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This supplementary material contains numerical algorithms for computing the proposed gen-
eral class of estimators studied in Section 2.3 and the penalized estimators studied in Section 4 in 20

the main context, lemmas and technical proofs for the main theorems, as well as some additional
simulation results.

1. NUMERICAL ALGORITHMS

We describe two numerical algorithms to compute β̂gn studied in Section 2.3 in the main con-
text, depending on the differentiability of g. We focus on the case that Σ is unknown. 25

When g is differentiable, the fixed-point iteration algorithm can be used. Recall
that Lg

n(β) ≡
∑n

i̸=j I(Yi < Yj)g{(Xj −Xi)
Tβ}/{n(n− 1)}. Define Ug

n(β) = ∇Lg
n(β) ≡∑n

i̸=j I(Yi < Yj)g
′{(Xj −Xi)

Tβ}(Xj −Xi)/{n(n− 1)} where g′(·) denotes the deriva-
tive of g(·). By the definition of the maximizer β̂gn, it is not hard to check that β̂gn =

Σ̂−1Ug
n(β̂

g
n)/(U

gT
n β̂gn). Let fgn(β) = Σ̂−1Ug

n(β)/{βTUg
n(β)} for β ∈ E(Σ̂). Then fgn(·) is a con- 30

tinuous mapping from the compact set E(Σ̂) to itself.
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Algorithm S1. Fixed-point iteration

Input data {(Yi, Xi)}ni=1, compute Σ̂−1 and set κ > 0

Randomly set initial value β(0) ∈ E(Σ̂)
For t ≥ 0, repeat

β(t+1) ← fgn(β(t))

Until ∥β(t+1) − β(t)∥2 ⩽ κ or ∥β(t+1) − β(t−1)∥2 ⩽ κ

β̂n ← argminβ∈{β(t−1),β(t),β(t+1)} L
g
n(β)

Output β̂n

Algorithm S1 is not a direct fixed-point iteration, as fgn is defined on the hyper ellipsoid and it
is possibly an antipodal map, i.e, fgn(β) = −β and fgn(−β) = β for some β ∈ E(Σ̂). To circum-
vent the problem, the iteration will cease when ∥β(t+1) − β(t)∥2 ⩽ κ or ∥β(t+1) − β(t−1)∥2 ⩽ κ,35

so as to avoid the case that there are potentially two alternating converging sequences. Algorithm
S1 is relatively efficient compared with gradient decent methods for differentiable g(·), as no tun-
ing parameter such as the learning rate or the batch size is involved. In our numerical studies,
it takes around hundreds of iterations to converge. General convergence analysis for fixed-point
iteration can be referred to Huang & Ma (2014) and chapter 10 of Burden et al. (2016). A suf-40

ficient condition for the convergence of the algorithm is the contraction mapping condition, i.e.,
∥fgn(β)− fgn(β̂gn)∥2 ≤ C∥β − β̂gn∥2 holds for some 0 ≤ C < 1 over a neighborhood of β̂gn, in
which case any initial β(0) locating in that neighborhood would converge linearly to β̂gn.

For non-differentiable g(·), we provide a simulated annealing algorithm to compute β̂gn. Sim-
ulated annealing is an effective optimization method for solving unconstrained or bounded-45

constrained problem (Kirkpatrick et al., 1983). The detailed steps are given below:

Algorithm S2. Simulated Annealing solver

Input {(Yi, Xi)}ni=1, compute Σ̂, set κ > 0 and integer K > 0

Randomly set an initial value β(0) ∈ E(Σ̂)
For t ≥ 0, repeat

Generate random vector e(t) ∼ N(0, dtIp), where dt is the step size at the t-th iteration
β(t+1/2) ← {β(t) + e(t)}/∥β(t) + e(t)∥2
β(t+1) ← β(t+1/2) if Lg

n(β(t+1/2)) > Lg
n(β(t)); otherwise, β(t+1) ← β(t)

Until ∥β(t+1) − β(t−K)∥2 ≤ κ
Output β̂n = β(t+1)

In the simulate annealing algorithm, the so-called “temperature” is always zero, which en-
sures that the objective function is strictly increasing. In our numerical studies, it takes around
hundreds of iterations to converge with a satisfactory accuracy. The step size should satisfy50 ∑∞

t=0 dt =∞ to ensure convergence. Comprehensive theoretical analysis can be found in-
Granville et al. (1994). Different from Algorithms S1, there is no need to consider the sign of β̂n,
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and the calculation of the p-dimensional gradient is avoided. Nonetheless, finding the direction
of decent by random trials as in Algorithm S2 would be less efficient than direct calculation of
the gradient in high-dimensional case. 55

Lastly, a proximal (stochastic) gradient decent algorithm (Ferreira & Oliveira, 2002; Chen
et al., 2020) is introduced to solve the penalized linearized MRC in Section 4 in the main context.
When Σ is unknown, a consistent estimator Σ̂ will be used to estimate Σ.

Algorithm S3. Proximal (stochastic) gradient decent

Input {(Yi, Xi)}ni=1, λ, compute Σ̂ and set κ > 0

Set an initial value β(0) ∈ E(Σ̂)
For t ≥ 0, repeat

Set the step size αt > 0

θ(t+1/3) ← θ(t) − αt∇1Ln{β(θ(t+1/3), Σ̂)} and β(t+1/3) ← β(θ(t+1/3), Σ̂)

β(t+2/3) ← sgn(β(t+1/3))[|β(t+1/3)| − αtλ]+

β(t+1) ← cβ(t+2/3) for some c > 0 such that c2(β(t+2/3))TΣ̂β(t+2/3) = 1

Until ∥β(t+1) − β(t)∥2 ⩽ κ

Output β̂gn = β(t+1)

In Algorithm S3, a good initial value of β(0) can be obtained easily by the LMRC esti- 60

mation (without penalty), which greatly improves the efficiency of the algorithm. The term
Ln(β) =

∑n
i ̸=j I(Yi < Yj)(Xi −Xj)

Tβ/{n(n− 1)} is the empirical objective function with-
out the penalty term and ∇1Ln denotes the (stochastic) gradient w.r.t θ. Here θ(t) is updated by
the step size αt along its gradient, and β(t)(θ(t), Σ̂) is updated accordingly based on the reparam-
eterization. In Step 3, proximal operation (“soft-threshold” operation) is applied, where sgn(·) 65

returns the sign of each component. In Step 4, the updated parameter is re-scaled to satisfy the
hyper ellipsoid constraint.

2. LEMMAS AND PROOFS OF THE MAIN THEOREMS

In this section, we provide some lemmas and detailed proofs of the theorems in the main
context. 70

2.1. Lemmas

LEMMA S1. (Hoeffding, 1992) For a U-statistic Un with symmetric kernel h, let µ =

EF {h(Xi1 , . . . , Xim)}. If EF |h| <∞, then Un → µ almost surely.

LEMMA S2. If a random vectorX with mean µ and covariance matrix Σ satisfying βT
0Σβ0 ̸=

0. If X is of linearity of expectation in the direction of β0, i.e., for any direction b ∈ Rp,

E[XTb | XTβ0] = cbX
Tβ0 + ab,
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where ab, cb ∈ R are some real constants which may depend on b, then, for any b ∈ Rp, cb =
bTΣβ0/β

T
0Σβ0 and ab = bTµ− cbβT

0 µ = bTµ− βT
0 µb

TΣβ0/β
T
0Σβ0.75

Proof. Direct calculations give

bTµ = E(bTX) =E{E(bTX | XTβ0)}

=E(cbX
Tβ0 + ab)

=cbµ
Tβ0 + ab,

and80

bT(Σ + µµT)β0 =E(XTbXTβ0)

=E{XTβ0E(XTb | XTβ0)}

=E{XTβ0(cbX
Tβ0 + ab)}

=E(cbβ
T
0XX

Tβ0 + abX
Tβ0)

=cbβ
T
0 (Σ + µµT)β0 + abβ

T
0 µ.85

Combining these two equations, we have ab = bTµ− cbβT
0 µ = bTµ− βT

0 µb
TΣβ0/β

T
0Σβ0 and

cb = bTΣβ0/β
T
0Σβ0. □

LEMMA S3. Let W ∈ R be a random variable and let g(·) : R→ R be a non-constant in-
creasing function defined on the support of W , then

E{g(W )W} ≥ E{g(W )}E(W ).

Further, if E{g(W )− Eg(W )}2 > 0, i.e., g(W ) has non-zero variance, we have

E{g(W )W} > E{g(W )}E(W ).

