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This supplementary material contains numerical algorithms for computing the proposed gen-
eral class of estimators studied in Section 2.3 and the penalized estimators studied in Section 4 in 2
the main context, lemmas and technical proofs for the main theorems, as well as some additional

simulation results.

1. NUMERICAL ALGORITHMS

We describe two numerical algorithms to compute B,% studied in Section 2.3 in the main con-
text, depending on the differentiability of g. We focus on the case that X is unknown. 25

When ¢ is differentiable, the fixed-point iteration algorithm can be used. Recall
that L4(8) = Y0, 1(Y; < Y)g{(X; — X.)*8}/{n(n — 1)}. Define U$(8) = VL}(8) =
>z 1Y < Y5)g'{(X; — X;3)"BH(X; — Xi)/{n(n — 1)} where g¢'(-) denotes the deriva-
tive of g(-). By the definition of the maximizer (¢, it is not hard to check that 39 =
STLU(B9) /(UL Y). Let f2(B8) = S1UL(B)/{B UL ()} for B € £(S). Then fJ(-)isacon-
tinuous mapping from the compact set £ (ﬁ]) to itself.
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2 G. SHEN, K. CHEN, J. HUANG AND Y. LIN

Algorithm S1. Fixed-point iteration

Input data {(Y;, X;)}™_,, compute >~ and set x > 0
Randomly set initial value 3(0) € £(3)
For ¢t > 0, repeat

,B(t+1) « fg(ﬁ(t))
Until |34 — gW]|s < wor [|BHY — BVl < &
ﬁn < arg minﬁe{ﬁ(tq)ﬁ(t)75(t+1)} L%(B)
Output Sy,

Algorithm S1 is not a direct fixed-point iteration, as f is defined on the hyper ellipsoid and it
is possibly an antipodal map, i.e, fZ(8) = —3 and f(—3) = 8 for some 3 € (). To circum-
vent the problem, the iteration will cease when || 3¢+ — 50|l < kor ||+ — U1 ||y < &,
so as to avoid the case that there are potentially two alternating converging sequences. Algorithm
S1is relatively efficient compared with gradient decent methods for differentiable g(-), as no tun-
ing parameter such as the learning rate or the batch size is involved. In our numerical studies,
it takes around hundreds of iterations to converge. General convergence analysis for fixed-point
iteration can be referred to Huang & Ma (2014) and chapter 10 of Burden et al. (2016). A suf-
ficient condition for the convergence of the algorithm is the contraction mapping condition, i.e.,
1£5(8) — f2(69)|l2 < C||B — B2 holds for some 0 < C' < 1 over a neighborhood of 39, in
which case any initial 3(9) locating in that neighborhood would converge linearly to Bﬂ.

For non-differentiable g(-), we provide a simulated annealing algorithm to compute BZ Sim-
ulated annealing is an effective optimization method for solving unconstrained or bounded-
constrained problem (Kirkpatrick et al., 1983). The detailed steps are given below:

Algorithm S§2. Simulated Annealing solver

Input {(Y;, X;)}" ,, compute 3, set k& > 0 and integer K > 0

Randomly set an initial value 30 € £(3)

For ¢t > 0, repeat
Generate random vector e*) ~ N (0, d¢1p), where d; is the step size at the ¢-th iteration
BUH1/2) (31 4 MV /]|80) 1 e,
U  gU+1/2) if 19((H1/2)) > L9 (B1); otherwise, B+ «— (1)

Until 540 — =Rl < &

Output 3, = AU+D

In the simulate annealing algorithm, the so-called “temperature” is always zero, which en-
sures that the objective function is strictly increasing. In our numerical studies, it takes around
hundreds of iterations to converge with a satisfactory accuracy. The step size should satisfy
> 2o di = 00 to ensure convergence. Comprehensive theoretical analysis can be found in-

Granville et al. (1994). Different from Algorithms S1, there is no need to consider the sign of Bn,
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and the calculation of the p-dimensional gradient is avoided. Nonetheless, finding the direction
of decent by random trials as in Algorithm S2 would be less efficient than direct calculation of
the gradient in high-dimensional case.

Lastly, a proximal (stochastic) gradient decent algorithm (Ferreira & Oliveira, 2002; Chen
et al., 2020) is introduced to solve the penalized linearized MRC in Section 4 in the main context.

When X is unknown, a consistent estimator 3> will be used to estimate X.

Algorithm S3. Proximal (stochastic) gradient decent

Input {(V;, X;)}?_,, A, compute 3 and set x > 0
Set an initial value 5(*) € £(3)
For ¢t > 0, repeat
Set the step size a; > 0
P+1/3) L pt) _ atvan{B(9(t+1/3), 2)} and B(t+1/3) . 5(9(t+1/3)’ 2)
BUE2/  sgn(BH) |81/ — o],
B ¢8E+2/3) for some ¢ > 0 such that ¢2(SH2/3)THa(+2/3) — 1
Until |34+ — g0, < &
Output 39 = g+

In Algorithm S3, a good initial value of 5(®) can be obtained easily by the LMRC esti-
mation (without penalty), which greatly improves the efficiency of the algorithm. The term
Ln(B) = >0, 1(Ys < Y3)(X; — X;)"B/{n(n — 1)} is the empirical objective function with-
out the penalty term and V1 L,, denotes the (stochastic) gradient w.r.t 8. Here 6(*) is updated by
the step size o along its gradient, and 5 (G(t), i)) is updated accordingly based on the reparam-
eterization. In Step 3, proximal operation (“soft-threshold” operation) is applied, where sgn(-)
returns the sign of each component. In Step 4, the updated parameter is re-scaled to satisfy the

hyper ellipsoid constraint.

2. LEMMAS AND PROOFS OF THE MAIN THEOREMS

In this section, we provide some lemmas and detailed proofs of the theorems in the main

context.

2.1. Lemmas

LEMMA S1. (Hoeffding, 1992) For a U-statistic U, with symmetric kernel h, let p =
Ep{h(Xi,,..., X, )} If Ep|h| < oo, then U,, — p almost surely.

LEMMA S2. If a random vector X with mean (v and covariance matrix X satisfying 53 350 #
0. If X is of linearity of expectation in the direction of By, i.e., for any direction b € RP,

E[X" | X" Bo] = cp X" Bo + ap,
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4 G. SHEN, K. CHEN, J. HUANG AND Y. LIN

where ay, cp, € R are some real constants which may depend on b, then, for any b € RP, ¢, =
b 80/ By 280 and ap = bTp — cpB5 = 0T — By ub™ X80/ B % Bo-

Proof. Direct calculations give
b= BOX) =B{E(b X | X"6y)}
=FE (X" Bo + ap)
=cpi’ Bo + ap,
and
T (2 + pp™) Bo =E(XTbX " o)

=E{X"BoE(X"b | X Bo)}

=E{X"Bo(cs X" Bo + ap)}

=E(cpBy X X" Bo + ap X" o)

=cpB (X + p™)Bo + apfy p.

Combining these two equations, we have a, = b — ¢cpSg . = b — By ub™ 350/ 85 Lo and
b = b"EBo/ By X Po. O

LEMMA S3. Let W € R be a random variable and let g(-) : R — R be a non-constant in-
creasing function defined on the support of W, then

E{gW)W} > E{g(W)}E(W).
Further, if E{g(W) — Eg(W)}? > 0, i.e., (W) has non-zero variance, we have
E{gW)W} > E{g(W)}E(W).

Proof. Considering

——

E{gW)W} — E{g(W)}E(W) =Elg(W){W — E(W)}]
(WHW — EW)}] — Elg(E(W)){W — E(W)}]
E[{g(W) — g(EW)){W — E(W)}],

we only need to prove E[{g(W) — g(E(W))}{W — E(W)}] > 0. Note that g(-) is non-
constant increasing on the support of W, then W — E(W) > 0 happens if and only if
g(W) — g(E(W)) > 0 holds, which implies {g(W) — g(E(W))H{W — E(W)} > 0. Thus,
the inequality holds. Furthermore, if g(W') has non-zero variance, then W also has non-zero
variance. This implies that, there exist a subset VW of the support of W with non-zero mea-
sure g > 0 (i.e., pr(W € W) = §p) and constants d1,d2 > 0 such that |W — E(W)| > ¢; and
lg(W) = g(E(W))| > 62 on W. Then E{g(W) — g(E(W)){W — E(W)} > 66162 > 0. O
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2.2.  Proof of Theorem 1

Define L,(3) = Z?# IY; < Y;)(X; — X;)"8/{n(n — 1)} and L(B) = E{L,(B)}. Both
of them are defined on the compact set £(X) = {5 € RP : §T¥3 = 1}.

