the value of basic parameters. 

3.3. ER rule-based combination process for ensemble EBRBS model 

In this section, the ER rule-based combination process is introduced to show how to construct an ensemble EBRBS 

model from the different EBRBSs constructed by different sets of the representative indicators selected by different feature 

selection methods, in which the related flowchart is showed in Fig. 3. 
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Fig. 3. Flowchart of the ER rule-based combination process 

From Fig. 3, there are three main steps to construct an ensemble EBRBS model and their targets are related with 

EBRBSs and their weights and reliabilities, respectively. Apart from the EBRBSs, which can be constructed based on the 

steps shown in Section 3.2, the weights and reliabilities should be further calculated based on the EBRBS and/or the ER rule 

-based combination method. Thus, in order to provide a clear introduction of the ER rule-based combination process, the 

definitions of weights and reliabilities are given as follows respectively: 

Definition 3 (Reliability of EBRBS). The reliability, as an objective property of an EBRBS, represents the capability of 

the EBRBS to provide a correct prediction of the considered environmental investment problem.  

Definition 4 (Weight of EBRBS). The weight, as a subjective property of an EBRBS, represents the importance of the 

EBRBS on the process of using the ensemble prediction model to predict environmental investments.  

Based on Definitions 3 and 4, the detailed steps of the ER rule-based combination process are introduced as follows: 

Step 1: To perform the EBRBS-based construction process. Suppose that there are H kinds of feature selection methods 

to select representative indicators from original environmental indicators {Ui; i=1,…, +∞} for environmental investment D. 

Accordingly, H sets of representative environmental indicators can be selected and are further used to construct H EBRBSs 

according the EBRBS-based construction process shown in Section 3.2. 

Step 2: To calculate reliabilities for each EBRBS. Suppose that there are L input-output data increment pairs < kx , 

ky > (k=1,…, L), and the predicted investment increments of the hth (h=1,…, H) EBRBS is )( kxhf , in which the details 

of )( kxhf  can be found in Section 3.4. According to Definition 3, the reliability of the hth EBRBS, denoted as rh, can be 

calculated by using the error between actual data increments yk and predicted data increments )( kxhf  as follows: 
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Step 3: To train weights for each EBRBS. Suppose that the predicted data increments of ensemble EBRBS model is 

)( kxF  and kx  is related with the kth (k=1,…, L) input-output data increment pair < kx , ky >, in which the details of 

)( kxF  can be found in Section 3.4. According to Definition 4, the weight of H EBRBSs, denoted as h (h=1,…, H), can 

be trained by the following optimization model: 
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where lb and ub are the lower and upper bounds of output data increments, respectively; u(Bn) denotes the utility value of 

the nth (n=1,…, N) consequent in the ensemble EBRBS model. 

For the above-mentioned ER rule-based combination process, the following key points should be noted: 

(1) The formula of calculating reliabilities shown in Eq. (17) is based on the prediction error of EBRBSs. When an 

EBRBS can correctly predict all input data increments, namely kh yf = )( kx  (t=1,…, L), the reliability of the EBRBS is 

rh=1; Otherwise, the reliability of EBRBS is 0rh<1. 

(2) Based on the ER rule-based combination process, H EBRBSs and their reliabilities and weights can be obtained to 

construct an ensemble environmental investment prediction model by using the ER rule, which was proposed for evidence 

combination with the consideration of both evidences’ weights and reliabilities. 

3.4. Environmental investment prediction using the ensemble EBRBS model 

Based on the EBRBS-based construction process shown in Section 3.2 and the ER rule-based combination process 

shown in Section 3.3, an ensemble EBRBS model can be constructed for environmental investment prediction. In this 

section, the process of using the ensemble EBRBS model to predict the investment of a given input data is introduced and 

the related flowchart is showed in Fig. 4. 
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Fig. 4. Flowchart of environmental investment prediction process 

From Fig. 4, there are four main steps to predict environmental investments based on the ensemble EBRBS model, the 

details of these steps are provided as follows: 

Step 1: To transform input data into input data increments. Suppose that there are a new input data x={xi; i=1,…, M} 

and a historical input-output data pair <xk, yk>. Hence, the input data increment of x and xk can be calculated by using Eq. (2) 

and it is denoted as x={xi; i=1,…, M}. 

Step 2: To predict investment increments based on the hth (h=1,…, H) EBRBS.  