Proof. Considering

E{g(W )W} − E{g(W )}E(W ) =E[g(W ){W − E(W )}]

=E[g(W ){W − E(W )}]− E[g
(
E(W )

)
{W − E(W )}]90

=E[{g(W )− g
(
E(W )

)
}{W − E(W )}],

we only need to prove E[{g(W )− g(E(W ))}{W − E(W )}] ≥ 0. Note that g(·) is non-
constant increasing on the support of W , then W − E(W ) ≥ 0 happens if and only if
g(W )− g(E(W )) ≥ 0 holds, which implies {g(W )− g

(
E(W )

)
}{W − E(W )} ≥ 0. Thus,

the inequality holds. Furthermore, if g(W ) has non-zero variance, then W also has non-zero95

variance. This implies that, there exist a subset W of the support of W with non-zero mea-
sure δ0 > 0 (i.e., pr(W ∈ W) = δ0) and constants δ1, δ2 > 0 such that |W − E(W )| > δ1 and
|g(W )− g(E(W ))| > δ2 onW . Then E{g(W )− g(E(W ))}{W − E(W )} ≥ δ0δ1δ2 > 0. □
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2.2. Proof of Theorem 1

Define Ln(β) =
∑n

i ̸=j I(Yi < Yj)(Xj −Xi)
Tβ/{n(n− 1)} and L(β) = E{Ln(β)}. Both 100

of them are defined on the compact set E(Σ) = {β ∈ Rp : βTΣβ = 1}.
First, for any non-empty compact set E(Σ), the maximizer of Ln(·) defined in (4) in Section

2.1 in the main context always exists. The strong duality of the primal and dual problem by
the Lagrange method has been shown in Section 2.2 in the main context. Then by the KKT
conditions and the definition of the maximizer β̂∗n, we have 105

β̂∗n =
Σ−1Un

(Un
TΣ−1Un)1/2

,

where Un = ∇Ln(β) =
∑n

i ̸=j I(Yi < Yj)(Xj −Xi)/{n(n− 1)} is irrelevant to β. Under Con-
dition (C2), the first moment of X exists and Un converges to U = E{I(Yi < Yj)(Xj −
Xi)} ∈ Rp (i ̸= j)almost surely by Lemma S1. By Slutsky’s theorem, β̂∗n converges to β∞ ≡
Σ−1U/(UTΣ−1U)1/2 in probability. 110

Next, we show that β∞ = β0. Note that the denominator of β∞ is a normalizing scalar to make
β∞ satisfy the constraint βT

∞Σβ∞ = 1, which does not affect the direction of β∞. In this regard,
we concentrate our effort to show that the numerator Σ−1U has the same direction as β0. To this
end, we first show that any direction b perpendicular to β0 is also perpendicular to Σ−1U . For
any b satisfying bTβ0 = 0 and for any i ̸= j, the inner product of Σ−1U and b is 115

(Σ−1U)Tb =E{I(Yi < Yj)(Xj −Xi)
TΣ−1b}

=E[E{I(Yi < Yj)(Xj −Xi)
TΣ−1b | XT

i β0, X
T
j β0, ϵi, ϵj}]

=E[I(Yi < Yj)E{(Xj −Xi)
TΣ−1b | XT

i β0, X
T
j β0}]

=E[I(Yi < Yj){E(XT
j Σ

−1b | XT
j β0)− E(XT

i Σ
−1b | XT

i β0)}]

=E{I(Yi < Yj)(b
TΣ−1µ− bTΣ−1µ)} 120

=0,

where µ and Σ are the mean and covariance matrix of X . Under the linearity of expectation
assumption, the second last equality holds by applying Lemma S2 on E(XT

j Σ
−1b | XT

j β0) and
E(XT

i Σ
−1b | XT

i β0). Now, it remains to show that Σ−1U is a non-zero vector by verifying
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(Σ−1U)Tβ0 > 0. To this end, we write125

(Σ−1U)Tβ0 =E{I(Yi < Yj)(Xj −Xi)
TΣ−1β0}

=E[E{I(Yi < Yj)(Xj −Xi)
TΣ−1β0 | XT

i β0, X
T
j β0, ϵi, ϵj}]

=E[I(Yi < Yj)E{(Xj −Xi)
TΣ−1β0 | XT

i β0, X
T
j β0}]

=E{I(Yi < Yj)(β
T
0 β0)(X

T
j β0 −XT

i β0)}

=βT
0 β0 × (E[E{I(Yi < Yj | XT

j β0)}XT
j β0]− E[E{I(Yi < Yj | XT

i β0)}XT
i β0])130

=βT
0 β0 × [E{pr(Yi < Yj | XT

j β0)X
T
j β0} − E{pr(Yi < Yj | XT

i β0)X
T
i β0}]

>βT
0 β0 × [E{pr(Yi < Yj | XT

j β0)E(XT
j β0)} − E{pr(Yi < Yj | XT

i β0)E(XT
i β0)}]

=βT
0 β0 × {E(XT

j β0)/2− E(XT
i β0)/2}

=0.

The fourth equality holds by Lemma S2. In the last third line, pr(Yi < Yj | XT
j β0) is non-135

constant increasing inXT
j β0 as Yj is non-constant increasing inXT

j β0, implying that E{pr(Yi <
Yj | XT

j β0)X
T
j β0} > E{pr(Yi < Yj | XT

j β0)}E(XT
j β0) = E(XT

j β0)/2 by Assumption (M)
and Lemma S3. Similar arguments can be applied to the other term and thus the inequality holds.
As a result, (Σ−1U)Tβ0 > 0 and β∞ = β0. The proof of Theorem 1 is complete.

We wish to note that, without the monotonicity assumption on the first argument of f(·, ·), the140

closed form solution β̂n can still be consistent for β0 up to a sign as long as (Σ−1U)Tβ0 ̸= 0.
Actually, the condition (Σ−1U)Tβ0 ̸= 0 ensures that Σ−1U is in the linear space spanned by β0,
since (Σ−1U)Tb = 0 still holds for any bTβ0 = 0 according to the above proofs.

2.3. Proof of Theorem 2

In view of the closed-form expression β̂∗n = Σ−1Un/(Un
TΣ−1Un)

1/2, a standard Hoeffding’s145

decomposition of Un would be applied to obtain an asymptotic expression of β̂∗n, so as to prove
the asymptotic normality.

Proof. Recall that Un =
∑

i ̸=j I(Yi < Yj)(Xj −Xi)/{n(n− 1)} is a U -statistic of order 2.
By Hoeffding’s decomposition,

Un = U +
1

n

n∑
i=1

ξ(Zi) +
1

n(n− 1)

∑
i ̸=j

ϕ(Zi, Zj),

where U = EUn and for each z, z1, z2 in S,150

ξ(z) = E{I(y < Y )(X − x) + I(Y < y)(x−X)− 2U},

ϕ(z1, z2) = I(y1 < y2)(x2 − x1)− E{I(y1 < Y )(X − x1)} − E{I(Y < y2)(x2 −X)}+ U.
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Since X has finite second moment, by the main corollary in section 6 in Sherman (1994), we
have

∑
i ̸=j ϕ(Zi, Zj)/{n(n− 1)} = op(n

−1/2), and

Un = U + n−1/2Wn + op(n
−1/2), (S1)

where Wn = n−1/2
∑n

i=1 ξ(Zi). By the central limit theorem, Wn converges in distribution to 155

a normal random vector N(0,∆) with ∆ = E{ξ(Z)ξ(Z)T}. By Theorem 1, U = EUn = cΣβ0

with c = (UTΣ−1U)1/2. Observe that

1

(Un
TΣ−1Un)1/2

=
1

(UTΣ−1U)1/2
− 1

2(UTΣ−1U)3/2
(Un

TΣ−1Un − UTΣ−1U) + op(n
−1/2)

=
1

(c2βT
0Σβ0)

1/2
− 1

2(c2βT
0Σβ0)

3/2
(Un

TΣ−1Un − c2β0TΣβ0) + op(n
−1/2)

=
1

c
− 1

2c3
(Un

TΣ−1Un − c2) + op(n
−1/2) 160

=
1

c
− 1

2c3
(c2 +

2cβ0Wn

n1/2
− c2) + op(n

−1/2)

=
1

c
− 1

c2
β0Wn

n1/2
+ op(n

−1/2). (S2)

Plugging (S2) into the closed form expression of β̂∗n, we have

β̂∗n = β0 +
n−1/2

(UTΣ−1U)1/2
(Σ−1 − β0βT

0 )Wn + op(n
−1/2).

Let V = (Σ−1 − β0βT
0 )/(U

TΣ−1U)1/2 be a p× p matrix, A = (0, Ip−1) be a (p− 1)× p ma-
trix with its first column being zeros and Ip−1 be an identity matrix of order (p− 1). Then,
θ̂∗n = Aβ̂∗n, θ0 = Aβ0 and

n1/2(θ̂∗n − θ0) =
1

(UTΣ−1U)1/2
A(Σ−1 − β0βT

0 )Wn + op(1).

Then, by the central limit theorem, n1/2(θ̂∗n − θ0)→ N(0, AV∆V TAT) in distribution as n→
∞. We complete the proof of Theorem 2. 165

2.4. Proof of Theorem 3

In view of the closed form expression of β̂n and the consistency of Σ̂, Theorem 3 can be shown
along similar lines of the proofs of Theorem 1. The details are omitted.

2.5. Proof of Theorem 4

The notations c, U, Un, ξ(·),Wn, A,∆ and V are defined in the proof of Theorem 2. 170

Proof of Theorem 4 part (i). Since Σ̂−1 = Σ−1 − Σ−1(Σ̂− Σ)Σ−1 +O(∥Σ̂− Σ∥2) almost
surely, we have

Σ̂−1 = Σ−1 + op(n
−1/2), (S3)



8 G. SHEN, K. CHEN, J. HUANG AND Y. LIN

under the assumption that ∥Σ̂− Σ∥2 = op(n
−1/2). Plugging (S3) into the expression of β̂n, sim-

ilar to the proof of Theorem 2, we obtain that β̂n = β̂∗n + op(n
−1/2). Hence, the conclusion of

Theorem 4 part (i) holds.175

Proof of Theorem 4 part (ii). When Σ is estimated by the sample covariance matrix Σ̂S =∑n
i=1(Xi − X̄)(Xi − X̄)T/(n− 1), it is not hard to get that

Σ̂S = Σ+ n−1/2Ξn +Op(
1

n
), (S4)

where Ξn =
∑n

i=1{(Xi − µ)(Xi − µ)T − Σ}/n1/2. Then, plugging (S1) and (S4) into the
closed-form expression of β̂n, some simple algebra yields that

β̂n = β0 +
n−1/2

(UTΣ−1U)1/2
(Σ−1 − β0βT

0 )Wn + n−1/2(
β0β

T
0

2
− Σ−1)Ξnβ0 + op(n

−1/2).

