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Abstract—Probabilistic linear discriminant analysis (PLDA) 

has achieved good performance in face recognition and speaker 

recognition. However, the computation of PLDA using the 

original formulation is inefficient when there are many training 

data, especially when the dimensionality of the data is high. Faced 

with this inefficiency issue, we propose scalable formulations for 

PLDA. The computation of PLDA using the scalable formulations 

is more efficient than using the original formulation when dealing 

with many training data. Using the scalable formulations, the 

PLDA model can significantly outperform other popular 

classifiers for speaker recognition, such as Support Vector 

Machine (SVM) and Gaussian Mixture Model (GMM). Besides of 

directly using PLDA as a classifier, we may also use PLDA as a 

feature transformation technique. This PLDA-based feature 

transformation technique can reduce or expand the original 

feature dimensionality, and at the same time keep the transformed 

feature vector approximately following the Gaussian distribution. 

Our experimental results on speaker recognition and acoustic 

scene classification demonstrate the effectiveness of applying 

PLDA for feature transformation. It is then promising to combine 

PLDA with other classification models for improved performance, 

extending the utility of PLDA to a wider range of areas. 

Index Terms—Probabilistic linear discriminant analysis, 

scalability analysis, acoustic signal classification, feature 

transformation 

I. INTRODUCTION

ROBABILISTIC Linear Discriminant Analysis (PLDA)

was first proposed for face recognition [1], and has 

achieved superior performance in face recognition, face 

verification, and face clustering [2]. It is quite suitable for some 

specific applications where there are few samples, such as 

age-invariant face recognition [3][4], and where there are large 

variations in the images [5]-[7] or facial expressions in videos 

[8]. By representing a video using a high-dimensional vector, 

PLDA achieves the state-of-the-art performance in action 

recognition [9]. Owing to the capability of PLDA in dealing 

with high-dimensional feature representations, it is later 

extended to speaker verification [10], and is currently the 

state-of-the-art back-end [11] [12]. The similarity score 
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produced by PLDA is also applicable to other applications, 

such as speaker identification [13], spoofing detection [14], and 

voice search [15]. PLDA can also be applied to audio-visual 

cases, where audio information and visual information are 

fused for improved performance [16][17]. 

In the perspective of PLDA, a feature vector is assumed to be 

generated by a between-class latent variable and a within-class 

latent variable [1]. The between-class latent variable represents 

the common characteristics shared by the feature vectors within 

the same class, while the within-class latent variable represents 

the variation of the characteristics possessed by the feature 

vectors within the same class. That is to say, the between-class 

latent variable is supposed to be class-dependent, whereas the 

within-class latent variable is supposed to be feature-dependent. 

These latent variables have been shown to be quite useful in 

handling faces with different poses [2]. 

Despite of the discriminative nature of PLDA, its application 

scope is quite narrow, mainly focusing on face verification and 

speaker verification where there are few samples. It has not been 

widely used as a classification model, like Support Vector 

Machine (SVM), which has been applied to a wide range of 

pattern recognition tasks. The major obstacles are probably the 

scalability of PLDA, as the original formulation cannot handle 

many training data. In the original formulation, during the 

process of estimating the parameters of a PLDA model, the 

inverse of large matrices needs to be found, whose sizes are 

proportional to the dimensionality and the quantity of the training 

data. If the quantity of the training data is large or the 

dimensionality of the training data is high, inverting those 

matrices can be quite difficult or even infeasible if exceeding the 

memory space. This scalability issue also arises during the 

process of class label prediction. 

In the literature, scalable formulations for model parameter 

estimation have been proposed, such that the parameters of a 

PLDA model can be efficiently estimated using many training 

data [18][19]. In this paper, we propose scalable formulations for 

class label prediction, such that a PLDA model can efficiently 

make predictions using many training data. Instead of focusing 

on the simplified formulation of PLDA widely used in speaker 

verification [20], we shall consider the general formulation. 

In the literature, PLDA is usually applied to high-dimensional 

feature vectors, such as i-vector [12]. In this paper, we find that, 

when the dimensionality of the feature vector is low, PLDA may 

not work well. Faced with this issue, we propose a novel 
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application of PLDA, which uses it for feature transformation. In 

this way, the between-class latent variable in a PLDA model is 

used as the transformed feature vector, whose dimensionality can 

be higher or lower than the original feature vector. This brings 

more flexibility to the transformed feature vector. As the 

between-class latent variable carries the class information, the 

transformed feature vector can be more discriminative, and at the 

same time keep approximately following a Gaussian distribution. 

By this means, PLDA can be combined with other classification 

models, such as Gaussian Mixture Model (GMM). 

PLDA can be treated as a probabilistic version of Fisher 

Linear Discriminant Analysis (LDA). LDA is widely used as a 

dimensionality reduction technique [21], however, the 

dimensionality of the LDA-based transformed vector cannot be 

higher than that of the original feature vector, and the 

transformed vector will probably not follow Gaussian 

distributions. In contrast, the dimensionality of the PLDA-based 

transformed vector is dependent on the dimensionality of the 

latent variable, which is weakly related to the dimensionality of 

the original feature vector. 

To investigate the utility of PLDA for acoustic signal 

classification, we consider a speaker recognition task and an 

acoustic scene classification task. Experimental results on these 

datasets demonstrate the effectiveness and potential of PLDA. 

They also demonstrate the feasibility of applying PLDA as a 

feature transformation technique, which may open a new 

direction of combining PLDA with other classification models as 

a feature pre-processing technique. Our major contributions lie in 

the following aspects: 

⚫ We analyze the working mechanism of using PLDA to do 

classification tasks, including the model parameter 

estimation stage and the class label prediction stage. 

⚫ We propose scalable formulations for PLDA to efficiently 

make class label predictions using many training data. 

These formulations, together with the scalable 

formulation for model parameter estimation, enable 

PLDA to be used as a general-purpose classifier. 

⚫ We propose to use PLDA as a feature transformation 

technique, which can perform both dimensionality 

reduction and dimensionality expansion, and at the same 

time keep the transformed vector approximately 

following a Gaussian distribution. 

⚫ We briefly analyze the relationship between PLDA and 

some classic techniques, and explain that PLDA can be 

treated as the generalization of the single Gaussian 

model and the factor analysis model, and is also closely 

related to the concept of LDA. 

⚫ We conduct experiments on different datasets and different 

feature vectors, trying to explore the factors that may 

influence the effectiveness of PLDA. Experimental 

results show that PLDA behaves differently for speech 

signals and non-speech signals. Its effectiveness highly 

depends on the characteristics of the acoustic signals. 

The rest of this paper is organized as follows. In Section II, the 

model assumption of PLDA is introduced, followed by the 

explanations on the original formulations for model parameter 

estimation and class label prediction. In Section III, the scalable 

formulations of PLDA are given, including model parameter 

estimation and various criteria for class label prediction. Its 

scalability is also analyzed. In Section IV, the way of using 

PLDA for feature transformation is described. In Section V, the 

acoustic features are briefly described. In Section VI, 

experimental results are presented and discussed. In Section VII, 

a conclusion is drawn. 

II. ORIGINAL FORMULATION OF PLDA 

A PLDA model is intrinsically a latent variable model, which 

assumes that a feature vector is generated by latent variables. 

The latent variables are supposed to capture useful information 

from the feature vector, such as the class information, and thus 

can be used to represent the feature vector or discriminate 

between different classes. 

