
 1

Abstract—Probabilistic linear discriminant analysis (PLDA)

has achieved good performance in face recognition and speaker

recognition. However, the computation of PLDA using the

original formulation is inefficient when there are many training

data, especially when the dimensionality of the data is high. Faced

with this inefficiency issue, we propose scalable formulations for

PLDA. The computation of PLDA using the scalable formulations

is more efficient than using the original formulation when dealing

with many training data. Using the scalable formulations, the

PLDA model can significantly outperform other popular

classifiers for speaker recognition, such as Support Vector

Machine (SVM) and Gaussian Mixture Model (GMM). Besides of

directly using PLDA as a classifier, we may also use PLDA as a

feature transformation technique. This PLDA-based feature

transformation technique can reduce or expand the original

feature dimensionality, and at the same time keep the transformed

feature vector approximately following the Gaussian distribution.

Our experimental results on speaker recognition and acoustic

scene classification demonstrate the effectiveness of applying

PLDA for feature transformation. It is then promising to combine

PLDA with other classification models for improved performance,

extending the utility of PLDA to a wider range of areas.

Index Terms—Probabilistic linear discriminant analysis,

scalability analysis, acoustic signal classification, feature

transformation

I. INTRODUCTION

ROBABILISTIC Linear Discriminant Analysis (PLDA)

was first proposed for face recognition [1], and has

achieved superior performance in face recognition, face

verification, and face clustering [2]. It is quite suitable for some

specific applications where there are few samples, such as

age-invariant face recognition [3][4], and where there are large

variations in the images [5]-[7] or facial expressions in videos

[8]. By representing a video using a high-dimensional vector,

PLDA achieves the state-of-the-art performance in action

recognition [9]. Owing to the capability of PLDA in dealing

with high-dimensional feature representations, it is later

extended to speaker verification [10], and is currently the

state-of-the-art back-end [11] [12]. The similarity score

Yuechi Jiang and Frank H. F. Leung are with the Department of Electronic

and Information Engineering, The Hong Kong Polytechnic University, Hung
Hom, Hong Kong. (e-mail: yuechi.jiang@connect.polyu.hk,

frank-h-f.leung@polyu.edu.hk).

produced by PLDA is also applicable to other applications,

such as speaker identification [13], spoofing detection [14], and

voice search [15]. PLDA can also be applied to audio-visual

cases, where audio information and visual information are

fused for improved performance [16][17].

In the perspective of PLDA, a feature vector is assumed to be

generated by a between-class latent variable and a within-class

latent variable [1]. The between-class latent variable represents

the common characteristics shared by the feature vectors within

the same class, while the within-class latent variable represents

the variation of the characteristics possessed by the feature

vectors within the same class. That is to say, the between-class

latent variable is supposed to be class-dependent, whereas the

within-class latent variable is supposed to be feature-dependent.

These latent variables have been shown to be quite useful in

handling faces with different poses [2].

Despite of the discriminative nature of PLDA, its application

scope is quite narrow, mainly focusing on face verification and

speaker verification where there are few samples. It has not been

widely used as a classification model, like Support Vector

Machine (SVM), which has been applied to a wide range of

pattern recognition tasks. The major obstacles are probably the

scalability of PLDA, as the original formulation cannot handle

many training data. In the original formulation, during the

process of estimating the parameters of a PLDA model, the

inverse of large matrices needs to be found, whose sizes are

proportional to the dimensionality and the quantity of the training

data. If the quantity of the training data is large or the

dimensionality of the training data is high, inverting those

matrices can be quite difficult or even infeasible if exceeding the

memory space. This scalability issue also arises during the

process of class label prediction.

In the literature, scalable formulations for model parameter

estimation have been proposed, such that the parameters of a

PLDA model can be efficiently estimated using many training

data [18][19]. In this paper, we propose scalable formulations for

class label prediction, such that a PLDA model can efficiently

make predictions using many training data. Instead of focusing

on the simplified formulation of PLDA widely used in speaker

verification [20], we shall consider the general formulation.

In the literature, PLDA is usually applied to high-dimensional

feature vectors, such as i-vector [12]. In this paper, we find that,

when the dimensionality of the feature vector is low, PLDA may

not work well. Faced with this issue, we propose a novel

Investigating and Improving the Utility of

Probabilistic Linear Discriminant Analysis for

Acoustic Signal Classification

Yuechi Jiang and Frank H. F. Leung

P

https://doi.org/10.1016/j.dsp.2021.103055 This is the Pre-Published Version.

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

 2

application of PLDA, which uses it for feature transformation. In

this way, the between-class latent variable in a PLDA model is

used as the transformed feature vector, whose dimensionality can

be higher or lower than the original feature vector. This brings

more flexibility to the transformed feature vector. As the

between-class latent variable carries the class information, the

transformed feature vector can be more discriminative, and at the

same time keep approximately following a Gaussian distribution.

By this means, PLDA can be combined with other classification

models, such as Gaussian Mixture Model (GMM).

PLDA can be treated as a probabilistic version of Fisher

Linear Discriminant Analysis (LDA). LDA is widely used as a

dimensionality reduction technique [21], however, the

dimensionality of the LDA-based transformed vector cannot be

higher than that of the original feature vector, and the

transformed vector will probably not follow Gaussian

distributions. In contrast, the dimensionality of the PLDA-based

transformed vector is dependent on the dimensionality of the

latent variable, which is weakly related to the dimensionality of

the original feature vector.

To investigate the utility of PLDA for acoustic signal

classification, we consider a speaker recognition task and an

acoustic scene classification task. Experimental results on these

datasets demonstrate the effectiveness and potential of PLDA.

They also demonstrate the feasibility of applying PLDA as a

feature transformation technique, which may open a new

direction of combining PLDA with other classification models as

a feature pre-processing technique. Our major contributions lie in

the following aspects:

⚫ We analyze the working mechanism of using PLDA to do

classification tasks, including the model parameter

estimation stage and the class label prediction stage.

⚫ We propose scalable formulations for PLDA to efficiently

make class label predictions using many training data.

These formulations, together with the scalable

formulation for model parameter estimation, enable

PLDA to be used as a general-purpose classifier.

⚫ We propose to use PLDA as a feature transformation

technique, which can perform both dimensionality

reduction and dimensionality expansion, and at the same

time keep the transformed vector approximately

following a Gaussian distribution.

⚫ We briefly analyze the relationship between PLDA and

some classic techniques, and explain that PLDA can be

treated as the generalization of the single Gaussian

model and the factor analysis model, and is also closely

related to the concept of LDA.

⚫ We conduct experiments on different datasets and different

feature vectors, trying to explore the factors that may

influence the effectiveness of PLDA. Experimental

results show that PLDA behaves differently for speech

signals and non-speech signals. Its effectiveness highly

depends on the characteristics of the acoustic signals.

The rest of this paper is organized as follows. In Section II, the

model assumption of PLDA is introduced, followed by the

explanations on the original formulations for model parameter

estimation and class label prediction. In Section III, the scalable

formulations of PLDA are given, including model parameter

estimation and various criteria for class label prediction. Its

scalability is also analyzed. In Section IV, the way of using

PLDA for feature transformation is described. In Section V, the

acoustic features are briefly described. In Section VI,

experimental results are presented and discussed. In Section VII,

a conclusion is drawn.

II. ORIGINAL FORMULATION OF PLDA

A PLDA model is intrinsically a latent variable model, which

assumes that a feature vector is generated by latent variables.

The latent variables are supposed to capture useful information

from the feature vector, such as the class information, and thus

can be used to represent the feature vector or discriminate

between different classes.

Given a set of training and testing feature vectors, in order to

use a PLDA model to do the classification, there exist two

stages. In the first stage, the parameters of the PLDA model

need to be estimated based on the training vectors. In the

second stage, prediction criteria are needed to assign the testing

vectors into different classes.

This section introduces and explains the model assumptions

adopted by PLDA, the original formulation for model

parameter estimation, and the original formulation for class

label prediction. An illustration of the two stages is shown in

Fig. 1, where the color indicates the class of the feature vector.

In this example, there are 3 classes and J training vectors for

each class.
kjx denotes the j-th training vector in the k-th class,

and y denotes a testing vector with unknown class. The model

parameters { , , , } F G Σ will be explained later.

A. Model Assumption

In this part, the latent variable model adopted by PLDA is

introduced. In a PLDA model, a feature vector is assumed to be

generated by a between-class latent variable and a within-class

latent variable, and therefore should be able to be expressed as

the affine transformation of the two latent variables. Suppose

we are given a set of training feature vectors denoted as

{
11x ,

12x ,…
1Jx ,

21x ,
22x ,…

2Jx ,…
1Kx ,

2Kx ,…
KJx }, where

we assume there are K different classes, and J training vectors

for each class. Therefore, kjx represents the j-th training vector

Fig. 1. The working mechanism of PLDA for classification tasks.

 3

in the k-th class. It is possible to have different numbers of

training vectors in different classes, but we just use the same

symbol J to represent the number of training vectors in each

class for simplicity.

The expression relating a feature vector kjx to its

between-class latent variable
kh and its within-class latent

variable kjw is given by (1), where μ is the global mean vector,

F and G are factor loading matrices, and kj is the noise

variable [1]. The between-class latent variable
kh reflects the

common characteristics shared by all the feature vectors in

class k, whereas the within-class latent variable kjw reflects the

variation of the feature vectors in class k.

 kj k kj kj= + + +x Fh Gw  (1)

PLDA is a special form of factor analysis, meaning that it

shall abide by the assumptions of factor analysis. Namely,
kh

and kjw shall follow Gaussian distributions with zero mean

and unit variance, while the noise variable kj shall follow a

Gaussian distribution with zero mean and diagonal covariance

Σ. Since
kh , kjw and kj are assumed to be independent of

each other, kjx shall also follow a Gaussian distribution with

mean μ and covariance
T T+ +FF GG  , as given by (2).