Then, since θ̂n = Aβ̂n and θ0 = Aβ0 with A = (0, Ip−1) being a (p− 1)× p matrix, we have180

the following asymptotic expression

n1/2(θ̂n − θ0) =
1

(UTΣ−1U)1/2
A(Σ−1 − β0βT

0 )Wn +A(β0β
T
0 /2− Σ−1)Ξnβ0 + op(1).

Since Wn and Ξnβ0 are both sum of independent and identically distributed random vec-
tors, under the moment condition of X and by the central limit theorem, n1/2(θ̂n − θ0)→
N(0, ABAT) in distribution, where B = E{V ξ(Z) +Hψ(Z)}{V ξ(Z) +Hψ(Z)}T, ψ(Z) =
{(X − µ)(X − µ)T − Σ}β0 and H = β0β

T
0 /2− Σ−1. The proof of Theorem 4 is complete. □185

2.6. Proof of Theorem 5

Define Lg
n(β) =

∑n
i ̸=j I(Yi < Yj)g{(Xj −Xi)

Tβ}/{n(n− 1)} and Lg(β) = E{Lg
n(β)}.

For reader’s convenience, we first give the definition of elliptical distribution below (Theorem 1,
Cambanis et al. (1981)).

DEFINITION S1. (Elliptical Distributions) A p-dimensional random variable X is said to be190

elliptical distributed if and only if there exist a vector µ ∈ Rp and a positive semidefinite matrix
Σ ∈ Rp×p with rank k, such that X = µ+RΛU (k), where U (k) is a k-dimensional random
vector uniformly distributed on a unit (k − 1)-sphere Sk−1,R is a non-negative random variable
stochastically independent of U (k) and ΛΛT = Σ.

Proof of Theorem 5. We intend to prove the consistency in 3 steps.195

Step 1. To prove the maximizer of Lg
n(β), β̂

g
n converges to the maximizer of Lg(β) in prob-

ability. By the properties of elliptical distributions as shown in chapter 1 of 2004 University of
Cologne Faculty of Management PhD thesis by Frahm. G, there are two facts: first, under ellip-
tical distribution assumption, the difference of each pair of observations, i.e, Xj −Xi, i ̸= j, is
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also elliptical distributed; second, for any β ∈ E(Σ) and any i ̸= j, g{(Xj −Xi)
Tβ} follows the 200

same distribution, as (Xj −Xi)
Tβ have the same distribution since

Xj −Xi
d
= RΛU, (S5)

where U is a p-dimensional random vector uniformly distributed on a unit (p− 1)-sphere Sp−1,
R is a non-negative random variable stochastically independent of U and ΛΛT = Σ. Then (Xj −
Xi)

Tβ = RUTΛTβ = RUTα, where α = ΛTβ = Σ1/2β ∈ Sp−1 = {α ∈ Rp : αTα = 1}. As a
result, (Xj −Xi)

Tβ has the same distribution for any β ∈ E(Σ) since UTα has the same distri-
bution for any α ∈ Sp−1. Therefore, by Condition (G1) part (i),E∥g{(X1 −X2)

Tβ}∥2 <∞ for
all β ∈ E(Σ) and Lg is well-defined on E(Σ). In addition, since |I(Yi < Yj)| ≤ 1, E∥Lg

n∥∞ :=

E supβ∈E(Σ) |L
g
n(β)| <∞. Next we show that ∥Lg

n − Lg∥∞→0 in probability uniformly on
E(Σ) as n→∞, i.e.,

sup
β∈E(Σ)

|Lg
n(β)− Lg(β)|→0

in probability. Firstly, since E∥Lg
n∥∞ <∞, we have

sup
β∈E(Σ)

E sup
α:∥α−β∥2<ϵ

|Lg
n(α)− Lg

n(β)| → 0 as ϵ ↓ 0, (S6)

and Lg(β) = E{Lg
n(β)} is continuous on β (Lemma 9.1, Keener, 2010). By Lemma S1, for any

β ∈ E(Σ), we have Lg
n(β)→ Lg(β) in probability. For δ > 0, let

Mδ,ij(β) = sup
α:∥α−β∥2<δ

|I(Yi < Yj)g{(Xj −Xi)
Tα} − I(Yi < Yj)g{(Xj −Xi)

Tβ}|

and Lg
δ(β) = EMδ,ij(β). Given any ϵ > 0, by (S6), we can choose δ such that

E sup
α:∥α−β∥2<ϵ

|Lg
n(α)− Lg

n(β)| ≤ L
g
δ(β) < ϵ ∀β ∈ E(Σ),

and with such choice of δ, if ∥α− β∥2 < δ, then

|Lg(α)− Lg(β)| = |E{Lg
n(α)− Lg

n(β)}| ≤ E|Lg
n(α)− Lg

n(β)| ≤ ϵ.

Let Bδ(β) = {α : ∥α− β∥2 < δ} be the open ball with radius δ and center β. Since E(Σ)
is compact, the open sets {Bδ(β) : β ∈ E(Σ)} covering E(Σ) have a finite subcover {Ot = 205

Bδ(αt) : t = 1, . . . ,m}. Then,

∥Lg
n − Lg∥∞ = max

t=1,...,m
sup
α∈Ot

|Lg
n(α)− Lg(α)|

≤ max
t=1,...,m

sup
α∈Ot

{
|Lg

n(α)− Lg
n(αt)|+ |Lg

n(αt)− Lg(αt)|+ |Lg(αt)− Lg(α)|
}

≤ max
t=1,...,m

sup
α∈Ot

|Lg
n(α)− Lg

n(αt)|+ max
t=1,...,m

|Lg
n(αt)− Lg(αt)|+ ϵ.
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Now,210

sup
α∈Ot

|Lg
n(α)− Lg

n(αt)| =
1

n(n− 1)
sup
α∈Ot

|
∑
i ̸=j

I(Yi < Yj)g{(Xj −Xi)
Tα}

− I(Yi < Yj)g{(Xj −Xi)
Tαt}|

≤ 1

n(n− 1)

∑
i ̸=j

Mδ,ij(αt):=M̄δ,n(αt).

By the law of large numbers,

M̄δ,n(αt)→Lg
δ(αt) < ϵ

in probability. Thus, we have

∥Lg
n − Lg∥∞ < 2ϵ+ max

t=1,...,m

{
M̄δ,n(αt)− Lg

δ(αt)
}
+ max

t=1,...,m
|Lg

n(αt)− Lg(αt)|.

The two maximums on the right hand side of the above inequality both tend to zero in probabil-
ity, with which it is easy to show that pr(∥Lg

n − Lg∥∞ > 3ϵ)→ 0 as n→∞. This proves that215

∥Lg
n − Lg∥∞→0 in probability uniformly on E(Σ). With the same lines of proof coupled with

the strong law of large numbers (Lemma S1), we can prove that ∥Lg
n − Lg∥∞→0 almost surely.

Step 2. To show that for any β ∈ E(Σ), we can write Lg(β) =
∫
F (x, β)G(x, β)dx, where

F and G are integrable functions. Recall that Xj −Xi follows the same symmetric ellip-
tical distribution for any i ̸= j by (S5). Without loss of generality, we assume cov(X)= Ip220

and β ∈ E(Ip) = Sp−1 = {β ∈ Rp : βTβ = 1}, and decompose Xj −Xi into two indepen-
dent random variables R and U , where R ≡ ∥Xj −Xi∥2 is a nonnegative random variable
and U ≡ (Xj −Xi)/∥Xj −Xi∥2 is the direction of Xj −Xi uniformly distributed on a unit
(p− 1)-sphere Sp−1. Then,

Lg(β) =E[I(Yi < Yj)g{(Xj −Xi)
Tβ}]225

=E(E[I(Yi < Yj)g{(Xj −Xi)
Tβ} | Xj −Xi])

=E[g{(Xj −Xi)
Tβ}E{I(Yi < Yj) | Xj −Xi}]

=E[g(RUTβ)E{I(Yi < Yj) | R,U}].

Define F (R,U ;β) = g(RUTβ) and G(R,U) = E{I(Yi < Yj) | R,U}. Let σ(Sp−1) denote
the area of unit sphere and let fR(·) denote the density function of R. Then, it follows from230

the independence ofR and U that

Lg(β) =

∫ ∞

0

∫
Sp−1

F (R,U ;β)G(R,U)fR(R)/σ(Sp−1)dUdR. (S7)

Step 3. To apply Hardy-Littlewood inequality (Burchard, 2009) on (S7), so
as to prove β0 is the unique maximizer of Lg(β). For each R ∈ [0,+∞), once∫
Sp−1 F (R,U ;β)G(R,U)/σ(Sp−1)dU is maximized over β, then Lg is maximized. Next,235
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we focus on G(R,U) and F (R,U ;β). By definition, |G(R,U)| ≤ 1, and all its moments
exist. When R = 0, it is easy to see that G(0,U) ≡ 1/2. For each R > 0, G(R,U) is
symmetric about β0 on the unit sphere and increasing in UTβ0 by condition (G2). To be
exact, G(R,U1) = G(R,U2) if UT

1 β0 = UT
2 β0 and G(R,U1) ≥ G(R,U2) if UT

1 β0 > UT
2 β0.

