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Contrastive Self-Supervised Speaker Embedding
With Sequential Disentanglement
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Abstract—Contrastive self-supervised learning has been widely
used in speaker embedding to address the labeling challenge.
Contrastive speaker embedding assumes that the contrast be-
tween the positive and negative pairs of speech segments is
attributed to speaker identity only. However, this assumption
is incorrect because speech signals contain not only speaker
identity but also linguistic content. In this paper, we propose a
contrastive learning framework with sequential disentanglement
to remove linguistic content by incorporating a disentangled
sequential variational autoencoder (DSVAE) into the conventional
contrastive learning framework. The DSVAE aims to disentangle
speaker factors from content factors in an embedding space
so that the speaker factors become the main contributor to
the contrastive loss. Because content factors have been removed
from contrastive learning, the resulting speaker embeddings will
be content-invariant. The learned embeddings are also robust
to language mismatch. It is shown that the proposed method
consistently outperforms the conventional contrastive speaker
embedding on the VoxCeleb1 and CN-Celeb datasets. This finding
suggests that applying sequential disentanglement is beneficial to
learning speaker-discriminative embeddings.

Index Terms—Speaker verification, speaker embedding, con-
trastive learning, disentangled representation learning, varia-
tional autoencoder.

I. INTRODUCTION

SPEAKER verification (SV) systems aim to authenticate
registered speakers and reject non-registered speakers.

Modern SV systems mostly adopt a speaker embedding net-
work (front-end) for extracting speaker representations and a
scoring back-end for computing the similarity between the
enrollment and test utterances. Classical speaker embedding
usually uses convolutional neural networks or their variants
to process the frame-level acoustic features [1]–[3]. To sum-
marize the frame-level representations into an utterance-level
embedding, various aggregation strategies have been employed
[2]–[6]. Also, the margin-based classification losses, such as
AMSoftmax [7] and AAMSoftmax [8], are often applied to
achieve state-of-the-art performance.

The speaker embedding networks mentioned earlier require
a large amount of speech data with speaker labels for training.
The requirement of speaker labels poses a challenge to system
development because manually labeling massive amount of
data is expensive and time-consuming. Self-supervised learn-
ing has recently emerged as a viable alternative for training
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the speaker embedding networks to circumvent the labeling
challenge [9]–[17].

Self-supervised speaker embedding generally uses con-
trastive learning [9]–[14] or non-contrastive learning [15]–
[17]. Contrastive learning requires negative samples from
a class different from that of the positive ones to create
contrast. Conversely, non-contrastive learning maximizes the
similarity between the speaker representations of different
views or augmentations of the same utterance, thereby not
requiring negative samples. Contrastive speaker embedding
inevitably faces the class collision issue [18], i.e., the negative
samples may come from the same speaker as the positive
samples in a mini-batch. This problem could drive away the
embeddings belonging to the same speaker, resulting in non-
discriminative embeddings. Nevertheless, the study in [12] has
demonstrated that the probability of a mini-batch containing
repeated speakers is remarkably low when an appropriate batch
size (e.g., 256) is used on a medium-size dataset such as
VoxCeleb [19]. This paper focuses on contrastive embedding
for text-independent SV.

Contrastive speaker embedding assumes that the contrast
between the positive and negative pairs is due to speaker iden-
tity rather than other explanatory factors of variation [20], [21]
such as linguistic contents and languages. However, speaker
embeddings contain a variety of information besides speaker
identity [22], [23], and non-speaker factors can also contribute
to the contrast between the positive and negative pairs. This
erroneous contrast can introduce nuisance information to the
embeddings, causing performance degradation. Therefore, it is
essential to disentangle speaker factors from the other factors
of variation and only use the speaker factors for contrastive
learning to ensure that the learned embeddings are speaker-
discriminative.

Disentangled representation learning aims to learn inde-
pendent factors of variation in an embedding space that are
responsible for generating the data [20], [21]. It encourages
well separation of the underlying generative factors and allows
easy removal of nuisance factors, producing the nuisance-
invariant representations. This property makes it amenable to
domain-invariant speaker modeling [24], given that the speaker
factors can be disentangled from the domain factors. However,
according to [25], unsupervised disentangled representation
learning is basically impossible without inductive biases on
both models and data. Because speech signals contain both
time-variant and time-invariant information, we can use this
inductive bias to factorize the speech representations into static
speaker factors and dynamic content factors. For example,
in [26], [27], disentangled sequential variational autoencoders
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(DSVAEs) were introduced to separate the static and dynamic
factors in the embeddings of sequential data, facilitating video
generation and voice conversion.

In text-independent SV, text content is nuisance and we
expect to produce content-invariant speaker embeddings. To
this end, we propose eliminating the influence of content infor-
mation on speaker embeddings by incorporating the DSVAE
objective into the contrastive learning of speaker represen-
tations. In particular, a specialized DSVAE is proposed to
disentangle the speaker factors from the content factors in the
latent space so that only the speaker factors will contribute
to the contrastive loss. In this way, we attribute the contrast
between the positive and negative pairs to the speakers’
identities, resulting in content-invariant speaker embeddings.

A recent study with similar motivation as ours is [28]. The
authors proposed corrupting the content for each positive pair
by shuffling the acoustic frames of one augmented segment.
But our method removes content information not only be-
tween positive pairs but also between negative pairs. This
forces the similarity between the negative pairs to be ascribed
to speaker factors, which is amenable to learning speaker-
discriminative embeddings. Moreover, instead of shuffling the
acoustic frames, our approach removes the dynamic content
information in speech frames by separately modeling the
content and speaker information using VAEs.

On the other hand, the removal of content factors also
corrupts the phonotactic patterns in an utterance. Because
phonotactic features significantly contribute to the perfor-
mance of spoken language recognition [29], our method can
also reduce the effect of language on the contrast between
the positive and negative pairs. This property benefits our
method in learning language-invariant speaker embeddings,
making them robust to language mismatch. Our results on
using English for training a speaker embedding network and
Mandarin for SV evaluation demonstrate this benefit.