 () (| ,)T T

kj kjp = + +x x FF GG ΣN (2)

The feature vectors in a class are forced to share the same

between-class latent variable, thus they can be treated as a

whole using the expression given by (3).

1 1

1

2 2

2

k

k k

k

k k

k

kJ kJ

kJ

 
        
        
        = + +
        
        

       
 

0 0

0 0

0 0

h
x F G

w
x F G

w

x F G
w







 (3)

Eq. (3) can then be simplified to the standard form of a factor

analysis model, as given by (4).

k k k= + +X U RY  (4)

where

1 1

1

2 2

2, , ,

k

k k

k

k k

k k k k

kJ kJ

kJ

 
      
      
      = = = =
      
      

     
 

 
 
 =
 
 
 

0 0

0 0

0 0

h
x

w
x

X U Y w

x
w

F G

F G
R

F G







 (5)

As
kY and

k are assumed to be independent of each other,

kX shall follow a Gaussian distribution with mean U and

covariance T +RR Φ , as given by (6), where Φ is the

covariance of
k [1][2]. Namely, the joint distribution of all

the feature vectors in class k is a Gaussian distribution.

 1 2(, ...) () (| ,)T

k k kJ k kp p= = +x x x X X U RR ΦN (6)

where

 
 
 =
 
 
 

0 0

0 0

0 0

Σ

Σ
Φ

Σ

 (7)

On the one hand, the between-class factor loading matrix F

and the within-class factor loading matrix G imitate the roles of

the between-class scatter matrix and the within-class scatter

matrix used in Linear Discriminant Analysis (LDA) [21]. On

the other hand, PLDA can be reformulated in the form of

standard Factor Analysis (FA). In this perspective, PLDA can

be treated as a fusion of LDA and FA. When the between-class

latent variable
kh in (1) vanishes, PLDA becomes FA, where

class information disappears. From this perspective, PLDA can

be treated as the generalization of FA.

B. Model Parameter Estimation

In this part, the original formulation for estimating the

parameters of a PLDA model is introduced. The parameters of a

PLDA model can be denoted as { , , , } F G Σ according to (1).

They can also be derived from { , , }U R Φ according to (4),

which are the parameters of a standard factor analysis model

and can be estimated using the Expectation-Maximization (EM)

algorithm [1][22]. The EM algorithm includes an E-step and an

M-step. In the E-step, the conditional expected mean []kE Y

and the conditional expected covariance []T

k kE Y Y are

calculated using (8) and (9).

 1 1 1[] () ()T T

k kE − − −= + −Y I R Φ R R Φ X U (8)

 4

 1 1[] () [] []T T T

k k k kE E E− −= + +Y Y I R Φ R Y Y (9)

In the M-step, { , , }U R Φ are re-estimated based on []kE Y

and []T

k kE Y Y obtained from the E-step. This may not be

obtained from (4) directly, because the dimensionality of
kX

may be different for different classes (because we may have

different numbers of training vectors in different classes).

Fortunately, (1) can also be formulated in another way as given

by (10), where V is the combination of F and G, and kjz is the

concatenation of
kh and kjw .

  
k

kj kj kj kj

kj

 
= + + = + + 

 

h
x F G Vz

w
    (10)

Based on (10), { , , }U R Φ can be derived from { , , }V Σ ,

which can be calculated based on the conditional expectations

[]kjE z and []T

kj kjE z z using (11) ~ (13) [1]. []kjE z and

[]T

kj kjE z z can be obtained from []kE Y and []T

k kE Y Y by

examining the relationship between kjz and
kY given by (10)

and (5). Actually kjz is just a part of
kY , and consequently

[]T

kj kjE z z is a part of []T

k kE Y Y .

1 1

1 K J

kjk jKJ = =
=   x (11)

1

1 1 1 1

() [] []
K J K J

T T

kj kj kj kj

k j k j

E E

−

= = = =

  
= −  

  
 V x z z z (12)

 ()
1 1

1
()() []()

K J
T T

kj kj kj kj

k j

diag E
KJ = =

= − − − −Σ x x V z x   (13)

In brief, the E-step calculates the expectations of the latent

variables using (8) and (9), while the M-step re-estimates the

model parameters using (11) ~ (13).

C. Class Label Prediction

In this part, the way of using a well-trained PLDA model to

predict a testing vector into different classes, is explained. The

fundamental assumption is that, vectors belonging to the same

class should have the same between-class latent variable,

whereas vectors belonging to different classes should have

different between-class latent variables. This idea is illustrated

in Fig. 2. The training vectors in the k-th class share the same

between-class latent variable
kh . In order to determine which

class a testing vector y should belong to, the idea is to determine

which between-class latent variable
kh is the same as the

between-class latent variable h of y.

In [1] and [2], it is assumed that there is only one training

vector for each class, namely the training data are

{
11x ,

21x ,…
1Kx }. The probability of predicting a testing vector

y to class k, is the probability that the between-class latent

variable of y is the same as that of
1kx but different from those

of the other training vectors [2][23]. This can be reflected from

the expression of the joint distribution of y and the training

vectors, as given by (14).

11 21 1 1 1

1,

1 1

1

(, , ... |) (,) ()

(|) ()

K

K k i

i i k

K

k i

i

p k p p

p p

= 

=

=

=





y x x x y x x

y x x

 (14)

Denoting the classified label as ()y , this prediction

criterion can be expressed as (15), which aims at finding the

maximum conditional probability. The core idea is that, if y

indeed belongs to class k, y and
1kx should be jointly

distributed, whereas y and the other training vectors should be

independently distributed.

1 1 1

1

() arg max (|) () arg max (|)
K

k i k
k ki

p p p
=

= =y y x x y x (15)

If there are J training vectors for each class, denoted as

{
11x ,

12x ,…
1Jx ,

21x ,
22x ,…

2Jx ,…
1Kx ,

2Kx ,…
KJx }, the

conditional probability prediction criterion given by (15) can be

extended to (16) [24][25].

 1 2() arg max (| , ...) arg max (|)k k kJ k
k k

p p= =y y x x x y X (16)

As can be seen from (6), the joint distribution of

{
1kx ,

2kx ,…
kJx } is a Gaussian distribution, because they share

the same between-class latent variable
kh . If the testing vector

y is supposed to belong to class k, y should share the same

between-class latent variable with {
1kx ,

2kx ,…
kJx }. This

indicates that, the joint distribution of y and {
1kx ,

2kx ,…
kJx }

is also a Gaussian distribution, as given by (17), with mean U

and covariance T  +R R Φ given by (18).

Fig. 2. The method of predicting a testing vector into a specific class.

 5

1 2(, ... ,) (,) | ,
k T

k k kJ kp p
  

   = = +  
  

X
x x x y X y U R R Φ

y
N (17)

where

 , ,

  
  

       = = =         
 
  

0

0 0

0

0 0

RU Φ
U R Φ

Σ

F G


(18)

As both y and
kX follow a Gaussian distribution, the

conditional distribution of y given
kX is also a Gaussian

distribution, which can be derived from the joint distribution

given by (17). As both the mean U and the covariance
T  +R R Φ are block matrices, they can be partitioned in the

form of matrix blocks, as given by (19) [25].

 ,
y yy yXT

Xy XXX

   
   = + =   

  

U Φ Φ
U R R Φ

Φ ΦU
 (19)

where

,

,

,

y X

T T T T T

yy yX

T T T

yy

T T T

yy

Xy XX T T

yy

T

= =

 = + + =  

   
   
   = =
   
   
      

U U U

Φ FF GG Σ Φ FF FF FF

FF Φ FF FF

FF FF Φ FF
Φ Φ

FF FF Φ

FF



(20)

Based on the above partition, the conditional probability of y

given
kX can be calculated using (21), where |y XU and |y XΦ

are the conditional mean and the conditional covariance [26].

| |

1 1

(|) (| ,)

(| (),)

k y X y X

y yX XX k X yy yX XX Xy

p

− −

=

= + − −

y X y U Φ

y U Φ Φ X U Φ Φ Φ Φ

N

N
(21)

III. SCALABLE FORMULATION OF PLDA

Since the original formulations in the model parameter

estimation stage and the class label prediction stage require

inverting large matrices whose size is proportional to the

number of training data in each class, they are not suitable for

handling large numbers of training data. It is sometimes even

infeasible to do the matrix inversion operation if the matrix size

exceeds the memory space. Therefore, this section introduces

and explains the scalable formulations for the model parameter

estimation stage and the class label prediction stage. The

scalable formulations enable a PLDA model to do the

classification efficiently with many training data.

A. Model Parameter Estimation

In this part, the scalable formulation for model parameter

estimation is introduced, which is based on [19]. The core idea

is to transform the large-size matrix inversion operation into

several small-size matrix inversion operations, in a

mathematically equivalent way.

In the stage of model parameter estimation, the EM

algorithm is used. In the original formulation, the E-step

requires inverting a large matrix 1T −+I R Φ R , as can be seen

from (8) and (9). The size of matrix R is proportional to the

dimensionality and the quantity of the training vectors in a class,

as can be seen from (5), making finding the inverse of
1T −+I R Φ R difficult or even infeasible if the quantity of

training vectors is large. A scalable formulation for estimating

the model parameters has been proposed [19], which partitions
1T −+I R Φ R into a block matrix and then utilizes the trick of

partitioned matrix inversion [26].