First, for any non-empty compact set £(X), the maximizer of L,,(-) defined in (4) in Section
2.1 in the main context always exists. The strong duality of the primal and dual problem by
the Lagrange method has been shown in Section 2.2 in the main context. Then by the KKT
conditions and the definition of the maximizer ﬂA;ﬁL, we have

- 21U,

= s
where Uy, = VL, (8) = 320, 1(Y; < Y;)(X; — X;)/{n(n — 1)} is irrelevant to 3. Under Con-
dition (C2), the first moment of X exists and U, converges to U = E{I(Y; < Y;)(X; —
X;)} € RP (i # j)almost surely by Lemma S1. By Slutsky’s theorem, 3 converges to o =
YU /(UTS~1U)Y? in probability.

Next, we show that 8, = Sy. Note that the denominator of S, is a normalizing scalar to make

Boo satisfy the constraint 82 35~ = 1, which does not affect the direction of 5. In this regard,
we concentrate our effort to show that the numerator ¥~ 'U has the same direction as /3. To this
end, we first show that any direction b perpendicular to /3 is also perpendicular to ¥~'U. For
any b satisfying b* 3y = 0 and for any i # 7, the inner product of X~1U and b is

(B710)"0 =E{I(Y; < Y;)(X; — X;)"27'b}
=E[B{I(Y; < Y;)(X; — X:)"S7'b | X' Bo, X] Bo, €, €}]
=B[I(Y; < Y;)E{(X; - X:)"S7"0 | X7 Bo, X} Bo}]
=E[I(Y; < V) {E(X;S70 | X7 o) — E(X{S7'0 | X 6o)}]
=E{I(Y; <Y;)(b"S7 = 0" )}
:()7
where 1 and X are the mean and covariance matrix of X. Under the linearity of expectation

assumption, the second last equality holds by applying Lemma S2 on E (X]-TE_lb | XjT Bo) and
E(XFY7 b | XTBy). Now, it remains to show that ¥~'U is a non-zero vector by verifying
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6 G. SHEN, K. CHEN, J. HUANG AND Y. LIN

(X71U)TBy > 0. To this end, we write

(E710) B =E{I(Yi < Y;)(X; — X:)"S 7 Bo}
=E[E{I(Y; < Y})(X; — X:)"S7"Bo | X{" Bo, X[ Bo, €i €5 }]
=E[I(Y; < Y;)E{(X; — X;)"S™" 8o | X{'Bo, X[ Bo}]
=E{I(Y; <Y;)(ByBo)(Xj Bo — Xi Bo)}
=B Bo x (B[E{I(Y; <Y | Xj Bo)} X fo] — E[E{I(Y; <Y | X; Bo)} X Bo])
=06y o x [E{pr(Y; < Yj | X Bo)X; Bo} — E{pr(Y: < Y; | X o)X, Bo}]
>y Bo x [E{pr(Y; < Yj | X; Bo)E(X; Bo)} — E{pr(Y: < Yj | Xi Bo) E(X; Bo)}]
=Py Bo x {E(X; Bo)/2 — E(X; Bo)/2}
=0.

The fourth equality holds by Lemma S2. In the last third line, pr(Y; <Y | XJ-TBO) is non-
constant increasing in XjT Bo as Y; is non-constant increasing in X jT Bo, implying that E{pr(Y; <
Y; | XFBo)X]Bo} > E{pr(Y: < Yj | XFBo)}E(X]Bo) = E(X[Bo)/2 by Assumption (M)
and Lemma S3. Similar arguments can be applied to the other term and thus the inequality holds.
As aresult, (Z‘lU )T Bo > 0 and Boo = Bo. The proof of Theorem 1 is complete.

We wish to note that, without the monotonicity assumption on the first argument of f (-, -), the
closed form solution Bn can still be consistent for By up to a sign as long as (X~1U)" By # 0.
Actually, the condition (X ~1U)" 8y # 0 ensures that X~ 'U is in the linear space spanned by 3,
since (X ~1U)Tb = 0 still holds for any b™ 3y = 0 according to the above proofs.

2.3.  Proof of Theorem 2
In view of the closed-form expression B;ﬁ =x"U,/ (UnTZ‘_lUn)l/ 2, a standard Hoeffding’s

decomposition of U,, would be applied to obtain an asymptotic expression of B;‘L, SO as to prove

the asymptotic normality.

Proof. Recall that Uy, = 3, .. I(Y; < Y;)(X; — X;)/{n(n — 1)} is a U-statistic of order 2.

By Hoeffding’s decomposition,
1< 1
Un=U+=> &Z)+ =1 > 62, 7)),
i n(n—1) i#j
where U = EU, and for each z, 21, 29 in .S,
§(z) = E{I(y <Y)(X —x) + I(Y <y)(z — X) - 2U},
P(21,22) = I(y1 < y2)(w2 —@1) — E{I(yr <Y)(X —21)} — E{I(Y <y2)(w2 — X)} +U.



Linearized Maximum Rank Correlation Estimation 7

Since X has finite second moment, by the main corollary in section 6 in Sherman (1994), we
have 32, 6(Zi, Z;)/{n(n — 1)} = 0p(n~"/?), and

Uy, =U+n" YW, + op(n_l/Q), (S1

where W, = n~=1/23""  ¢(Z;). By the central limit theorem, W, converges in distribution to

a normal random vector N (0, A) with A = E{{(Z)¢(Z)"}. By Theorem 1, U = EU,, = ¢X5y

with ¢ = (UTS~1U)/2. Observe that
! = ! - ! (U, S0, — UTS™U) + 0,(n"1/?)
(UnTE_lUn)l/Q (UTE—lU)l/? 2(UTZ—1U)3/2 n n p

! 1 Tyy— T —
= (02552]/60)1/2 o 2(62652,80)3/2 (Un by 1Un — CQﬁO Eﬂo) -|-0p(n 1/2)

1 1
= E — @(UnTzilUn — 02) + Op(nil/Q)
11 285 Wy, B
= 3a@ T ) o)
1 1 oW, _
ST 2 an " op(n~1/?). (52)

Plugging (S2) into the closed form expression of B;, we have
. n—1/2

ﬂ:; = fo + W(E_l - Boﬁg)Wn + Op(n_l/Q)-

Let V = (7' — 50B8)/(UTS71U)"/? be a p x p matrix, A = (0,1, 1) bea (p — 1) x p ma-
trix with its first column being zeros and I,,_; be an identity matrix of order (p — 1). Then,
0: = AB*, 0y = ABp and

A 1 3
20 — 0y) = T AS L BoBEYW,, + 0,(1).

(UTS-10)

Then, by the central limit theorem, n'/2(0* — 6y) — N (0, AVAVTAT) in distribution as n —

oo. We complete the proof of Theorem 2.

2.4.  Proof of Theorem 3

In view of the closed form expression of Bn and the consistency of ﬁ], Theorem 3 can be shown

along similar lines of the proofs of Theorem 1. The details are omitted.

2.5.  Proof of Theorem 4
The notations ¢, U, Uy, £(+), Wy, A, A and V are defined in the proof of Theorem 2.

Proof of Theorem 4 part (i). Since ¥~' = X~1 - =12 - )%~ + O(||X — 2|2) almost
surely, we have

~

STl =%t 4o, (n7Y?), (S3)
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8 G. SHEN, K. CHEN, J. HUANG AND Y. LIN

under the assumption that |3 — ||z = 0,(n~'/2). Plugging (S3) into the expression of 3,,, sim-
ilar to the proof of Theorem 2, we obtain that 3, = B;‘; + op(n_l/ 2). Hence, the conclusion of
Theorem 4 part (i) holds.

Proof of Theorem 4 part (ii). When X is estimated by the sample covariance matrix i‘s =
S (X — X)(X; — X)%/(n — 1), itis not hard to get that

. 1
S = 2+n—1/25n+0p(5), (S4)

where =, = >0 {(X; — p)(X; — )™ — X}/n'/2. Then, plugging (S1) and (S4) into the
closed-form expression of Bn, some simple algebra yields that

5 n=1/2 BBy
2

B = Po + W(E” — BoBE)Wa +n~13( —27HE, By + op(n2).