Step 2.1: To calculate activation weight for each extended belief rule. For the input data increment x, each input xi 

should be transformed into a belief distribution, denoted as S(xi)={(Ai,j; ai,j); j=1,…, Ji}, using the utility-based information 

transformation technique (Yang 2001)..Based on the belief distribution, the activation weight can be calculated for the kth 

(k=1,…, L) extended belief rule as follows: 
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where ),( ii
k UxS   is the individual matching degree of xi to the ith antecedent attribute in the kth extended belief rule; 

k  is the weight of the kth extended belief rule; i  is the normalized weight of the ith antecedent attribute; and they can 

be calculated by: 
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Step 2.2: To integrate activated rules for predicting investment increments. Based on activation weights, the activated 

rules which meet wk>0 should be integrated using the analytical ER algorithm (Wang et al., 2006): 
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Thus, the predicted investment increments of the hth EBRBS replied for input data increment x can be represented as 

follows: 
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where u(Bn) is the utility value of the nth consequent in consequent attribute. 

Step 3: To integrate investment increments based on H EBRBSs. 

Step 3.1: To calculate the basic probability mass for each EBRBS. Based on Eq. (15), the combined belief distributions 

for H EBRBSs can be obtained and denoted as {(Bn, h
n ); n=1,…, N} (h=1,…, H). Afterwards, because the belief degree 

only exists in singleton consequents B1, …, BN, and global set },...,{ 1 NBBΘ = , the basic probability masses for H EBRBSs 

can be calculated as follows: 

Nnm h
nhhBn

,...,1,, ==                                    (18) 

)1(
1,  =

−=
N

n
h
nhhΘm                                     (19) 

hhΘPm −=1),(                                       (20) 

Step 3.2: To aggregate the basic probability mass of the first two EBRBSs. According to the reliability and basic 

probability masses of EBRBSs, the combined basic probability masses of the 1st and the 2nd EBRBSs can be calculated as 

follows: 

},,...,{,])1()1[(ˆ 12,1,2,11,2)2(, ΘBBmmmrmrm NCB CBe +−+−=  =

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            (21) 

)1)(1(ˆ 12)2(),( rrm eΘP −−= .                                   (22) 

Step 3.3: To aggregate the basic probability mass of the remaining H-2 EBRBSs. The combined basic probability 

masses of remaining EBRBSs are calculated as follows: 
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Hence, the combined belief degrees of H EBRBSs can be calculated by 
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Finally, based on utilities u(Bn) (n=1,…,N) obtained from Eq. (18) in Section 3.3, the predicted investment increments 

replied for the input data increment x, denoted as F(x), can be calculated as follows: 
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Step 4: To transform investment increments into predicted investments. Based on the historical input-output data pair 

<xk, yk> and the predicted investment increments F(x), the predicted investments can be obtained by yk+F(x). 

For the above environmental investment prediction, Eqs. (17) - (26) are the specific formulas of the conventional ER 

rule introduced in (Yang and Xu, 2013), because the proposed ensemble EBRBS model focuses on the combination of the 

belief degrees regarding Bn (n=1,…, N), Θ , and )(ΘP , instead of all elements of the power set of Θ . 

4. Case Study 

To verify the effectiveness of the proposed ensemble EBRBS model, the regional data of environmental management 

of 31 provinces in China are utilized to carry out an experimental study in this section. 

4.1. Data source and indicator collection 

A series of environmental management data related with 31 provinces in the mainland of China from 2005 to 2018 are 

used to verify the ensemble EBRBS model for environmental investment prediction. These data were derived from China 

Statistical Yearbook and China Environmental Statistical Yearbook, respectively, both of which are the most commonly 

used and reliable public database for the study of environmental management in China (Lee and Zhang, 2012; Wu et al., 

2019; Cao et al., 2015).  

According to the previous studies on the environmental managements of China (Chen et al., 2017; Frank et al., 2018; 

Li et al., 2013; Long et al., 2018; Ye et al., 2019a; Ye et al., 2019b; Ye et al., 2020a), 20 environmental input indicators and 

5 environmental output indicators are collected to construct ensemble EBRBS models. The specific interpretations of these 

input and output indicators are shown in Table 1 and Table 2. 

From Table 1, it can be found that the input indicators involve diverse types of environmental management indicators, 

e.g., air pollution-related indicators, water pollution-related indicators, garbage and solid waste, and economic development 

-related indicators. These input indicators are the main indicators used in the previous studies of environmental management 

and investment prediction. In order to reduce the number of input indicators, all these input indicators are used as original 

environmental indicator to construct investment prediction models.  
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Table 1. Introduction of input indicators in environmental investment prediction 