In the original formulation, the conditional expectations

[]kE Y and []T

k kE Y Y need to be computed in the E-step; while

in the scalable formulation, the conditional expectations []kjE z

and []T

kj kjE z z need to be computed in the E-step, as given by

(22) and (23) [19]. The M-step remains unchanged. As the sizes

of the matrices involved in computation are independent of the

quantity of the training vectors, as can be seen from (24), this

scalable formulation is more efficient in handling many

training data.

1 1

1

1 1

[] () ()
[]

[] () []

JT T T

k kjj
kj

T
kj

kj k

E
E

E E

− −

=

− −

 − − 
 = = 
 − −   

h MF Σ MΛ G Σ x
z

w L G Σ x Λ h




 (22)

1

[] [] []
T

T T

kj kj kj kjT
E E E

−

 −
= + 

− + 

M MΛ
z z z z

ΛM L ΛMΛ
 (23)

where

()

1

1 1

1
1()

T

T

TJ

−

− −

−
−

= +

=

= + −

L I G Σ G

Λ L G Σ F

M I F Σ F GΛ

 (24)

B. Class Label Prediction

In this part, the scalable formulations for predicting the class

label of a testing feature vector are introduced and explained.

The core idea is to estimate a class-specific probability with

respect to each class, and then the class label is predicted by

finding the class having the highest class-specific probability

among all.

In the stage of class label prediction, there can be different

prediction criteria. For example, for the conditional probability

criterion, prediction is made by calculating the conditional

probability (|)kp y X with respect to each class. As can be

 6

seen from (21), both the conditional mean |y XU and the

conditional covariance |y XΦ require inverting a large matrix

XXΦ . The size of
XXΦ is proportional to the dimensionality

and the quantity of the training vectors in a class, as can be seen

from (20), making the inverting process difficult or even

infeasible if there are many training vectors.

Besides of the conditional probability prediction criterion,

we can also employ the joint probability prediction criterion, as

given by (25).

 1 2() arg max (, , ...) arg max (,)k k kJ k
k k

p p= =y y x x x y X (25)

According to (17), the joint probability can be calculated as

given by (26), where D is the dimensionality of a feature vector

and J is the number of training vectors in class k. As can be seen,

the determinant and the inverse of the covariance T  +R R Φ

are also difficult to calculate directly.

1/2

(1) /2

1

(,) (,) | ,

1

(2)

1
exp ()

2

k T

k k

J D T

T

k kT

p p

 +

−

  
   = = +  

  

=
  +

 − −   
    − +    − −    

 

X
y X X y U R R Φ

y

R R Φ

X U X U
R R Φ

y y

N

 (26)

In the following, we provide the scalable formulations for the

above-mentioned conditional probability prediction criterion

and the joint probability prediction criterion, such that the sizes

of the matrices involved in computation are independent of the

quantity of the training vectors.

We also provide several pairwise probability-based

prediction criteria, such as the pairwise conditional probability

criteria and the pairwise joint probability criteria. The pairwise

probability is the probability between the testing vector and a

training vector, such as the pairwise conditional probability

(|)kjp y x and the pairwise joint probability (,)kjp y x , instead

of the probability between the testing vector and all the training

vectors. The pairwise probability-based prediction criteria also

make the computation scalable, as the computation of each

pairwise probability is efficient. However, if there are many

training data, the increased numbers of pairwise probability

computation will lead to increased total computation time.

Different prediction criteria are also illustrated in Fig. 3.

1) Conditional Probability Prediction Criterion (OrdinCond)

We name this criterion as Ordinary Conditional (OrdinCond).

For this criterion, the major difficulty is the inverse of
XXΦ .

Fortunately,
XXΦ is a block matrix possessing a very special

structure, as can be seen from (20). The inverse should also be a

block matrix with the structure as given by (27), where we use a

new symbol
J to represent

XXΦ , ()J
P and ()JQ are

symmetric matrices, and the superscript and subscript J denotes

the number of matrix blocks in
J .

1

() () ()

() () ()

1

() () ()

1

T T J J J

yy

T T J J J

yy

XX T T J J J

yy

J

−

−

−

   
   
   = =
   
   
      

=

Φ FF FF P Q Q

FF Φ FF Q P Q
Φ

FF FF Φ Q Q P



(27)

It can be shown that, ()J
P and ()JQ have the expressions as

given by (28) [25]. Detailed derivations can be found in the

appendix.

()
1

() 1

() 1 ()

(1)

(1)

J T T T T

J T J

T T

J

J

−
−

−

= + + − −

= −

= + + −

P FF GG FF W FF

Q W FF P

W GG FF





 (28)

Having the inverse of
XXΦ , the conditional mean |y XU and

the conditional covariance |y XΦ can be calculated in terms of

()J
P and ()JQ , as given by (29) and (30).

()

1

|

() ()

1

() ()

() ()

1

()

(1) ()

y X y yX XX k X

J J

k

T T J J

kJ

JT J T J

kjj
J

−

=

= + −

  − 
    = +     
   −  

= + + − −

U U Φ Φ X U

P Q x

FF FF Q P

x

FF P FF Q x







 

 (29)

() ()

1

|

() ()

() ()

() ()(1)

y X yy yX XX Xy

J J T

T T J J

yy

T

T T T J T J TJ J

−= −

   
   

 = −     
   
   

= + + − + −

Φ Φ Φ Φ Φ

P Q FF

Φ FF FF Q P

FF

FF GG Σ FF P FF Q FF

(30)

Then, the prediction can be made by finding the class with
Fig. 3. Different prediction criteria.

 7

the highest conditional probability, as given by (31).

| |() arg max (|) arg max (| ,)k y X y X

k k

p= =y y X y U ΦN (31)

2) Joint Probability Prediction Criterion (OrdinJoint)

We name this criterion as Ordinary Joint (OrdinJoint). For

this criterion, the major difficulty is the determinant and the

inverse of the joint covariance T  +R R Φ , as can be seen from

(26). Fortunately, T  +R R Φ is also a block matrix possessing

a similar structure to
XXΦ . Its determinant is namely 1J + ,

which can be derived using the induction method, as given by

(32). Detailed derivations can be found in the appendix.

 ()() ()

1 (1)T J J T

J yy JJ J+ = − + −  Φ FF P Q FF (32)

The exponential term in (26) can be derived using the fact

that 1

T

J +
  +R R Φ = and the result in (27). The prediction

can then be made by finding the class with the highest joint

probability, as given by (33). Detailed derivations for ()k y

can be found in the appendix.

1/2(1) /2

1

() arg max (,) arg max | ,

()1
arg max exp

2(2)

k T

k
k k

k

J D
k

J

p

y

 +

+

  
   = = +  

  

 
= − 

 

X
y y X U R R Φ

y
N



 (33)

where

(1) (1)

(1) (1)

()

() () () ()

2 () () () ()

k

T J T J

kj kj kj ki

j i j i

T J T J

kj

j

y

+ +



+ +

 =

− − + − −

+ − − + − −

 



x P x x Q x

x Q y y P y

   

   

 (34)

3) Pairwise Probability Prediction Criterion

Besides of calculating the conditional probability (|)kp y X

or the joint probability (,)kp y X with respect to all the training

vectors in a class, it is also feasible to calculate the pairwise

conditional probability (|)kjp y x or the pairwise joint

probability (,)kjp y x with respect to each training vector in a

class, and then combine these pairwise probabilities for all the

training vectors. (|)kjp y x and (,)kjp y x are given by (35)

and (36), similar to (21) and (26).

1 1(|) (| (),)T T T

kj y yy kj yy yyp − −= + − −y x y U FF Φ x Φ FF Φ FFN 

 (35)

 (,) (,) | ,

T

yykj

kj kj T
y yy

p p
    

= =             

Φ FFx
y x x y

U FF Φy
N


(36)

Having found the pairwise probabilities for all pairs of y and

kjx , the prediction can then be made according to the following

criteria. In the following expressions,
kJ is used to denote the

number of training vectors in class k, instead of J, as there can

be different numbers of training vectors in different classes.

Criteria a) ~ f) are named as ArithCond, GeoCond, CmaxCond,

ArithJoint, GeoJoint, and CmaxJoint respectively.

a) Arithmetic Mean of Pairwise Conditional (ArithCond)

Prediction is made by finding the class with the highest

arithmetic mean of the pairwise conditional probabilities.

1

1
() arg max (|)

kJ

kj
k jk

p
J =

= y y x (37)

b) Geometric Mean of Pairwise Conditional (GeoCond)

Prediction is made by finding the class with the highest

geometric mean of the pairwise conditional probabilities.

1

1
() arg max ln (|)

kJ

kj
k jk

p
J =

= y y x (38)

c) Cmax Pairwise Conditional (CmaxCond)

Prediction is made by finding the most frequently occurred

class among C maximum pairwise conditional probabilities, as

given by (39), where
ix represents a training vector, {

ip } is a

sequence of (|)ip y x sorted in descending order, and ()k ip1 is

the indicator function given by (40). This prediction criterion is

similar to K Nearest Neighbor (KNN), which counts the

occurrence of different classes among K minimum distances.

1

() arg max ()
C

k i
k i

p
=

= 1y (39)

where

1

1 1

{ | 1,2... } { (|) | 1, 2... } . .

1,
()

0,

K K

i k i k i i

k k

i

k i

p i J p i J s t p p

class k
p

otherwise

+

= =

  = = = 


 = 



 

1

y x

x
 (40)

d) Arithmetic Mean of Pairwise Joint (ArithJoint)

Prediction is made by finding the class with the highest

arithmetic mean of the pairwise joint probabilities.