Meanwhile, for fixed R > 0, 1−G(R,U) is symmetric about β0 and decreasing in UTβ0. 240

By condition (G1) part (i) and definition of F (R,U ;β), its first moment exists. For R = 0,
F (0,U ;β) ≡ 0. For each fixed R > 0, F (R,U ;β) has the same distribution for all β ∈ Sp−1,
and β is actually a parameter rotating the function graph of g(RUTβ) over the support of U .
When β = β0, F (R,U ;β0) = g(RUTβ0) is symmetric about β0 on the unit sphere (the support
of U), and it is non-constant increasing in UTβ0. 245

Hence, for each R > 0, nonnegative measurable functions F (R,U ;β0) = g(RUTβ0) and
G(R,U) are concordant with each other, i.e. they have the same monotonicity over the support
of U . Applying Hardy-Littlewood inequality (Burchard, 2009), we have∫

Sp−1

−F (R,U ;β)(1−G(R,U))/σ(Sp−1)dU

≤
∫
Sp−1

−F (R,U ;β0)(1−G(R,U))/σ(Sp−1)dU 250

for any β ∈ Sp−1. Furthermore,

Lg(β0) =

∫ ∞

0

∫
Sp−1

F (R,U ;β0)G(R,U)/σ(Sp−1)fR(R)dUdR

≥
∫ ∞

0

∫
Sp−1

F (R,U ;β)G(R,U)/σ(Sp−1)fR(R)dUdR

=Lg(β).

By condition (G2), both F (R,U ;β) andG(R,U) are non-constant increasing in their arguments, 255

thus Lg(β0) > Lg(β) for any β ̸= β0. This completes the proof of Theorem 5.

2.7. Proof of Theorem 6

Proof. With the parameterization β = β(θ,Σ) in Section 2.4 in the main context, define
Γn(θ,Σ) ≡ Lg

n(β(θ,Σ))− Lg
n(β0(θ0,Σ)), and Γ(θ,Σ) ≡ EΓn(θ,Σ) for each θ ∈ Θ. Note that

Γn(θ0, ·) = 0 and Γ(θ0, ·) = 0. Firstly, under the assumption that ∥Diff(θ, Σ̂)− Diff(θ,Σ)∥2 = 260

op(n
−1/2∥θ − θ0∥2) uniformly over op(1) neighborhoods of θ0, it is not hard to obtain that

Γn(θ, Σ̂) = Γn(θ,Σ) + op(n
−1/2∥θ − θ0∥2)

uniformly over op(1) neighborhoods of θ0. Thereafter, we focus on handling Γn(θ,Σ) and write
it as Γn(θ) for simplicity. It follows from the standard Hoeffding’s decomposition of U -process
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that265

Γn(θ) = Γ(θ) +
1

n

n∑
i=1

η(Zi, θ) +
1

n(n− 1)

∑
i ̸=j

ω(Zi, Zj , θ),

where for each z in S and each θ ∈ Θ,

η(z, θ) = τ(z, θ)− τ(z, θ0)− 2Γ(θ),

τ(z, θ) = E[I(y < Y )g{(X − x)Tβ(θ,Σ)}+ I(Y < y)g{(x−X)Tβ(θ,Σ)}],

and

ω(zi, zj , θ) = ϕg(z1, z2, θ)− ϕg(z1, z2, θ0),270

ϕg(z1, z2, θ) = I(y1 < y2)g{(x2 − x1)Tβ(θ,Σ)}+ Γ(θ)

− E[I(y1 < Y )g{(Y − x1)Tβ(θ,Σ)}+ I(Y < y2)g{(x2 − Y )Tβ(θ,Σ)}].

By referring to the main theorems in Sherman (1993), we shall first prove the following three
statements, which are key steps to establish the n1/2-consistency and asymptotic distribution of
θ̂gn:275

(i) There exist a neighborhood N ⊂ Θ of θ0 and a constant κ > 0 such that, for all θ in N ,

Γ(θ) =
1

2
(θ − θ0)TV g(θ − θ0) + o(∥θ − θ0∥22) ⩽ −κ∥θ − θ0∥22,

where V = E{∇2τg(Z, θ0)}/2.
(ii) Uniformly over op(1) neighborhoods of θ0 ∈ Θ,

1

n

n∑
i=1

η(Zi, θ) = n−1/2(θ − θ0)TW g
n + o(∥θ − θ0∥2),

where W g
n is a random vector converging to N(0,∆g) in distribution with ∆g =

E[∇1τg(Z, θ0){∇1τg(Z, θ0)}T].
(iii) Uniformly over op(1) neighborhoods of θ0,

1

n(n− 1)

∑
i ̸=j

ω(Zi, Zj , θ) = op(
1

n
).

To prove (i), we fix z ∈ S and θ ∈ N . By condition (G3) and Taylor expansion of τg(z, θ) around
θ0,280

τg(z, θ)− τg(z, θ0) = (θ − θ0)T∇1τg(z, θ0) +
1

2
(θ − θ0)T∇2τg(z, θ

⋆)(θ − θ0), (S8)

where θ⋆ is between θ0 and θ. Besides, under condition (G3), for each z ∈ S and each θ ∈ N ,

∥(θ − θ0)T{∇2τg(z, θ)−∇2τg(z, θ0)}(θ − θ0)∥ ⩽Mg(z)∥θ − θ0∥32
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with integrable Mg. Notice that E{τg(Z, θ)− τg(Z, θ0)} = 2Γ(θ). Then,

2Γ(θ) = (θ − θ0)TE∇1τg(Z, θ0) + (θ − θ0)TV g(θ − θ0) + o(∥θ − θ0∥22). (S9)

As shown in the proofs of Theorem 5, β0 is the global (local) maximizer of Lg on E(Σ); thus
E{∇1τ(Z, θ0)} = 0 and V g is negative definite. Hence,

Γ(θ) =
1

2
(θ − θ0)TV g(θ − θ0) + o(∥θ − θ0∥22) ⩽ −κ∥θ − θ0∥22.

To show (ii), in view of (S8) and (S9), it follows from the definition of η(·, θ) = τ(z, θ)−
τ(z, θ0)− 2Γ(θ) that

1

n

n∑
i=1

η(·, θ) = n−1/2(θ − θ0)TW g
n +

1

2
(θ − θ0)TDg

n(θ − θ0) + o(∥θ − θ0∥22) +Rg
n(θ),

where W g
n = n−1/2

∑n
i=1∇1τg(Zi, θ0), D

g
n =

∑n
i=1∇2τg(Zi, θ0)/n− 2V g and ∥Rg

n(θ)∥2 ⩽
∥θ − θ0∥32

∑n
i=1Mg(Zi)/n. By the central limit theorem, W g

n → N(0,∆) in distribution. And
according to the weak law of large numbers, Dg

n → 0 in probability as n→∞. Next, by the
integrability of Mg and the weak law of large numbers, it can be shown that Rg

n(θ) = op(∥θ − 285

θ0∥22) uniformly over op(1) neighborhoods of θ0.
To prove (iii), by Corollary 17, Corollary 21 in Nolan & Pollard (1987) and Theorem

3 in Sherman (1993), it suffices to prove that H = {hg(·, ·, β(θ,Σ)) : θ ∈ Θ} is Euclidean
with a constant envelope, where hg(z1, z2;β(θ)) = I(y1 < y2)g{(x2 − x1)Tβ(θ,Σ)} for each
(z1, z2) ∈ S ⊗ S and each θ ∈ Θ. Then, according to Lemma 2.12 in Pakes & Pollard (1989), 290

if {subgraph(hg):h ∈ H} is a VC class of sets, thenH is Euclidean for every envelope. Next, we
intend to show that {subgraph(h):h ∈ H} is a VC class of sets. For each θ ∈ Θ,

subgraph(hg(·, ·, β(θ))) = {(z1, z2, t) ∈ X ⊗ R : 0 < t < hg(z1, z2, β(θ,Σ))}

= {t > 0}{y2 − y1 > 0}{g{(x2 − x1)Tβ(θ)} − t > 0}

= {s1 > 0}{s2 > 0}{s3 > 0} 295

For any (z1, z2, t) ∈ X ⊗ R, the class of sets {s1 > 0} and {s2 > 0} are both VC class accord-
ing to Lemma 2.4 in Pakes & Pollard (1989). And, by condition (G1) part (ii), {s3 > 0} also
belongs to VC class. Since the intersection of sets in VC classes are still a VC class, as a result,
{subgraph(h):h ∈ H} is a VC class of sets.

Combining statements (i)-(iii), according to Theorem 1 of Sherman (1993), we have shown 300

the n1/2-consistency and asymptotic normality of θ̂gn, that is, ∥θ̂gn − θ0∥2 = Op(n
−1/2) and

n1/2(θ̂gn − θ0)→N(0, (V g)−1∆g(V g)−1) in distribution. The proof of Theorem 6 is complete.□
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2.8. Proof of Theorem 7

Proof. In the presence of censoring, recall that Lc
n(β) =

∑
i ̸=j diI(vi < vj)(Xj −

Xi)
Tβ/{n(n− 1)} and U c

n =
∑

i ̸=j diI(vi < vj)(Xj −Xi)/{n(n− 1)}. Define Lc(β) =305

ELc
n(β) and U c = E(U c

n). Invoke the closed-form expression β̂cn = Σ̂−1U c
n/(U

c
n
TΣ̂−1U c

n)
1/2.