No. Input indicator  Abbr. Specific interpretation Max Min Average 

1 Sulfur dioxide SO2 Emission of sulfur dioxide 2,002,000 1000 662,937 

2 Smoke and dust SM Emission of smoke and dust 1,797,683 1000 364,270 

3 Carbon dioxide CO2 Emission of carbon dioxide 4,678 7.07 1096 

4 Wastewater WW Total emission of wastewater 938,261 2685 201,795 

5 Chemical oxygen demand  COD Emission of chemical oxygen demand  198.25 1.38 53.6 

6 Nitrous oxide NO Emission of nitrous oxide in wastewater 23.09 0.14 5.6 

7 Petroleum emissions PE Petroleum emissions in wastewater 2,937 0.03 498 

8 Lead emission LE Lead emission in wastewater 42,466 0.002 1,328 

9 Volatile phenol VP Volatile phenol in wastewater 2,831 0.01 52.9 

10 Mercury emission ME Mercury emission in wastewater 1,537 0.001 19.5 

11 Cadmium emission CE Cadmium emission in wastewater 14,518 0.001 307.5 

12 Arsenic emission AE Arsenic emission in wastewater 55,705 0.002 1622 

13 Six valence inscriptions SVI Emission of six valence inscription 27,987 0.06 778 

14 Garbage clean-up GCU Garbage removal and transportation volume 2,645 16.3 548 

15 Industrial solid waste ISW Emission of industrial solid waste 35,372 0.2 5,464 

16 Harmless treatment of garbage HTG Amount of garbage safely disposal  78,185 400 13,475 

17 Garbage sanitary landfill GSL Amount of garbage sanitary landfill  43,337 349 9,182 

18 gross domestic product GDP Value of gross domestic product 89,705 220 15,627 

19 Total profit TP Total profit of Enterprises above Designated Size 10,574 -91.89 1,530.9 

20 Operating profit  OP Operating profit of Enterprises above Designated Size 10,499 -150 1,538 

Table 2. Introduction of output indicators in environmental investment prediction 

No. Output indicator  Abbr. Specific interpretation Max Min Average 

1 Energy consumption EC Total electricity consumption 5,959 9 1,397 

2 Capital investment CI  Fixed assets investment 55,203 162 10,306 

3 Labor investment LI Total number of employees 1,973 15 469 

4 Investment of pollution treatment  IPT Investment in industrial pollution control 1,416,464 89 190,545 

5 Investment of environmental protection  IEP Government finance on environmental protection 458 0.13 80 

From Table 2, it can be found that the output indicators involve diverse types of management investments because they 

are related to environmental pollution control, regional environmental management, and regional green production. To date, 

these output indicators have been commonly used in the previous studies for environmental investment prediction, i.e., EC, 

CI and LI were the output indicators of investment prediction in (Chen et al., 2017; Ye et al., 2019a; Ye et al., 2019b; Ye et 

al., 2020a; Wang et al., 2020), IPT and IEP are also the two indicators that highly related to environmental pollution control 

and environmental protection. Hence, all these output indicators are used as environmental investments to construct models. 

Additionally, consider that each output indicator usually has not the same relationship to the input indicators shown in Table 

1, the investment prediction of each output indicator is based on an independent prediction model. In other words, the 

prediction model is constructed by using one output indicator and its proprietary representative input indicators.  

In order to compare the predicted investment of prediction models, the following three criteria including mean absolute 
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error (MAE), mean absolute percentage error (MAPE), and correlation coefficient (R) are utilized for comparative analysis. 
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where zt and yt denote the predicted and real investments of the tth (t=1,…, T) province at a certain year; T is the total 

number of provinces at the certain year. Here, the larger R and the smaller MAPE and MAE are considered to be a better 

performance for a prediction model. 

4.2. Development procedure of ensemble EBRBS model  

In this section, the procedures of developing an ensemble EBRBS model for environmental investment prediction are 

analyzed and they include EBRBS-based construction process and ER rule-based combination process. 

4.2.1. EBRBS-based construction process for ensemble EBRBS model 

To construct ensemble EBRBS models, the environmental data of input and output indicators from 2005 to 2017 of 31 

provinces in China are used as the original training data and four kinds of feature selection methods are introduced to select 

representative input indicators, namely Pearson Correlation Coefficient-based, Simple Linear Regression-based, ReliefF 

Algorithm-based, and Correlation Coefficient Standard Deviation-based methods. The specific descriptions for each method 

are showed in Table 3.  

Table 3. Introduction of four feature selection methods 

Core of indicator selection Abbr. Descriptions 

Pearson Correlation Coefficient PCC To evaluate the worth of each indicator by measuring the correlation (Pearson’s) between it each 

class 

Simple Linear Regression SLR The current set of attributes is applied to train a simple linear regression model iteratively by 

removing indicators, so that the performance can evaluate the worth of each indicator 

ReliefF Algorithm RA To evaluate the worth of each indicator by repeatedly sampling a data and considering the value 

of a given attribute for the nearest data of the same and different classes 

Correlation Coefficient Standard 

Deviation 

CCSD To evaluate the worth of each indicator by measuring its correlation coefficient and standard 

deviation 

Hence, the EBRBS-based construction process for constructing ensemble EBRBS model is implemented as follows: 

Step 1: To select representative indicators using four kinds of feature selection methods. 