1

1
() arg max (,)

kJ

kj
k jk

p
J =

= y y x (41)

 8

e) Geometric Mean of Pairwise Joint (GeoJoint)

Prediction is made by finding the class with the highest

geometric mean of the pairwise joint probabilities.

1

1
() arg max ln (,)

kJ

kj
k jk

p
J =

= y y x (42)

f) Cmax Pairwise Joint (CmaxJoint)

Prediction is made by finding the most frequently occurred

class among C maximum pairwise joint probabilities, as given

by (43), where
ix represents a training vector, {

ip } is a

sequence of (,)ip y x sorted in descending order, and ()k ip1 is

the indicator function, as given by (44).

1

() arg max ()
C

k i
k i

p
=

= 1y (43)

where

1

1 1

{ | 1,2... } { (,) | 1,2... } . .

1,
()

0,

K K

i k i k i i

k k

i

k i

p i J p i J s t p p

class k
p

otherwise

+

= =

  = = = 


 = 



 

1

y x

x
 (44)

C. Scalability and Robustness Analysis

In this part, the scalability of the scalable formulations is

analyzed, including both the model parameter estimation stage

and the class label prediction stage. The properties of different

class label prediction criteria are also briefly analyzed.

Suppose there are J training vectors in class k, the

dimensionality of a feature vector kjx is D×1, and the

dimensionality of the latent variables
kh and kjw is H×1. Then

the size of the factor loading matrices F and G is D×H, and the

size of Σ is D×D.

In the original formulation for model parameter estimation,

in the E-step given by (8) and (9), the inverse of 1T −+I R Φ R

needs to be computed. The size of Φ is JD×JD, and the size of

R is JD×(J+1)H, resulting in the size of 1T −+I R Φ R to be

(J+1)H×(J+1)H, which could be too large to be inverted if J is

large.

Fortunately, in the scalable formulation, as given by (22) and

(23), the computation is based on F, G and Σ, whose sizes are

independent of J.

In the original formulation for class label prediction, the

conditional probability criterion given by (21) requires

computing the inverse of
XXΦ , whose size is JD×JD, and the

joint probability criterion given by (26) requires computing the

determinant and the inverse of T  +R R Φ , whose size is

(J+1)D×(J+1)D. This dependency on J makes the computation

inefficient, and sometimes even infeasible.

Fortunately, we have the scalable formulation for the

conditional probability criterion as given by (29) and (30), and

the scalable formulation for the joint probability criterion as

given by (32) and (34), where the computation is based on F, G,

Σ, P and Q, whose sizes are independent of J. Furthermore, we

also have several pairwise probability-based prediction criteria

as given by (37) ~ (44), where the computation is based on the

pairwise conditional probability given by (35), or the pairwise

joint probability given by (36), which is also independent of J.

In fact, the pairwise probability-based criteria can be more

robust than the conditional probability or the joint probability

criterion, in the case where the feature vectors do not follow

Gaussian distributions. This situation usually occurs when the

dimensionality of the feature vector is too high. The pairwise

probability merely assumes that a pair of feature vectors, e.g. y

and kjx , follow a Gaussian distribution, whereas the

conditional probability or the joint probability criterion

assumes that a group of feature vectors, e.g. y and {
1kx ,

2kx …
kJx }, follow a Gaussian distribution, which is quite a

strong assumption and may fail when the dimensionality of the

feature vector is much higher than the number of training

vectors. In particular, CmaxCond and CmaxJoint prediction

criteria are supposed to be more robust than ArithCond,

GeoCond, ArithJoint and GeoJoint, since only a portion of

“important” training vectors are involved in prediction.

However, the computation of the conditional probability and

the joint probability criteria can be more efficient than the

pairwise probability-based criteria, as the expected mean and

the expected covariance of the former can be computed for only

once, whereas the latter requires the computation of the

pairwise probability with respect to each pair of training and

testing vectors, whose computation complexity is proportional

to the number of training vectors.

IV. PLDA FOR FEATURE TRANSFORMATION

Besides of directly using PLDA for class label prediction, it

is feasible to use PLDA to extract feature vectors. As can be

seen from (1), each feature vector kjx is associated with a

between-class latent variable
kh , a within-class latent variable

kjw , and a noise term kj . For prediction purposes,
kh seems

to be the most important latent variable, as it carries the class

information. If we can determine the
kh of a feature vector y,

we may then immediately know which class the vector y should

belong to. However, it is difficult to obtain the exact value of

kh . Fortunately, the posterior mean of
kh can be estimated

using (22), meaning that we may approximate
kh using []kE h .

Nevertheless, for a feature vector whose class label is unknown,

(22) is still infeasible. In order to estimate the posterior mean

[]yE h for y, we may adopt the approximation given by (45),

which conducts the estimation using only the given feature

vector y. Noted that, parameter matrix M is slightly modified.

 1 1[] ()()T T T

yE − −= − −h MF Σ MΛ G Σ y  (45)

 9

where

 ()
1

1()T
−

−= + −M I F Σ F GΛ (46)

By this means, a feature vector y is mapped to another

feature space and becomes []yE h . Ideally, this mapped vector

should be more discriminative than y , as in the model

assumption of PLDA, []yE h should carry class information. In

addition, []yE h can be even more Gaussian than y , as in a

PLDA model, the between-class latent variable h is assumed

to follow a Gaussian distribution. In addition, the

dimensionality of []yE h can be lower or higher than y , which

provides more flexibility.

V. ACOUSTIC SIGNAL FEATURE EXTRACTION

Each acoustic sample is first framed using a Hamming

window with 40ms length and 20ms shift. Then the

Mel-frequency Cepstral Coefficients (MFCC) [27] are

calculated for each frame, yielding a 20-dimension MFCC

vector for each frame. Suppose an acoustic sample s is

represented by T MFCC vectors, denoted as {
1x ,

2x …
Tx },

where
tx is the t-th MFCC vector. These MFCC vectors are

then used to form a single feature vector. The single feature

vector representing the whole acoustic sample can be an

i-vector [28], which is based on a Universal Background Model

(UBM) and trained using the EM algorithm [29]. The UBM is

essentially a Gaussian Mixture Model (GMM), which is

constructed using the mixture splitting technique [30] and the

EM algorithm [31]. If the dimensionality of an MFCC vector is

D×1, and the GMM-based UBM has M mixture components,

then the dimensionality of i-vector will be DM×1.

 Besides of forming a single vector representing an acoustic

sample, the MFCC vectors can also be directly used for

classification, for example, when using class-specific GMMs.

In this way, one GMM is trained using the MFCC vectors of all

the acoustic samples in a class, which leads to a total of K

GMMs for K classes. The prediction is then made by finding

the maximum likelihood among all the GMMs [32].

A general acoustic signal classification system is illustrated

in Fig. 4. Since the length of an acoustic sample can be different,

it is first divided into equal-length short-time frames to extract

the frame-level feature vectors, such as the MFCC vectors.

Having obtained the MFCC vectors, we can then use a classifier,

e.g., GMM, to make predictions for each MFCC vector. The

predicted labels can then be combined based on majority voting

or maximum likelihood. These MFCC vectors can also be used

to produce a single feature vector representing the whole

sample, e.g., i-vector. A classifier, such as PLDA or SVM, can

then be used to predict the i-vector into a specific class.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we conduct experiments on speaker

recognition and acoustic scene classification. For speaker

recognition, part of Kingline081 [33] American English speech

corpus is used, which consists of 20 speakers’ speeches. The

speeches are recorded in three different sessions, with each

session consisting of about 100 speech samples for each

speaker. The speeches of the first two sessions are used to form

a training set, while the third session is used to form a testing set.

This yields a training set consisting of 3997 speech samples and

a testing set consisting of 1998 speech samples. Each sample

lasts for 2s ~ 5s. For acoustic scene classification, DCASE2013

[34] is used, which consists of 10 acoustic scenes. Each

acoustic recording lasts for 30s. The public dataset of

DCASE2013 is used for training, and for each acoustic scene,

there are 10 acoustic samples. The private dataset of

DCASE2013 is used for testing, and for each acoustic scene,

there are 10 acoustic samples. This yields a training set of 100

acoustic samples and a testing set of 100 acoustic samples.

Details are also summarized in Table I.

For model parameters of PLDA, the factor loading matrices

F and G , and the noise covariance Σ, are initialized to have

all ones on the principal diagonal and zeros on other positions.

Suppose the dimensionality of a feature vector kjx is D×1, and

the dimensionality of the latent variables
kh and kjw is H×1,

then the size of the factor loading matrices F and G is D×H. In

the case where H>D, namely the number of columns is larger

than the number of rows in the factor loading matrices, the

column vectors starting from the (D+1)-th column are

generated as a linear combination of the first D columns, where

Fig. 4. A general classification system for acoustic signals.

TABLE I

ACOUSTIC SIGNAL DATASET

Dataset Number

of classes

Number of samples Duration of

each sample Training Testing

Kingline081 20 3997 1998 2s ~ 5s

DCASE2013 10 100 100 30s

 10

the coefficients are generated based on the uniform distribution.

The randomly generated column vectors are then normalized to

have unit length. For simplicity, the dimensionality of
kh and

kjw is kept being the same. The training data is also used to

construct the UBM to calculate i-vector.

A. Effects of Different Prediction Criteria for PLDA

In this part, we compare the effects of different prediction

criteria, including those based on ordinary and pairwise

conditional probabilities and those based on ordinary and

pairwise joint probabilities. I-vector is calculated using 5 EM

iterations, based on a 16-mixture UBM. The dimensionality of

i-vector is 320×1. The model parameters of PLDA is estimated

by running the EM algorithm for 3 iterations. The

dimensionality of the latent variables is set to be the same as

that of i-vector. Speaker recognition results on Kingline081 are

shown in Fig. 5, with respect to different C values (varying

from 1 to 100) used in CmaxCond and CmaxJoint criteria.