Then, since 6, = Af3, and 6y = ABy with A = (0,I,—1) being a (p — 1) x p matrix, we have
the following asymptotic expression

1

1/2 N o _
n (0” 90)_(UT271U)1/2

A(E™! = o) Wa + A(BoSE /2= X )Zno + 0p(1).

Since W, and =,0y are both sum of independent and identically distributed random vec-
tors, under the moment condition of X and by the central limit theorem, n'/ 2(9n —6y) —
N(0, ABAT") in distribution, where B = E{V{(Z) + HY(Z2)H{VE(Z) + HY(2)}", (Z) =
{(X — pu)(X — )T — X}Bp and H = By /2 — X~ 1. The proof of Theorem 4 is complete. [

2.6.  Proof of Theorem 5
Define L7(8) = Y07, 1(Yi < Yj)g{(X; — X;)"8}/{n(n — 1)} and L9(8) = E{L7(B)}.
For reader’s convenience, we first give the definition of elliptical distribution below (Theorem 1,
Cambanis et al. (1981)).

DEFINITION S1. (Elliptical Distributions) A p-dimensional random variable X is said to be
elliptical distributed if and only if there exist a vector p € RP and a positive semidefinite matrix
Y € RP*P with rank k, such that X = p+ RAUP), where U is a k-dimensional random
vector uniformly distributed on a unit (k — 1)-sphere S*~1, R is a non-negative random variable
stochastically independent of U'®) and AA™ = ¥.

Proof of Theorem 5. We intend to prove the consistency in 3 steps.

Step 1. To prove the maximizer of L% (3), 59 converges to the maximizer of L9() in prob-
ability. By the properties of elliptical distributions as shown in chapter 1 of 2004 University of
Cologne Faculty of Management PhD thesis by Frahm. G, there are two facts: first, under ellip-

tical distribution assumption, the difference of each pair of observations, i.e, X; — X, i £ 4,18
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also elliptical distributed; second, for any 5 € £(X) and any ¢ # j, g{(X; — X;)" 3} follows the
same distribution, as (X; — X;)" 8 have the same distribution since

X; - X; £ RAU, (S5)

where U is a p-dimensional random vector uniformly distributed on a unit (p — 1)-sphere SP~1,
R is a non-negative random variable stochastically independent of U and AA™ = 3. Then (X; —
X;)"B=RUA"3 =RU a,wherea = AT =X1/28c P 1 = {a € R’ : a"a = 1}. Asa
result, (X; — X;)" 3 has the same distribution for any 5 € £(X) since U™« has the same distri-
bution for any o € SP~1. Therefore, by Condition (G1) part (i), E||g{(X1 — X2)"8}||2 < oo for
all B € £(X) and LY is well-defined on £(X). In addition, since |I(Y; < Y;)| < 1, E||L|| :=
Esupgeg(sy | LA (8)| < 0o. Next we show that || L7, — L9|o—0 in probability uniformly on
E(X)asn — oo, e,

sup |L7(8) — LY(B)|—=0
BEE(X)

in probability. Firstly, since E||L7||c < 00, we have

sup £ sup |LI(a)—LI(B) — 0 ase 0, (S6)
BeE(X)  a:||la—p2<e
and LI(B) = E{L7,(B)} is continuous on 3 (Lemma 9.1, Keener, 2010). By Lemma S1, for any
B € E(X), we have L3, (3) — L9(B) in probability. For § > 0, let
Msi(B) = sup  |[I(Y: < Yj)g{(X; — Xi)"a} — I(Y; < Vj)g{(X; — X:)" B}

a:lla=pll2<é

E sup |Li(a)—LY(B) < LUB) <€ VB eEE(D),

a:lla—pB|2<e

and with such choice of ¢, if || — §||2 < d, then
[L9(a) = L(B)] = [E{Lj (@) — Ly,(B)}] < E|L (o) — L(B)| < e.

Let Bs(8) = {a: |ja — B|jl2 < 6} be the open ball with radius § and center /3. Since £(X)
is compact, the open sets {Bs(3) : 5 € £(X)} covering £(X) have a finite subcover {O; =
Bs(ay) :t=1,...,m}. Then,

115, = L]loo = max sup [Lj(e) — LI()]
t=1,...m ocO,

< max sup {|Lf(a) — L (a)| + [ () — L (a)| + | L (0u) — L(ev)]}
t=1,....m acOy

< max sup [14(a) ~ Lf(og)| +

ax |LI(ay) — LI(ay)| +e.
t=1,....m a€O; yeeey U

200
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10 G. SHEN, K. CHEN, J. HUANG AND Y. LIN
Now,

1
sup |LY(a) — LI ()| =—— sup I(Y; < Yj)g{(X; — Xi)' o
sup |14 (0) ~ L) n(n—naeot'; Jo{(X; ~ X;)"a)

—I(Y; < Yj)g{(X; — X;) o }|
Z M6 ,iJ at Mﬁ,n(at)-
2753

By the law of large numbers,
Ms () =L (o) < €
in probability. Thus, we have
128 = 29 < 26+ max {Mya(or) = Lf(an)} + max L8 (o) = L(ou)].

The two maximums on the right hand side of the above inequality both tend to zero in probabil-
ity, with which it is easy to show that pr(|| Ly, — L9]|c > 3€) — 0 as n — oo. This proves that
| L7, — L9||0o—0 in probability uniformly on £(X). With the same lines of proof coupled with
the strong law of large numbers (Lemma S1), we can prove that HLg - L9 ||OO—>() almost surely.

Step 2. To show that for any 8 € £(X), we can write LI(8) = [ F(z, 8)G(z, 8)dx, where
F and G are integrable functions. Recall that X; — X follows the same symmetrlc ellip-
tical distribution for any ¢ # j by (S5). Without loss of generality, we assume cov(X)= I,
and B € E(L,) =8P~ ={B€RP: T3 =1}, and decompose X; — X; into two indepen-
dent random variables R and U, where R =
and U = (X; — X;)/||X; — Xil|2 is the direction of X; — X; uniformly distributed on a unit
(p — 1)-sphere SP~1. Then,

L2(B)

E[I(Y; < Yj)g{(X; — Xi)"B}]

E(E[1(Y: < Yj)g{(X; — Xi)"B} | X; — Xi])
Elg{(X; — Xi)" BYE{I(Y; <Yj) | X; — Xi}]
Elg(RUTB)E{I(Y; <Yj) | R,U}].

[
[

Define F(R,U; ) = g(RUTB) and G(R,U) = E{I(Y; < Y;) | R,U}. Let o(SP~1) denote
the area of unit sphere and let fz(-) denote the density function of R. Then, it follows from
the independence of R and I/ that

:/OOO/Sp_lF(RM;B)G(R’U)JCR(R)/U(SPl)dUdR' 7

Step 3. To apply Hardy-Littlewood inequality (Burchard, 2009) on (S7), so
as to prove [p is the unique maximizer of LY9(B). For each R € [0,+00), once
Jso—1 F(R,U; B)G(R,U) /o (SP~1)dU is maximized over (3, then LY is maximized. Next,
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we focus on G(R,U) and F(R,U;[3). By definition, |G(R,U)| <1, and all its moments
exist. When R =0, it is easy to see that G(0,U/) = 1/2. For each R >0, G(R,U) is
symmetric about 5y on the unit sphere and increasing in U™y by condition (G2). To be
exact, G(R,U1) = G(R,Us) if U By =U; Bp and G(R,U1) > G(R,Us) if U] Bo > Us Bo.
Meanwhile, for fixed R > 0, 1 — G(R,U) is symmetric about [y and decreasing in U™ 3.
By condition (G1) part (i) and definition of F'(R,U; 3), its first moment exists. For R = 0,
F(0,U; B) = 0. For each fixed R > 0, F(R,U; 3) has the same distribution for all 3 € SP~1,
and [ is actually a parameter rotating the function graph of g(RU™ ) over the support of U.
When 5 = 5y, F(R,U; Bo) = g(RUT By) is symmetric about 5y on the unit sphere (the support
of U), and it is non-constant increasing in U™ Jy.