According to Step 1 in Section 3.2, representative indicators should be selected for each investment. Taking Shanghai 

as an example, the representative indicators selected by the four kinds of feature selection methods for EC prediction are 

showed in Table 4. It shows clearly that the results of the four methods are quite different in the terms of selected 

representative indicators and their ranking. For example, the representative indicators selected by PCC method for the 
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investment prediction of Shanghai’s EC are CO2, AE, GDP, TP, and OP, and they are different from the representative 

indicators selected by SLR, RA, and CCSD methods. It is worth noting that CO2 and OP are the mainly selected indicators 

for the investment prediction of Shanghai’s EC, indicating that these two indicators are highly related to the EC of Shanghai. 

Additionally, the selected indicators shown in Table 4 also indicate that the ensemble EBRBS model can make full use of 

the advantages of different methods to select representative indicators. 

Table 4. Four sets of representative indicators for EC prediction 

Feature selection method PCC SLR RA CCSD 

Representative indicators CO2, GDP, TP, OP, AE SO2, CO2, GDP, TP, OP CO2, WW, PE, LE, VP SO2, CE, GCU, TP, OP 

Step 2: To generate data increments for constructing EBRBSs. 

Based on Eq. (2) and Eq. (3) at Step 2 shown in Section 3.2, 13 the input-output environmental data pairs from 2005 to 

2017 of Shanghai should be used to generate 13×12=156 input-output data increment pairs. In other words, 156 input- 

output data increments < kx , ky > (k=1,…, 156) can be generated from 13 original input-output data pairs, so that the 

scale of training data used to construct the ensemble EBRBS model is enlarged from 13 to 156. For these input and output 

data increments, Table 5 provides a simple data statistic of the five representative indicators CO2, GDP, TP, OP and AE 

selected by PCC method and the investment indicator EC.  

Table 5. Data statistic of representative indicators for Shanghai’s EC increment prediction 

 Five representative indicators selected by PCC method  
EC 

 CO2 GDP TP OP AE  

Min -521.70 -20,105.82 -1,974.35 -1,935.36 -147.58  -664.58 

Max 521.70 20,105.82 1,974.35 1,935.36 147.58  664.58 

Step 3: To generate belief distributions for 156 extended belief rules. 

According to Step 3 in Section 3.2, the basic parameters related to generate belief distributions should be optimized by 

the parameter learning model shown in Eq. (10) when the input indicators are used as antecedent attributes and the output 

indicator are used as consequent attributes in an EBRBS. Suppose that there are five reference values for all antecedent and 

consequent attributes, in which the reference values of antecedent attributes CO2, GDP, TP, OP, and AE and the consequents 

of consequent attribute EC are set as {Very Low, Low, Medium, High, Very High}, the DE-based parameter learning 

algorithm (Yang et al., 2019) is used to optimize basic parameters by setting the number of iterations and individuals as 200 

and 20. Consequently, Table 6 shows the optimized basic parameters used for the investment prediction of Shanghai’s EC.  

Table 6. Optimized basic parameters of EBRBS for Shanghai’s EC increment prediction 

Indicator Correspondent relationship Weight Very Low Low Medium High Very High 

CO2 Antecedent attribute 0.8500 -521.70 -200.63 23.50 156.89 521.70 

GDP Antecedent attribute 0.7967 -20,105.82 -9,088.30 -2,843.55 1,469.47 20,105.82 

TP Antecedent attribute 0.8363 -1,974.35 -1230.58 519.87 1314.26 1,974.35 

OP Antecedent attribute 0.8597 -1,935.36 -999.11 -801.84 151.08 1,935.36 

AE Antecedent attribute 0.6503 -147.58 -72.25 -1.18 79.61 147.58 

EC Consequent attribute - -664.58 -337.50 -124.83 367.68 664.58 

Based on the basic parameters shown in Table 6, when the data increments of CO2, GDP, TP, OP, AE, and EC are 63.17, 
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3055.20, 233.38, 227.42, 58.17, and 80.47, respectively, the corresponding belief distributions of these antecedent attributes 

and consequent attribute can be calculated using Eq. (4) and Eq. (5) and they are shown in Table 7. Similarly, for the 156 

input and output data increments, 156 groups of belief distributions are calculated to generate 156 extended belief rules. 

Table 7. Belief distributions of an extended belief rule for Shanghai’s EC increment prediction 

Indicator Correspondent relationship Very Low Low Medium High Very High 

CO2 Antecedent attribute 0.0000 0.0000 0.7026 0.2974 0.0000 

GDP Antecedent attribute 0.0000 0.0000 0.0000 0.9149 0.0851 

TP Antecedent attribute 0.0000 0.1637 0.8363 0.0000 0.0000 

OP Antecedent attribute 0.0000 0.0000 0.0000 0.9572 0.0428 

AE Antecedent attribute 0.0000 0.0000 0.2654 0.7346 0.0000 

EC Consequent attribute 0.0000 0.0000 0.4209 0.5791 0.0000 

Step 4: To generate rule weights for 156 extended belief rules. 