Given a set of training and testing feature vectors, in order to 

use a PLDA model to do the classification, there exist two 

stages. In the first stage, the parameters of the PLDA model 

need to be estimated based on the training vectors. In the 

second stage, prediction criteria are needed to assign the testing 

vectors into different classes. 

This section introduces and explains the model assumptions 

adopted by PLDA, the original formulation for model 

parameter estimation, and the original formulation for class 

label prediction. An illustration of the two stages is shown in 

Fig. 1, where the color indicates the class of the feature vector. 

In this example, there are 3 classes and J training vectors for 

each class. 
kjx  denotes the j-th training vector in the k-th class, 

and y denotes a testing vector with unknown class. The model 

parameters { , , , } F G Σ  will be explained later. 

A. Model Assumption 

In this part, the latent variable model adopted by PLDA is 

introduced. In a PLDA model, a feature vector is assumed to be 

generated by a between-class latent variable and a within-class 

latent variable, and therefore should be able to be expressed as 

the affine transformation of the two latent variables. Suppose 

we are given a set of training feature vectors denoted as 

{
11x ,

12x ,…
1Jx ,

21x ,
22x ,…

2Jx ,…
1Kx ,

2Kx ,…
KJx }, where 

we assume there are K different classes, and J training vectors 

for each class. Therefore, kjx  represents the j-th training vector 

 
Fig. 1.  The working mechanism of PLDA for classification tasks. 
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in the k-th class. It is possible to have different numbers of 

training vectors in different classes, but we just use the same 

symbol J to represent the number of training vectors in each 

class for simplicity. 

The expression relating a feature vector kjx  to its 

between-class latent variable 
kh  and its within-class latent 

variable kjw  is given by (1), where μ is the global mean vector, 

F and G are factor loading matrices, and kj  is the noise 

variable [1]. The between-class latent variable 
kh  reflects the 

common characteristics shared by all the feature vectors in 

class k, whereas the within-class latent variable kjw  reflects the 

variation of the feature vectors in class k. 

 

 kj k kj kj= + + +x Fh Gw   (1) 

 

PLDA is a special form of factor analysis, meaning that it 

shall abide by the assumptions of factor analysis. Namely, 
kh  

and kjw  shall follow Gaussian distributions with zero mean 

and unit variance, while the noise variable kj  shall follow a 

Gaussian distribution with zero mean and diagonal covariance 

Σ. Since 
kh , kjw  and kj  are assumed to be independent of 

each other, kjx  shall also follow a Gaussian distribution with 

mean μ and covariance 
T T+ +FF GG  , as given by (2). 

 

 ( ) ( | , )T T

kj kjp = + +x x FF GG ΣN  (2) 

 

The feature vectors in a class are forced to share the same 

between-class latent variable, thus they can be treated as a 

whole using the expression given by (3). 
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Eq. (3) can then be simplified to the standard form of a factor 

analysis model, as given by (4). 

 

 
k k k= + +X U RY   (4) 
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As 
kY  and 

k  are assumed to be independent of each other, 

kX  shall follow a Gaussian distribution with mean U and 

covariance T +RR Φ , as given by (6), where Φ is the 

covariance of 
k  [1][2]. Namely, the joint distribution of all 

the feature vectors in class k is a Gaussian distribution. 

 

 1 2( , ... ) ( ) ( | , )T

k k kJ k kp p= = +x x x X X U RR ΦN  (6) 

 

where 

 

 

 
 
 =
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0 0

0 0

Σ

Σ
Φ

Σ

 (7) 

 

On the one hand, the between-class factor loading matrix F 

and the within-class factor loading matrix G imitate the roles of 

the between-class scatter matrix and the within-class scatter 

matrix used in Linear Discriminant Analysis (LDA) [21]. On 

the other hand, PLDA can be reformulated in the form of 

standard Factor Analysis (FA). In this perspective, PLDA can 

be treated as a fusion of LDA and FA. When the between-class 

latent variable 
kh  in (1) vanishes, PLDA becomes FA, where 

class information disappears. From this perspective, PLDA can 

be treated as the generalization of FA. 

B. Model Parameter Estimation 

In this part, the original formulation for estimating the 

parameters of a PLDA model is introduced. The parameters of a 

PLDA model can be denoted as { , , , } F G Σ  according to (1). 

They can also be derived from { , , }U R Φ  according to (4), 

which are the parameters of a standard factor analysis model 

and can be estimated using the Expectation-Maximization (EM) 

algorithm [1][22]. The EM algorithm includes an E-step and an 

M-step. In the E-step, the conditional expected mean [ ]kE Y  

and the conditional expected covariance [ ]T

k kE Y Y  are 

calculated using (8) and (9). 

 

 1 1 1[ ] ( ) ( )T T

k kE − − −= + −Y I R Φ R R Φ X U  (8) 
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 1 1[ ] ( ) [ ] [ ]T T T

k k k kE E E− −= + +Y Y I R Φ R Y Y  (9) 

 

In the M-step, { , , }U R Φ  are re-estimated based on [ ]kE Y  

and [ ]T

k kE Y Y  obtained from the E-step. This may not be 

obtained from (4) directly, because the dimensionality of 
kX  

may be different for different classes (because we may have 

different numbers of training vectors in different classes). 

Fortunately, (1) can also be formulated in another way as given 

by (10), where V is the combination of F and G, and kjz  is the 

concatenation of 
kh  and kjw . 

 

  
k

kj kj kj kj

kj

 
= + + = + + 

 

h
x F G Vz

w
     (10) 

 

Based on (10), { , , }U R Φ  can be derived from { , , }V Σ , 

which can be calculated based on the conditional expectations 

[ ]kjE z  and [ ]T

kj kjE z z  using (11) ~ (13) [1]. [ ]kjE z  and 

[ ]T

kj kjE z z  can be obtained from [ ]kE Y  and [ ]T

k kE Y Y  by 

examining the relationship between kjz  and 
kY  given by (10) 

and (5). Actually kjz  is just a part of 
kY , and consequently 

[ ]T

kj kjE z z  is a part of [ ]T

k kE Y Y . 

 

 
1 1

1 K J

kjk jKJ = =
=   x  (11) 
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 V x z z z  (12) 

 

 ( )
1 1

1
( )( ) [ ]( )

K J
T T

kj kj kj kj

k j

diag E
KJ = =

= − − − −Σ x x V z x    (13) 

 

In brief, the E-step calculates the expectations of the latent 

variables using (8) and (9), while the M-step re-estimates the 

model parameters using (11) ~ (13). 

C. Class Label Prediction 

In this part, the way of using a well-trained PLDA model to 

predict a testing vector into different classes, is explained. The 

fundamental assumption is that, vectors belonging to the same 

class should have the same between-class latent variable, 

whereas vectors belonging to different classes should have 

different between-class latent variables. This idea is illustrated 

in Fig. 2. The training vectors in the k-th class share the same 

between-class latent variable 
kh . In order to determine which 

class a testing vector y should belong to, the idea is to determine 

which between-class latent variable 
kh  is the same as the 

between-class latent variable h of y. 