Hence, for each R > 0, nonnegative measurable functions F'(R,U; By) = g(RUTBy) and
G(R,U) are concordant with each other, i.e. they have the same monotonicity over the support

of U. Applying Hardy-Littlewood inequality (Burchard, 2009), we have
PR =GR oS
< [ —FRU )1 = GRU oS
for any 3 € SP~!. Furthermore,
Do) = [ [ PRUIGRU) oS fr(R)UaR

> / h / F(R,U; B)G(R,U) (") fro (R)dUAR
0 Sr—1
~19(8).

By condition (G2), both F/(R,U; 3) and G(R,U) are non-constant increasing in their arguments,
thus LI(5y) > LI(B) for any B # [o. This completes the proof of Theorem 5.

2.7. Proof of Theorem 6

Proof. With the parameterization § = $(0,%) in Section 2.4 in the main context, define
I(0,%) = LY(8(0,%)) — L (Bo(6p, X)), and T'(6, X)) = ET,(0, ) for each 6 € O. Note that
T,,(6o,-) = 0 and T'(y, -) = 0. Firstly, under the assumption that || Diff(6, ) — Diff(0, ©)||o =
0p(n~/2||6 — 6p|2) uniformly over o, (1) neighborhoods of 6y, it is not hard to obtain that

Lu(6, %) = Lu(68, %) + 0p(n~" /26 — bo|l2)

uniformly over o,,(1) neighborhoods of 6. Thereafter, we focus on handling I',, (6, ) and write

it as I',,(0) for simplicity. It follows from the standard Hoeffding’s decomposition of U-process
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265 that

L6) = T6)+ 23 0(Z.0) +
i=1

1

n(n—1)

Zw(Zia ZJ7 6)7

1#£]
where for each zin S and each 6 € O,
n(z,0) =7(2,0) — 7(2,60p) — 2I'(9),
7(2,0) = E[I(y < Y)g{(X —2)"8(6,2)} + I(Y < y)g{(z — X)"B(0,2)}],

and

270 w(zi, 25, 9) = qbg(zl, Z9, 9) - (]59(21, 292, 90),
bg(21,22,0) = (11 < y2)g{(z2 — 21)"B(0,2)} +T(0)
= ElI(yr <Y)g{(Y = 21)"B8(0,5)} + I(Y < y2)g{(x2 = Y)"B(6,2)}].

By referring to the main theorems in Sherman (1993), we shall first prove the following three

statements, which are key steps to establish the n!/2-consistency and asymptotic distribution of

275 0%

(i) There exist a neighborhood A" C © of 6y and a constant x > 0 such that, for all # in NV,
1
L(8) = 5(6 = 60)" V(8 — bo) + o([|6 — 60l13) < —xll6 — 6oll3,
where V = E{V7,(Z,00)}/2.

(i) Uniformly over o,(1) neighborhoods of 6, € ©,

1 n
=3 0(Zi.6) = 7120 = 60)" W + o(6 — o).

i=1
where W is a random vector converging to N(0,AY) in distribution with A9 =
EV174(Z,60){V174(Z, 60)}"].
(iii) Uniformly over o,(1) neighborhoods of 6y,

T Ll Z.0) = 0y,
i#]

To prove (i), we fix z € S and § € N. By condition (G3) and Taylor expansion of 7,(z, #) around
280 00,

]' %
74(2,0) — T4(2,00) = (0 — 00)"V1714(2, 00) + 5(9 —00)"Va1y(2,0%)(0 — 6p), (S8)
where 0* is between 8y and 0. Besides, under condition (G3), for each z € S and each § € N/,

16 = 80) " {V2ry(2,0) — Vary(2,00) }(0 — o) < My(2)[10 — bol3
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with integrable M. Notice that E{74(Z,0) — 74(Z,0)} = 2I'(#). Then,
2I(6) = (0 — 00)" EV174(Z,00) + (0 — 60)"VI(6 — 6o) + o(]|0 — bo]|3)- (S9)

As shown in the proofs of Theorem 5, 3y is the global (local) maximizer of L9 on £(X); thus
E{V17(Z,0p)} = 0 and V¥ is negative definite. Hence,

1
L(0) = 5(0 = 00)"V(0 = o) + (/16 — b 13) < —~ll6 — boll3.

To show (ii), in view of (S8) and (S9), it follows from the definition of 7(-,0) = 7(z,0) —
7(z,00) — 2I'(0) that

1 1
— > n(,0) =020 = 00) W + (0 — 00)" D (0 — o) + o6 — 6ol[3) + R5(6).
i=1

where Wi =n=1/23""  N17,(Z;,600), Df = S Var,(Zi, 00)/n — 2V and ||R5(0)]]2 <
10 — 6013 >, My(Z;)/n. By the central limit theorem, W, — N (0, A) in distribution. And
according to the weak law of large numbers, Dj — 0 in probability as n — co. Next, by the
integrability of M, and the weak law of large numbers, it can be shown that Rj,(6) = o,(]|6 —
00/|3) uniformly over o0,(1) neighborhoods of 6.

To prove (iii), by Corollary 17, Corollary 21 in Nolan & Pollard (1987) and Theorem
3 in Sherman (1993), it suffices to prove that H = {h4(-,-,3(6,%)) : § € ©} is Euclidean
with a constant envelope, where hg(21, 22; 5(6)) = I(y1 < y2)g{(z2 — x1)"B(6,%)} for each
(21,22) € S ® S and each § € ©. Then, according to Lemma 2.12 in Pakes & Pollard (1989),
if {subgraph(hg):h € H}is a VC class of sets, then # is Euclidean for every envelope. Next, we
intend to show that {subgraph(h):h € H} is a VC class of sets. For each 6 € ©,

subgraph(hg(-,-, 8(6))) = {(21,22,t) € Y QR : 0 < t < hy(z1,22,5(0,%))}
={t > 0Hy2 — y1 > OH{g{(z2 — 21)"B(0)} -t > 0}
= {81 > 0}{52 > 0}{53 > 0}

For any (21, 22,t) € X ® R, the class of sets {s; > 0} and {s2 > 0} are both VC class accord-
ing to Lemma 2.4 in Pakes & Pollard (1989). And, by condition (G1) part (ii), {s3 > 0} also
belongs to VC class. Since the intersection of sets in VC classes are still a VC class, as a result,
{subgraph(h):h € H} is a VC class of sets.

Combining statements (i)-(iii), according to Theorem 1 of Sherman (1993), we have shown
the n'/2-consistency and asymptotic normality of 69, that is, [|69 — 6||2 = O,(n~1/?) and
20 — 09)—N (0, (V9)~LA9(V9)~1) in distribution. The proof of Theorem 6 is complete.]
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2.8.  Proof of Theorem 7

Proof. In the presence of censoring, recall that L7 (83) =}, dil(vi <v;)(X; —
X)"B8/{n(n—1)} and US = Zi# dil (v; < v;)(X; — X;)/{n(n —1)}. Define L¢(3) =
ELS(B) and U¢ = E(US). Invoke the closed-form expression 3¢ = 71U /(USTS~1U¢)1/2,

With consistent estimate f]_l, to establish the consistency of ,5’,‘;, it suffices to show that
¥ ~1U¢ lies in the linear space of 3. For any b satisfying b3y = 0, the inner product of X~1U°¢

and b is

(27U =E{d;I(v; < v;)(Xj — X;)"% 710}
=E[E{d;I(vi < vj)(X; — X;)"S7"b | X Bo, X Bos €i, €5, Ci, Cj 1]
=E[d;I(v; < v;)E{(X; — X;)"S7'b | X Bo, X[ Bo, €, ¢, Ci, Cj}]
=E[d;iI(v; < v;)E{(X; — X;)"S7'b | X Bo, X[ Bo}]
=E[dil (vi < v){E(X[S7'0 | X[ o) — E(XIS b | X Bo)}]
=E{d;I(v; <v;)(b"S ' — "2 p)}
=0,

where the second last equation holds by Lemma S2 and the fourth equality is due to the indepen-

dence assumption in condition (A1). Then, the inner product of X ~'U* and f is

TS B0}
‘)TE_lﬁO ‘ Xr;rﬁ(JaX‘;'rBO,Eiana Cl’CJ}]

(27U By =E{d;I(v; < v;)(X; — X;)

X

Xi)"S7 B0 | X[ Bo, X Bo, € €5, Ci, Cj}]
— X

:E[E{dil(vi < Uj)(X' —

=E[d;I(v; < vj)E{(X; —

BldiI(vi < vj)E{(X; — X;)"S7" o | X{"Bo, X} Bo}]
=E[d;I(vi < v;){E(X]S™" B0 | X} Bo) — E(XE7" 8o | X/ Bo)}]
=Ed;I(vi < v;){By Bo(X; Bo) — By Bo(X; Bo)}]