With consistent estimate Σ̂−1, to establish the consistency of β̂cn, it suffices to show that
Σ−1U c lies in the linear space of β0. For any b satisfying bTβ0 = 0, the inner product of Σ−1U c

and b is

(Σ−1U c)Tb =E{diI(vi < vj)(Xj −Xi)
TΣ−1b}310

=E[E{diI(vi < vj)(Xj −Xi)
TΣ−1b | XT

i β0, X
T
j β0, ϵi, ϵj , Ci, Cj}]

=E[diI(vi < vj)E{(Xj −Xi)
TΣ−1b | XT

i β0, X
T
j β0, ϵi, ϵj , Ci, Cj}]

=E[diI(vi < vj)E{(Xj −Xi)
TΣ−1b | XT

i β0, X
T
j β0}]

=E[diI(vi < vj){E(XT
j Σ

−1b | XT
j β0)− E(XT

i Σ
−1b | XT

i β0)}]

=E{diI(vi < vj)(b
TΣ−1µ− bTΣ−1µ)}315

=0,

where the second last equation holds by Lemma S2 and the fourth equality is due to the indepen-
dence assumption in condition (A1). Then, the inner product of Σ−1U c and β0 is

(Σ−1U c)Tβ0 =E{diI(vi < vj)(Xj −Xi)
TΣ−1β0}

=E[E{diI(vi < vj)(Xj −Xi)
TΣ−1β0 | XT

i β0, X
T
j β0, ϵi, ϵj , Ci, Cj}]320

=E[diI(vi < vj)E{(Xj −Xi)
TΣ−1β0 | XT

i β0, X
T
j β0, ϵi, ϵj , Ci, Cj}]

=E[diI(vi < vj)E{(Xj −Xi)
TΣ−1β0 | XT

i β0, X
T
j β0}]

=E[diI(vi < vj){E(XT
j Σ

−1β0 | XT
j β0)− E(XT

i Σ
−1β0 | XT

i β0)}]

=E[diI(vi < vj){βT
0 β0(X

T
j β0)− βT

0 β0(X
T
i β0)}]

=βT
0 β0E{diI(vi < vj)(X

T
j β0 −XT

i β0)}325

>βT
0 β0E{diI(vi < vj)}E(XT

j β0 −XT
i β0)

=0,

where the sixth equation follows from Lemma S2. And the last second inequality follows from
Lemma (S3), Assumption (M), and the independence assumption in condition (A1), which
implies that E{pr(Yi < Ci, vi < vj | XT

j β0)} is non-constant increasing in XT
j β0 while non-330

constant decreasing in XT
i β0. This completes the proof of consistency. □

2.9. Proof of Theorem 8

The proof of the asymptotic normality for the proposed linearized partial rank estimation is
structurally the same as the uncensored case. We omit the details here.
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2.10. Proof of Theorem 9 335

More notations are introduced. Recall that PLn(β) =
∑n

i ̸=j I(Yi < Yj)(Xi −
Xj)

Tβ/{n(n− 1)}+ λn∥β∥1 = −Ln(β) + λn∥β∥1 and L(β) = E{Ln(β)}, where Ln(·),
L(·) are defined in the main context. Since the optimization is implemented on the manifold
E(Σ), other than Conditions (C1)-(C2), to establish the oracle inequalities for high dimensional
case, additional assumptions are needed. 340

(M*) The unknown function f(·, ·) : R2 → R is non-constant increasing in its first argument on the
support of (XTβ0, ϵ) and X is independent of ϵ. And for all n, the variance of the random
variable pr{Y1 < Y2 | XT

2 β0} is bounded below by some universal positive constant.
(D1) (i) There exists a positive constant A0 such that for any n and β ∈ Rpn and any t > 0 such

that pr{|βTX| ≥ tA0∥β∥2} ≤ 2 exp(−t2). (ii) There exist universal constants δ0, ε0 > 0 such 345

that pr(|XTβ0 − E(XTβ0)| > δ0) ≥ ε0 for any n.
(D2) There exists a universal positive constant c0 such that all the eigenvalues of Σ, the covariance

matrix of X , are bounded below by c0.

Under fixed-dimensional case, we need the random variable E{f(XTβ0, ϵ) | XTβ0} =
E{Y | XTβ0} has non-zero variance as in Assumption (M) to prove the consistency of the pro- 350

posed estimator. This condition is actually a minimal model assumption to ensure a non-zero
signal such that the parameter β0 can be estimated under fixed dimensional settings. Similarly,
under high-dimensional settings, Assumption (M*) is also a minimal model assumption to ensure
non-zero signals for all n, which avoids the signals decay to 0 as n→∞. Note that Assumption
(M*) is imposed for high-dimensional case, and Assumption (M) is sufficient for fixed dimen- 355

sional case. For a high-dimensional linear model Y = XTβ0 + ϵ, Assumption (M*) basically
requires the variance of XTβ0 is uniformly greater than some universal positive constant for all
n, which avoids the case that the linear model reduces to a degenerate and trivial model Y = ϵ

as n→∞. Fan et al. (2020) studied rank estimators in increasing dimensions and imposed a
similar identification condition by positing non-constant requirement on the objective function 360

(at the population level) around the true parameter, whose first component is restricted to be 1

for identifiability.
Note that Assumption (D1) part (i) can lead to an upper bound on the spectrum of the covari-

ance matrix Σ, i.e., there exists a universal positive constant C0 such that all the eigenvalues of
Σ, the covariance matrix of X , are bounded above by C0. To show this, for any β ∈ Rpn , we 365

have

βTΣβ = cov(XTβ) ≤ E(|XTβ|2) =
∫ ∞

0
pr{|XTβ|2 > t}dt.
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Let u = t1/2/(A0∥β∥2). Then,

βTΣβ ≤
∫ ∞

0
pr{|XTβ|2 > t}dt

=

∫ ∞

0
2uA2

0∥β∥22pr{|XTβ| > uA0∥β∥2}du370

≤
∫ ∞

0
4u exp(−u2)A2

0∥β∥22du

={− exp(−u2)}
∣∣∞
0
2A2

0∥β∥22
=2A2

0∥β∥22,

where the second inequality follows from Assumption (D1) part (i). This implies that there exists
a universal positive constant C0 ≤ 2A2

0 such that all the eigenvalues of Σ, the covariance matrix375

of X , are bounded above by C0.
Besides, we impose an additional part (ii) in Assumption (D1), which requires that the prob-

ability mass of XTβ0 does not concentrate around its mean, which is generally satisfied for
many common continuous distributions. For example, if X follows normal distribution with
mean µ and covariance matrix Σ, then XTβ0 followsN (µTβ0, 1) by the identifiability condition380

βT
0Σβ0 = 1, which satisfies Assumption (D2) part (ii).

Proof. We first show that, under Condition (M*), (D1) and (D2), there is a local quadratic
curvature of L(·) on the manifold E(Σ), i.e., there exists some universal κL > 0 such that for all
n and any β ∈ E(Σ)

L(β)− L(β0) ≤ −κL∥β − β0∥22. (S10)385

To this end, recall that U = E{I(Y1 < Y2)(X2 −X1)} and L(β) = UTβ. By the proof of Theo-
rem 1, we have Σ−1U = cβ0 where c = (UTΣ−1U)1/2 > 0. Define ∆(β) := β − β0. In view of
the identifiability condition and β ∈ E(Σ), we have βT

0Σβ0 = βTΣβ = {β0 +∆(β)}TΣ{β0 +
∆(β)}, which implies

βT
0Σ∆(β) = −1

2
∆(β)TΣ∆(β). (S11)

Then,390

L(β)− L(β0) = UT(β − β0)

= UTΣ−1Σ∆(β)

= (Σ−1U)TΣ∆(β)

= cβT
0Σ∆(β)

= − c
2
∆(β)TΣ∆(β)395

= −1

2
(UTΣ−1U)1/2∆(β)TΣ∆(β).
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Under Condition (D1) and (D2), all eigenvalues of Σ lie in [c0, C0]. Then,

L(β)− L(β0) = −
1

2
(UTΣ−1U)1/2∆(β)TΣ∆(β)

≤ −1

2
C

−1/2
0 ∥U∥2 × c0∥∆(β)∥22

= −
(1
2
c0C

−1/2
0 ∥U∥2

)
× ∥β − β0∥22. 400

Let κL := c0C
−1/2
0 ∥U∥2/2, we intend to prove that κL ≥ c > 0 for some universal positive

constant c, as U ∈ Rpn can change with the sample size n under the triangular array setting. To
this end, we only need to show that there exists a universal constant c′ such that ∥U∥2 ≥ c′ > 0

for all n.
For notational simplicity, we still use the notations U, β0, µ,Σ, X and suppress their depen- 405

dence on n. First, by Assumptions (D1)-(D2) and the identifiability condition βT
0Σβ0 = 1, we

have for all n,

c0∥β0∥22 ≤ βT
0Σβ0 ≤ C0∥β0∥22, C

−1/2
0 ≤ ∥β0∥2 ≤ c−1/2

0 .

Note that

∥U∥22 = UTU ≥ UTβ0
∥U∥2
∥β0∥2

≥ c1/20 ∥U∥2U
Tβ0. 410

If we can show that there exists some universal constant c′′ such that UTβ0 ≥ c′′ > 0 for all n,
then ∥U∥2 > 0 and ∥U∥2 ≥ c1/20 UTβ0 = c

1/2
0 c′′ > 0. By the definition of U and the proof of

Theorem 1, we have

UTβ0 =E{I(Y1 < Y2)(X2 −X1)
Tβ0}

=E{I(Y1 < Y2)(X2 − µ)Tβ0} − E{I(Y1 < Y2)(X1 − µ)Tβ0} 415

=E[{pr(Y1 < Y2 | XT
2 β0)− 1/2}{(X2 − µ)Tβ0}]

− E[{pr(Y1 < Y2 | XT
1 β0)− 1/2}{(X1 − µ)Tβ0}].