In [1] and [2], it is assumed that there is only one training 

vector for each class, namely the training data are 

{
11x ,

21x ,…
1Kx }. The probability of predicting a testing vector 

y to class k, is the probability that the between-class latent 

variable of y is the same as that of 
1kx  but different from those 

of the other training vectors [2][23]. This can be reflected from 

the expression of the joint distribution of y and the training 

vectors, as given by (14). 
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Denoting the classified label as ( )y , this prediction 

criterion can be expressed as (15), which aims at finding the 

maximum conditional probability. The core idea is that, if y 

indeed belongs to class k, y and 
1kx  should be jointly 

distributed, whereas y and the other training vectors should be 

independently distributed. 

 

 
1 1 1

1

( ) arg max ( | ) ( ) arg max ( | )
K

k i k
k ki

p p p
=

= =y y x x y x (15) 

 

If there are J training vectors for each class, denoted as 

{
11x ,

12x ,…
1Jx ,

21x ,
22x ,…

2Jx ,…
1Kx ,

2Kx ,…
KJx }, the 

conditional probability prediction criterion given by (15) can be 

extended to (16) [24][25]. 

 

 1 2( ) arg max ( | , ... ) arg max ( | )k k kJ k
k k

p p= =y y x x x y X (16) 

 

As can be seen from (6), the joint distribution of 

{
1kx ,

2kx ,…
kJx } is a Gaussian distribution, because they share 

the same between-class latent variable 
kh . If the testing vector 

y is supposed to belong to class k, y should share the same 

between-class latent variable with {
1kx ,

2kx ,…
kJx }. This 

indicates that, the joint distribution of y and {
1kx ,

2kx ,…
kJx } 

is also a Gaussian distribution, as given by (17), with mean U  

and covariance T  +R R Φ  given by (18). 

 
Fig. 2.  The method of predicting a testing vector into a specific class. 
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1 2( , ... , ) ( , ) | ,
k T

k k kJ kp p
  

   = = +  
  

X
x x x y X y U R R Φ

y
N  (17) 

 

where 
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       = = =         
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As both y and 
kX  follow a Gaussian distribution, the 

conditional distribution of y given 
kX  is also a Gaussian 

distribution, which can be derived from the joint distribution 

given by (17). As both the mean U  and the covariance 
T  +R R Φ  are block matrices, they can be partitioned in the 

form of matrix blocks, as given by (19) [25]. 
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(20) 

 

Based on the above partition, the conditional probability of y 

given 
kX  can be calculated using (21), where |y XU  and |y XΦ  

are the conditional mean and the conditional covariance [26]. 
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III. SCALABLE FORMULATION OF PLDA 

Since the original formulations in the model parameter 

estimation stage and the class label prediction stage require 

inverting large matrices whose size is proportional to the 

number of training data in each class, they are not suitable for 

handling large numbers of training data. It is sometimes even 

infeasible to do the matrix inversion operation if the matrix size 

exceeds the memory space. Therefore, this section introduces 

and explains the scalable formulations for the model parameter 

estimation stage and the class label prediction stage. The 

scalable formulations enable a PLDA model to do the 

classification efficiently with many training data. 

A. Model Parameter Estimation 

In this part, the scalable formulation for model parameter 

estimation is introduced, which is based on [19]. The core idea 

is to transform the large-size matrix inversion operation into 

several small-size matrix inversion operations, in a 

mathematically equivalent way. 

In the stage of model parameter estimation, the EM 

algorithm is used. In the original formulation, the E-step 

requires inverting a large matrix 1T −+I R Φ R , as can be seen 

from (8) and (9). The size of matrix R is proportional to the 

dimensionality and the quantity of the training vectors in a class, 

as can be seen from (5), making finding the inverse of 
1T −+I R Φ R  difficult or even infeasible if the quantity of 

training vectors is large. A scalable formulation for estimating 

the model parameters has been proposed [19], which partitions 
1T −+I R Φ R  into a block matrix and then utilizes the trick of 

partitioned matrix inversion [26]. 

In the original formulation, the conditional expectations 

[ ]kE Y  and [ ]T

k kE Y Y  need to be computed in the E-step; while 

in the scalable formulation, the conditional expectations [ ]kjE z  

and [ ]T

kj kjE z z  need to be computed in the E-step, as given by 

(22) and (23) [19]. The M-step remains unchanged. As the sizes 

of the matrices involved in computation are independent of the 

quantity of the training vectors, as can be seen from (24), this 

scalable formulation is more efficient in handling many 

training data. 
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where 
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B. Class Label Prediction 

In this part, the scalable formulations for predicting the class 

label of a testing feature vector are introduced and explained. 

The core idea is to estimate a class-specific probability with 

respect to each class, and then the class label is predicted by 

finding the class having the highest class-specific probability 

among all. 

In the stage of class label prediction, there can be different 

prediction criteria. For example, for the conditional probability 

criterion, prediction is made by calculating the conditional 

probability ( | )kp y X  with respect to each class. As can be 
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seen from (21), both the conditional mean |y XU  and the 

conditional covariance |y XΦ  require inverting a large matrix 

XXΦ . The size of 
XXΦ  is proportional to the dimensionality 

and the quantity of the training vectors in a class, as can be seen 

from (20), making the inverting process difficult or even 

infeasible if there are many training vectors. 

Besides of the conditional probability prediction criterion, 

we can also employ the joint probability prediction criterion, as 

given by (25). 

 

 1 2( ) arg max ( , , ... ) arg max ( , )k k kJ k
k k

p p= =y y x x x y X  (25) 

 

According to (17), the joint probability can be calculated as 

given by (26), where D is the dimensionality of a feature vector 

and J is the number of training vectors in class k. As can be seen, 

the determinant and the inverse of the covariance T  +R R Φ  

are also difficult to calculate directly. 
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In the following, we provide the scalable formulations for the 

above-mentioned conditional probability prediction criterion 

and the joint probability prediction criterion, such that the sizes 

of the matrices involved in computation are independent of the 

quantity of the training vectors. 

We also provide several pairwise probability-based 

prediction criteria, such as the pairwise conditional probability 

criteria and the pairwise joint probability criteria. The pairwise 

probability is the probability between the testing vector and a 

training vector, such as the pairwise conditional probability 

( | )kjp y x  and the pairwise joint probability ( , )kjp y x , instead 

of the probability between the testing vector and all the training 

vectors. The pairwise probability-based prediction criteria also 

make the computation scalable, as the computation of each 

pairwise probability is efficient. However, if there are many 

training data, the increased numbers of pairwise probability 

computation will lead to increased total computation time. 

Different prediction criteria are also illustrated in Fig. 3. 

 

1) Conditional Probability Prediction Criterion (OrdinCond) 

We name this criterion as Ordinary Conditional (OrdinCond). 

For this criterion, the major difficulty is the inverse of 
XXΦ . 

Fortunately, 
XXΦ  is a block matrix possessing a very special 

structure, as can be seen from (20). The inverse should also be a 

block matrix with the structure as given by (27), where we use a 

new symbol 
J  to represent 

XXΦ , ( )J
P  and ( )JQ  are 

symmetric matrices, and the superscript and subscript J denotes 

the number of matrix blocks in 
J . 
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It can be shown that, ( )J
P  and ( )JQ  have the expressions as 

given by (28) [25]. Detailed derivations can be found in the 

appendix. 
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Having the inverse of 
XXΦ , the conditional mean |y XU  and 

the conditional covariance |y XΦ  can be calculated in terms of 

( )J
P  and ( )JQ , as given by (29) and (30). 