=B BoE{dil (vi < v;)(X[ Bo — X7 fo)}

>0 BoEA{diI(v; < vj) }E(X] Bo — X Bo)

=0,
where the sixth equation follows from Lemma S2. And the last second inequality follows from
Lemma (S3), Assumption (M), and the independence assumption in condition (Al), which
implies that E{pr(Y; < Cj,v; < v; | XjTﬁo)} is non-constant increasing in XJ»TBO while non-

constant decreasing in X" 3y. This completes the proof of consistency. O

2.9.  Proof of Theorem 8

The proof of the asymptotic normality for the proposed linearized partial rank estimation is

structurally the same as the uncensored case. We omit the details here.
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2.10.  Proof of Theorem 9
More notations are introduced. Recall that PLy(8) =71, I(Y; < Y;)(X; —

Xg)'B/An(n = 1)} + AallBllh = =La(B) + AnllBll and L(5) = E{Ln(B)}, where Ly(-),
L(-) are defined in the main context. Since the optimization is implemented on the manifold
£(X), other than Conditions (C1)-(C2), to establish the oracle inequalities for high dimensional
case, additional assumptions are needed.

(M*) The unknown function f(-,-) : R? — R is non-constant increasing in its first argument on the

support of (X ™/, €) and X is independent of e. And for all n, the variance of the random

variable pr{Y; < Y2 | X3 (o} is bounded below by some universal positive constant.

(D1) (i) There exists a positive constant Ay such that for any n and 8 € RP» and any ¢ > 0 such

that pr{| 3T X | > tApl|B|l2} < 2exp(—t?). (ii) There exist universal constants dg, €9 > 0 such
that pr(| X" 5y — E(X™Bo)| > do) > € for any n.

(D2) There exists a universal positive constant ¢y such that all the eigenvalues of Y, the covariance

matrix of X, are bounded below by cg.

Under fixed-dimensional case, we need the random variable E{f(X"So,¢€) | X Bo} =
E{Y | X" By} has non-zero variance as in Assumption (M) to prove the consistency of the pro-
posed estimator. This condition is actually a minimal model assumption to ensure a non-zero
signal such that the parameter 3y can be estimated under fixed dimensional settings. Similarly,
under high-dimensional settings, Assumption (M*) is also a minimal model assumption to ensure
non-zero signals for all n, which avoids the signals decay to 0 as n — co. Note that Assumption
(M*) is imposed for high-dimensional case, and Assumption (M) is sufficient for fixed dimen-
sional case. For a high-dimensional linear model Y = XT3y + €, Assumption (M*) basically
requires the variance of XT3 is uniformly greater than some universal positive constant for all
n, which avoids the case that the linear model reduces to a degenerate and trivial model Y = €
as n — oo. Fan et al. (2020) studied rank estimators in increasing dimensions and imposed a
similar identification condition by positing non-constant requirement on the objective function
(at the population level) around the true parameter, whose first component is restricted to be 1
for identifiability.

Note that Assumption (D1) part (i) can lead to an upper bound on the spectrum of the covari-
ance matrix Y, i.e., there exists a universal positive constant Cy such that all the eigenvalues of
3., the covariance matrix of X, are bounded above by Cj. To show this, for any g € RP", we

have

BYEB = cov(XTB) < E(|XTB%) = /0 pr{| X" B> > t}dt.
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16 G. SHEN, K. CHEN, J. HUANG AND Y. LIN

Letu = t1/2/(A0||5||2)- Then,
8TE3 g/ pr{|XTﬁ|2 > t}dt
0
_ /0 2u A2 BI2pr{| X" 8] > uAol|B2}du

< /0 4w exp(—u®) A2 B|[2du

={—exp(—u?)}|; 243118113
=2A3118113,

where the second inequality follows from Assumption (D1) part (i). This implies that there exists
a universal positive constant Cy < 2A2 such that all the eigenvalues of 3, the covariance matrix
of X, are bounded above by Cj.

Besides, we impose an additional part (ii) in Assumption (D1), which requires that the prob-
ability mass of X", does not concentrate around its mean, which is generally satisfied for
many common continuous distributions. For example, if X follows normal distribution with
mean p and covariance matrix X, then X 3, follows N (1" By, 1) by the identifiability condition
By X050 = 1, which satisfies Assumption (D2) part (ii).

Proof. We first show that, under Condition (M*), (D1) and (D2), there is a local quadratic
curvature of L(+) on the manifold £(X), i.e., there exists some universal 7, > 0 such that for all
n and any 5 € £(X)

L(B) = L(Bo) < —rl|B — Boll3- (S10)
To this end, recall that U = E{I(Y7 < Y2)(X2 — X1)}and L(3) = U™ 5. By the proof of Theo-
rem 1, we have U = ¢S where ¢ = (UTS~1U)Y/2 > 0. Define A(B) := 8 — fo. In view of
the identifiability condition and 3 € £(X), we have 5j X0y = 8TE6 = {80 + A(B)} " X{Fo +
A(B)}, which implies
SESA(B) = — S A3 SA(). (st
Then,
L(B) = L(Bo) = U™ (B — Bo)
= UTS"ISA(B)
= (27'0)"ZA(B)
= By ZA(B)
= —SA(B)SAP)

_ _%(UTE_IU)WA(@TEA(@-
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Under Condition (D1) and (D2), all eigenvalues of . lie in [cq, Cp]. Then,

L(8) — L(Bo) = —5(U"S7'U)2A(5)"5A(8)

1 __
<—5Gp Y2|Ul2 x coll AB)I13
1 —1/2

Let K, 1= 0000_1/2HUH2/2, we intend to prove that £, > ¢ > 0 for some universal positive
constant ¢, as U € RP» can change with the sample size n under the triangular array setting. To
this end, we only need to show that there exists a universal constant ¢’ such that ||Ul]j2 > ¢ >0
for all n.

For notational simplicity, we still use the notations U, 5, i, 22, X and suppress their depen-
dence on n. First, by Assumptions (D1)-(D2) and the identifiability condition 55X = 1, we
have for all n,

collBoll2 < BISBo < CollBold, Co* < |1Bollz < g 2

Note that

[U]]2
[1Boll2
If we can show that there exists some universal constant ¢’ such that U8y > ¢’ > 0 for all n,
then ||U||l2 > 0 and ||U||2 > c(l)/QUTBO = cé/zc” > 0. By the definition of U and the proof of

Theorem 1, we have

U5 =U"U > U"Bo > 0(1)/2HU||2UTBO.

U'Bo =E{I(Y1 < Y2)(X2 — X1)"Bo}
=E{I(Y1 <Y2)(X2 — p)" fo} — E{I(Y1 < Y2)(X1 — )" Bo}
=E[{pr(Y1 <Yz | X3 60) — 1/2H{(X2 — p)" Bo}]
— E[{pr(V1 < Y2 | X{ Bo) — 1/2}{(X1 — )" Bo}]-
Now we prove that there exists a positive constant ¢; > 0 such that E[{pr(Y1 < Y2 | X3 5o) —
1/2H{(X2 — p)"Bo}] > ¢1 > 0 forall n. Let vy > 0 denote the uniform lower bound of the vari-
ance of pr{Y; < Y3 | X7 5o} under Assumption (M*). Note that pr(Y; < Ya | XJ59) —1/2 €

[—1/2,1/2] is bounded for any n, then vy < var{pr(Y1 < Y2 | X3 50)} < 1/4. For brevity, we
use g(X3 fo) to denote pr(Y, < Ya | XJBo) — 1/2. Then,

vy <var{g(X3 Bo)}
=E[{g(X3 50) 2 1(19(X3 Bo)| < vy/*/2)] + E[{g(X3 o) *1(|9(X3 Bo)| > vy/%/2)]
<pr{|g(X3 Bo)| < vy'*/2}v0/4 + pr{lg(X3 Bo)| > vy/*/2}/4,

400

405

410

415

420

425



430

440

445

450

18 G. SHEN, K. CHEN, J. HUANG AND Y. LIN

which leads to

3v
pr{lg (X3 o)l > v5/*/2} > 70

On the other hand, under Condition (D1) part (ii), there exist constants &g, e > 0 such that
pr(| X3 Bo — E(X3 Bo)| > do) > ep for all n. Then, for any n,

U™y =E[{pr(Y1 < Y2 | X3 60) — 1/2}{(X2 — p)" Bo}]
— E[{pr(Y1 < Ya | X7 Bo) — 1/2}{(X1 — p1)" Bo}]
>E[{pr(Y1 <Yz | X3 60) — 1/2H{(X2 — 1)  Bo}]
=E{g(X3B0)(X2 — p)" Bo}

>E[g(X5 Bo)( X2 — p)" Bol{|9(X5 Bo)| > U(l)/2/2}1{|X2Tﬂo — E(X3Bo)| > do}]
o 00 50 i {300 0
_T Omln{l_vo,€0}> .