According to Step 4 in Section 3.2, the rule weight of 156 extended belief rules should be calculated based on the 

belief distributions obtained from Step 3. After calculating SRA and SRC using Eqs. (6)-(7) and inconsistency degree using 

Eq. (8), the corresponding 156 rule weights can be obtained using Eq. (9), and their weight ranges are shown in Fig. 5. From 

Fig. 5, it is clear that the weight of almost extended belief rules, namely 103 of 156 rules, locates in the range [0.995, 1.000], 

which indicates that all these extended belief rules are important for the EBRBS constructed by using the representative 

indicators and the data increments. 
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Fig. 5. Weight distribution of 156 extended belief rules 

4.2.2. ER rule-based combination process for ensemble EBRBS model 

In this section, the ER rule-based combination process is performed to construct ensemble EBRBS investments on the 

basis of the EBRBS-based construction process. The detailed steps are provided as follows: 

Step 1: To construct four EBRBSs based on different feature selection methods. 

Continuing with the increment prediction of Shanghai’s EC to show Step 1 in Section 3.3, apart from the EBRBS 

constructed in Section 4.2.1, another three EBRBSs can be constructed based on the representative indicators selected by 

SLR, RA, and CCSD methods shown in Table 4. In order to make differences among these four EBRBSs, which are signed 

as PCC-EBRBS, SLR-EBRBS, RA-EBRBS, and CCSD-EBRBS in the context below, Fig. 6 shows the predicted EC 

increments of four EBRBSs obtained from Eq. (13) to Eq. (17) and the actual EC increments regarding Shanghai. It can be 

found from Fig. 5 that: 1) the predicted EC increments of four EBRBSs and actual EC increments have a high fitting degree 

for 156 input-output data increment pairs; 2) four EBRBSs have different advantages in predicting EC increments, i.e., 
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CCSD-EBRBS has a better fitting degree than other three EBRBSs between the 1st and the 32th training data; RA-EBRBS 

has a better fitting degree than other three EBRBSs between the 140th and the 156th training data.  
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Fig. 6. Predicted Shanghai’s EC increments of four EBRBSs 

Step 2: To calculate reliabilities for four EBRBSs.  

According to Eq. (11) at Step 2 shown in Section 3.3, 156 input-output data increment pairs are used to calculate the 

reliability of PCC-EBRBS, SLR-EBRBS, RA-EBRBS, and CCSD-EBRBS. Fig. 7 shows the reliability of four EBRBSs and 

they are 0.9676, 0.9693, 0.9667 and 0.9684, respectively. These reliabilities indicate that the four EBRBSs have a good 

ability to accurately predict the EC increments of Shanghai. 
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Fig. 7. Reliability of four EBRBSs for Shanghai’s EC increment prediction 

Step 3: To train the weights of four EBRBSs and the utilities of ensemble EBRBS model. 

According to Step 3 in Section 3.3, the weight of four EBRBSs and the utilities of ensemble EBRBS model should be 

optimized using the optimization model shown in Eq. (12). Here, the DE-based parameter learning algorithm (Yang et al., 

2019) is also used to obtain the optimized weights and utilities by setting the number of iterations and individuals as 200 

and 20, respectively, in which Table 8 and Table 9 show the optimized weights and utilities. 

Table 8. Optimized weights of four EBRBSs for Shanghai’s EC increment prediction 

Name PCC-EBRBS SLR-EBRBS RA-EBRBS CCSD-EBRBS 

Weight 0.0051 0.1682 0.0697 0.0001 

Table 9. Optimized utilities of ensemble EBRBS model for Shanghai’s EC increment prediction 

Name Very Low Low Middle High Very High 

Utility -664.58 -325.02 -5.16 469.25 664.58 
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On the basis of the reliabilities shown in Fig. 7 and the optimized utilities and weights shown in Tables 8 and 9, the 

predicted EC increments of the ensemble EBRBS model can be obtained according to Eqs. (18)-(28) at Step 3 shown in 

Section 3.4. Fig. 8 shows the predicted EC increments by the ensemble EBRBS model and the actual EC increments for 

Shanghai’s 156 input- output data increment pairs. It can be found from Fig. 8 that the ensemble EBRBS model has a high 

fitting degree to predict the EC increments of Shanghai’s 156 data. 
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Fig. 8. Predicted Shanghai’s EC increments of ensemble EBRBS model 

Additionally, in order to further compare the ensemble EBRB models with four EBRBSs, the MAE of Shanghai’s EC 

increments is calculated using 156 input-output data increment pairs. As shown in Fig. 9, the ensemble EBRBS model has 

the smallest MAE, namely 29.55, and PCC-EBRBS, SLR-EBRBS, RA-EBRBS, and CCSD-EBRBS have a larger MAE, 

namely, 43.12, 41.98, 40.77, and 44.3, respectively, indicating that the ER rule-based combination process is able to ensure 

the accuracy of the ensemble EBRBS model better than the EBRBS with singleton feature selection methods. 
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Fig. 9. MAE of Shanghai’s EC increment prediction 