 

( )

1

|

( ) ( )

1

( ) ( )

( ) ( )

1

( )

( 1) ( )

y X y yX XX k X

J J

k

T T J J

kJ

JT J T J

kjj
J

−

=

= + −

  − 
    = +     
   −  

= + + − −

U U Φ Φ X U

P Q x

FF FF Q P

x

FF P FF Q x







 

 (29) 

 

( ) ( )

1

|

( ) ( )

( ) ( )

( ) ( )( 1)

y X yy yX XX Xy

J J T

T T J J

yy

T

T T T J T J TJ J

−= −

   
   

 = −     
   
   

= + + − + −

Φ Φ Φ Φ Φ

P Q FF

Φ FF FF Q P

FF

FF GG Σ FF P FF Q FF

(30) 

 

Then, the prediction can be made by finding the class with  
Fig. 3.  Different prediction criteria. 
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the highest conditional probability, as given by (31). 

 

 
| |( ) arg max ( | ) arg max ( | , )k y X y X

k k

p= =y y X y U ΦN  (31) 

 

2) Joint Probability Prediction Criterion (OrdinJoint) 

We name this criterion as Ordinary Joint (OrdinJoint). For 

this criterion, the major difficulty is the determinant and the 

inverse of the joint covariance T  +R R Φ , as can be seen from 

(26). Fortunately, T  +R R Φ  is also a block matrix possessing 

a similar structure to 
XXΦ . Its determinant is namely 1J + , 

which can be derived using the induction method, as given by 

(32). Detailed derivations can be found in the appendix. 

 

 ( )( ) ( )

1 ( 1)T J J T

J yy JJ J+ = − + −  Φ FF P Q FF  (32) 

 

The exponential term in (26) can be derived using the fact 

that 1

T

J +
  +R R Φ =  and the result in (27). The prediction 

can then be made by finding the class with the highest joint 

probability, as given by (33). Detailed derivations for ( )k y  

can be found in the appendix. 

 

1/2( 1) /2

1

( ) arg max ( , ) arg max | ,

( )1
arg max exp

2(2 )

k T

k
k k

k

J D
k

J

p

y

 +

+

  
   = = +  

  

 
= − 

 

X
y y X U R R Φ

y
N



 (33) 

 

where 

 

( 1) ( 1)

( 1) ( 1)

( )

( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( )

k

T J T J

kj kj kj ki

j i j i

T J T J

kj

j

y

+ +



+ +

 =

− − + − −

+ − − + − −

 



x P x x Q x

x Q y y P y

   

   

  (34) 

 

3) Pairwise Probability Prediction Criterion 

Besides of calculating the conditional probability ( | )kp y X  

or the joint probability ( , )kp y X  with respect to all the training 

vectors in a class, it is also feasible to calculate the pairwise 

conditional probability ( | )kjp y x  or the pairwise joint 

probability ( , )kjp y x  with respect to each training vector in a 

class, and then combine these pairwise probabilities for all the 

training vectors. ( | )kjp y x  and ( , )kjp y x  are given by (35) 

and (36), similar to (21) and (26). 

 
1 1( | ) ( | ( ), )T T T

kj y yy kj yy yyp − −= + − −y x y U FF Φ x Φ FF Φ FFN    

  (35) 

 

 ( , ) ( , ) | ,

T

yykj

kj kj T
y yy

p p
    

= =             

Φ FFx
y x x y

U FF Φy
N


(36) 

 

Having found the pairwise probabilities for all pairs of y and 

kjx , the prediction can then be made according to the following 

criteria. In the following expressions, 
kJ  is used to denote the 

number of training vectors in class k, instead of J, as there can 

be different numbers of training vectors in different classes. 

Criteria a) ~ f) are named as ArithCond, GeoCond, CmaxCond, 

ArithJoint, GeoJoint, and CmaxJoint respectively. 

a) Arithmetic Mean of Pairwise Conditional (ArithCond) 

Prediction is made by finding the class with the highest 

arithmetic mean of the pairwise conditional probabilities. 

 

 
1

1
( ) arg max ( | )

kJ

kj
k jk

p
J =

= y y x  (37) 

b) Geometric Mean of Pairwise Conditional (GeoCond) 

Prediction is made by finding the class with the highest 

geometric mean of the pairwise conditional probabilities. 

 

 
1

1
( ) arg max ln ( | )

kJ

kj
k jk

p
J =

= y y x  (38) 

c) Cmax Pairwise Conditional (CmaxCond) 

Prediction is made by finding the most frequently occurred 

class among C maximum pairwise conditional probabilities, as 

given by (39), where 
ix  represents a training vector, {

ip } is a 

sequence of ( | )ip y x  sorted in descending order, and ( )k ip1  is 

the indicator function given by (40). This prediction criterion is 

similar to K Nearest Neighbor (KNN), which counts the 

occurrence of different classes among K minimum distances. 

 

 
1

( ) arg max ( )
C

k i
k i

p
=

= 1y  (39) 

 

where 

 

1

1 1

{ | 1,2... } { ( | ) | 1, 2... } . .

1,
( )

0,

K K

i k i k i i

k k

i

k i

p i J p i J s t p p

class k
p

otherwise

+

= =

  = = = 


 = 



 

1

y x

x
 (40) 

d) Arithmetic Mean of Pairwise Joint (ArithJoint) 

Prediction is made by finding the class with the highest 

arithmetic mean of the pairwise joint probabilities. 

 

 
1

1
( ) arg max ( , )

kJ

kj
k jk

p
J =

= y y x  (41) 
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e) Geometric Mean of Pairwise Joint (GeoJoint) 

Prediction is made by finding the class with the highest 

geometric mean of the pairwise joint probabilities. 

 

 
1

1
( ) arg max ln ( , )

kJ

kj
k jk

p
J =

= y y x  (42) 

f) Cmax Pairwise Joint (CmaxJoint) 

Prediction is made by finding the most frequently occurred 

class among C maximum pairwise joint probabilities, as given 

by (43), where 
ix  represents a training vector, {

ip } is a 

sequence of ( , )ip y x  sorted in descending order, and ( )k ip1  is 

the indicator function, as given by (44). 

 

 
1

( ) arg max ( )
C

k i
k i

p
=

= 1y  (43) 

 

where 

 

1

1 1

{ | 1,2... } { ( , ) | 1,2... } . .

1,
( )

0,

K K

i k i k i i

k k

i

k i

p i J p i J s t p p

class k
p

otherwise

+

= =

  = = = 


 = 



 

1

y x

x
 (44) 

 

C. Scalability and Robustness Analysis 

In this part, the scalability of the scalable formulations is 

analyzed, including both the model parameter estimation stage 

and the class label prediction stage. The properties of different 

class label prediction criteria are also briefly analyzed. 

Suppose there are J training vectors in class k, the 

dimensionality of a feature vector kjx  is D×1, and the 

dimensionality of the latent variables 
kh  and kjw  is H×1. Then 

the size of the factor loading matrices F and G is D×H, and the 

size of Σ is D×D. 

In the original formulation for model parameter estimation, 

in the E-step given by (8) and (9), the inverse of 1T −+I R Φ R  

needs to be computed. The size of Φ is JD×JD, and the size of 

R is JD×(J+1)H, resulting in the size of 1T −+I R Φ R  to be 

(J+1)H×(J+1)H, which could be too large to be inverted if J is 

large. 