Now we prove that there exists a positive constant c1 > 0 such that E[{pr(Y1 < Y2 | XT
2 β0)−

1/2}{(X2 − µ)Tβ0}] ≥ c1 > 0 for all n. Let v0 > 0 denote the uniform lower bound of the vari-
ance of pr{Y1 < Y2 | XT

2 β0} under Assumption (M*). Note that pr(Y1 < Y2 | XT
2 β0)− 1/2 ∈ 420

[−1/2, 1/2] is bounded for any n, then v0 ≤ var{pr(Y1 < Y2 | XT
2 β0)} ≤ 1/4. For brevity, we

use g(XT
2 β0) to denote pr(Y1 < Y2 | XT

2 β0)− 1/2. Then,

v0 ≤var{g(XT
2 β0)}

=E[{g(XT
2 β0)}2I(|g(XT

2 β0)| ≤ v
1/2
0 /2)] + E[{g(XT

2 β0)}2I(|g(XT
2 β0)| > v

1/2
0 /2)]

≤pr{|g(XT
2 β0)| ≤ v

1/2
0 /2}v0/4 + pr{|g(XT

2 β0)| > v
1/2
0 /2}/4, 425
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which leads to

pr{|g(XT
2 β0)| > v

1/2
0 /2} ≥ 3v0

1− v0
.

On the other hand, under Condition (D1) part (ii), there exist constants δ0, ε0 > 0 such that
pr(|XT

2 β0 − E(XT
2 β0)| > δ0) ≥ ε0 for all n. Then, for any n,

UTβ0 =E[{pr(Y1 < Y2 | XT
2 β0)− 1/2}{(X2 − µ)Tβ0}]

− E[{pr(Y1 < Y2 | XT
1 β0)− 1/2}{(X1 − µ)Tβ0}]

≥E[{pr(Y1 < Y2 | XT
2 β0)− 1/2}{(X2 − µ)Tβ0}]430

=E{g(XT
2 β0)(X2 − µ)Tβ0}

≥E[g(XT
2 β0)(X2 − µ)Tβ0I{|g(XT

2 β0)| > v
1/2
0 /2}I{|XT

2 β0 − E(XT
2 β0)| > δ0}]

≥v
1/2
0

2
δ0min

{
3v0

1− v0
, ε0

}
> 0.

Hence, it has been shown that there exists a universal constant c′ such that ∥U∥2 ≥ c′ > 0 for all
n. As a result, we have shown that there exists some universal constant κL > 0 such that for all435

n, any β ∈ E(Σ)

L(β)− L(β0) ≤ −κL∥β − β0∥22.

Next we carry out the proof of Theorem 9 in three steps.

Step 1. If λn ≥ 2∥∇Ln(β0)∥∞, then β̂n − β0 ∈ C(A), whereC(A) = {α ∈ Rpn : ∥αAc∥1 ≤440

3∥αA∥1}, i.e. ∥(β̂n − β0)Ac∥1 ≤ 3∥(β̂n − β0)A∥1. By the definition of β̂n, we have

0 ≥PLn(β̂n)− PLn(β0)

={−Ln(β̂n)} − {−Ln(β0)}+ λn(∥β̂n∥1 − ∥β0∥1)

=(β̂n − β0)T∇(−Ln)(β0) + λn(∥β̂n∥1 − ∥β0∥1)

≥− ∥β̂n − β0∥1∥∇Ln(β0)∥∞ + λn(∥β̂n∥1 − ∥β0∥1)445

≥− λn
2
∥β̂n − β0∥1 + λn(∥β̂n∥1 − ∥β0∥1)

=− λn
2
∥β̂n − β0∥1 + λn(∥(β̂n − β0 + β0)Ac∥1 + ∥(β̂n − β0 + β0)A∥1 − ∥β0∥1)

=− λn
2
∥β̂n − β0∥1 + λn(∥(β̂n − β0)Ac∥1 + ∥(β̂n − β0 + β0)A∥1 − ∥β0∥1)

≥− λn
2
(∥(β̂n − β0)A∥1 + ∥(β̂n − β0)Ac∥1) + λn(∥(β̂n − β0)Ac∥1 − ∥(β̂n − β0)A∥1)

=− λn
2
(3∥(β̂n − β0)A∥1 − ∥(β̂n − β0)Ac∥1).450

The inequality follows from ∥β̂n − β0∥1 = ∥(β̂n − β0)A∥1 + ∥(β̂n − β0)Ac∥1 and β0,Ac = 0.
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Step 2. For λn = an{log(n) log(pn)/n}1/2, the probability of λn ≥ 2∥∇Ln(β0)∥∞ is greater
than 1− 2 exp(−an)− 2/pn. Let ej be the unit vector with its j-th component being 1 and
others 0. Taking β in condition (D1) as ej , for each i = 1, . . . , n, we have

pr{|eTjXi| ≥ tA0} ≤ 2 exp(−t2),

and

pr{|eTjX1| ≤ BA0, . . . , |eTjXn| ≤ BA0} ≥ 1− 2n exp(−B2).

For the j-th component of ∇Ln(β0), given {|eTjX1| ≤ BA0, . . . , |eTjXn| ≤ BA0}, then
eTj∇Ln(β0) is a U-statistic with kernel bounded by 2BA0. By the concentration inequality with
bounded kernel in Hoeffding (1994), there exists some constant c1 > 0 depending only on A0,
such that with probability at least 1− 2n exp(−B2),

pr{2|eTj∇Ln(β0)| ≥ λn} ≤ c1 exp{−nλ2n/(16B2A2
0)}.

By Condition (D1), the above inequality holds for any ej . Thus,

pr{2∥∇Ln(β0)∥∞ ≤ λn} ≥ 1− c1 exp{−nλ2n/(16B2A2
0)} − 2n exp(−B2).

Taking B = {an log(n)}1/2 and λn = 4A0B{log(pn)/n}1/2 = 4A0{an log(n) log(pn)/n}1/2,
we obtain that with probability at least 1− 2 exp(−an)− c1/pn, λn ≥ 2∥∇Ln(β0)∥∞. Here
an is a sequence of positive numbers diverging to∞ as n→∞, and the rate of an diverging to 455

∞ can be arbitrarily slow.

Step 3. We will show that with probability at least 1− 2 exp(−an)− 2/pn,

{−Ln(β̂n)} − {−Ln(β)} ≥ κL∥β̂n − β0∥22 − 23/2A0

{
an log(n) log(pn)

n

}1/2

∥β̂n − β0∥2.

(S12)
For any α ∈ Rpn and given B > 0, pr{|αTXi| ≥ BA0∥α∥2} ≤ 2 exp(−B2). Then,

pr{|αTX1| ≤ BA0∥α∥2, . . . , |αTXn| ≤ BA0∥α∥2} ≥ 1− 2n exp(−B2).

For any δ > 0, define C(A, δ) = C(A) ∩ {α ∈ Rpn : ∥α∥2 = δ}. Note that if β̂n − β0 ∈
C(A, δ), the probability for the occurrence of the event {|I(Yi < Yj)(Xj −Xi)

T(β̂n − β0)| ≤
BA0δ, for all i, j = 1, . . . , n} is at least 1− 2n exp(−B2). Then, by the bounded difference
inequality in Hoeffding (1994), with probability at least 1− 2n exp(−B2), we have

pr{|Ln(β̂n)− Ln(β)− {L(β̂n)− L(β)}| ≥ t} ≤ 2 exp
(
− nt2

8B2A2
0∥β̂n − β0∥22

)
.
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Recall that B = {an log(n)}1/2. Taking t = 23/2A0∥β̂n − β0∥2B{log(pn)/n}1/2, together
with inequality (S10), we have proved (S12).460

Step 4. For any δ > 0 and all β̂n − β0 ∈ C(A, δ), with probability at least 1− 4 exp(−an)−
(2 + c1)/pn, we have

0 ≥ PLn(β̂n)− PLn(β0)

≥ κL∥β̂n − β0∥22 − 23/2A0an

{
log(n) log(pn)

n

}1/2

∥β̂n − β0∥2 − λn∥(β̂n − β0)A∥1465

≥ κL∥β̂n − β0∥22 − 23/2A0an

{
log(n) log(pn)

n

}1/2

∥β̂n − β0∥2 − (sn)
1/2λn∥(β̂n − β0)A∥2

≥ κL∥β̂n − β0∥22 −

(
23/2A0an

{
log(n) log(pn)

n

}1/2

+ (sn)
1/2λn

)
∥β̂n − β0∥2

≥ κL∥β̂n − β0∥22 −
(
2−1/2 + (sn)

1/2
)
λn∥β̂n − β0∥2,

which suggests that δ ≤ {2−1/2 + (sn)
1/2}λn/κL. Since β0 ∈ E(Σ), we have sn ≥ 1.