4.3. Investment prediction results of ensemble EBRBS model 

In this section, the investment prediction of five output indicators, namely, EC, CI, LI, IPT, and IEP, for 31 provinces 

in China is introduced to demonstrate the effectiveness of the ensemble EBRBS model. Through the same development 

procedure shown in Section 4.2, five ensemble EBRBS models can be constructed when the environmental data of input 

and output indicators from 2005 to 2017 are used as the training data. In order to identify the prediction performance of the 

ensemble EBRBS model on unseen data, the environmental data in 2017 and 2018 are used as historical input-output data 

pair and new input data, respectively. In other words, based on Section 3.4, when the input and output environmental data of 

2017 are assumed to be <x2017, y2017> and the input environmental data of 2018 to be x2018, the input of the ensemble 

EBRBS model is x2018-x2017 and the predicted investment in 2018 is F(x2018-x2017)+y2017, in which F(x2018-x2017) is the 
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predicted investment increments of the ensemble EBRBS models. Additionally, in order to provide more comprehensive 

investment prediction results, Fig. 10 shows the number of input indicators to be selected as representative indicators in the 

process of constructing five ensemble EBRBS models for five investments, and Fig. 11 shows the comparison of actual 

investments and the predicted investments of the five ensemble EBRBS models for 31 provinces in 2018. 
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(a) Number of indicators to be selected for EC prediction            (b) Number of indicators to be selected for CI prediction 
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 (c) Number of indicators to be selected for LI prediction            (d) Number of indicators to be selected for IPT prediction 

0

10

20

30

40

50

60

70

80

SO
₂

SM C
O
₂

W
W

C
O

D N
O PE LE V
P

M
E

C
E

A
E

SV
I

G
C

U

IS
W

H
TG G
SL

G
D

P TP O
P

N
um

be
r o

f i
nd

ic
at

or
s t

o 
be

 se
le

ct
ed

Indicator Name

  

(e) Number of indicators to be selected for IEP prediction 

Fig. 10. Number of indicators to be selected in constructing ensemble EBRBS models 

From Fig. 10, it is clear that all of twenty input indicators can be selected at least once for each investment prediction 

by the four feature selection methods, which means all of these input indicators have different influences on the prediction 

of environmental investments. However, in almost all previous studies, some of the twenty input indicators were selected to 

construct investment prediction models, which would decrease the accuracy of predicted investments. Hence, it is necessary 

to consider diverse indicators for environmental investment prediction. Additionally, the following three remarks are noted 

according to the order of input indicators shown in Fig. 10: 

(1) The input indicators CO2 and GDP are two most popular indicators selected for the prediction of five environmental 
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investments, which prove that the ensemble EBRBS model can provide a practical and scientific indicator selection because 

China government has been committed to reducing the emissions of CO2 in a new round of environmental policies, and 

GDP is the main indicator to measure the economic development benefits. This is also in line with the current situation of 

China's environmental pollution emissions and economic development, that is, carbon emissions are one of the important 

sources of industrial pollution and the main cause of global warming, and improving economic development is the primary 

goal of developing countries. Therefore, the consideration of these two factors is also the key to effective investment in 

environmental management. 

(2) The input indicators CO2, GDP, TP, and OP are four popular indicators used for EC prediction. The main reason is 

that reducing carbon emission has always been a key consideration in the process of energy consumption, and energy 

consumption is also an important factor that significantly affects GDP and industrial outputs in the development of 

economic. Energy is one of the main driving forces of the current economic development. The rapid development of 

economy requires continuous consumption of energy, but at the same time, energy consumption also means the increase of 

carbon emissions. This explains why CO2 and related economic indicators are representative input indicators for EC 

investment prediction. 

(3) The indicators selected for IPT prediction are different from other investment predictions. The reason is that 

industrial production involves the discharge of many pollutants, such as waste gas, wastewater, and solid waste, thus 

industrial production has become one of important sources of environmental pollution in China. Therefore, the number of 

input indicators selected for IPT prediction is significantly higher than other environmental investments, and this 

phenomenon also further shows that in the current development process of China, the pollution control in industrial 

production has gradually become the key factor in environmental management. In the future, with the improvement of 

environmental treatment effect, the demand for the control of industrial pollution emission and the application of relevant 

green production technology will be higher. 
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(a) Comparison of predicted EC and actual investments            (b) Comparison of predicted CI and actual investments 
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(c) Comparison of predicted LI and actual investments             (d) Comparison of predicted IPT and actual investments 
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(e) Comparison of predicted IEP and actual investments 