Fortunately, in the scalable formulation, as given by (22) and 

(23), the computation is based on F, G and Σ, whose sizes are 

independent of J. 

In the original formulation for class label prediction, the 

conditional probability criterion given by (21) requires 

computing the inverse of 
XXΦ , whose size is JD×JD, and the 

joint probability criterion given by (26) requires computing the 

determinant and the inverse of T  +R R Φ , whose size is 

(J+1)D×(J+1)D. This dependency on J makes the computation 

inefficient, and sometimes even infeasible. 

Fortunately, we have the scalable formulation for the 

conditional probability criterion as given by (29) and (30), and 

the scalable formulation for the joint probability criterion as 

given by (32) and (34), where the computation is based on F, G, 

Σ, P and Q, whose sizes are independent of J. Furthermore, we 

also have several pairwise probability-based prediction criteria 

as given by (37) ~ (44), where the computation is based on the 

pairwise conditional probability given by (35), or the pairwise 

joint probability given by (36), which is also independent of J. 

In fact, the pairwise probability-based criteria can be more 

robust than the conditional probability or the joint probability 

criterion, in the case where the feature vectors do not follow 

Gaussian distributions. This situation usually occurs when the 

dimensionality of the feature vector is too high. The pairwise 

probability merely assumes that a pair of feature vectors, e.g. y 

and kjx , follow a Gaussian distribution, whereas the 

conditional probability or the joint probability criterion 

assumes that a group of feature vectors, e.g. y and {
1kx , 

2kx …
kJx }, follow a Gaussian distribution, which is quite a 

strong assumption and may fail when the dimensionality of the 

feature vector is much higher than the number of training 

vectors. In particular, CmaxCond and CmaxJoint prediction 

criteria are supposed to be more robust than ArithCond, 

GeoCond, ArithJoint and GeoJoint, since only a portion of 

“important” training vectors are involved in prediction. 

However, the computation of the conditional probability and 

the joint probability criteria can be more efficient than the 

pairwise probability-based criteria, as the expected mean and 

the expected covariance of the former can be computed for only 

once, whereas the latter requires the computation of the 

pairwise probability with respect to each pair of training and 

testing vectors, whose computation complexity is proportional 

to the number of training vectors. 

IV. PLDA FOR FEATURE TRANSFORMATION 

Besides of directly using PLDA for class label prediction, it 

is feasible to use PLDA to extract feature vectors. As can be 

seen from (1), each feature vector kjx  is associated with a 

between-class latent variable 
kh , a within-class latent variable 

kjw , and a noise term kj . For prediction purposes, 
kh  seems 

to be the most important latent variable, as it carries the class 

information. If we can determine the 
kh  of a feature vector y, 

we may then immediately know which class the vector y should 

belong to. However, it is difficult to obtain the exact value of 

kh . Fortunately, the posterior mean of 
kh  can be estimated 

using (22), meaning that we may approximate 
kh  using [ ]kE h .  

Nevertheless, for a feature vector whose class label is unknown, 

(22) is still infeasible. In order to estimate the posterior mean 

[ ]yE h  for y, we may adopt the approximation given by (45), 

which conducts the estimation using only the given feature 

vector y. Noted that, parameter matrix M is slightly modified. 

 

 1 1[ ] ( )( )T T T

yE − −= − −h MF Σ MΛ G Σ y   (45) 
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where 

 

 ( )
1

1( )T
−

−= + −M I F Σ F GΛ  (46) 

 

By this means, a feature vector y  is mapped to another 

feature space and becomes [ ]yE h . Ideally, this mapped vector 

should be more discriminative than y , as in the model 

assumption of PLDA, [ ]yE h  should carry class information. In 

addition, [ ]yE h  can be even more Gaussian than y , as in a 

PLDA model, the between-class latent variable h  is assumed 

to follow a Gaussian distribution. In addition, the 

dimensionality of [ ]yE h  can be lower or higher than y , which 

provides more flexibility. 

V. ACOUSTIC SIGNAL FEATURE EXTRACTION 

Each acoustic sample is first framed using a Hamming 

window with 40ms length and 20ms shift. Then the 

Mel-frequency Cepstral Coefficients (MFCC) [27] are 

calculated for each frame, yielding a 20-dimension MFCC 

vector for each frame. Suppose an acoustic sample s is 

represented by T MFCC vectors, denoted as {
1x , 

2x …
Tx }, 

where 
tx  is the t-th MFCC vector. These MFCC vectors are 

then used to form a single feature vector. The single feature 

vector representing the whole acoustic sample can be an 

i-vector [28], which is based on a Universal Background Model 

(UBM) and trained using the EM algorithm [29]. The UBM is 

essentially a Gaussian Mixture Model (GMM), which is 

constructed using the mixture splitting technique [30] and the 

EM algorithm [31]. If the dimensionality of an MFCC vector is 

D×1, and the GMM-based UBM has M mixture components, 

then the dimensionality of i-vector will be DM×1. 

 Besides of forming a single vector representing an acoustic 

sample, the MFCC vectors can also be directly used for 

classification, for example, when using class-specific GMMs. 

In this way, one GMM is trained using the MFCC vectors of all 

the acoustic samples in a class, which leads to a total of K 

GMMs for K classes. The prediction is then made by finding 

the maximum likelihood among all the GMMs [32]. 

A general acoustic signal classification system is illustrated 

in Fig. 4. Since the length of an acoustic sample can be different, 

it is first divided into equal-length short-time frames to extract 

the frame-level feature vectors, such as the MFCC vectors. 

Having obtained the MFCC vectors, we can then use a classifier, 

e.g., GMM, to make predictions for each MFCC vector. The 

predicted labels can then be combined based on majority voting 

or maximum likelihood. These MFCC vectors can also be used 

to produce a single feature vector representing the whole 

sample, e.g., i-vector. A classifier, such as PLDA or SVM, can 

then be used to predict the i-vector into a specific class. 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, we conduct experiments on speaker 

recognition and acoustic scene classification. For speaker 

recognition, part of Kingline081 [33] American English speech 

corpus is used, which consists of 20 speakers’ speeches. The 

speeches are recorded in three different sessions, with each 

session consisting of about 100 speech samples for each 

speaker. The speeches of the first two sessions are used to form 

a training set, while the third session is used to form a testing set. 

This yields a training set consisting of 3997 speech samples and 

a testing set consisting of 1998 speech samples. Each sample 

lasts for 2s ~ 5s. For acoustic scene classification, DCASE2013 

[34] is used, which consists of 10 acoustic scenes. Each 

acoustic recording lasts for 30s. The public dataset of 

DCASE2013 is used for training, and for each acoustic scene, 

there are 10 acoustic samples. The private dataset of 

DCASE2013 is used for testing, and for each acoustic scene, 

there are 10 acoustic samples. This yields a training set of 100 

acoustic samples and a testing set of 100 acoustic samples. 

Details are also summarized in Table I. 

For model parameters of PLDA, the factor loading matrices 

F  and G , and the noise covariance Σ, are initialized to have 

all ones on the principal diagonal and zeros on other positions. 

Suppose the dimensionality of a feature vector kjx  is D×1, and 

the dimensionality of the latent variables 
kh  and kjw  is H×1, 

then the size of the factor loading matrices F and G is D×H. In 

the case where H>D, namely the number of columns is larger 

than the number of rows in the factor loading matrices, the 

column vectors starting from the (D+1)-th column are 

generated as a linear combination of the first D columns, where 

 
Fig. 4.  A general classification system for acoustic signals. 