This paper is an extension to our recent work [30] on
disentangled contrastive speaker embedding. However, differ-
ent from [30] where the idea was experimented on SimCLR
[31] only, this paper verifies the effectiveness of the proposed
method on both SimCLR and MoCo [32]. This difference
suggests that contrastive learning with sequential disentan-
glement provides a general strategy for contrastive speaker
embedding, which does not depend on a specific contrastive
learning framework. Moreover, this paper explores in detail
the robustness of the proposed method to language mismatch,
which has not been investigated in [30].

The contributions of this paper are summarized as follows:
1) Compared with conventional contrastive speaker embed-

ding, the proposed method disentangles speaker factors
from content factors and uses the speaker factors only for
contrastive learning. This strategy attributes the contrast
between positive and negative pairs to speaker identity
and endows the learned embeddings content-invariant
and robust to language mismatch.

2) Compared with the frame shuffling [28], which corrupts
the content information between positive pairs only, our
method separately characterizes the speaker and con-
tent factors and removes content information not only

between positive pairs but also between negative pairs,
facilitating learning speaker-discriminative embeddings.

3) This paper verifies that removing content information
for contrastive learning can make the embedding vectors
robust to language mismatch.

This paper is organized as follows. In Section II, we briefly
overview the related works. Section III presents the principle
of the proposed contrastive speaker embedding with sequential
disentanglement. The experimental settings and results are
detailed in Section IV and Section V, respectively. We then
give conclusions in Section VI.

II. RELATED WORK

In this section, we briefly overview self-supervised speaker
embedding and disentangled speaker representation learning.

A. Self-Supervised Speaker Embedding

Self-supervised speaker embedding generally uses con-
trastive and non-contrastive methods. Contrastive methods aim
to discriminate between the positive and negative pairs of
speech segments. Since the emergence of SimCLR [31] and
MoCo [32], contrastive speaker embedding has witnessed fast
development. For instance, the authors of [9] applied MoCo to
pre-train an embedding network and then used it to generate
pseudo labels for iterative refinement. In [10], augmentation
adversarial training was incorporated into contrastive learning
to learn channel-independent embeddings. The authors of [11],
[14] used SimCLR to train embedding networks for pseudo-
label generation. To address channel variations, the authors
of [12] proposed channel-invariant training by enforcing the
similarity between the clean and augmented embeddings. In
[13], to alleviate the class collision problem, the authors
proposed clustering the whole dataset before negative-segment
sampling so that the negative samples in the prototypical
memory bank were more likely from different speakers than
the positive sample.

Recently, non-contrastive speaker embedding, especially
those based on DINO [33], has attracted wide attention.
In [15]–[17], the speaker embeddings learned from DINO
performed better than the contrastive counterpart. Neverthe-
less, it has been shown that contrastive and non-contrastive
learning objectives are closely related and their optimization
is equivalent up to row and column normalization of the em-
bedding matrix [34]. This discovery suggests that contrastive
and non-contrastive methods could perform similarly when the
model architectures, loss objectives, and hyperparameters have
been sufficiently searched through. Note that our method is
also applicable to non-contrastive speaker embedding so that
the similarity between two augmentations of an utterance is
attributed to speaker factors. This paper focuses on contrastive
learning and leaves non-contrastive learning to future work.

B. Disentangled Speaker Representation

There have been various works on learning disentangled
speaker representations. In [35], the authors adopted the unsu-
pervised adversarial invariance [36] framework to disentangle
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speaker factors from noise factors and improved SV perfor-
mance on VOiCES19 data [37]. In [38], multi-task learning
and adversarial training were respectively applied to disen-
tangle the speaker identities from other speaker attributes—
gender, age, and nationality—to inspect the contribution of
each attribute to speaker discrimination. However, [35] and
[38] require speaker labels and/or attribute labels to achieve
satisfactory disentanglement, which will face a problem when
neither speaker labels nor attribute labels are available.

Unsupervised disentangled representation learning can be a
solution when no labeled data are available. In [26], the authors
proposed a disentangled sequential variational autoencoder
called DSVAE to explicitly generate a speech sequence from
a combination of a static speaker factor and a sequence of
dynamic content factors in a latent space. The authors of
[27] improved the vanilla DSVAE by introducing a mutual
information term in the loss function to encourage the in-
dependence between the static and dynamic latent variables.
In [39], the authors combined factor analysis and masked
prediction to jointly train a HuBERT model [40] and suc-
cessfully disentangled the utterance-level representations from
the content variations. On the contrary, the authors of [41]
proposed a disentangled framework to remove speaker factors
and preserve content information in speech signals. This paper
aims to learn disentangled speaker embeddings under the
contrastive learning framework by using DSVAEs.

III. METHODOLOGY

This section first introduces background knowledge on two
commonly used contrastive learning frameworks: SimCLR
[31] and MoCo [32]. We then explain the principle of DSVAE
[26], [27]. Finally, the proposed contrastive learning with
sequential disentanglement is detailed.

A. Contrastive Learning Frameworks

SimCLR [31] and MoCo [32] are two popular contrastive
learning frameworks for speaker embedding. They both use
a Siamese architecture [42], [43], a weight-sharing network
receiving two augmented versions of a speech segment. These
two frameworks share similar components such as the augmen-
tation operations, the speaker encoder, and the loss objective.
However, there are distinct elements that are unique to each
framework.