Hence, it has been shown that there exists a universal constant ¢’ such that ||U||2 > ¢/ > 0 for all

n. As a result, we have shown that there exists some universal constant x;, > 0 such that for all
n,any 3 € £(X)

L(B) — L(Bo) < —kL||B — Boll3.

Next we carry out the proof of Theorem 9 in three steps.

Step 1. 1f Ay > 2||V Ly, (B0)|oos then 3, — Bo € C(A), where C(A) = {o € RP7 : [jage |y <
3laalli} e [[(Bn — Bo)acllt < 3l(Bn — Bo).all1- By the definition of 3,,, we have
0 >PLy(Bn) = PLa(50)
—{—Ln(Bn)} = {=La(B0)} + AullBnlls = 1Boll1)
=(Bn = B0)"V(=Ln)(B0) + Aa(l1Balls = [1Boll1)
> — [18n = Boll IV Ln(B0) oo + An(llBall = II50ll1)

Ao - A
> — TH1Bn = ol + An(l1Ball = 15oll1)

Vv

=-— %Hﬁn — Boll1 + (| (Bn — Bo + Bo) aclls + |(Bn — Bo + Bo)allr — 1Boll)
- %Hﬁn — Bollr + A (1(Bn = Bo).acllt + |(Br — Bo + Bo).all — llBollr)

A . . .
> = 5 (1Bn = Bo)alls + 1B = Bo).aclln) + An(ll(Bn = Bo)acll = [1(Bn = Bo).allr)

=— 7"(3!\(& — Bo)alls = 1(8n = Bo)acln)-

The inequality follows from HBn — Boll1 = \\(ﬁn — Bo)allr + H(Bn — Bo) ac|l1 and By 4c = 0.

>
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Step 2. For A\, = a,{log(n)log(p,)/n}'/?, the probability of A, > 2||V L,(B0) || is greater
than 1 — 2exp(—ay,) — 2/py. Let €; be the unit vector with its j-th component being 1 and

others 0. Taking 3 in condition (D1) as e;, foreach7 = 1,...,n, we have
pr{le] Xi| > tAg} < 2exp(—t),
and
prile; X1| < BAo,...,|ej Xp| < BAg} > 1 — 2nexp(—B?).

For the j-th component of VL,(B), given {|ejXi| < BAo,...,|ejXn| < BAo}, then
ejTVLn(ﬁg) is a U-statistic with kernel bounded by 2B Ag. By the concentration inequality with
bounded kernel in Hoeffding (1994), there exists some constant ¢; > 0 depending only on Ay,
such that with probability at least 1 — 2n exp(—B?),

pr{2le; VLn(Bo)| > M} < 1 exp{—nA2/(16B?A2)}.
By Condition (D1), the above inequality holds for any e;. Thus,
pr{2/|VLn(Bo)llsc < An} > 1 — 1 exp{—nA}/(16B>A7)} — 2n exp(—B?).

Taking B = {a, log(n)}*/? and )\, = 4A0B{log(p,)/n}'/? = 4A¢{a, log(n)log(p,)/n}'/?,
we obtain that with probability at least 1 — 2 exp(—ayn) — ¢1/Pns An > 2||VLn(B0)||eo- Here
an 1s a sequence of positive numbers diverging to co as n — oo, and the rate of a,, diverging to

oo can be arbitrarily slow.

Step 3. We will show that with probability at least 1 — 2 exp(—ay) — 2/pn,

- A an log(n) log(py, 172
(Ea(Ba)) = {=Lal8)) 2 rullBn — fol} — 220 { 2B LOEE L s gy,
(S12)
For any o € RP" and given B > 0, pr{|a®X;| > BAo| |2} < 2exp(—B?). Then,

pr{|a™X1| < BAg|alla, ..., |a"X,| < BAg|lall2} > 1 — 2nexp(—B?).

For any d > 0, define C(A,0) = C(A)N{a e R : ||, =4} Note that if £, — fy €
C(A, 6), the probability for the occurrence of the event {|I(V; < Y;)(X; — Xi)™(Bn — fo)| <
BAgé, for alli,j =1,...,n} is at least 1 — 2nexp(—B2). Then, by the bounded difference
inequality in Hoeffding (1994), with probability at least 1 — 2n exp(—B?), we have

nt?

8B2 A5, — foll3

pr{|Ln(B) = Lu(B) = {L(Bn) = L(B)}] = t} < 2exp (- )
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Recall that B = {a, log(n)}¥/2. Taking t = 23/2A¢||8, — Boll2B{log(pn)/n}'/2, together
with inequality (S10), we have proved (S12).

Step 4. For any § > 0 and all 3,, — By € C(A, §), with probability at least 1 — 4 exp(—ay,) —
(2 + ¢1)/pn, we have

0> PLn(Bn) = PLy(o)

A 1 log(pn) ) /2 R
> kil = foll = 2 A0, { ECL BT 45— ol = A5 = ol
R 1/2 R .
> ki = Boll ~ 2/ A0, { B EPIAT 5 gl = (5,200 B~ Bl

) 1/2 .
> 11 — Boll2 — (23/2Aoan {lg(mlg(“} T <sn>1/2An> 16a = Bolls

n
> k1B = Boll3 = (272 + (50)72) AullBu = Bolla,

which suggests that 6§ < {2712 4 (s,)Y/2}\,/kp. Since By € E(X), we have s, > 1.
Consequently, when ), = 23/2A4¢{a, log(n)log(p,)/n}"/?, with probability at least 1 —
dexp(—an) — (c1 +2)/pa.

18n — Boll2 < 2(sn)Y*An /KL,
18n — Bollt < 28nAn/kL,

where ¢; > 0 is a constant depending only on Ag. We have completed the proof of Theorem 9.0

3. ADDITIONAL SIMULATION RESULTS

In this section, we present some additional simulation results in Tables S1-S3 and Table S5.
For checking the robustness of our methods without the monotonicity assumption of the link
function f, additional simulation results under three models: M5: Y = (X7 53y)2 4+ ¢; M6: Y =
(XTB0)2 4+ 5(XTB0)% — 3(XTBy) + €; M7: Y = 5sin(XTSy) + ¢, are presented in Table S4.
We set p =5 and Sy = (1,1,0,0, —1)". And the covariate X are generated from a multivariate

normal distribution with mean 0 and covariance matrix 3 = (p;;) with p;; = p‘oi Il and po = 0.3.
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Table S1. Summary statistics with dimension p = 5 and correlation py = 0.3. Averaged absolute
bias (BIAS), standard errors (SE) and coverage probability (CP) of 95% confidence interval over
components of the index parameter. Mean {1 and {5 distances between the estimate and the true