TABLE I 

ACOUSTIC SIGNAL DATASET 
 

Dataset Number 

of classes 

Number of samples Duration of 

each sample Training Testing 

Kingline081 20 3997 1998 2s ~ 5s 

DCASE2013 10 100 100 30s 
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the coefficients are generated based on the uniform distribution. 

The randomly generated column vectors are then normalized to 

have unit length. For simplicity, the dimensionality of 
kh  and 

kjw  is kept being the same. The training data is also used to 

construct the UBM to calculate i-vector. 

A. Effects of Different Prediction Criteria for PLDA 

In this part, we compare the effects of different prediction 

criteria, including those based on ordinary and pairwise 

conditional probabilities and those based on ordinary and 

pairwise joint probabilities. I-vector is calculated using 5 EM 

iterations, based on a 16-mixture UBM. The dimensionality of 

i-vector is 320×1. The model parameters of PLDA is estimated 

by running the EM algorithm for 3 iterations. The 

dimensionality of the latent variables is set to be the same as 

that of i-vector. Speaker recognition results on Kingline081 are 

shown in Fig. 5, with respect to different C values (varying 

from 1 to 100) used in CmaxCond and CmaxJoint criteria. 

It can be seen from Fig. 5 that the joint probability-based 

criteria give rather worse performance than the conditional 

probability-based criteria. The potential reason behind can be 

explained using (14). The conditional probability-based criteria 

originate from the idea that, if a testing vector y belongs to class 

k, y and the training vectors in class k are supposed to be jointly 

distributed, whereas y and the training vectors in other classes 

are supposed to be independently distributed. From this 

perspective, the joint probability-based criteria merely expect 

that, if y belongs to class k, y and the training vectors in class k 

should be jointly distributed, but do not expect any relationship 

between y and the training vectors in other classes. This makes 

the joint probability-based criteria less discriminative than the 

conditional probability-based criteria. 

It is also observed that, the CmaxCond and the CmaxJoint 

criteria can be slightly better than the OrdinCond and the 

OrdinJoint criteria, as the former two select several best 

matched feature vectors in the training set (i.e., the training 

vectors giving the first several highest pairwise probabilities) to 

make predictions, instead of using all the training vectors, in 

which way only a portion of “important” training vectors are 

involved in making predictions. Nevertheless, the performance 

of the CmaxCond and CmaxJoint tend to be the same as 

OrdinCond and OrdinJoint as C increases (i.e., the number of 

training vectors involved in predictions increases). However, 

the pairwise probability-based criteria (ArithCond, GeoCond, 

CmaxCond, ArithJoint, GeoJoint, CmaxJoint) form a 

non-parametric model, whose computation time is proportional 

to the number of training data, whereas the ordinary 

probability-based criteria (OrdinCond, OrdinJoint) form a 

parametric model, meaning that the model parameters can be 

pre-computed and thus more efficient for a large number of 

training data. 

Besides, the GeoCond and the GeoJoint criteria are better 

than the ArithCond and the ArithJoint. This indicates that the 

geometric mean seems better than the arithmetic mean. This 

implies that the pairwise probabilities tend to be independent of 

each other and follow Gaussian distributions. Mathematically, 

for a set of vectors, the geometric mean is always smaller than 

the arithmetic mean, and the equality holds if and only if the 

vectors are the same. This means the arithmetic mean can be 

driven to be much larger for a set of feature vectors if some of 

the pairwise probabilities are highly deviated from the center. 

From this perspective, the geometric mean should be more 

robust than the arithmetic mean. 

B. Effects of Feature Dimensionality: The Pitfall 

In this part, we investigate the performance of PLDA when 

the dimensionality of i-vector changes, and compare it with 

SVM. We first consider the speaker recognition task. 

Experimental results on Kingline081 are shown in Fig. 6. The 

prediction criterion is OrdinCond. The dimensionality of the 

latent variables is set to be the same as i-vector. SVM is 

implemented using LIBSVM [35]. The number of mixture 

components in the UBM varies from 2 to 128, yielding the 

i-vectors with the dimensionality varying from 40×1 to 2560×1. 

It is obvious that PLDA significantly outperforms SVM, 

demonstrating its superiority and great potential. 

The performance of PLDA and SVM may improve as the 

dimensionality of i-vector increases, however, it tends to 

saturate and ceases improving if the dimensionality is large 

enough (e.g., 2560×1). This also shows the importance of the 

feature dimensionality for PLDA to be effective. According to 

(1), in a PLDA model, it is assumed that the feature vector can 

be expressed as the affine transformation of the latent variables. 
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(a)                         (b) 

Fig. 5.  Speaker recognition results using i-vector and PLDA with different prediction criteria. (a) PLDA with conditional probability-based prediction criteria.  

(b) PLDA with joint probability-based prediction criteria. 
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This assumption implicitly presumes that the feature vector has 

a relatively complicated structure and carries a relatively large 

amount of information, which requires its dimensionality to be 

high enough. Increasing the number of EM iterations in training 

the PLDA model tends to increase its performance. Basically, 

several EM iterations are already good enough. 

However, when we consider the acoustic scene classification 

task, PLDA may not work very well. Experimental results on 

DCASE2013 are shown in Fig. 7. The prediction criteria 

include OrdinCond and CmaxCond. As can be seen from Fig. 7, 

PLDA just slightly outperforms SVM when the dimensionality 

of i-vector is very low (40×1). The performance of PLDA 

degrades significantly as the increase of the dimensionality, 

which is on the contrary of the trend of SVM whose 

performance improves as the increase of the dimensionality. 

This is probably because the training data are inadequate. For 

DCASE2013, there are only 100 training acoustic samples, 

with 10 for each acoustic scene. It is difficult to estimate a 

conditional probability using only 10 training vectors whose 

dimensionality can be as high as 2560×1. Fig. 8 shows how the 

performance of PLDA is affected by different EM iterations 

during model parameter estimation. It seems increasing the 

number of EM iterations tends to degrade the performance, 

which implies that the model assumption of PLDA is actually 

violated. This performance degradation implies that, for PLDA 

to be effectively used, enough training data are necessary, so 

that the Gaussian assumption involved in using a PLDA model 

can be approximately satisfied. 

Briefly speaking, in order to effectively employ PLDA for 

class label prediction, it is necessary to have 1) 

high-dimensional feature vectors such that the latent variable 

model assumption is satisfied, and 2) an enough number of 

training data such that the Gaussian assumption is satisfied. 

These two requirements seem to be the limitation of applying 

PLDA, but they also endow PLDA with a great potential when 

the requirements are fulfilled. 

C. PLDA for Feature Transformation 

In this part, we investigate an interesting application of 

PLDA, i.e., using PLDA for feature transformation. The MFCC 

vectors are used as the raw feature vector, and GMM is used as 

the classifier. A PLDA model is trained using 1 EM iteration, 

and then the between-class latent variable is used as the 

transformed vector according to (45). Suppose the 

dimensionality of an MFCC vector is D×1, and the 

dimensionality of the between-class latent variable is H×1, then 

the transformed vector has a dimensionality of H×1. If H>D, 

the dimensionality of the original MFCC vector will be 

expanded, which will then embed more information. At the 

same time, this dimensionality expansion effect does not 

violate too much the Gaussian assumption of the MFCC vectors, 

because the latent variables in a PLDA model also follow 

Gaussian distributions. 