Fig. 11. Comparison of predicted and actual investments of 31 provinces in 2018 

From Fig. 11, it is obvious that the predicted investments of the five ensemble EBRBS models basically match the 

actual investments. Although the predicted investment of CI in Shandong provinces and the predicted investment of IPT in 

Jiangsu, Zhejiang, and Anhui provinces have a little different to the actual investment of those provinces, the predicted 

investment of the remaining provinces matches the actual investment accurately. From the view of regional difference, the 

investments of EC in Shandong, Guangdong, and Jiangsu provinces are obviously higher than other provinces, and the 

investments of EC in most western regions are lower than the eastern region in China, the reason is that the most eastern 

provinces have large population and industry, especially for the population and industry development in Shandong, 

Guangdong, and Jiangsu provinces, while the industry development of most western regions are far behind the other regions 

and the population density is also lower than the eastern regions. 

Additionally, the investments of CI and LI shown in Fig. 11 indicate that most eastern provinces in China have higher 

investments than the most provinces located in Western China, which reveal that environmental investments have a great 

relationship with population, economy, and the government's emphasis on environmental management in China. It is worth 

noting that the investment of IPT in Shandong province is higher than the other provinces, this is because Shandong is a 

traditional industrial province, leading to the fact that its proportion of industry and output of industrial products are higher 

than most provinces. It is also one of China's three major economic centers, leading in industrial output, population and 

economic development. Moreover, Fig. 11(e) also indicates that the investment of IEP has a close relationship with regional 

economic and population, in which IEP in most economic development regions of Beijing, Hebei, Jiangsu and Guangdong 

are higher than the other provinces, The reason is that with the improvement of economic development level, the 

government will gradually increase the investment in environmental management, and policy makers will also pay more 

attention to environmental pollution control. 

4.4. Comparative analysis of existing investment prediction models 

In order to compare the accuracy of ensemble EBRBS model with some existing prediction models, including ARIMA 

-based model (Valipour et al., 2013), GM-based model (Chen et al., 2017), adaptive neural fuzzy inference system (ANFIS) 

-based model (Ye et al., 2020a), and EBRBS-based model (Wang et al., 2020), in which the former two models are the 

typical models based on time series and the latter two ones are the typical models based on input-output relationship in the 

previous studies. In addition, it is worth noting that, compared to environmental investment prediction using time series- 

based prediction model, the input-output relationship-based prediction models have been gradually applied in environmental 

investment prediction in recent years, and the ANFIS-based and EBRBS-based models are the recent models proposed for 

environmental investment prediction. Therefore, the above-mentioned four existing environmental investment prediction 

models are introduced to compare with the ensemble EBRBS model and their comparative results are shown in Table 10, in 

which the MAE, MAPE, and R are calculated by using Eq. (29) to Eq. (32) for 31 provinces in China for 2018. 
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Table 10. Comparison of different investment prediction models for five investments 

 
Prediction models EC CI LI IPT IEP Average rank 

MAE 

GM 666 (4) 19,613 (4) 651 (5) 2,161,347 (5) 445 (5) 4.6 

ARIMA 1,361 (5) 36,182 (5) 304 (4) 220,052 (3) 235 (4) 4.2 

ANFIS 202 (2) 2,684 (2) 73 (2.5) 257,401 (4) 39 (3) 2.7 

EBRBS 333 (3) 4,878 (3) 73 (2.5) 113,427 (2) 36 (2) 2.5 

Ensemble EBRBS 69 (1) 2,664 (1) 33 (1) 94,962 (1) 29 (1) 1 

MAPE 

GM 36% (4) 160% (4) 67% (5) 1,885% (5) 314% (5) 4.6 

ARIMA 71% (5) 203% (5) 42% (4) 136% (3) 138% (4) 4.2 

ANFIS 13% (2) 20% (2) 12% (2) 183% (4) 24% (3) 2.6 

EBRBS 18% (3) 28% (3) 15% (3) 58% (2) 20% (2) 2.6 

Ensemble EBRBS 4% (1) 17% (1) 5% (1) 54% (1) 16% (1) 1 

R 

GM 0.9213 (4) 0.5314 (5) 0.8404 (5) 0.8378 (3) 0.4258 (5) 4.4 

ARIMA 0.9644 (3) 0.9098 (3) 0.8945 (4) 0.9330 (1) 0.7786 (4) 3 

ANFIS 0.9835 (2)  0.9542 (1) 0.9607 (2) 0.5958 (5) 0.8990 (3) 2.6 

EBRBS 0.9063 (5) 0.8532 (4) 0.9351 (3) 0.8102 (4) 0.9185 (2) 3.6 

Ensemble EBRBS 0.9982 (1) 0.9471 (2) 0.9952 (1) 0.9242 (2) 0.9273 (1) 1.4 

Table 10 shows the comparison of different models in investment prediction based on MAE, MAPE, R, and their ranks, 

where these existing models are constructed by using the same training and testing data and the top five input indicators. 