1) SimCLR: Given a mini-batch of N speech segments
{xn}Nn=1, we obtain 2N samples {x̃n,0, x̃n,1}Nn=1 after data
augmentation. x̃n,i can be an augmented version of the whole
or part of the speech segment xn, where i ∈ {0, 1} indexes
the augmentations. Because x̃n,0 and x̃n,1 correspond to the
same utterance, they form a positive pair. Note that we do not
explicitly sample negative segments. Instead, for each positive
pair {x̃n,0, x̃n,1}, the other 2(N − 1) augmented segments in
the mini-batch are considered negative samples.

Consider a speaker encoder f , we obtain speaker em-
beddings en,i = f(x̃n,i). For a positive pair of speaker
embeddings {en,i, en,|1−i|}, the loss function is defined as

`n,i = − log
exp

(
cos
(
en,i, en,|1−i|

)
/τ
)∑N

k=1

∑1
j=0 1[k 6=n,j 6=i] exp (cos (en,i, ek,j) /τ)

,

(1)
where 1[k 6=n,j 6=i] denotes an indicator function which is equal
to 1 only when k 6= n and j 6= i, and τ is a temperature
hyperparameter. The network is trained by minimizing the NT-
Xent loss [31]:

LSimCLR =
1

2N

N∑
n=1

(`n,0 + `n,1) . (2)

2) MoCo: As mentioned in Section III-A1, the number of
negative samples in SimCLR is determined by the mini-batch
size. Because SimCLR requires a large number of negative
samples to achieve competitive performance, a large batch
size is required during training, leading to considerable GPU
memory consumption. To decouple the number of negative
samples from the mini-batch size, MoCo maintains a queue to
dynamically store the negative embeddings encoded from the
preceding mini-batches.

Different from SimCLR that uses the same encoder f to
encode both augmentations {x̃n,0, x̃n,1} of a speech segment
xn, MoCo employs a query encoder fq to encode one version
x̃n,0 of the augmentations and a momentum encoder fk to
encode the other version x̃n,1. The resulting query embeddings
and key embeddings are denoted as eqn,0 = fq(x̃n,0) and
ekn,1 = fk(x̃n,1), respectively. Note that fq and fk share the
same structure but have different parameters θq and θk. The
key embeddings from the previous mini-batches are dynami-
cally maintained to construct a queue of length K, and such
embeddings are denoted as {equeuej,1 }Kj=1. The parameters θq

are updated by back-propagating the gradients of the InfoNCE
loss [44]:

LMoCo = − 1

N

N∑
n=1

log
exp

(
cos
(
eqn,0, e

k
n,1

)
/τ
)[

exp
(
cos
(
eqn,0, e

k
n,1

)
/τ
)
+∑K

j=1 exp
(
cos
(
eqn,0, e

queue
j,1

)
/τ
)]

.

(3)
The parameters θk are updated by an exponential moving
average of θq via a momentum hyperparameter m ∈ [0, 1):

θk ← mθk + (1−m)θq. (4)

A large m (e.g., 0.999) ensures a slow update of θk, making
the key embeddings in the queue consistent across multiple
mini-batches.

B. Disentangled Sequential Variational Autoencoder

DSVAE [26], [27] is a popular framework for disentangled
representation learning on sequential data. It aims to disen-
tangle the time-invariant (static) factors from the time-variant
(dynamic) factors in the latent space based on an VAE [45].
For a speech sequence, we use a DSVAE to disentangle the
static speaker factors from the dynamic content factors.
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Fig. 1. Schematic of the proposed contrastive speaker embedding with sequential disentanglement. This method incorporates a DSVAE (orange blocks) into
a contrastive learning framework (e.g., SimCLR in the green block). Note that the schematic can be easily adapted by replacing SimCLR with MoCo. “Aug”
represents the augmentation operation. The dashed arrows within the speaker encoder and the content encoder denote the Gaussian sampling, which can be
performed through the reparameterization trick [45]. After training, the vectors produced by the µs node are used as speaker embeddings.

As shown in the orange blocks of Fig. 1, a DSVAE
consists of a speaker encoder f s, a content encoder f c, and a
decoder g.1 Consider a sequence of filter-bank features with
T frames x1:T = (x1, . . . ,xT ), two groups of latent variables
(embeddings) es and ec1:T are encoded in the latent space. The
sequence generation process can be formulated as

p (x1:T , e
s, ec1:T ) = p(es, ec1:T )p (x1:T |es, ec1:T )

= p(es)p (ec1:T ) p (x1:T |es, ec1:T )

= p(es)

T∏
t=1

[
p (ect |ec<t) p (xt|es, ect)

]
, (5)

where ec<t ≡ (ec0, . . . , e
c
t−1) and ec0 = 0. We use a standard

normal distribution for the speaker prior p(es) = N (es;0, I).
We assume that p (ect |ec<t) follows a Gaussian distribution

p (ect |ec<t) = N
(
ect ;µt(e

c
<t),diag{(σt(e

c
<t))

2}
)
, (6)

where µt(·) and σt(·) can be modeled by a recurrent neural
network (RNN) with long short-term memories (LSTMs) [46]
followed by two linear heads. Because µt(·) and σt(·) depend
on ec<t, the history of ect prior to time step t is required when
computing µt(·) and σt(·). To sample ect from p (ect |ec<t),
ect−1 is first fed into the LSTM cells to forward one step and
produce µt(·) and σt(·) through the following linear heads.
The reparameterization trick [45] is then used to draw a sample
from the current distribution.

To approximate the posterior of the latent variables, we use
a variational inference model

q (es, ec1:T |x1:T ) = q (es|x1:T ) q (e
c
1:T |x1:T )

= q (es|x1:T )

T∏
t=1

q (ect |ec<t,x1:T ) . (7)

1To better fit into the context of speaker verification, our terminologies
differ from those in [14]. Specifically, our content means linguistic content,
whereas the content in [14] means static content, e.g., object identity.