When the feature vector is the MFCC vector whose 

dimensionality is 20×1, directly using PLDA for class label 

prediction does not work well, as shown in Fig. 9 and Fig. 10. 

In this scenario, PLDA uses the same maximum likelihood 

prediction criterion as GMM, where the probability is 

computed using the OrdinCond criterion. The reason is that, an 

MFCC vector does not carry much information, and therefore 

does not conform to the latent variable model assumption of 

PLDA given by (1). 

Faced with this low-dimensionality issue, we may apply 

PLDA for feature transformation and dimensionality expansion. 

Experimental results on Kingline081 and DCASE2013 are 

shown in Fig. 11 and Fig. 12 respectively. The expansion ratio 

H/D varies from 1 to 3. It can be seen from Fig. 11 that, 

increasing the value of H tends to improve the performance of 

the transformed vector on using the GMM classifier. This 
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Fig. 6.  Effects of the dimensionality of i-vector using Kingline081 dataset. 
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Fig. 7.  Effects of the dimensionality of i-vector using DCASE2013 dataset. 
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Fig. 8.  PLDA with different EM iterations using DCASE2013 dataset. 
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demonstrates the effectiveness of using PLDA for feature 

dimensionality expansion. It is also noted that the transformed 

vector still follows a Gaussian distribution, as the performance 

of GMM improves as the number of mixture components 

increases. From Fig. 12, we may observe that, H=D gives the 

best performance. It seems increasing the dimensionality too 

much does not offer any help. Nevertheless, the transformed 

vector seems more Gaussian than the original MFCC vector, as 

the performance of GMM tends to improve with the increase of 

the number of mixture components. However, in general, the 

performance of GMM does not always improve with the 

increase of the number of mixture components, implying the 

MFCC vectors may not follow Gaussian distributions in this 

scenario. According to the model assumption of PLDA, the 

between-class latent variable is supposed to follow a Gaussian 

distribution theoretically. However, the transformed vector is 

only the expected value of the latent variable, which may not 

exactly follow the Gaussian distribution. In addition, the 

characteristics of the transformed vector also highly depend on 

the characteristics of the raw feature vector, i.e., the MFCC 

vector in this scenario. 

Besides of directly using the low-dimensional MFCC vector, 

we may also adopt a neighboring feature concatenation strategy 

to increase the dimensionality of the raw feature vector. 

Suppose an acoustic sample is represented by T MFCC vectors 

denoted as {
1x , 

2x …
Tx }, the t-th concatenated MFCC vector 

is then given by ( 1) /2 1 ( 1) /2 2 ( 1) /2

T
T T T

t t L t L t L L− + − + − +
  =  x x x x , 

where L is the concatenation length and L/2 is the concatenation 

shift. If the dimensionality of an MFCC vector is D×1, the 

dimensionality of a concatenated vector will be DL×1. With the 

help of the concatenation operation, the raw feature vector has a 

higher dimensionality and thus may carry more information. 

However, the higher the dimensionality, the higher the chance 

of violating the Gaussian assumption. In this case, we may 

apply PLDA for dimensionality reduction. 

Experimental results on DCASE2013 using the concatenated 

vector are shown in Fig. 13. The classifier is the GMM with 128 

mixture components. The concatenation length L varies from 2 

to 32 (i.e., the dimensionality D of the concatenated vector 

varies from 40×1 to 640×1), and the ratio H/D varies from 0.25 

to 1. It can be seen from Fig. 13 that, in general the performance 

of GMM degrades with the increase of the feature 

dimensionality, as the higher the dimensionality, the higher the 

chance of violating the Gaussian distribution assumption. 

Nevertheless, by applying PLDA to the raw concatenated 

vectors to reduce the dimensionality (i.e., H=0.25D and 

H=0.5D) or simply keep the same dimensionality (i.e., H=D), 

the transformed vectors can have improved performance. This 

demonstrates the capability of PLDA as a dimensionality 

reduction technique. 

When applying PLDA for feature transformation, it 

inevitably introduces extra time consumption costs. In Fig. 14, 
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Fig. 9.  PLDA with MFCC vector using Kingline081 dataset. 
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Fig. 10.  PLDA with MFCC vector using DCASE2013 dataset. 
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Fig. 11.  PLDA for dimensionality expansion using Kingline081 dataset. 
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Fig. 12.  PLDA for dimensionality expansion using DCASE2013 dataset. 
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we record the computation time of applying PLDA to the 

concatenated MFCC vectors. The dimensionality of the 

concatenated vector varies from 20×1 to 160×1, and the ratio 

H/D varies from 0.5 to 2. Because of the concatenation 

operation, the number of training vectors (equal to the number 

of testing vectors) varies from 149900 to 37300. We also record 

the computation time of constructing the 16-mixture GMM 

using the PLDA-based transformed vectors, just as a reference. 

It can be seen that, the computation of PLDA is very efficient 

when the feature dimensionality is low. However, the 

computational efficiency degrades with the increase of the 

feature dimensionality. Based on the formulations of PLDA, 

the computational complexity is proportional to the number of 

training data as well as the feature dimensionality. Therefore, 

the more the training data or the higher the feature 

dimensionality, the higher the time consumption will be. 

Nevertheless, when the dimensionality is not very high, the 

extra computation costs introduced by PLDA-based feature 

transformation is negligible as compared to the computation 

costs introduced by constructing GMM. 

From these experimental results, it is observed that the 

PLDA-based feature transformation technique may offer some 

improvements over the MFCC vector, and the transformed 

vector can have a higher or lower dimensionality and at the 

same time keep approximately following the Gaussian 

distribution. The PLDA-based transformed vector may then be 

used for different purposes in place of MFCC, for example, to 

construct i-vector or other types of supervectors such as 

Gaussian Supervector (GSV) [36]. PLDA may also be used to 

perform dimensionality reduction in place of LDA or Nuisance 

Attribute Projection (NAP) [37], working on i-vector or GSV 

instead of MFCC. This provides a new way of applying PLDA 

for acoustic signal classification tasks, besides of simply as a 

classification model. 

D. Potentiality of PLDA 

In this part, we briefly discuss the potential applications of 

PLDA and briefly compare PLDA with some other classic 

methods. 

The earlier application of PLDA is face verification and 

speaker verification, whose objective is to compare whether 

two feature vectors share the same between-class latent 

variable (i.e., whether the two feature vectors belong to the 

same class). This target can be achieved by computing the 

conditional probability [2] or using the likelihood ratio as a 

similarity score [19]. 

A verification task can be treated as a special case of a 

classification task, which usually involves the comparison 

between more than two feature vectors. With the scalable 

formulations proposed in this research, applying PLDA as a 

general-purpose classifier is feasible. There are also different 

prediction criteria to choose, such as the conditional probability 

and the pairwise conditional probability. 

On the one hand, PLDA is a probabilistic model that can be 

used as a probability estimator. On the other hand, PLDA is 

also a latent variable model, which consists of latent variables. 

The estimated value of these latent variables can be used as new 

feature vectors, which enables PLDA to be used as a feature 

transformation technique. 

A closely related feature transformation technique is Fisher 

Linear Discriminant Analysis (LDA), as the name implies. 