Consequently, when λn = 23/2A0{an log(n) log(pn)/n}1/2, with probability at least 1−470

4 exp(−an)− (c1 + 2)/pn,

∥β̂n − β0∥2 ≤ 2(sn)
1/2λn/κL,

∥β̂n − β0∥1 ≤ 2snλn/κL,

where c1 > 0 is a constant depending only on A0. We have completed the proof of Theorem 9.□

3. ADDITIONAL SIMULATION RESULTS475

In this section, we present some additional simulation results in Tables S1-S3 and Table S5.
For checking the robustness of our methods without the monotonicity assumption of the link
function f , additional simulation results under three models: M5: Y = (XTβ0)

2 + ϵ; M6: Y =

(XTβ0)
3 + 5(XTβ0)

2 − 3(XTβ0) + ϵ; M7: Y = 5 sin(XTβ0) + ϵ, are presented in Table S4.
We set p = 5 and β0 = (1, 1, 0, 0,−1)T. And the covariate X are generated from a multivariate480

normal distribution with mean 0 and covariance matrix Σ = (ρij) with ρij = ρ
|i−j|
0 and ρ0 = 0.3.
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Table S1. Summary statistics with dimension p = 5 and correlation ρ0 = 0.3. Averaged absolute
bias (BIAS), standard errors (SE) and coverage probability (CP) of 95% confidence interval over
components of the index parameter. Mean ℓ1 and ℓ2 distances between the estimate and the true
parameter.
Model Error Method n = 100 n = 200

BIAS SE CP ℓ1 ℓ2 BIAS SE CP ℓ1 ℓ2
M3 χ2(1) LMRC∗ 0.021 0.193 0.947 0.783 0.411 0.013 0.138 0.953 0.553 0.293

LMRC 0.005 0.097 0.947 0.382 0.047 0.003 0.066 0.942 0.266 0.022
SIR 0.008 0.139 - 0.539 0.097 0.006 0.094 - 0.375 0.045
LSE 0.034 0.236 - 0.942 0.496 0.029 0.189 - 0.756 0.397
MRC 0.200 0.538 0.864 2.096 1.142 0.082 0.337 0.923 0.993 0.557
MRE 0.444 0.739 0.990 3.597 1.930 0.392 0.725 0.998 3.373 1.870

Pois(1) LMRC∗ 0.024 0.192 0.956 0.771 0.409 0.010 0.138 0.953 0.554 0.291
LMRC 0.004 0.096 0.957 0.378 0.046 0.001 0.071 0.944 0.286 0.026

SIR 0.008 0.124 - 0.493 0.078 0.003 0.082 - 0.320 0.034
LSE 0.037 0.234 - 0.924 0.488 0.023 0.191 - 0.752 0.391
MRC 0.183 0.501 0.862 1.923 1.047 0.081 0.349 0.924 1.018 0.571
MRE 0.399 0.722 0.994 3.391 1.835 0.395 0.728 0.994 3.432 1.859

M4 χ2(1) LMRC∗ 0.040 0.275 0.948 1.113 0.590 0.026 0.199 0.940 0.800 0.422
LMRC 0.017 0.241 0.925 0.957 0.293 0.009 0.161 0.942 0.650 0.130

SIR 0.018 0.018 - 0.804 0.206 0.008 0.137 - 0.554 0.095
LSE 0.378 0.190 - 2.051 1.184 0.379 0.136 - 1.982 1.156
MRC 0.185 0.501 0.828 2.037 1.093 0.105 0.377 0.911 1.392 0.771
MRE 0.378 0.694 0.990 3.095 1.709 0.378 0.707 1.000 3.205 1.755

Pois(1) LMRC∗ 0.044 0.282 0.940 1.152 0.610 0.024 0.208 0.949 0.842 0.444
LMRC 0.036 0.234 0.941 0.937 0.281 0.007 0.172 0.951 0.683 0.147

SIR 0.022 0.199 - 0.796 0.201 0.009 0.141 - 0.560 0.100
LSE 0.403 0.199 - 2.163 1.248 0.396 0.135 - 2.056 1.209
MRC 0.190 0.507 0.834 2.097 1.133 0.125 0.415 0.907 1.564 0.857
MRE 0.405 0.718 0.994 3.317 1.819 0.466 0.744 0.998 3.614 2.002
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Table S2. Summary statistics with dimension p = 15 and correlation ρ0 = 0.3. Averaged abso-
lute bias (BIAS), standard errors (SE) and coverage probability (CP) of 95% confidence interval
over components of the index parameter. Mean ℓ1 and ℓ2 distances between the estimate and the
true parameter.
Model Error Method n = 200 n = 400

BIAS SE CP ℓ1 ℓ2 BIAS SE CP ℓ1 ℓ2
M1 χ2(1) LMRC∗ 0.029 0.240 0.951 2.900 0.922 0.018 0.175 0.944 2.118 0.670

LMRC 0.005 0.123 0.945 1.467 0.228 0.006 0.085 0.938 1.023 0.109
SIR 0.013 0.166 - 1.980 0.418 0.007 0.109 - 1.302 0.181
LSE 0.009 0.135 - 1.614 0.275 0.049 0.073 - 1.133 0.360
MRC 0.202 0.508 0.757 6.636 2.136 0.144 0.442 0.904 5.360 1.775
MRE 0.517 0.764 0.827 11.750 3.849 0.563 0.772 0.999 12.344 4.033

Pois(1) LMRC∗ 0.033 0.231 0.945 2.806 0.891 0.016 0.167 0.947 2.007 0.637
LMRC 0.006 0.100 0.958 1.192 0.149 0.004 0.073 0.942 0.862 0.080

SIR 0.008 0.121 - 1.446 0.220 0.004 0.085 - 1.013 0.108
LSE 0.006 0.110 - 1.312 0.181 0.050 0.053 - 0.967 0.306
MRC 0.191 0.509 0.750 6.603 2.124 0.142 0.442 0.890 5.276 1.769
MRE 0.095 0.332 0.841 3.879 1.980 0.595 0.767 0.998 12.277 4.077

M2 χ2(1) LMRC∗ 0.036 0.247 0.943 2.977 0.949 0.019 0.181 0.946 2.193 0.694
LMRC 0.011 0.138 0.956 1.643 0.286 0.006 0.098 0.938 1.176 0.145

SIR 0.021 0.204 - 2.433 0.634 0.008 0.122 - 1.451 0.226
LSE 0.244 0.766 - 9.703 10.152 0.254 0.696 - 8.939 2.852
MRC 0.203 0.513 0.769 6.681 2.150 0.167 0.470 0.879 5.860 1.908
MRE 0.515 0.762 0.834 11.829 3.890 0.570 0.767 0.999 12.119 4.020

Pois(1) LMRC∗ 0.034 0.242 0.951 2.948 0.934 0.018 0.174 0.951 2.099 0.667
LMRC 0.009 0.123 0.950 1.474 0.227 0.007 0.089 0.937 1.067 0.119

SIR 0.008 0.122 - 1.451 0.226 0.004 0.075 - 0.895 0.085
LSE 0.158 0.533 - 6.608 2.108 0.131 0.478 - 5.887 1.866
MRC 0.202 0.515 0.863 6.724 2.156 0.138 0.439 0.882 5.466 1.804
MRE 0.521 0.765 0.850 11.869 3.857 0.562 0.765 0.998 12.118 3.980

M3 χ2(1) LMRC∗ 0.031 0.224 0.953 2.721 0.864 0.016 0.163 0.952 1.969 0.624
LMRC 0.007 0.076 0.952 0.912 0.087 0.003 0.052 0.937 0.621 0.041

SIR 0.013 0.156 - 1.854 0.367 0.006 0.102 - 1.217 0.157
LSE 0.133 0.484 - 6.019 1.915 0.115 0.429 - 5.266 1.680
MRC 0.162 0.462 0.866 5.742 1.879 0.122 0.401 0.883 4.685 1.583
MRE 0.465 0.740 0.995 10.524 3.589 0.504 0.749 0.997 11.206 3.728

Pois(1) LMRC∗ 0.029 0.222 0.951 2.690 0.851 0.016 0.161 0.947 1.939 0.614
LMRC 0.004 0.076 0.952 0.905 0.087 0.002 0.051 0.950 0.602 0.038

SIR 0.008 0.120 - 1.419 0.216 0.004 0.077 - 0.919 0.090
LSE 0.136 0.492 - 6.126 1.946 0.112 0.422 - 5.213 1.657
MRC 0.160 0.458 0.858 5.700 1.882 0.123 0.404 0.885 4.677 1.583
MRE 0.457 0.735 0.997 10.636 3.533 0.528 0.753 0.999 11.405 3.824

M4 χ2(1) LMRC∗ 0.068 0.350 0.938 4.282 1.368 0.037 0.259 0.944 3.168 1.001
LMRC 0.041 0.319 0.925 3.835 1.561 0.021 0.230 0.933 2.776 0.803

SIR 0.021 0.209 - 2.505 0.665 0.013 0.147 - 1.767 0.327
LSE 0.361 0.241 - 6.134 2.006 0.352 0.169 - 5.682 1.878
MRC 0.225 0.554 0.817 7.440 2.373 0.170 0.480 0.850 6.105 1.970
MRE 0.472 0.734 0.999 10.533 3.575 0.508 0.756 0.999 11.178 3.782

Pois(1) LMRC∗ 0.073 0.355 0.920 4.352 1.389 0.041 0.267 0.943 3.250 1.029
LMRC 0.045 0.334 0.922 4.026 1.717 0.026 0.234 0.926 2.794 0.832

SIR 0.020 0.202 - 2.438 0.618 0.009 0.144 - 1.734 0.313
LSE 0.371 0.242 - 6.249 2.051 0.369 0.167 - 5.889 1.945
MRC 0.229 0.565 0.811 7.568 2.398 0.164 0.478 0.850 6.049 1.961
MRE 0.485 0.748 0.999 10.850 3.669 0.541 0.757 0.998 11.415 3.866
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Table S3. Summary statistics with dimension p = 30 and ρ = 0.8. Averaged absolute bias
(BIAS), standard errors (SE) and coverage probability (CP) of 95% confidence interval over
components of the index parameter. Mean ℓ1 and ℓ2 distances between the estimate and the true
parameter.
Model Error Method n = 200 n = 300