The speaker latent posterior follows a Gaussian distribution

q (es|x1:T ) = N
(
es;µs(x1:T ),diag{(σs(x1:T ))

2}
)
, (8)

where the mean and standard deviation vectors µs(·) and σs(·)
are modeled by a speaker embedding network with two linear
heads, respectively. Similarly, we have

q (ect |ec<t,x1:T ) = N
(
ect ;µ

c
t ,diag{(σc

t)
2}
)
, (9)

where µc
t and σc

t can be implemented by feeding the inputs
ec<t and x1:T into bidirectional LSTMs followed by an RNN
and two linear layers. To sample es and {ect}Tt=1, the repa-
rameterization trick is used.

We define the DSVAE loss as the negative of the evidence
lower bound (ELBO) [27] of log-likelihood:

LDSVAE = −EpD(x1:T )Eq(es,ec
1:T |x1:T )

[
log p (x1:T |es, ec1:T )

]
+KL

[
q (es|x1:T ) ‖p(es)

]
+KL

[
q (ec1:T |x1:T ) ‖p (ec1:T )

]
− [I (es;x1:T ) + I (ec1:T ;x1:T )]

+ I (es; ec1:T ) , (10)

where pD(x1:T ) is the empirical distribution of the sequence,
KL[·‖·] denotes Kullback-Leibler (KL) divergence, and I(·; ·)
is mutual information (MI). The first term of (10) represents
the reconstruction loss and the subsequent two terms are
KL divergence between the posteriors and the priors w.r.t.
time-invariant speaker embeddings es and time-variant content
embeddings ec1:T , respectively. The maximization of the MI
between the latent variables and the inputs preserves respective
information in the embeddings, whereas minimizing the MI
between es and ec1:T encourages their independence, resulting
in disentangled embeddings or bottleneck features µs.

In practice, the reconstruction loss term can be implemented
by the mean squared errors between the decoder outputs and
the inputs. There are various variational lower bounds to the
MI estimator [47], and the InfoNCE lower bound [44] can be
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used to approximate the true MI. The KL divergence terms
can be analytically computed because both the priors of es

and {ect}Tt=1 and their posteriors are assumed Gaussian [48].

C. Contrastive Speaker Embedding With Sequential Disentan-
glement

In conventional contrastive speaker embedding, the contrast
between positive and negative pairs can be attributed to
speaker identity and content. To learn content-invariant speaker
embeddings, we propose using a DSVAE to disentangle the
speaker factors from the content factors and remove the
content factors from contrastive learning.

The schematic of the proposed method is shown in Fig. 1,
where SimCLR is used as an example for contrastive learning.
However, the SimCLR can be replaced by MoCo easily. The
base speaker encoder f sbase, the speaker mean head µs, the
standard deviation head σs, and the Gaussian sample head es

constitute the speaker encoder f s. The same applies to the
content encoder f c. Note that f sbase and f cbase can share the
lower frame-level layers.

To train the network, we define the total loss:

L = LC + λLDSVAE, (11)

where the contrastive loss LC can be LSimCLR as in (2)
or LMoCo as in (3), depending on the contrastive learning
framework used. LDSVAE follows the formulation in (10)
and λ is a hyperparameter controlling the contribution of
sequential disentanglement. When using LSimCLR as LC,
the embedding variable en,i in (1) should be changed to
µs

n,i because the content variables have been discarded from
contrastive learning. Similarly, eqn,0 and ekn,1 in (3) should be
respectively replaced by µsq

n,0 and µsk
n,1 when LMoCo is used

as LC. After successful training by minimizing L, we extract
the vectors produced from the node µs in Fig. 1 as speaker
embeddings.

IV. EXPERIMENTAL SETUP

In the experiments, three contrastive speaker embedding,
i.e., SimCLR-based embedding, MoCo-based embedding, and
the proposed disentangled embedding, were compared on the
VoxCeleb1 test sets [19] and the CN-Celeb evaluation set [49].

A. Datasets

VoxCeleb: The VoxCeleb corpus [19] was collected from
the YouTube videos of over 7,000 celebrities. It contains
two releases: VoxCeleb1 and VoxCeleb2. These datasets are
multilingual, but the majority of utterances were spoken in
English. The audios were recorded in the wild, covering a
variety of real-world noise. In this paper, the VoxCeleb2
development (Vox2-dev) subset was used for training the
SimCLR, MoCo, and the proposed framework. This dataset
contains 1,092,009 utterances from 5,994 speakers. The origi-
nal, extended, and hard VoxCeleb1 test sets (Vox1-O, Vox1-E,
and Vox1-H, respectively) were used for evaluating the SV
performance. Vox1-O contains 37,611 enrollment-test pairs
from 40 speakers, whereas Vox1-E covers 579,818 pairs

created from all of the 1,251 speakers in VoxCeleb1 test. Vox1-
H is a more challenging test set than Vox1-O and Vox1-E, in
which 550,894 enrollment-test pairs were built within the same
nationality and gender. The number of speakers in Vox1-H is
1,190.

CN-Celeb: CN-Celeb [49] is a multi-genre Mandarin cor-
pus, which was collected from Chinese open media. It con-
tains around 3,000 speakers in 11 genres, e.g., interview,
singing, live broadcast, etc. The data were recorded in real-
world environments. Two subsets, CN-Celeb1 and CN-Celeb2,
have been released. In this paper, the CN-Celeb evaluation
(CN-eval) subset was used in the comparison between the
proposed method and MoCo to investigate the robustness to
language mismatch (see Section V-C). This dataset consists of
around 18,000 utterances from 196 speakers, covering about
3.6 million enrollment-test pairs. We used the CN-Celeb2
development data (CN2-dev) as the target-domain training set.
This dataset contains 2,000 speakers with 529,485 utterances.