From Table 10, the predicted values of the ensemble EBRBS model are close to the actual values of five investments and 

better than other models, and the MAEs of the ensemble EBRBS model are 69, 2664, 33, 94962, and 29, respectively. The 

MAEs of EBRBS-based model are higher than those of the ensemble EBRBS model, which reveals the ability of the 

ensemble EBRBS model to overcome the challenges shown in Section 2.3. Moreover, the comparison of MAPEs and Rs 

also shows that the ensemble EBRB model produces satisfactory results compared to the existing four models, in which the 

MAPEs of GM-based and ARIMA-based models are much higher than the ensemble EBRBS models, especially for the 

prediction of CI and the prediction errors of IPT and IEP. Although the R of ANFIS-based model for CI prediction and 

ARIMA-based model for IPT prediction are slightly higher than that of the ensemble EBRBS model, the whole prediction 

accuracy of ensemble EBRBS model can outperform all listed studies. All in all, the above comparative analysis of different 

prediction models indicates that the ensemble EBRBS model is ability to accurately predict environmental investments and 

has a higher accuracy than other existing models.   

5. Conclusions 

In the present work, a novel ensemble EBRBS model based on EBRBS and the ER rule was proposed to enhance 

environmental investment prediction. The main components of the ensemble EBRBS model include multiple EBRBSs and 

an ER rule-based combination method. A case study based on the actual environmental data of 31 provinces in China 

illustrated the effectiveness of the proposed ensemble EBRBS model. The main contributions of this study can be further 

summarized as three aspects below: 

(1) Considering that there are various categories of indicators related to environmental investment prediction and all 

these environmental indicators should be considered in constructing an effective prediction model, an ensemble framework 
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with different indicator selection methods was proposed on the basis of various sets of selected indicators to construct a 

number of EBRBSs. Hence, this ensemble framework can integrate the strengths of different feature selection methods and 

overcome the over-fitting problem caused by too many indicators used to construct prediction models.  

(2) Because of the difficulty in collecting data for the construction of an effective prediction model, data increment was 

proposed to transform original environmental data into environmental data increments, so that there are sufficient training 

data for constructing EBRBSs and the ensemble EBRBS model. More importantly, the data increment transformation is a 

reversible process, so the ensemble EBRBS model can be used to predict environmental investments while the output of the 

EBRBS and ensemble EBRBS model is investment increments. 

(3) The ER rule was used to integrate different EBRBSs into an ensemble model with consideration of their weights 

and reliabilities. Since there are many uncertain and objective factors in the actual environmental management and 

environmental data processing, it is necessary and reasonable to consider both reliability and weight of each EBRBS in the 

ensemble model. Consequently, the predicted investments of the ensemble model are consistent with actual environmental 

management and have a desired fitting degree compared to actual investments. 

In the case study, the development procedure of the ensemble EBRBS model and the investment prediction of 31 

provinces in China were provided, and the main conclusions can be summarized as follows: 

Firstly, from the comparison between the predicted and actual environmental investments, it can be found that the 

ensemble EBRBS model has an excellent fitting degree between predicted and actual environmental investments in China, 

and the regional differences of the prediction results of 31 provinces in China are consistent with the regional differences of 

the actual environmental investments.  

Secondly, in the target of further illustrating the accuracy of the ensemble EBRBS model, the prediction results of the 

ensemble EBRBS model were compared with the time series and input-output relationship-based prediction models that 

commonly used in the previous studies. The comparison results revealed that the ensemble EBRBS model has a powerful 

ability in predicting environmental investments compared to other existing prediction models. 

Thirdly, the prediction results of the ensemble EBRBS model showed that the regional distribution of environmental 

investment in China is basically consistent with the regional distribution of economic development and population density, 

that is, the higher the level of economic development and population density are, the higher the government's investments in 

environmental governance have.  

Finally, owing to the above contributions in environmental investment prediction using the ensemble EBRBS model, 

the decision makers, who are responsible for environmental management, obtain a scientific and reasonable tool for making 

regional environmental investment planning by considering representative indicators and model reliability under the limited 

number of environmental data.  

Cross-regional characteristics are the important factors in environmental management, however, the regional polices, 

technological innovations, economic development, and other factors that may affect environmental investment prediction 

are not considered in the prediction model construction in this study. Thus, some future researches can be focused on 

investigating the influences of environmental regional factors on the investment predictions. Furthermore, regional 

cooperation is also a hot issue in pollution control and environmental protection in regional investment prediction, future 

researches can be also devoted to investment prediction under regional cooperation. Finally, the research objects of the 

present work have not yet involved the investment prediction within different industries, the ensemble model was just 
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limited to the environmental management of different regions. Therefore, the ensemble model proposed in this paper can be 

used in the investment prediction of different enterprises or industries in the future works. 
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