It can be seen from Fig. 5 that the joint probability-based

criteria give rather worse performance than the conditional

probability-based criteria. The potential reason behind can be

explained using (14). The conditional probability-based criteria

originate from the idea that, if a testing vector y belongs to class

k, y and the training vectors in class k are supposed to be jointly

distributed, whereas y and the training vectors in other classes

are supposed to be independently distributed. From this

perspective, the joint probability-based criteria merely expect

that, if y belongs to class k, y and the training vectors in class k

should be jointly distributed, but do not expect any relationship

between y and the training vectors in other classes. This makes

the joint probability-based criteria less discriminative than the

conditional probability-based criteria.

It is also observed that, the CmaxCond and the CmaxJoint

criteria can be slightly better than the OrdinCond and the

OrdinJoint criteria, as the former two select several best

matched feature vectors in the training set (i.e., the training

vectors giving the first several highest pairwise probabilities) to

make predictions, instead of using all the training vectors, in

which way only a portion of “important” training vectors are

involved in making predictions. Nevertheless, the performance

of the CmaxCond and CmaxJoint tend to be the same as

OrdinCond and OrdinJoint as C increases (i.e., the number of

training vectors involved in predictions increases). However,

the pairwise probability-based criteria (ArithCond, GeoCond,

CmaxCond, ArithJoint, GeoJoint, CmaxJoint) form a

non-parametric model, whose computation time is proportional

to the number of training data, whereas the ordinary

probability-based criteria (OrdinCond, OrdinJoint) form a

parametric model, meaning that the model parameters can be

pre-computed and thus more efficient for a large number of

training data.

Besides, the GeoCond and the GeoJoint criteria are better

than the ArithCond and the ArithJoint. This indicates that the

geometric mean seems better than the arithmetic mean. This

implies that the pairwise probabilities tend to be independent of

each other and follow Gaussian distributions. Mathematically,

for a set of vectors, the geometric mean is always smaller than

the arithmetic mean, and the equality holds if and only if the

vectors are the same. This means the arithmetic mean can be

driven to be much larger for a set of feature vectors if some of

the pairwise probabilities are highly deviated from the center.

From this perspective, the geometric mean should be more

robust than the arithmetic mean.

B. Effects of Feature Dimensionality: The Pitfall

In this part, we investigate the performance of PLDA when

the dimensionality of i-vector changes, and compare it with

SVM. We first consider the speaker recognition task.

Experimental results on Kingline081 are shown in Fig. 6. The

prediction criterion is OrdinCond. The dimensionality of the

latent variables is set to be the same as i-vector. SVM is

implemented using LIBSVM [35]. The number of mixture

components in the UBM varies from 2 to 128, yielding the

i-vectors with the dimensionality varying from 40×1 to 2560×1.

It is obvious that PLDA significantly outperforms SVM,

demonstrating its superiority and great potential.

The performance of PLDA and SVM may improve as the

dimensionality of i-vector increases, however, it tends to

saturate and ceases improving if the dimensionality is large

enough (e.g., 2560×1). This also shows the importance of the

feature dimensionality for PLDA to be effective. According to

(1), in a PLDA model, it is assumed that the feature vector can

be expressed as the affine transformation of the latent variables.

81

82

83

84

85

86

87

88

1 11 21 31 41 51 61 71 81 91

A
cc

u
ra

c
y
 (

%
)

C (for Cmax pairwise conditional probability)

Kingline (i-vector based on 16-mixture UBM)

OrdinCond

ArithCond

GeoCond

CmaxCond

0

2

4

6

8

10

12

14

16

18

1 11 21 31 41 51 61 71 81 91

A
cc

u
ra

c
y
 (

%
)

C (for Cmax pairwise joint probability)

Kingline (i-vector based on 16-mixture UBM)

OrdinJoint

ArithJoint

GeoJoint

CmaxJoint

(a) (b)

Fig. 5. Speaker recognition results using i-vector and PLDA with different prediction criteria. (a) PLDA with conditional probability-based prediction criteria.

(b) PLDA with joint probability-based prediction criteria.

 11

This assumption implicitly presumes that the feature vector has

a relatively complicated structure and carries a relatively large

amount of information, which requires its dimensionality to be

high enough. Increasing the number of EM iterations in training

the PLDA model tends to increase its performance. Basically,

several EM iterations are already good enough.

However, when we consider the acoustic scene classification

task, PLDA may not work very well. Experimental results on

DCASE2013 are shown in Fig. 7. The prediction criteria

include OrdinCond and CmaxCond. As can be seen from Fig. 7,

PLDA just slightly outperforms SVM when the dimensionality

of i-vector is very low (40×1). The performance of PLDA

degrades significantly as the increase of the dimensionality,

which is on the contrary of the trend of SVM whose

performance improves as the increase of the dimensionality.

This is probably because the training data are inadequate. For

DCASE2013, there are only 100 training acoustic samples,

with 10 for each acoustic scene. It is difficult to estimate a

conditional probability using only 10 training vectors whose

dimensionality can be as high as 2560×1. Fig. 8 shows how the

performance of PLDA is affected by different EM iterations

during model parameter estimation. It seems increasing the

number of EM iterations tends to degrade the performance,

which implies that the model assumption of PLDA is actually

violated. This performance degradation implies that, for PLDA

to be effectively used, enough training data are necessary, so

that the Gaussian assumption involved in using a PLDA model

can be approximately satisfied.

Briefly speaking, in order to effectively employ PLDA for

class label prediction, it is necessary to have 1)

high-dimensional feature vectors such that the latent variable

model assumption is satisfied, and 2) an enough number of

training data such that the Gaussian assumption is satisfied.

These two requirements seem to be the limitation of applying

PLDA, but they also endow PLDA with a great potential when

the requirements are fulfilled.

C. PLDA for Feature Transformation

In this part, we investigate an interesting application of

PLDA, i.e., using PLDA for feature transformation. The MFCC

vectors are used as the raw feature vector, and GMM is used as

the classifier. A PLDA model is trained using 1 EM iteration,

and then the between-class latent variable is used as the

transformed vector according to (45). Suppose the

dimensionality of an MFCC vector is D×1, and the

dimensionality of the between-class latent variable is H×1, then

the transformed vector has a dimensionality of H×1. If H>D,

the dimensionality of the original MFCC vector will be

expanded, which will then embed more information. At the

same time, this dimensionality expansion effect does not

violate too much the Gaussian assumption of the MFCC vectors,

because the latent variables in a PLDA model also follow

Gaussian distributions.

When the feature vector is the MFCC vector whose

dimensionality is 20×1, directly using PLDA for class label

prediction does not work well, as shown in Fig. 9 and Fig. 10.

In this scenario, PLDA uses the same maximum likelihood

prediction criterion as GMM, where the probability is

computed using the OrdinCond criterion. The reason is that, an

MFCC vector does not carry much information, and therefore

does not conform to the latent variable model assumption of

PLDA given by (1).

Faced with this low-dimensionality issue, we may apply

PLDA for feature transformation and dimensionality expansion.

Experimental results on Kingline081 and DCASE2013 are

shown in Fig. 11 and Fig. 12 respectively. The expansion ratio

H/D varies from 1 to 3. It can be seen from Fig. 11 that,

increasing the value of H tends to improve the performance of

the transformed vector on using the GMM classifier. This

45

55

65

75

85

95

40 80 160 320 640 1280 2560

A
cc

u
ra

cy
 (

%
)

Dimensionality of i-vector

Kingline (PLDA vs. SVM)

i-vector + PLDA (EM=1)

i-vector + PLDA (EM=2)

i-vector + PLDA (EM=3)

i-vector + SVM

Fig. 6. Effects of the dimensionality of i-vector using Kingline081 dataset.

30

35

40

45

50

55

60

65

70

75

80

40 80 160 320 640 1280 2560

A
cc

u
ra

cy
 (

%
)

Dimensionality of i-vector

DCASE (PLDA vs. SVM)

i-vector + PLDA

(OrdinCond,EM=1)

i-vector + PLDA

(CmaxCond,C=1,EM=1)

i-vector + PLDA

(CmaxCond,C=3,EM=1)

i-vector + PLDA

(CmaxCond,C=5,EM=1)

i-vector + SVM

Fig. 7. Effects of the dimensionality of i-vector using DCASE2013 dataset.

0

10

20

30

40

50

60

70

80

40 80 160 320 640 1280 2560

A
cc

u
ra

cy
 (

%
)

Dimensionality of i-vector

DCASE (PLDA)

i-vector + PLDA

(OrdinCond,EM=1)

i-vector + PLDA

(CmaxCond,C=1,EM=1)

i-vector + PLDA

(OrdinCond,EM=2)

i-vector + PLDA

(CmaxCond,C=1,EM=2)

i-vector + PLDA

(OrdinCond,EM=3)

i-vector + PLDA

(CmaxCond,C=1,EM=3)

Fig. 8. PLDA with different EM iterations using DCASE2013 dataset.