VoxSRC 2021: VoxSRC 2021 added a new focus on multi-
lingual evaluation to VoxCeleb [50]. A large number of evalu-
ation pairs in the validation and test sets come from utterances
in different languages. The validation set (VoxSRC21-val)
comprises 60,000 evaluation trials created from the celebrities
in VoxCeleb1. This dataset was used to analyze the robustness
of the proposed method to cross-lingual challenges (see Sec-
tion V-C). The VoxSRC 2021 test data are new and contain
speakers not in either VoxCeleb1 or VoxCeleb2. However, we
did not experiment on the test set because the trial keys of
this set were not publicly available.

Vox1-cus: A customized set was created to verify the
robustness of the proposed method to language variation. The
customized trials were curated in the same way as that of
VoxSRC21-val [50], which contain a large number of cross-
lingual enrollment-test pairs. All speakers in the customized
set are from VoxCeleb1 and the language labels were predicted
by a model trained on VoxLingua107 [51].2 Compared with
VoxSRC21-val, Vox1-cus has more within-language trials in
some common languages, e.g., German, Italian, Spanish, etc.
The total number of trials in the customized set is 100,000.
The trial file will be available on Github soon.3

B. Acoustic Feature Extraction

We extracted 80-dimensional filter-bank features from each
utterance with a 25-ms window and a 10-ms frame shift.
Cepstral mean normalization was applied to the extracted
features. Before acoustic feature extraction, data augmentation
was performed by adding reverberation, noise, music, and
babble to the original speech signals. The MUSAN [52] corpus
was used as the additive noise sources. The signal-to-noise
ratios (SNRs) of ambient noise, music, and babble were set to
0–15 dB, 5–15 dB, and 13–20 dB, respectively. For creating
reverberated speech signals, we convolved the original speech
signals with the simulated room impulse responses generated
from small- and medium-sized rooms.4

2https://huggingface.co/TalTechNLP/voxlingua107-epaca-tdnn.
3https://github.com/youzhitu/contrastive disentanglement.
4https://www.openslr.org/28/rirs noises.zip.
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C. Network Structure

As shown in Fig. 1, the SimCLR-based network comprises
a speaker encoder, a content encoder, and a decoder. For the
speaker encoder, we used a 512-channel ECAPA-TDNN [3] as
the base encoder. On top of the pooling layer, two linear heads
were added for µs and σs, respectively. The number of nodes
in these heads is 192. The lowest four layers of the content
encoder and the speaker encoder were shared. On top of the
shared layers, we sequentially added a bidirectional LSTM
layer of 512 hidden nodes and a 512-node RNN layer to the
content encoder. Two linear layers of 32 hidden nodes were
added to represent µc

t and σc
t , respectively. The decoder g

comprises two convolutional layers with 512 and 80 channels,
respectively. The dilation rates of these two layers were set to
2 and 1, respectively. The MI estimator in (10) followed the
squeeze-DIM configuration in [53] with an InfoNCE lower
bound. The critic of this estimator was parameterized by two
networks with each comprising two 64-node fully-connected
layers.

For MoCo-based contrastive learning, we used two speaker
encoders, i.e., a query encoder and a key encoder. These two
encoders have the same structure as the ECAPA-TDNN in
SimCLR. The queue size in MoCo was set to 65,536.

D. Training Configurations

We used Adam [54] for optimization. A linear learning rate
warm-up was employed during the first 10 epochs, increasing
the learning rate from 1e-4 to 1e-3. After that, it was decayed
to 1e-5 with a cosine scheduler. Totally, the networks were
trained for 50 epochs. The mini-batch size was set to 256. Each
mini-batch was created by randomly selecting speech segments
of 3.5 seconds from the training set and the two segments of
each positive pair can overlap. The temperature in (1) and (3)
was set to 0.05, and we used 0.01 for the hyperparameter λ
in (11). For MoCo, the momentum hyperparameter m in (4)
was set to 0.999.

V. RESULTS AND DISCUSSIONS

Cosine similarity was used in all experiments. The perfor-
mance was evaluated in terms of equal error rate (EER) and
minimum detection cost function (minDCF) at Cmiss = 1,
Cfa = 1, and Ptarget = 0.01.

A. Performance on VoxCeleb1 Test Sets

The results of SimCLR, MoCo, and the proposed disen-
tangled contrastive speaker embedding are shown in Table I.
Rows 7–12 show the results of existing contrastive learn-
ing frameworks without iterative model refinement. The best
performance (Row 7) was achieved by MoCo using 1024-
channel ECAPA-TDNNs as speaker encoders. This result is
only slightly better than our MoCo baseline (Row 4), which
used smaller ECAPA-TDNNs with 512 channels only. The
framework in [14] adopted a similar encoder as in our SimCLR
baseline (Row 1) and performed similarly as Row 1. However,
this method employed an additional augmentation adversarial

training strategy [10] to improve performance. These compar-
isons show that our baseline systems are very competitive.

From Rows 1 and 3 of Table I, we observe that the proposed
method consistently outperforms the SimCLR baseline across
three evaluation sets. This result indicates that it is effective
to apply a DSVAE to disentangle the speaker factors from the
content factors and only use speaker factors for contrastive
learning. The same conclusion can be obtained from MoCo
by comparing Row 4 and Row 6.

We also employed frame shuffling [28] for comparison. As
shown in Rows 1–2 of Table I, shuffling the frames in SimCLR
degrades the performance in all tasks. A similar trend can
be seen between Row 4 and Row 5 when MoCo was used.
These observations contradict with that in [28]. One reason
of performance degradation could be that shuffling the frames
corrupts the underlying acoustic dynamics that are useful to
both speech and speaker recognition. Although the content
dependency is destroyed as expected, the information related
to speaker discrimination is also undermined. An empirical
evidence can be found in [55], where the authors observed that
shuffling the acoustic sequence at the frame level degrades SV
performance. This is in accordance with the results in Table I.