parameter.
Model  Error | Method n = 100 n = 200
BIAS SE CP 2 Uy BIAS SE CP 0y Uy
M3 x%(1) | LMRC* | 0.021 0.193 0.947 0.783 0.411 | 0.013 0.138 0.953 0.553 0.293
LMRC | 0.005 0.097 0.947 0.382 0.047 | 0.003 0.066 0.942 0.266 0.022
SIR 0.008 0.139 - 0.539 0.097 | 0.006 0.094 - 0.375 0.045
LSE 0.034 0.236 - 0.942 0.496 | 0.029 0.189 - 0.756  0.397
MRC | 0.200 0.538 0.864 2.096 1.142 | 0.082 0.337 0.923 0.993 0.557
MRE | 0444 0.739 0990 3.597 1.930 | 0.392 0.725 0.998 3.373 1.870
Pois(1) | LMRC* | 0.024 0.192 0.956 0.771 0.409 | 0.010 0.138 0.953 0.554 0.291
LMRC | 0.004 0.096 0.957 0.378 0.046 | 0.001 0.071 0944 0.286 0.026
SIR 0.008 0.124 - 0.493 0.078 | 0.003 0.082 - 0.320 0.034
LSE 0.037 0.234 - 0.924 0.488 | 0.023 0.191 - 0.752 0.391
MRC | 0.183 0.501 0.862 1.923 1.047 | 0.081 0.349 0.924 1.018 0.571
MRE | 0.399 0.722 0994 3.391 1.835|0.395 0.728 0.994 3432 1.859
M4 x2(1) | LMRC* | 0.040 0.275 0.948 1.113 0.590 | 0.026 0.199 0.940 0.800 0.422
LMRC | 0.017 0.241 0.925 0.957 0.293 | 0.009 0.161 0.942 0.650 0.130
SIR 0.018 0.018 - 0.804 0.206 | 0.008 0.137 - 0.554  0.095
LSE 0.378 0.190 - 2.051 1.184 | 0.379 0.136 - 1.982 1.156
MRC | 0.185 0.501 0.828 2.037 1.093 | 0.105 0.377 0911 1392 0.771
MRE | 0.378 0.694 0990 3.095 1.709 | 0.378 0.707 1.000 3.205 1.755
Pois(1) | LMRC* | 0.044 0.282 0.940 1.152 0.610 | 0.024 0.208 0.949 0.842 0.444
LMRC | 0.036 0.234 0.941 0937 0.281 | 0.007 0.172 0951 0.683 0.147
SIR 0.022  0.199 - 0.796 0.201 | 0.009 0.141 - 0.560 0.100
LSE 0.403 0.199 - 2.163 1.248 | 0.396 0.135 - 2.056 1.209
MRC | 0.190 0.507 0.834 2.097 1.133 | 0.125 0.415 0.907 1.564 0.857
MRE | 0405 0.718 0.994 3.317 1.819 | 0.466 0.744 0.998 3.614 2.002
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Table S2. Summary statistics with dimension p = 15 and correlation pg = 0.3. Averaged abso-
lute bias (BIAS), standard errors (SE) and coverage probability (CP) of 95% confidence interval
over components of the index parameter. Mean {1 and {5 distances between the estimate and the

true parameter.
Model  Error | Method n = 200 n = 400
BIAS SE CP 121 Ly BIAS SE CP 01 ly
Ml x2(1) | LMRC* | 0.029 0.240 0.951 2900 0.922 | 0.018 0.175 0.944 2.118 0.670
LMRC | 0.005 0.123 0945 1467 0.228 | 0.006 0.085 0.938 1.023 0.109
SIR 0.013 0.166 - 1.980 0.418 | 0.007 0.109 - 1.302 0.181
LSE 0.009 0.135 - 1.614  0.275 | 0.049 0.073 - 1.133  0.360
MRC | 0.202 0.508 0.757 6.636  2.136 | 0.144 0.442 0904 5360 1.775
MRE | 0517 0.764 0.827 11.750 3.849 | 0.563 0.772 0.999 12.344 4.033
Pois(1) | LMRC* | 0.033 0.231 0945 2806 0.891 | 0.016 0.167 0947 2.007 0.637
LMRC | 0.006 0.100 0958 1.192 0.149 | 0.004 0.073 0.942 0.862 0.080
SIR 0.008 0.121 - 1.446  0.220 | 0.004 0.085 - 1.013  0.108
LSE 0.006 0.110 - 1.312  0.181 | 0.050 0.053 - 0.967 0.306
MRC | 0.191 0.509 0.750 6.603 2.124 | 0.142 0.442 0.890 5276 1.769
MRE | 0.095 0.332 0.841 3.879 1.980 | 0.595 0.767 0.998 12277 4.077
M2 x%(1) | LMRC* | 0.036 0.247 0.943 2977 0949 | 0.019 0.181 0.946 2.193 0.694
LMRC | 0.011 0.138 0956 1.643 0.286 | 0.006 0.098 0938 1.176 0.145
SIR 0.021 0.204 - 2433  0.634 | 0.008 0.122 - 1.451 0.226
LSE 0.244 0.766 - 9.703 10.152 | 0.254 0.696 - 8.939 2852
MRC | 0.203 0.513 0.769 6.681 2.150 | 0.167 0.470 0.879 5.860 1.908
MRE | 0.515 0.762 0.834 11.829 3.890 | 0.570 0.767 0.999 12.119 4.020
Pois(1) | LMRC* | 0.034 0.242 0951 2948 0.934 | 0.018 0.174 0.951 2.099 0.667
LMRC | 0.009 0.123 0950 1474 0.227 | 0.007 0.089 0937 1.067 0.119
SIR 0.008 0.122 - 1.451 0226 | 0.004 0.075 - 0.895 0.085
LSE 0.158 0.533 - 6.608 2.108 | 0.131 0.478 - 5.887 1.866
MRC | 0.202 0.515 0.863 6.724 2.156 | 0.138 0.439 0.882 5466 1.804
MRE | 0.521 0.765 0.850 11.869 3.857 | 0.562 0.765 0.998 12.118 3.980
M3 x3(1) | LMRC* | 0.031 0.224 00953 2721 0.864 | 0.016 0.163 0.952 1969 0.624
LMRC | 0.007 0.076 0.952 0.912 0.087 | 0.003 0.052 0.937 0.621 0.041
SIR 0.013 0.156 - 1.854 0367 | 0.006 0.102 - 1.217  0.157
LSE 0.133 0.484 - 6.019 1915 | 0.115 0.429 - 5.266  1.680
MRC | 0.162 0462 0.866 5742 1.879 | 0.122 0.401 0.883 4.685 1.583
MRE | 0465 0.740 0.995 10.524 3.589 | 0.504 0.749 0.997 11.206 3.728
Pois(1) | LMRC* | 0.029 0.222 0951 2.690 0.851 | 0.016 0.161 0.947 1.939 0.614
LMRC | 0.004 0.076 0.952 0.905 0.087 | 0.002 0.051 0950 0.602 0.038
SIR 0.008 0.120 - 1.419 0216 | 0.004 0.077 - 0.919 0.090
LSE 0.136  0.492 - 6.126 1946 | 0.112 0.422 - 5213  1.657
MRC | 0.160 0.458 0.858 5.700 1.882 | 0.123 0.404 0.885 4.677 1.583
MRE | 0457 0.735 0997 10.636 3.533 | 0.528 0.753 0.999 11.405 3.824
M4 x2(1) | LMRC* | 0.068 0.350 0.938 4.282 1.368 | 0.037 0.259 0.944 3.168 1.001
LMRC | 0.041 0.319 0925 3.835 1561 | 0.021 0.230 0.933 2.776 0.803
SIR 0.021 0.209 - 2.505 0.665 | 0.013 0.147 - 1.767  0.327
LSE 0.361 0.241 - 6.134  2.006 | 0.352 0.169 - 5.682 1.878
MRC | 0225 0.554 0.817 7.440 2373 | 0.170 0.480 0.850 6.105 1.970
MRE | 0472 0.734 0999 10.533 3.575 | 0.508 0.756 0.999 11.178 3.782
Pois(1) | LMRC* | 0.073 0.355 0.920 4.352 1.389 | 0.041 0.267 0.943 3.250 1.029
LMRC | 0.045 0.334 0922 4.026 1717 | 0.026 0.234 0.926 2.794 0.832
SIR 0.020 0.202 - 2438 0.618 | 0.009 0.144 - 1.734 0313
LSE 0.371 0.242 - 6.249  2.051 | 0.369 0.167 - 5.889  1.945
MRC | 0229 0.565 0.811 7.568 2398 | 0.164 0.478 0.850 6.049 1.961
MRE | 0485 0.748 0.999 10.850 3.669 | 0.541 0.757 0.998 11.415 3.866
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Table S3. Summary statistics with dimension p = 30 and p = 0.8. Averaged absolute bias
(BIAS), standard errors (SE) and coverage probability (CP) of 95% confidence interval over
components of the index parameter. Mean {1 and {5 distances between the estimate and the true
parameter.