 12

demonstrates the effectiveness of using PLDA for feature

dimensionality expansion. It is also noted that the transformed

vector still follows a Gaussian distribution, as the performance

of GMM improves as the number of mixture components

increases. From Fig. 12, we may observe that, H=D gives the

best performance. It seems increasing the dimensionality too

much does not offer any help. Nevertheless, the transformed

vector seems more Gaussian than the original MFCC vector, as

the performance of GMM tends to improve with the increase of

the number of mixture components. However, in general, the

performance of GMM does not always improve with the

increase of the number of mixture components, implying the

MFCC vectors may not follow Gaussian distributions in this

scenario. According to the model assumption of PLDA, the

between-class latent variable is supposed to follow a Gaussian

distribution theoretically. However, the transformed vector is

only the expected value of the latent variable, which may not

exactly follow the Gaussian distribution. In addition, the

characteristics of the transformed vector also highly depend on

the characteristics of the raw feature vector, i.e., the MFCC

vector in this scenario.

Besides of directly using the low-dimensional MFCC vector,

we may also adopt a neighboring feature concatenation strategy

to increase the dimensionality of the raw feature vector.

Suppose an acoustic sample is represented by T MFCC vectors

denoted as {
1x ,

2x …
Tx }, the t-th concatenated MFCC vector

is then given by (1) /2 1 (1) /2 2 (1) /2

T
T T T

t t L t L t L L− + − + − +
  =  x x x x ,

where L is the concatenation length and L/2 is the concatenation

shift. If the dimensionality of an MFCC vector is D×1, the

dimensionality of a concatenated vector will be DL×1. With the

help of the concatenation operation, the raw feature vector has a

higher dimensionality and thus may carry more information.

However, the higher the dimensionality, the higher the chance

of violating the Gaussian assumption. In this case, we may

apply PLDA for dimensionality reduction.

Experimental results on DCASE2013 using the concatenated

vector are shown in Fig. 13. The classifier is the GMM with 128

mixture components. The concatenation length L varies from 2

to 32 (i.e., the dimensionality D of the concatenated vector

varies from 40×1 to 640×1), and the ratio H/D varies from 0.25

to 1. It can be seen from Fig. 13 that, in general the performance

of GMM degrades with the increase of the feature

dimensionality, as the higher the dimensionality, the higher the

chance of violating the Gaussian distribution assumption.

Nevertheless, by applying PLDA to the raw concatenated

vectors to reduce the dimensionality (i.e., H=0.25D and

H=0.5D) or simply keep the same dimensionality (i.e., H=D),

the transformed vectors can have improved performance. This

demonstrates the capability of PLDA as a dimensionality

reduction technique.

When applying PLDA for feature transformation, it

inevitably introduces extra time consumption costs. In Fig. 14,

40

45

50

55

60

65

70

75

80

2 4 8 16 32 64 128 256

A
cc

u
ra

cy
 (

%
)

Number of mixture components in GMM

Kingline (PLDA vs. GMM)

MFCC + GMM

MFCC + PLDA (EM=1)

MFCC + PLDA (EM=2)

MFCC + PLDA (EM=3)

Fig. 9. PLDA with MFCC vector using Kingline081 dataset.

60

65

70

75

80

85

90

2 4 8 16 32 64 128 256

A
cc

u
ra

cy
 (

%
)

Number of mixture components in GMM

DCASE (PLDA vs. GMM)

MFCC + GMM

MFCC + PLDA (EM=1)

MFCC + PLDA (EM=2)

MFCC + PLDA (EM=3)

Fig. 10. PLDA with MFCC vector using DCASE2013 dataset.

50

55

60

65

70

75

80

85

90

2 4 8 16 32 64 128 256

A
cc

u
ra

cy
 (

%
)

Number of mixture components in GMM

Kingline (MFCC + PLDA + GMM)

MFCC + GMM

MFCC + PLDA (H=D) +

GMM

MFCC + PLDA (H=2D)

+ GMM

MFCC + PLDA (H=3D)

+ GMM

Fig. 11. PLDA for dimensionality expansion using Kingline081 dataset.

70

72

74

76

78

80

82

84

86

88

2 4 8 16 32 64 128 256

A
cc

u
ra

cy
 (

%
)

Number of mixture components in GMM

DCASE (MFCC + PLDA + GMM)

MFCC + GMM

MFCC + PLDA (H=D) +

GMM

MFCC + PLDA (H=2D)

+ GMM

MFCC + PLDA (H=3D)

+ GMM

Fig. 12. PLDA for dimensionality expansion using DCASE2013 dataset.

 13

we record the computation time of applying PLDA to the

concatenated MFCC vectors. The dimensionality of the

concatenated vector varies from 20×1 to 160×1, and the ratio

H/D varies from 0.5 to 2. Because of the concatenation

operation, the number of training vectors (equal to the number

of testing vectors) varies from 149900 to 37300. We also record

the computation time of constructing the 16-mixture GMM

using the PLDA-based transformed vectors, just as a reference.

It can be seen that, the computation of PLDA is very efficient

when the feature dimensionality is low. However, the

computational efficiency degrades with the increase of the

feature dimensionality. Based on the formulations of PLDA,

the computational complexity is proportional to the number of

training data as well as the feature dimensionality. Therefore,

the more the training data or the higher the feature

dimensionality, the higher the time consumption will be.

Nevertheless, when the dimensionality is not very high, the

extra computation costs introduced by PLDA-based feature

transformation is negligible as compared to the computation

costs introduced by constructing GMM.

From these experimental results, it is observed that the

PLDA-based feature transformation technique may offer some

improvements over the MFCC vector, and the transformed

vector can have a higher or lower dimensionality and at the

same time keep approximately following the Gaussian

distribution. The PLDA-based transformed vector may then be

used for different purposes in place of MFCC, for example, to

construct i-vector or other types of supervectors such as

Gaussian Supervector (GSV) [36]. PLDA may also be used to

perform dimensionality reduction in place of LDA or Nuisance

Attribute Projection (NAP) [37], working on i-vector or GSV

instead of MFCC. This provides a new way of applying PLDA

for acoustic signal classification tasks, besides of simply as a

classification model.

D. Potentiality of PLDA

In this part, we briefly discuss the potential applications of

PLDA and briefly compare PLDA with some other classic

methods.

The earlier application of PLDA is face verification and

speaker verification, whose objective is to compare whether

two feature vectors share the same between-class latent

variable (i.e., whether the two feature vectors belong to the

same class). This target can be achieved by computing the

conditional probability [2] or using the likelihood ratio as a

similarity score [19].

A verification task can be treated as a special case of a

classification task, which usually involves the comparison

between more than two feature vectors. With the scalable

formulations proposed in this research, applying PLDA as a

general-purpose classifier is feasible. There are also different

prediction criteria to choose, such as the conditional probability

and the pairwise conditional probability.

On the one hand, PLDA is a probabilistic model that can be

used as a probability estimator. On the other hand, PLDA is

also a latent variable model, which consists of latent variables.

The estimated value of these latent variables can be used as new

feature vectors, which enables PLDA to be used as a feature

transformation technique.

A closely related feature transformation technique is Fisher

Linear Discriminant Analysis (LDA), as the name implies.

However, there are several differences between them. First, the

model parameters of PLDA are estimated using the EM

algorithm, whereas the model parameters of LDA are based on

eigen-decomposition of the scatter matrices. Second, PLDA

can be directly used for classification purposes as it can

estimate probabilities, whereas LDA is merely a feature

transformation technique and has to work together with an

additional classifier [40][41]. Besides, the dimensionality of the

LDA-based transformed vector cannot be higher than the

original feature dimensionality, whereas the dimensionality of

the PLDA-based transformed vector can be either higher or

lower than the original feature dimensionality, depending on

the size of the factor-loading matrix. Nevertheless, both aim at

capturing the within-class and between-class characteristics,

although in different ways. Therefore, to some extent, PLDA

can be treated as a probabilistic version of LDA.

PLDA is also related to some other classic techniques. As

can be seen from (1), when the dimensionality of the latent

variables kh and kjw becomes zero, the model assumption of

PLDA becomes that of the single Gaussian model. This

indicates that PLDA is the generalization of the single Gaussian

model. If the dimensionality of kh is zero but the

45

50

55

60

65

70

75

80

85

90

95

40 80 160 320 640

A
cc

u
ra

cy
 (

%
)

Dimensionality of concatenated MFCC

DCASE (Concatenated MFCC + PLDA + GMM)

MFCC + GMM

MFCC + PLDA (H=0.25D)

+ GMM

MFCC + PLDA (H=0.5D) +

GMM

MFCC + PLDA (H=D) +

GMM

Fig. 13. PLDA for dimensionality reduction using DCASE2013 dataset.

1

2

4

8

16

32

64

128

256

T
im

e
co

n
su

m
p

ti
o

n
 (

in
 s

ec
o

n
d

)

(Dimensionality, Number of training data)

Time consumption of PLDA for feature

transformation

PLDA (H=0.5D)

GMM (PLDA, H=0.5D)

PLDA (H=D)

GMM (PLDA, H=D)

PLDA (H=2D)

GMM (PLDA, H=2D)

Fig. 14. Time consumption of PLDA-based feature transformation using
DCASE2013 dataset.

 14

dimensionality of kjw is nonzero, PLDA becomes Factor

Analysis (FA). This indicates that PLDA is the generalization

of FA. Since FA has been widely used as a dimensionality

reduction technique [42][43], PLDA will also have such

capability. If the expression of PLDA given by (1) includes

more latent variables, PLDA can be further extended to Joint

Factor Analysis (JFA) [12].

As can be seen from (1), the between-class latent variable kh

carries the class-dependent information, whereas the

within-class latent variable kjw carries the sample-dependent

information. From this perspective, PLDA is a fusion of both

supervised and unsupervised techniques. If the dimensionality

of
kh is higher than that of kjw , PLDA is more supervised; if

the dimensionality of
kh is lower than that of kjw , PLDA is

more unsupervised. This property endows PLDA with more

flexibility. An illustration of the potential applications of PLDA

and its connection with other techniques is shown in Fig. 15.