B. Speaker Information in Speaker and Content Embeddings

To further verify the benefit of sequential disentangle-
ment, we investigated the speaker information in the speaker
embeddings (µs in Fig. 1) and content embeddings (µc

1:T

in Fig. 1) on Vox1-O. MoCo was used as the contrastive
learning framework in the experiments because MoCo slightly
outperforms SimCLR in Table I. But a similar trend can be
observed when SimCLR was used.

Table II shows the performance of different representations
extracted from MoCo, DSVAE, and their combinations. From
Row 2, we observe that the performance of the speaker
embeddings extracted from DSVAE is much worse than that of
the MoCo baseline. This suggests that using DSVAE alone is
not sufficient to separate the speaker and content information
in the embedding space. Rows 4 and 5 show the performance
of incorporating DSVAE into MoCo when the averages of the
content embeddings instead of the speaker embeddings were
used for SV. The embedding network in Row 4 was subjected
to contrastive training, whereas the network in Row 5 contains
random weights. We see that there is almost no speaker infor-
mation in the temporally-averaged content embeddings after
random initialization and also that disentangled representation
learning can further reduce the speaker information in the
content embeddings. In short, combining DSVAE and MoCo
is effective to learn discriminative speaker embeddings.

C. Robustness to Language Mismatch

The proposed method aims to eliminate the effect of content
on contrastive learning. However, the removal of content also
undermines the phonotactic information in a speech sequence,
which could affect the performance of spoken language recog-
nition. This means that the language information, a nuisance
source for text-independent SV, can be removed to a certain
extent by disentangled contrastive learning. In other words,
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TABLE I
PERFORMANCE OF SIMCLR, MOCO, AND THE PROPOSED DSVAE-BASED DISENTANGLED CONTRASTIVE LEARNING ON VOXCELEB1 TEST SETS. THE

RESULTS IN ROWS 7–12 WERE OBTAINED WITHOUT ITERATIVE MODEL REFINEMENT. THE MINDCF WITH A SUPERSCRIPT ∗ IN ROWS 8–9 WAS
CALCULATED USING Ptarget = 0.05 INSTEAD OF Ptarget = 0.01.

Vox1-O Vox1-E Vox1-H
Row Contrastive Learning Framework EER (%) minDCF EER (%) minDCF EER (%) minDCF

1 SimCLR 7.13 0.571 7.89 0.596 12.26 0.692
2 SimCLR + Frame Shuffle [28] 7.90 0.570 8.48 0.600 12.86 0.737
3 SimCLR + DSVAE (Proposed) 6.37 0.533 7.36 0.574 11.72 0.677

4 MoCo 7.38 0.561 7.97 0.584 12.22 0.681
5 MoCo + Frame Shuffle [28] 7.81 0.568 8.43 0.594 12.85 0.737
6 MoCo + DSVAE (Proposed) 6.29 0.534 7.17 0.567 11.42 0.668

7 [9], MoCo using 1024-channel ECAPA-TDNNs as speaker encoders 7.30 – – – – –
8 [10], adding augmentation adversarial training to SimCLR 8.65 0.454∗ – – – –
9 [11], using SimCLR with adapted contrastive loss 8.86 0.508∗ 10.15 0.570∗ 16.20 0.710∗

10 [12], adding channel-invariant training to SimCLR 8.28 0.610 – – – –
11 [13], using MoCo with a prototypical memory bank 8.23 0.590 – – – –
12 [14], adding augmentation adversarial training to SimCLR 7.36 – 7.90 – 12.32 –

TABLE II
PERFORMANCE OF DIFFERENT REPRESENTATIONS ON VOX1-O.
“SPK EMB” DENOTES SPEAKER EMBEDDINGS (µs IN FIG. 1).
“AVG CON EMB” MEANS TEMPORALLY-AVERAGED CONTENT

EMBEDDINGS (µc
1:T IN FIG. 1). “INIT” IN ROW 5 MEANS THAT THE

MODEL IS RANDOMLY INITIALIZED WITHOUT TRAINING.

Vox1-O
Row Framework Representation EER (%) minDCF

1 MoCo spk emb 7.38 0.561
2 DSVAE spk emb 22.87 0.915
3 MoCo + DSVAE spk emb 6.29 0.534
4 MoCo + DSVAE avg con emb 47.40 0.999
5 MoCo + DSVAE (Init) avg con emb 42.06 0.994

TABLE III
PERFORMANCE OF MOCO AND THE PROPOSED METHOD ON CN-CELEB

EVALUATION SET.

CN-eval
Row Framework Training Set EER (%) minDCF

1 MoCo Vox2-dev 18.73 0.713
2 MoCo + DSVAE Vox2-dev 16.21 0.659
3 MoCo CN2-dev 16.10 0.684
4 MoCo + DSVAE CN2-dev 14.52 0.653

the proposed method is amenable to alleviating the effect of
languages and produce the language-invariant speaker embed-
dings. To investigate the robustness of the proposed method
to language mismatch, we adopted the CN-Celeb evaluation
set and the VoxSRC 2021 validation set for performance
evaluation.

Table III shows the performance of contrastive learning
models that were trained on Vox2-dev and CN2-dev, respec-
tively. As mentioned in Section IV-A, most of the utterances
in Vox2-dev are spoken in English, whereas CN2-dev is a
Mandarin corpus. Therefore, there exists language mismatch
between these two datasets. The Vox2-dev dataset was used to
train source-domain models and their performance is shown in
Rows 1–2. We also used CN2-dev as the target-domain train-
ing data and Rows 3–4 show the corresponding performance.
Comparing Row 1 with Row 3, we see that the performance

Fig. 2. EERs of MoCo and the proposed method on within-language
evaluation trials in VoxSRC21-val (“val” in the legend) and Vox1-cus (“cus”
in the legend). Both the enrollment and test utterances of each trial are from
the same language.

TABLE IV
PERFORMANCE OF MOCO AND THE PROPOSED METHOD ON

VOXSRC21-VAL AND VOX1-CUS EVALUATION SETS.