Model  Error | Method n = 200 n = 300
BIAS SE CP lq lo BIAS SE CP 121 l

M3 X%(1) | LMRC* | 0.043 0559 0.944 13.529 3.042 | 0.044 0.468 0.943 11.290 2.550
LMRC | 0.009 0.149 0.972 3.538 0.672 | 0.009 0.116 0956 2.776 0.408
SIR 0.095 0.786 - 18.200 19.008 | 0.084 0.634 - 14.173  12.435
LSE 0411 2.274 - 55.602 160.928 | 0.369 2.092 - 51.313 136.856
MRC | 0332 0.614 0449 18458 16.963 | 0.280 0.583 0.460 17.005 14.365
MRE | 0.326 0.618 0.590 18.830 17.451 | 0.280 0.595 0.626 17.338 14.835
Pois(1) | LMRC* | 0.051 0.551 0.950 13342 3.002 | 0.039 0465 0.942 11.189 2.523
LMRC | 0.010 0.149 0.965 3.561 0.672 | 0.006 0.122 0954 2.921 0.452
SIR 0.045 0.519 - 11.835 8.176 | 0.032 0.357 - 8.465 3.854
LSE 0.349 2.307 - 56.571 164.265 | 0.394 2.114 - 51.931 140.305
MRC | 0314 0.622 0466 18.264 16.363 | 0.274 0.580 0.459 16.844 13.937
MRE | 0.321 0.625 0.607 18424 16.725 | 0.270 0.584 0.622 17.041 14.221

M4 x2(1) | LMRC* | 0.175 1.028 0.874 25.198 5.687 | 0.128 0.880 0.905 21.413  4.831
LMRC | 0.155 1.023 0.840 24.802 32.333 | 0.141 0.873 0.891 21.152 23.608
SIR 0.171 0.910 - 21.339  26.060 | 0.099 0.730 - 17.032  16.456
LSE 0.156 1.534 - 36985 71.364 | 0.153 1.267 - 30.695 49.170
MRC | 0361 0.658 0477 19.620 19.047 | 0.321 0.631 0473 18.638 16.934
MRE | 0362 0.641 0.614 19486 18.621 | 0.319 0.619 0.635 18.258 16.323
Pois(1) | LMRC* | 0.182 1.002 0.880 24.524 5.544 | 0.144 0.899 0.903 21.825 4.940
LMRC | 0.161 1.057 0.790 25.563 34.538 | 0.115 0.887 0.885 21.341 24.105
SIR 0.149 0.923 - 21.490 26.604 | 0.078 0.694 - 16.230  14.645
LSE 0.128 1.494 - 35762  67.525 | 0.141 1.237 - 30.202  46.684
MRC | 0370 0.659 0.463 19.860 19.577 | 0.297 0.604 0.487 17.810 15.466
MRE | 0.357 0.652 0.622 19.661 18.980 | 0.301 0.616 0.642 17918 15.731
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Table S4. Summary statistics with dimension p = 5 and correlation py = 0.3. Averaged absolute
bias (BIAS), standard errors (SE) and coverage probability (CP) of 95% confidence interval over
components of the index parameter. Mean {1 and {5 distances between the estimate and the true

parameter.
n = 100 n = 200
Model — Ermor | Method | by s cp ¢, 4, |BIAS SE  CP 6 0
LMRC* | 0085 0401 0936 1526 0809 | 0.032 0249 0945 0996 0.528
LMRC | 0.057 0348 0959 1360 0.629 | 0020 0231 0949 0916 0276
() | SR 0548 0818 - 4434 2525|0564 0826 - 4524 2530
LSE | 0361 0780 - 3551 2084|0372 0772 - 3524 2.069
MRC | 0464 0704 0821 3719 2.116 | 0477 0713 0824 3775 2.143
s MRE | 0473 0704 0861 3.729 2.110 | 0471 0714 0848 3736 2.099
LMRC* | 0.058 0375 0911 1457 0876 | 0.030 0253 0931 1.006 0.728
LMRC | 0.022 0300 0955 1.166 0451 | 0017 0226 0954 0877 0258
pois(y| SR | 0538 0823 . 4512 2500|0494 0809 - 4204 2393
LSE | 0366 0772 - 3565 2084|0385 0772 - 3574 2.099
MRC | 0443 0708 0793 3.607 2050 | 0479 0717 0819 3766 2.129
MRE | 0448 0711 0869 3726 2.111|0504 0715 0869 3837 2.157
LMRC* | 0047 0336 0926 1351 0843|0024 0237 0945 0960 0.708
LMRC | 0019 0282 0953 1.110 0401 | 0.025 0214 0946 0858 0234
Gy | SIRO[0100 0496 - 1764 1161|0027 0252 - 0947 0569
LSE | 0.148 0536 - 2064 1266|0056 0359 - 1339 0820
MRC | 0458 0710 0813 3.671 2.090 | 0457 0704 0818 3.619 2071
e MRE | 0456 0708 0863 3.632 2.072 | 0468 0708 0872 3725 2.104
LMRC* | 0.041 0313 0935 1267 0.666 | 0.027 0238 0933 0951 0.509
LMRC | 0.021 0285 0942 1.130 0409 | 0016 0202 0956 0.798 0.207
poisy | SR | 0081 0425 . 1526 0983|0024 0251 - 0966 0564
LSE | 0.111 048 - 1824 1135|0060 0392 - 1428 0894
MRC | 0454 0710 0790 3715 2.101 | 0454 0715 0816 3702 2.108
MRE | 0466 0714 0856 3741 2.119 | 0427 0.699 0876 3.664 2.059
LMRC* | 0280 0711 0878 3.069 1.627 | 0.130 0539 0910 2.134 1.121
LMRC | 0213 0666 0918 2751 2649 | 0163 0560 0926 2.181 1.785
(| SIR[0353 0794 - 3553 2018|0264 0685 - 2829 1735
LSE | 0084 0462 - 1728 1063|0037 0316 -  1.198 0713
MRC | 0.114 0394 0855 1373 0929 | 0082 0311 0819 1010 0.737
v MRE | 0.125 0410 0878 1489 0976 | 0080 0322 0894 1.003 0777
LMRC* | 0260 0.674 0886 2778 1496 | 0.148 0551 0911 2.180 1.146
LMRC | 0234 0699 0896 2911 3.004 | 0.147 0566 0915 2222 1805
pois(ly | SR | 0082 0435 . 1528 1006|0264 0695 - 2906 3088
LSE | 0.136 0536 - 2046 1607 | 0036 0284 - 1102 0413
MRC | 0441 0698 0802 3584 4164 | 0071 0286 0802 0932 0.480
MRE | 0459 0709 0838 3706 4318 | 0.079 0300 0905 0974 0.521
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Table S5. Summary statistics with dimension p = 40. Averaged absolute bias (BIAS), standard
errors (SE) over components of the index parameter. Mean (1 and 0y distances between the
estimate and the true parameter. Averaged false positive rate (FP), false negative rate (FN), the
empirical probability of choosing the correct model (CM).

Dimension | Model Error Method BIAS SE 0 = ;200 FP FN M
20) Lasso LMRC | 0.003 0.036 1.130 0.602 0.000 0.000 1.000
Mi Lasso SIR 0.010 0.135 2.823 0.850 0.337 0.000 1.000
Pois(1) Lasso LMRC | 0.003 0.032 0.992 0.526 0.000 0.000 1.000
Lasso SIR 0.008 0.110 2.291 0.698 0.326 0.000 1.000
() Lasso LMRC | 0.002 0.034 1.078 0.570 0.000 0.000 1.000
M2 Lasso SIR 0.010 0.134 2.794 0.837 0.347 0.000 1.000
Pois(1) Lasso LMRC | 0.002 0.032 0.994 0.528 0.000 0.000 1.000
= 40 Lasso SIR 0.008 0.115 2423 0.731 0.331 0.000 1.000
2(1) Lasso LMRC | 0.001 0.036 1.130 0.609 0.000 0.000 1.000
M3 A Lasso SIR 0.022 0236 5.065 1518 0.344 0.001 0.997
Pois(1) Lasso LMRC | 0.002 0.034 1.054 0.563 0.007 0.001 0.996
Lasso SIR 0.022 0221 4.725 1407 0.340 0.000 1.000
(1) Lasso LMRC | 0.001 0.025 0.792 0413 0.000 0.000 1.000
M4 Lasso SIR 0.012 0.164 3.370 1.045 0.318 0.000 1.000
Pois(1) Lasso LMRC | 0.002 0.026 0.826 0.431 0.000 0.000 1.000
Lasso SIR 0.011 0.149 3.079 0939 0.325 0.000 1.000
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