However, there are several differences between them. First, the 

model parameters of PLDA are estimated using the EM 

algorithm, whereas the model parameters of LDA are based on 

eigen-decomposition of the scatter matrices. Second, PLDA 

can be directly used for classification purposes as it can 

estimate probabilities, whereas LDA is merely a feature 

transformation technique and has to work together with an 

additional classifier [40][41]. Besides, the dimensionality of the 

LDA-based transformed vector cannot be higher than the 

original feature dimensionality, whereas the dimensionality of 

the PLDA-based transformed vector can be either higher or 

lower than the original feature dimensionality, depending on 

the size of the factor-loading matrix. Nevertheless, both aim at 

capturing the within-class and between-class characteristics, 

although in different ways. Therefore, to some extent, PLDA 

can be treated as a probabilistic version of LDA. 

PLDA is also related to some other classic techniques. As 

can be seen from (1), when the dimensionality of the latent 

variables kh  and kjw  becomes zero, the model assumption of 

PLDA becomes that of the single Gaussian model. This 

indicates that PLDA is the generalization of the single Gaussian 

model. If the dimensionality of kh  is zero but the 
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Fig. 13.  PLDA for dimensionality reduction using DCASE2013 dataset. 
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dimensionality of kjw  is nonzero, PLDA becomes Factor 

Analysis (FA). This indicates that PLDA is the generalization 

of FA. Since FA has been widely used as a dimensionality 

reduction technique [42][43], PLDA will also have such 

capability. If the expression of PLDA given by (1) includes 

more latent variables, PLDA can be further extended to Joint 

Factor Analysis (JFA) [12]. 

As can be seen from (1), the between-class latent variable kh  

carries the class-dependent information, whereas the 

within-class latent variable kjw  carries the sample-dependent 

information. From this perspective, PLDA is a fusion of both 

supervised and unsupervised techniques. If the dimensionality 

of 
kh  is higher than that of kjw , PLDA is more supervised; if 

the dimensionality of 
kh  is lower than that of kjw , PLDA is 

more unsupervised. This property endows PLDA with more 

flexibility. An illustration of the potential applications of PLDA 

and its connection with other techniques is shown in Fig. 15. 

In the future, we plan to extend the scalable formulations to 

the case of Mixture of PLDA (MPLDA). MPLDA is a 

collection of multiple PLDA models, which generalizes PLDA 

and thus can be more powerful [44][45]. In addition, in analogy 

to the relationship between PLDA, single Gaussian model and 

FA, MPLDA can be treated as the generalization of GMM and 

Mixture of Factor Analyzers (MFA) [46]. 

VII. CONCLUSION 

In this paper, we investigate and try to improve the utility of 

PLDA for acoustic signal classification. Our major findings are 

summarized as follows. 

First, we comprehensively analyze the formulations of 

PLDA, and explain the rationale and the core idea behind the 

model parameter estimation stage and the class label prediction 

stage. We find that, the original formulation of PLDA is 

inefficient when the number of training data is large. Therefore, 

we propose scalable formulations for PLDA, enabling it to 

make predictions efficiently. 

In the scalable formulations, we propose different prediction 

criteria, which may improve its scalability and robustness. 

Some prediction criteria can be quite efficient with a large 

number of training data, but may fail if the number of training 

data is inadequate. While some prediction criteria can be quite 

robust even when the number of training data is limited, but 

may be inefficient with a large number of training data. Under 

different situations, different prediction criteria should be 

chosen, in order to maximize the capability of PLDA. 

Second, we investigate the effectiveness of PLDA in 

different acoustic signal classification tasks, including speaker 

recognition and acoustic scene classification. We observe that, 

PLDA may not perform well when the dimensionality of the 

feature vector is low. This ineffectiveness also arises when the 

number of training data is inadequate, even if the 

dimensionality of the feature vector is high. These two 

observations may restrict the utility of PLDA in some scenarios, 

but they also indicate how to make PLDA effective, i.e., 1) a 

high dimensionality and 2) an enough number of training data. 

We believe that, understanding both the advantages and the 

disadvantages of PLDA may help better apply PLDA for 

different purposes. 

Third, we introduce a novel application of PLDA, which 

applies it as a feature transformation technique. This technique 

simply uses the between-class latent variable in the PLDA 

model as the transformed vector. This transformed vector can 

have either a lower dimensionality or a higher dimensionality, 

which makes it more flexible. At the same time, the 

transformed vector still approximately follows the Gaussian 

distribution, so that in some cases it can be the substitute of 

MFCC. It is then promising to combine PLDA with other 

classification models as a feature pre-processing technique, 

instead of directly using it for class label prediction. 

Finally, we discuss the potential applications of PLDA and 

its relationship with some classic techniques, such as the single 

Gaussian model, LDA, FA and JFA. PLDA can be treated as 

the generalization of the single Gaussian model and FA, and the 

simplification of JFA. It can also be treated as a probabilistic 

version of LDA. The potential extension of PLDA, namely, the 

Mixture of PLDA (MPLDA), further generalizes PLDA, GMM 

and MFA, and thus may have a wide range of applications and 

deserves further exploration. 
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APPENDICES 

A. Supplements to the Conditional Probability 

In this part, we derive the expressions of ( )J
P  and ( )JQ  

given by (28). By rearranging (27), we have (47). 

 
( ) ( ) ( )
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T T J J J
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T T J J J
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IΦ FF FF P Q Q
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IFF FF Φ Q Q P

  (47) 

 

By equating the block matrices on the left side that produce 

I , we obtain (48). By equating the block matrices on the left 

 
Fig. 15.  Applications of PLDA and its connection with other techniques. 
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side that produce 0 , we obtain (49). 

 

 ( ) ( )( 1)J T J

yy J+ − =Φ P FF Q I  (48) 

 

 ( ) ( ) ( )( 2)J T J T J

yy J+ + − = 0Φ Q FF P FF Q  (49) 

 

By expanding yyΦ , (48) and (49) are equivalent to (50) and 

(51) respectively. Solving (50) and (51) then gives (28). 

 

 ( ) ( ) ( )( 1)T T J T JJ+ + + − =FF GG P FF Q I  (50) 

 

 ( ) ( ) ( ) ( )( 2)T T J T J T JJ+ + + + − = 0FF GG Q FF P FF Q  (51) 

 

B. Supplements to the Joint Probability 

In this part, we derive the expression of the joint probability 

( , )kp X y  given by (26). We first consider the determinant of 

the joint covariance T  +R R Φ . As can be seen from (19), 
T  +R R Φ  is namely 

1J + , which possess a very special 

structure. This special structure makes it possible to calculate 

the determinant using the induction method, together with the 

trick of the determinant of block matrices as given by (52) 

[38][39], where 1B  ~ 4B  are matrix blocks. 
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The steps of the induction method are described below. 

 

1) Step 1: 
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3) Step 3: 
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4) Step 4: 
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5) Step J+1: 
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Using the above induction method, the determinant of the 

joint covariance T  +R R Φ  can be calculated step by step, 

which is namely 
1J +  in (53). The next step is to calculate the 

exponential term in (26). The matrix product inside the 

exponential term can be expanded as follows. 
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  (54) 

 

If using a scalar ( )k y  to denote the result in (54), together 

with the determinant given by (53), the joint probability is then 

given by (55). 
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