VoxSRC21-val Vox1-cus
Framework EER (%) minDCF EER (%) minDCF

MoCo 15.36 0.709 11.10 0.570
MoCo + DSVAE 16.59 0.743 10.32 0.542

of the source-domain model (Row 1) is much worse than
that of the target-domain model (Row 3) due to the language
mismatch. After incorporating a DSVAE into MoCo as shown
in Row 2, a remarkable performance improvement is observed
over the MoCo baseline. Despite being trained on Vox2-dev,
the proposed model filled the gap between Row 1 and Row 3
and achieved similar performance as the target-domain model
(the EER of Row 2 is slightly worse than that of Row 3
but the corresponding minDCF is much better than that in
Row 3). Also, we observe that combining DSVAE and MoCo
can further improve the performance when CN2-dev was used
for training (Row 4). The above analysis indicates that the
proposed contrastive learning can alleviate language mismatch.

To further demonstrate the robustness of the proposed
method to language variation, we investigate the SV perfor-
mance on the VoxSRC 2021 validation (VoxSRC21-val) set
and the customized dataset (Vox1-cus). As observed from
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TABLE V
STATISTICS OF WITHIN-LANGUAGE EVALUATION TRIALS IN

VOXSRC21-VAL AND VOX1-CUS.

No. of trials
Dataset Eng. Wel. Hin. Fre. Ger. Ita. Spa.

VoxSRC21-val 27,520 1,009 1,286 1,369 689 307 215
Vox1-cus 48,215 7,816 1,808 1,833 1,209 1,052 1,222

TABLE VI
STATISTICS OF TARGET AND NON-TARGET EVALUATION TRIALS IN

VOXSRC21-VAL AND VOX1-CUS THAT WERE CREATED FROM
MULTILINGUAL SPEAKERS. THE TARGET TRIALS INCLUDES

SAME-LANGUAGE AND CROSS-LANGUAGE TRIALS.

Dataset #Same-tar #Cross-tar #Non-tar

VoxSRC21-val 4,540 18,922 14,318
Vox1-cus 9,000 32,000 29,303

Table IV, the overall performance of our contrastive method
outperforms the conventional MoCo on both VoxSRC21-val
and Vox1-cus.

To better show the language robustness of the proposed
method, we also evaluated the performance of within-language
trials on some common languages, where both the enrollment
and test utterances are from the same language. The statistics
of the within-language subsets of VoxSRC21-val and Vox1-cus
are summarized in Table V and the corresponding performance
is shown in Fig. 2. We observe that the proposed method
outperforms MoCo across the listed languages except for
French on VoxSRC21-val. On the customized set, the proposed
contrastive learning consistently achieves better performance
than MoCo. This observation is consistent with that on CN-
Celeb, suggestting that the proposed method is less sensitive
to language variation than the conventional MoCo.

Next, we investigate the effectiveness of the proposed
method on cross-lingual enrollment-test pairs. In VoxCeleb1,
there are 695 (out of 1,251) celebrities speaking more than two
languages. We regarded the target (positive) trials from these
multilingual speakers as hard positives. The rationale is that
the speaker embeddings should contain speaker-discriminative
information while be robust to language variation. Therefore,
a better performance on cross-language trials indicates a more
language-invariant SV system. The statistics of these trials
are shown in Table VI. Note that for both the same-language
target trials and the cross-language target trials, the same non-
target trials were used. We used DET curves to compare the
performance of MoCo and MoCo+DSVAE (proposed) based
on these hard positive and non-target trials. The closer the
DET curve to the origin, the better the performance.

As shown in Fig. 3, the DET curves (in blue and red) on
the same-language trials are closer to the origin than those on
the cross-language trials (in green and black). This indicates
that cross-language target trials are more difficult than the
same-language target trials. Also, we can see that the gap
between the DET curves on the same-language trials and the
cross-language trials becomes narrower (gM+D < gM) when
DSVAE was applied. This means that the performance drop
due to changing from easy target trials to hard target trials is

Fig. 3. DET curves of MoCo and MoCo+DSVAE (proposed) on VoxSRC21-
val. “same” and “cross” mean that the evaluation is performed on the same-
language target trials and cross-language target trials, respectively. The same
non-target trials were used for both target trials. gM and gM+D denote the
performance gaps due to changing from same-language target trials to cross-
language target trials in MoCo and MoCo+DSVAE, respectively.

smaller in the proposed method, suggesting that the proposed
contrastive learning is more robust to language variation than
MoCo.

To further verify that our method is more language-invariant
than MoCo, we compared the t-SNE plots of the embeddings
corresponding to utterances of randomly selected 11 speakers.
As shown in Fig. 4, each speaker uses at least 2 languages.
Fig. 4(a) shows that some utterances, highlighted by three
red circles, are assigned to the incorrect clusters when MoCo
was used. However, the proposed method does not have this
problem, as shown in Fig. 4(b). According to Fig. 4(c), the
incorrect assignments within the three red circles in Fig. 4(a)
come from the cross-language target trials. This observation,
again, shows that using MoCo alone cannot well verify the
cross-language (hard) positives and the proposed method is
more robust to such language variation. We have the same
conclusion on the customized set.

From the above analysis on CN-Celeb, VoxSRC21-val, and
the customized set, we conclude that the proposed contrastive
learning can alleviate language mismatch.

D. Impact of Batch Size

The number of negative samples has a significant impact
on the performance of contrastive learning. In Section III-A1,
we show that the batch size determines the number of
negative samples of SimCLR and thus substantially affects
its performance. MoCo, on the other hand, decouples the
batch size from the negative-sample size by maintaining a
queue of dynamically encoded key embeddings. However, the
performance of MoCo can still be affected by the batch size
if it is too small. We thus investigated the effect of batch size
on SimCLR and MoCo.