In the future, we plan to extend the scalable formulations to

the case of Mixture of PLDA (MPLDA). MPLDA is a

collection of multiple PLDA models, which generalizes PLDA

and thus can be more powerful [44][45]. In addition, in analogy

to the relationship between PLDA, single Gaussian model and

FA, MPLDA can be treated as the generalization of GMM and

Mixture of Factor Analyzers (MFA) [46].

VII. CONCLUSION

In this paper, we investigate and try to improve the utility of

PLDA for acoustic signal classification. Our major findings are

summarized as follows.

First, we comprehensively analyze the formulations of

PLDA, and explain the rationale and the core idea behind the

model parameter estimation stage and the class label prediction

stage. We find that, the original formulation of PLDA is

inefficient when the number of training data is large. Therefore,

we propose scalable formulations for PLDA, enabling it to

make predictions efficiently.

In the scalable formulations, we propose different prediction

criteria, which may improve its scalability and robustness.

Some prediction criteria can be quite efficient with a large

number of training data, but may fail if the number of training

data is inadequate. While some prediction criteria can be quite

robust even when the number of training data is limited, but

may be inefficient with a large number of training data. Under

different situations, different prediction criteria should be

chosen, in order to maximize the capability of PLDA.

Second, we investigate the effectiveness of PLDA in

different acoustic signal classification tasks, including speaker

recognition and acoustic scene classification. We observe that,

PLDA may not perform well when the dimensionality of the

feature vector is low. This ineffectiveness also arises when the

number of training data is inadequate, even if the

dimensionality of the feature vector is high. These two

observations may restrict the utility of PLDA in some scenarios,

but they also indicate how to make PLDA effective, i.e., 1) a

high dimensionality and 2) an enough number of training data.

We believe that, understanding both the advantages and the

disadvantages of PLDA may help better apply PLDA for

different purposes.

Third, we introduce a novel application of PLDA, which

applies it as a feature transformation technique. This technique

simply uses the between-class latent variable in the PLDA

model as the transformed vector. This transformed vector can

have either a lower dimensionality or a higher dimensionality,

which makes it more flexible. At the same time, the

transformed vector still approximately follows the Gaussian

distribution, so that in some cases it can be the substitute of

MFCC. It is then promising to combine PLDA with other

classification models as a feature pre-processing technique,

instead of directly using it for class label prediction.

Finally, we discuss the potential applications of PLDA and

its relationship with some classic techniques, such as the single

Gaussian model, LDA, FA and JFA. PLDA can be treated as

the generalization of the single Gaussian model and FA, and the

simplification of JFA. It can also be treated as a probabilistic

version of LDA. The potential extension of PLDA, namely, the

Mixture of PLDA (MPLDA), further generalizes PLDA, GMM

and MFA, and thus may have a wide range of applications and

deserves further exploration.

ACKNOWLEDGMENTS

The work described in this paper was substantially supported

by a grant from The Hong Kong Polytechnic University

(Project Account Code: RUG7).

APPENDICES

A. Supplements to the Conditional Probability

In this part, we derive the expressions of ()J
P and ()JQ

given by (28). By rearranging (27), we have (47).

() () ()

() () ()

() () ()

T T J J J

yy

T T J J J

yy

T T J J J

yy

     
     
     =
     
     
        

0 0

0 0

0 0

IΦ FF FF P Q Q

IFF Φ FF Q P Q

IFF FF Φ Q Q P

 (47)

By equating the block matrices on the left side that produce

I , we obtain (48). By equating the block matrices on the left

Fig. 15. Applications of PLDA and its connection with other techniques.

 15

side that produce 0 , we obtain (49).

 () ()(1)J T J

yy J+ − =Φ P FF Q I (48)

 () () ()(2)J T J T J

yy J+ + − = 0Φ Q FF P FF Q (49)

By expanding yyΦ , (48) and (49) are equivalent to (50) and

(51) respectively. Solving (50) and (51) then gives (28).

 () () ()(1)T T J T JJ+ + + − =FF GG P FF Q I (50)

 () () () ()(2)T T J T J T JJ+ + + + − = 0FF GG Q FF P FF Q (51)

B. Supplements to the Joint Probability

In this part, we derive the expression of the joint probability

(,)kp X y given by (26). We first consider the determinant of

the joint covariance T  +R R Φ . As can be seen from (19),
T  +R R Φ is namely

1J + , which possess a very special

structure. This special structure makes it possible to calculate

the determinant using the induction method, together with the

trick of the determinant of block matrices as given by (52)

[38][39], where 1B ~ 4B are matrix blocks.

1 2 1

1 2 4 3 4

3 4

−= − 
B B

B B B B B
B B

 (52)

The steps of the induction method are described below.

1) Step 1:

 1 1,yy yy= = Φ Φ

2) Step 2:

2

1

1 (1)

2 1 1 1

T

yy

T

T T T T

yy yy

−

 
=  

 

= −  = − 




   

Φ FF

FF

Φ FF FF Φ FF P FF

3) Step 3:

3

2

1

3 2 2

(2) (2)

2(2) (2)

(2) (2)

22 ()

T T

yy

T

T

T

T T

yy T

T

T T

yy T

T T

yy

−

 
 

  =   
  
    

 
 = −   

 

   
 = −     

   

= − + 




  





Φ FF FF

FF

FF

FF
Φ FF FF

FF

P Q FF
Φ FF FF

Q P FF

Φ FF P Q FF

4) Step 4:

4

3

1

4 3 3

(3) (3) (3)

(3) (3) (3)

3

(3) (3) (3)

(3) (3 (2

T T T

yy

T

T

T

T

T T T T

yy

T

T

T T T T

yy

T

T

yy

−

 
 

  =   
  
    

 
 

 = −   
 
 

   
   

 = −     
   
   

= − +




  



Φ FF FF FF

FF

FF

FF

FF

Φ FF FF FF FF

FF

P Q Q FF

Φ FF FF FF Q P Q FF

Q Q P FF

Φ FF P Q
3)

3) T FF

5) Step J+1:

()

1

() ()

1 (1)

T T

yy

T

J

J

T

T J J T

J yy JJ J

+

+

 
 

  =   
  
    

= − + − 




 

Φ FF FF

FF

FF

Φ FF P Q FF

 (53)

Using the above induction method, the determinant of the

joint covariance T  +R R Φ can be calculated step by step,

which is namely
1J + in (53). The next step is to calculate the

exponential term in (26). The matrix product inside the

exponential term can be expanded as follows.

 16

1

1

1

(1) (1) (1)
1 1

(1) (1) (1)

(1) (1) (1)

()

T

k kT

T

k k

J

T J J J
k k

J J J

J J J
kJ kJ

−

−

+

+ + +

+ + +

+ + +

− −   
  +   

− −   

− −   
=    

− −   

− −    
    
    =
   − −
   

− −     

 


 

 

 

 

X U X U
R R Φ

y y

X U X U

y y

x xP Q Q

Q P Q

x xQ Q P

y y

(1) (1)

1 1 1

1

(1)

1

(1) (1)

2 2 2

2

(1)

2

(1) (1)

(1

() () () ()

() ()

() () () ()

() ()

() () () ()

()

T J T J

k k kj k

j

T J

k

T J T J

k k kj k

j

T J

k

T J T J

kJ kJ kj kJ

j J

T J

+ +



+

+ +



+

+ +



+




= − − + − −

− −

+ − − + − −

− −

+

+ − − + − −

−







   

 

   

 

   



x P x x Q x +

y Q x

x P x x Q x +

y Q x

x P x x Q x +

y Q)

(1) (1)

(1) (1)

(1) (1)

(1)

(1) (1

()

() () () ()

() () () ()

() () () ()

() ()

() () ()

kJ

T J T J

kj

j

T J T J

kj kj kj ki

j i j i

T J T J

kj kj

j j

T J

T J T J

kj kj kj

j

+ +

+ +



+ +

+

+ +

−

+ − − + − −

= − − + − −

+ − − + − −

+ − −

= − − + −



 

 





   

   

   

 

  

x

x Q y y P y

x P x x Q x

y Q x x Q y

y P y

x P x x Q
)

(1) (1)

()

2 () () () ()

ki

i j i

T J T J

kj

j



+ +

−

+ − − + − −







   

x

x Q y y P y

 (54)

If using a scalar ()k y to denote the result in (54), together

with the determinant given by (53), the joint probability is then

given by (55).

1/2(1) /2

1

()1
(,) exp

2(2)

k

k J D

J

y
p

 +

+

 
= − 

 
y X


 (55)

REFERENCES

[1] S. J. D. Prince and J. H. Elder, “Probabilistic linear discriminant analysis

for inferences about identity,” in Proc. IEEE Int. Conf. on Computer

Vision (ICCV), 2007, pp. 1-8.
[2] P. Li, Y. Fu, U. Mohammed, J. H. Elder, and S. J. D. Prince,

“Probabilistic models for inference about identity,” IEEE Trans. on

Pattern Analysis and Machine Intelligence, vol. 34, no. 1, pp. 144-157,
2012.

[3] L. Liu, C. Xiong, H. Zhang, Z. Niu, M. Wang, and S. Yan, “Deep aging

face verification with large gaps,” IEEE Trans. on Multimedia, vol. 18, no.
1, pp. 64-75, 2016.

[4] H. Zhou and K. M. Lam, “Age-invariant face recognition based on

identity inference from appearance age,” Pattern Recognition, vol. 76, pp.
191-202, 2018.