BIAS SE CP ℓ1 ℓ2 BIAS SE CP ℓ1 ℓ2

M3 χ2(1) LMRC∗ 0.043 0.559 0.944 13.529 3.042 0.044 0.468 0.943 11.290 2.550
LMRC 0.009 0.149 0.972 3.538 0.672 0.009 0.116 0.956 2.776 0.408

SIR 0.095 0.786 - 18.200 19.008 0.084 0.634 - 14.173 12.435
LSE 0.411 2.274 - 55.602 160.928 0.369 2.092 - 51.313 136.856
MRC 0.332 0.614 0.449 18.458 16.963 0.280 0.583 0.460 17.005 14.365
MRE 0.326 0.618 0.590 18.830 17.451 0.280 0.595 0.626 17.338 14.835

Pois(1) LMRC∗ 0.051 0.551 0.950 13.342 3.002 0.039 0.465 0.942 11.189 2.523
LMRC 0.010 0.149 0.965 3.561 0.672 0.006 0.122 0.954 2.921 0.452

SIR 0.045 0.519 - 11.835 8.176 0.032 0.357 - 8.465 3.854
LSE 0.349 2.307 - 56.571 164.265 0.394 2.114 - 51.931 140.305
MRC 0.314 0.622 0.466 18.264 16.363 0.274 0.580 0.459 16.844 13.937
MRE 0.321 0.625 0.607 18.424 16.725 0.270 0.584 0.622 17.041 14.221

M4 χ2(1) LMRC∗ 0.175 1.028 0.874 25.198 5.687 0.128 0.880 0.905 21.413 4.831
LMRC 0.155 1.023 0.840 24.802 32.333 0.141 0.873 0.891 21.152 23.608

SIR 0.171 0.910 - 21.339 26.060 0.099 0.730 - 17.032 16.456
LSE 0.156 1.534 - 36.985 71.364 0.153 1.267 - 30.695 49.170
MRC 0.361 0.658 0.477 19.620 19.047 0.321 0.631 0.473 18.638 16.934
MRE 0.362 0.641 0.614 19.486 18.621 0.319 0.619 0.635 18.258 16.323

Pois(1) LMRC∗ 0.182 1.002 0.880 24.524 5.544 0.144 0.899 0.903 21.825 4.940
LMRC 0.161 1.057 0.790 25.563 34.538 0.115 0.887 0.885 21.341 24.105

SIR 0.149 0.923 - 21.490 26.604 0.078 0.694 - 16.230 14.645
LSE 0.128 1.494 - 35.762 67.525 0.141 1.237 - 30.202 46.684
MRC 0.370 0.659 0.463 19.860 19.577 0.297 0.604 0.487 17.810 15.466
MRE 0.357 0.652 0.622 19.661 18.980 0.301 0.616 0.642 17.918 15.731
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Table S4. Summary statistics with dimension p = 5 and correlation ρ0 = 0.3. Averaged absolute
bias (BIAS), standard errors (SE) and coverage probability (CP) of 95% confidence interval over
components of the index parameter. Mean ℓ1 and ℓ2 distances between the estimate and the true
parameter.

Model Error Method
n = 100 n = 200

BIAS SE CP ℓ1 ℓ2 BIAS SE CP ℓ1 ℓ2

M5

χ2(1)

LMRC∗ 0.085 0.401 0.936 1.526 0.809 0.032 0.249 0.945 0.996 0.528
LMRC 0.057 0.348 0.959 1.360 0.629 0.020 0.231 0.949 0.916 0.276

SIR 0.548 0.818 - 4.434 2.525 0.564 0.826 - 4.524 2.530
LSE 0.361 0.780 - 3.551 2.084 0.372 0.772 - 3.524 2.069
MRC 0.464 0.704 0.821 3.719 2.116 0.477 0.713 0.824 3.775 2.143
MRE 0.473 0.704 0.861 3.729 2.110 0.471 0.714 0.848 3.736 2.099

Pois(1)

LMRC∗ 0.058 0.375 0.911 1.457 0.876 0.030 0.253 0.931 1.006 0.728
LMRC 0.022 0.300 0.955 1.166 0.451 0.017 0.226 0.954 0.877 0.258

SIR 0.538 0.823 - 4.512 2.509 0.494 0.809 - 4.294 2.393
LSE 0.366 0.772 - 3.565 2.084 0.385 0.772 - 3.574 2.099
MRC 0.443 0.708 0.793 3.607 2.050 0.479 0.717 0.819 3.766 2.129
MRE 0.448 0.711 0.869 3.726 2.111 0.504 0.715 0.869 3.837 2.157

M6

χ2(1)

LMRC∗ 0.047 0.336 0.926 1.351 0.843 0.024 0.237 0.945 0.960 0.708
LMRC 0.019 0.282 0.953 1.110 0.401 0.025 0.214 0.946 0.858 0.234

SIR 0.100 0.496 - 1.764 1.161 0.027 0.252 - 0.947 0.569
LSE 0.148 0.536 - 2.064 1.266 0.056 0.359 - 1.339 0.820
MRC 0.458 0.710 0.813 3.671 2.090 0.457 0.704 0.818 3.619 2.071
MRE 0.456 0.708 0.863 3.632 2.072 0.468 0.708 0.872 3.725 2.104

Pois(1)

LMRC∗ 0.041 0.313 0.935 1.267 0.666 0.027 0.238 0.933 0.951 0.509
LMRC 0.021 0.285 0.942 1.130 0.409 0.016 0.202 0.956 0.798 0.207

SIR 0.081 0.425 - 1.526 0.983 0.024 0.251 - 0.966 0.564
LSE 0.111 0.486 - 1.824 1.135 0.060 0.392 - 1.428 0.894
MRC 0.454 0.710 0.790 3.715 2.101 0.454 0.715 0.816 3.702 2.108
MRE 0.466 0.714 0.856 3.741 2.119 0.427 0.699 0.876 3.664 2.059

M7

χ2(1)

LMRC∗ 0.280 0.711 0.878 3.069 1.627 0.130 0.539 0.910 2.134 1.121
LMRC 0.213 0.666 0.918 2.751 2.649 0.163 0.560 0.926 2.181 1.785

SIR 0.353 0.794 - 3.553 2.118 0.264 0.685 - 2.829 1.735
LSE 0.084 0.462 - 1.728 1.063 0.037 0.316 - 1.198 0.713
MRC 0.114 0.394 0.855 1.373 0.929 0.082 0.311 0.819 1.010 0.737
MRE 0.125 0.410 0.878 1.489 0.976 0.080 0.322 0.894 1.003 0.777

Pois(1)

LMRC∗ 0.260 0.674 0.886 2.778 1.496 0.148 0.551 0.911 2.180 1.146
LMRC 0.234 0.699 0.896 2.911 3.004 0.147 0.566 0.915 2.222 1.805

SIR 0.082 0.435 - 1.528 1.006 0.264 0.695 - 2.906 3.088
LSE 0.136 0.536 - 2.046 1.607 0.036 0.284 - 1.102 0.413
MRC 0.441 0.698 0.802 3.584 4.164 0.071 0.286 0.802 0.932 0.480
MRE 0.459 0.709 0.838 3.706 4.318 0.079 0.300 0.905 0.974 0.521
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Table S5. Summary statistics with dimension p = 40. Averaged absolute bias (BIAS), standard
errors (SE) over components of the index parameter. Mean ℓ1 and ℓ2 distances between the
estimate and the true parameter. Averaged false positive rate (FP), false negative rate (FN), the
empirical probability of choosing the correct model (CM).

Dimension Model Error Method
n = 100

BIAS SE ℓ1 ℓ2 FP FN CM

p = 40

M1
χ2(1)

Lasso LMRC 0.003 0.036 1.130 0.602 0.000 0.000 1.000
Lasso SIR 0.010 0.135 2.823 0.850 0.337 0.000 1.000

Pois(1)
Lasso LMRC 0.003 0.032 0.992 0.526 0.000 0.000 1.000

Lasso SIR 0.008 0.110 2.291 0.698 0.326 0.000 1.000

M2
χ2(1)

Lasso LMRC 0.002 0.034 1.078 0.570 0.000 0.000 1.000
Lasso SIR 0.010 0.134 2.794 0.837 0.347 0.000 1.000

Pois(1)
Lasso LMRC 0.002 0.032 0.994 0.528 0.000 0.000 1.000

Lasso SIR 0.008 0.115 2.423 0.731 0.331 0.000 1.000

M3
χ2(1)

Lasso LMRC 0.001 0.036 1.130 0.609 0.000 0.000 1.000
Lasso SIR 0.022 0.236 5.065 1.518 0.344 0.001 0.997

Pois(1)
Lasso LMRC 0.002 0.034 1.054 0.563 0.007 0.001 0.996

Lasso SIR 0.022 0.221 4.725 1.407 0.340 0.000 1.000

M4
χ2(1)

Lasso LMRC 0.001 0.025 0.792 0.413 0.000 0.000 1.000
Lasso SIR 0.012 0.164 3.370 1.045 0.318 0.000 1.000

Pois(1)
Lasso LMRC 0.002 0.026 0.826 0.431 0.000 0.000 1.000

Lasso SIR 0.011 0.149 3.079 0.939 0.325 0.000 1.000
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