The results of contrastive speaker embeddings by varying
batch size are shown in Fig. 5. From Fig. 5, we see that the
SimCLR-based contrastive learning follows a similar trend
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Fig. 4. t-SNE plots of embeddings extracted from (a)(c) MoCo and (b)(d) MoCo+DSVAE (proposed). Each color in (a) and (b) denotes a speaker and each
dot represents an utterance. In (c) and (d), each color represents a language. The three red circles in (a) and (c) indicate the regions where some speakers are
assigned to the wrong clusters.
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Fig. 5. The effect of varying batch size on the EER of SimCLR- and MoCo-
based contrastive speaker embeddings.

as that based on MoCo and their performance gap is not
significant. When the batch size was set to a small value,
e.g., 64 and 128, MoCo is slightly better than SimCLR and
the variation in EER of MoCo is smaller. This observation
suggests that MoCo is less sensitive to small batch size
than SimCLR. Also, we observe that for a small batch size
of 64, contrastive learning with sequential disentanglement
cannot even compete with vanilla contrastive learning. This
indicates that the DSVAE requires a large batch size to achieve
reasonable disentanglement when incorporated into SimCLR
or MoCo. In general, the best performance was obtained at
a batch size of 256. This is the reason why we used this
configuration in previous sections.

E. Effect of λ

The hyperparameter λ in (11) controls the contribution
of DSVAE in the proposed framework. In this subsection,
we investigated the effect of λ on MoCo-based contrastive
learning. The proposed model was evaluated by choosing
λ from {0, 0.001, 0.005, 0.01, 0.05, 0.1} and the results are
shown in Fig. 6. The best result was obtained at λ = 0.01
for both EER and minDCF. When λ is larger than 0.05, the
performance begins to degrade. This result shows that too
much emphasis on sequential disentanglement can prevent
the model from learning discriminative speaker embeddings,
which agrees with the result in Row 2 of Table II. Recall from
Section V-B that using a DSVAE alone cannot achieve per-
formance comparable to a contrastive learning baseline. The
above analysis suggests that DSVAE relies on discriminative
speaker information to assist the disentanglement between the
speaker factors and the content factors. Without discrimina-
tive speaker information introduced by the speaker contrast,
DSVAE cannot effectively separate the speaker embeddings
from the content embeddings.

F. Effect of Content Removal by DSVAE

For text-independent SV, text content is nuisance and such
information is supposed to be removed during embedding
learning. In [28], the authors proposed frame shuffling to
undermine the content dependency in the positive samples.
In our method, the content information is discarded from con-
trastive learning to highlight speaker contrast. Both approaches
show performance improvement. However, these observations
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Fig. 6. The effect of varying hyperparameter λ (see (11)) on (a) EER and (b) minDCF of the proposed “DSVAE+MoCo” framework.

TABLE VII
PERFORMANCE OF SUPERVISED AND SELF-SUPERVISED SPEAKER
EMBEDDING ON VOX1-O. ALL RESULTS WERE BASED ON MOCO.

Vox1-O
Row Speaker Embedding Training Style EER (%) minDCF

1 E-TDNN Supervised 1.65 0.172
2 E-TDNN + DSVAE Supervised 1.53 0.155

3 ECAPA-TDNN Supervised 1.01 0.116
4 ECAPA-TDNN + DSVAE Supervised 1.01 0.125

5 ECAPA-TDNN Self-Supervised 7.38 0.561
6 ECAPA-TDNN + DSVAE Self-Supervised 6.29 0.534

are contradictory to existing works which have shown that
incorporating phonetic content into speaker embeddings is
beneficial to text-independent SV. For instance, the authors
of [56] adopted multi-task learning by combining a phonetic
classifier with a speaker classifier and obtained superior per-
formance. In [57], the authors investigated the usefulness of
phonetic information at the segment (embedding) level and the
frame level. They concluded that although phonetic content
at the segment level is detrimental to SV performance, using
phonetic information at the frame level is beneficial. In this
section, we investigate the effect of content removal through
DSVAE on both supervised and self-supervised speaker em-
bedding.

For supervised speaker embedding, we used an E-TDNN
[58] and an ECAPA-TDNN as the speaker encoders. These
models were trained on Vox2-dev through a combination of
speaker classification loss (AMSoftmax [7]) and DSVAE loss.
Similar to the proposed contrastive method, only the speaker
embeddings were fed into the speaker classifier and the content
embeddings were discarded. The results are shown in Rows
1–4 of Table VII. When an E-TDNN was used for speaker
embedding, we see that discarding content information through
sequential disentanglement (Row 2) is advantageous. This
observation verifies the conclusion in [57] that the embedding-
level phonetic content should be removed. However, such
benefit is not observed when an ECAPA-TDNN was adopted
(comparing Row 3 with Row 4). One possible reason is that
when a powerful speaker encoder is trained in a supervised
manner, the content information has already been substantially

suppressed in the embeddings and the DSVAE cannot further
separate the speaker factors from the content factors. Under
the self-supervised setting (Rows 5–6), we obtained the same
conclusion as in Rows 1–2: removing content at the embedding
level benefits text-independent SV.

VI. CONCLUSIONS

This paper proposed a contrastive learning framework with
sequential disentanglement for text-independent SV. The pro-
posed method adopts a DSVAE for disentangling speaker
factors from content factors and uses the speaker factors
only for contrastive learning. Two contrastive learning frame-
works, SimCLR and MoCo, were exploited in the experiments.
Evaluation results on the VoxCeleb1 test and CN-Celeb sets
show that the proposed method consistently outperforms the
conventional contrastive speaker embedding, suggesting that
it is beneficial to incorporate sequential disentanglement into
contrastive learning for learning speaker-discriminative em-
beddings. Also, the results on CN-Celeb demonstrate that the
proposed method is able to alleviate language mismatch.
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