[5] C. Ding, J. Choi, D. Tao, and L. S. Davis, “Multi-directional multi-level
dual-cross patterns for robust face recognition,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, vol. 38, no. 3, pp. 518-531, 2016.

[6] K. Anantharajah et al., “Local inter-session variability modeling for
object classification,” in Proc. IEEE Conf. on Applications of Computer

Vision, 2014, pp. 309-316.

[7] M. E. Wibowo, D. Tjondronegoro, V. Chandran, R. Pulungan, and J. E.
Istiyanto, “Improved face recognition across poses using fusion of

probabilistic latent variable models,” Telkomnika, vol. 15, no. 4, pp.

1976-1986, 2017.
[8] A. Fabris, M. A. Nicolaou, I. Kotsia, and S. Zafeiriou, “Dynamic

probabilistic linear discriminant analysis for video classification,” in Proc.

IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
2017, pp. 2781-2785.

[9] D. Roy, K. S. R. Murty, and C. K. Mohan, “Unsupervised universal

attribute modeling for action recognition,” IEEE Trans. on Multimedia,
vol. 21, no. 7, pp. 1672-1680, 2019.

[10] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of i-vector length

normalization in speaker recognition systems,” in Proc. Annual Conf. of
the International Speech Communication Association (INTERSPEECH),

2011, pp. 249-252.

[11] L. Ferrer and M. McLaren, “Joint plda for simultaneous modeling of two
factors,” Journal of Machine Learning Research, vol. 20, no. 24, pp. 1-29,

2019.

[12] J. H. L. Hansen and T. Hasan, “Speaker recognition by machines and
humans: a tutorial review,” IEEE Signal Processing Magazine, vol. 32,

no. 6, pp. 74-99, 2015.
[13] C. Chen, W. Wang, Y. He, and J. Han, “A bilevel framework for joint

optimization of session compensation and classification for speaker

identification,” Digital Signal Processing, vol. 89, pp. 104-115, 2019.
[14] C. Hanilci, “Data selection for i-vector based automatic speaker

verification anti-spoofing,” Digital Signal Processing, vol. 72, pp.

171-180, 2018.
[15] V. Vestman, B. Soomro, A. Kanervisto, V. Hautamaki, and T. Kinnunen,

“Who do I sound like? Showcasing speaking recognition technology by

youtube voice search,” in Proc. IEEE Int. Conf. on Acoustics, Speech and
Signal Processing (ICASSP), 2019, pp. 5781-5785.

[16] G. Sell, K. Duh, D. Snyder, D. Etter, and D. Garcia-Romero,

“Audio-visual person recognition in multimedia data from the IARPA

Janus program,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal

Processing (ICASSP), 2018, pp. 3031-3035.

[17] S. E. Shepstone, Z. H. Tan, and S. H. Jensen, “Using audio-derived
affective offset to enhance tv recommendation,” IEEE Trans. on

Multimedia, vol. 16, no. 7, pp. 1999-2010, 2014.

[18] L. E. Shafey, C. McCool, R. Wallace, and S. Marcel, “A scalable
formulation of probabilistic linear discriminant analysis: applied to face

recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence,

vol. 35, no. 7, pp. 1788-1794, 2013.
[19] Y. Jiang, K. A. Lee, Z. Tang, B. Ma, A. Larcher, and H. Li, “PLDA

modeling in i-vector and supervector space for speaker verification,” in

Proc. Annual Conference of the International Speech Communication
Association (INTERSPEECH), 2012, pp. 1680-1683.

[20] P. Rajan, A. Afanasyev, V. Hautamaki, and T. Kinnunen, “From single to

multiple enrollment i-vectors: Practical plda scoring variants for speaker
verification,” Digital Signal Processing, vol. 31, pp. 93-101, 2014.

[21] C. M. Bishop, “Linear models for classification,” in Pattern Recognition

and Machine Learning, Springer, 2006, ch. 4, pp. 179-224.

[22] C. M. Bishop, “Continuous latent variables,” in Pattern Recognition and

Machine Learning, Springer, 2006, ch. 12, pp. 559-603.

[23] S. J. D. Prince, J. H. Elder, J. Warrell, and F. M. Felisberti, “Tied factor
analysis for face recognition across large pose differences,” IEEE Trans.

on Pattern Analysis and Machine Intelligence, vol. 30, no. 6, pp. 970-984,

2008.
[24] S. Ioffe, “Probabilistic linear discriminant analysis,” in Proc. European

Conf. on Computer Vision (ECCV), 2006, pp. 531-542.

[25] Y. Jiang and F. H. F. Leung, “The scalable version of probabilistic linear
discriminant analysis and its potential as a classifier for audio signal

classification,” in Proc. IEEE Int. Joint Conf. on Neural Networks

(IJCNN), 2018, pp. 1-7.
[26] C. M. Bishop, “Probability distributions,” in Pattern Recognition and

Machine Learning, Springer, 2006, ch. 2, pp. 67-136.

[27] X. Huang, A. Acero, and H. W. Hon, “Speech signal representations,” in
Spoken Language Processing: A Guide to Theory, Algorithm and System

Development. Upper Saddle River, NJ: Prentice Hall PTR, 2001, ch. 6, pp.

273-333.

 17

[28] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans. on

Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 788-798,

2011.
[29] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling with

sparse training data,” IEEE Trans. on Speech and Audio Processing, vol.

13, no. 3, pp. 345-354, 2005.
[30] Y. Jiang and F. H. F. Leung, “A class-dependent background model for

speech signal feature extraction,” in Proc. IEEE Int. Conf. on Digital

Signal Processing (DSP), 2018.
[31] D. Reynolds, “Gaussian mixture models,” in Encyclopedia of Biometrics,

2015, pp. 827-832.

[32] D. A. Reynolds, “Robust text-independent speaker identification using
Gaussian mixture speaker models,” IEEE Trans. on Speech and Audio

Processing, vol. 3, no. 1, pp. 72-83, 1995.

[33] KingLine Data Center, American English Speech Recognition Corpus
(King-ASR-L-081), Speechocean, 2013.

[34] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D. Plumbley,

“Detection and classification of acoustic scenes and events,” IEEE Trans.
on Multimedia, vol. 17, no. 10, pp. 1733-1746, 2015.

[35] C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector

machines,” ACM Trans. on Intelligent Systems and Technology, vol. 2, no.
3, pp. 1-27, 2011.

[36] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Support vector

machines using GMM supervectors for speaker verification,” IEEE
Signal Processing Letters, vol. 13, no. 5, pp. 308-311, 2006.

[37] A. Solomonoff, W. M. Campbell, and I. Boardman, “Advances in channel
compensation for SVM speaker recognition,” in Proc. IEEE Int. Conf. on

Acoustics, Speech, and Signal Processing (ICASSP), 2005, pp. 629-632.

[38] J. R. Silvester, “Determinants of block matrices,” Mathematical Gazette,
vol. 84, no. 501, pp. 460-467, 2000.

[39] P. D. Powell, “Calculating determinants of block matrices,” arXiv

preprint, arXiv:1112.4379, 2011.
[40] A. Glowacz et al., “Detection of deterioration of three-phase induction

motor using vibration signals,” Measurement Science Review, vol. 19, no.

6, pp. 241-249, 2019.
[41] A. Glowacz, “Fault diagnostics of acoustic signals of loaded synchronous

motor using SMOFS-25-EXPANDED and selected classifiers,” Tehnički

vjesnik, vol. 23, no. 5, pp. 1365-1372, 2016.

[42] H. Zhao, Z. Li, S. Zhu, and Y. Yu, “Valve internal leakage rate

quantification based on factor analysis and wavelet-BP neural network

using acoustic emission,” Applied sciences, vol. 10, no. 16, 2020.
[43] S. B. Zhu, Z. L. Li, S. M. Zhang, L. L. Liang, and H. F. Zhang, “Natural

gas pipeline valve leakage rate estimation via factor and cluster analysis

of acoustic emissions,” Measurement, vol. 125, pp. 48-55, 2018.
[44] M. W. Mak, X. M. Pang, and J. T. Chien, “Mixture of PLDA for noise

robust i-vector speaker verification,” IEEE/ACM Trans. on Audio Speech

and Language Processing, vol. 24, no. 1, pp. 132-142, 2016.
[45] Y. Liu, J. Zeng, L. Xie, X. Lang, S. Luo, and H. Su, “An improved

mixture robust probabilistic linear discriminant analyzer for fault

classification,” ISA Transactions, vol. 98, pp. 227-236, 2020.
[46] Y. Jiang and F. H. F. Leung, “Vector-based feature representations for

speech signals: from supervector to latent vector”, IEEE Trans. on

Multimedia, 2020.

Yuechi Jiang received the BEng degree in Electronic

Engineering from The Chinese University of Hong Kong in

2015. He is currently a PhD candidate in the department of

Electronic and Information Engineering, The Hong Kong

Polytechnic University. He has published more than 10 journal

papers and conference papers on digital signal processing and

pattern recognition. His research interests include acoustic

signal processing and pattern recognition. He is a student

member of IEEE.

Frank H. F. Leung received the BEng degree and the PhD

degree in Electronic Engineering from the Hong Kong

Polytechnic in 1988 and 1992, respectively. He is currently an

associate professor in the department of Electronic and

Information Engineering, The Hong Kong Polytechnic

University. He is an active researcher who has published over

210 research papers on Computational Intelligence, Machine

Learning, Control, and Power Electronics. He has been serving

as editor, guest editor and reviewer for international journals.

He is a Chartered Engineer, a corporate member of IET (UK)

and the Hong Kong Institution of Engineers, and a senior

member of IEEE.

