Linearized Maximum Rank Correlation Estimation

By Guohao Shen
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong guohao.shen@polyu.edu.hk
Kani Chen
Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
makchen@ust.hk
Jian Huang

1. Introduction

The single index model with an unknown univariate link function is popular and widely-used in econometrics and statistics. Let (Y, X) be a pair of response and p-vector of covariates. A

$$
\begin{equation*}
Y=g\left(X^{\mathrm{T}} \beta_{0}\right)+\epsilon, \tag{1}
\end{equation*}
$$

where ϵ is a random error satisfying $E(\epsilon \mid X)=0, \beta_{0}$ is an unknown p-dimensional index coefficient vector, and $g(\cdot): \mathbb{R} \rightarrow \mathbb{R}$ is an unknown link function. There is an extensive literature on statistical inference for model (1), focusing on the estimation of the index parameters β_{0} and the link function g (Xia \& Li, 1999; Hristache et al., 2001; Xia \& Tong, 2006; Kong \& Xia, 2007; Horowitz, 2009; Wang et al., 2010). Han (1987) studied a semiparametric monotonic linear index model

$$
\begin{equation*}
Y=D \circ F\left(X^{\mathrm{T}} \beta_{0}, \epsilon\right), \tag{2}
\end{equation*}
$$

where the function $D: \mathbb{R} \rightarrow \mathbb{R}$ is non-constant increasing, the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is strictly increasing in each of its arguments, and $Y, X, \epsilon, \beta_{0}$ are the same as in model (1). Given a random sample $\left(X_{i}, Y_{i}\right)(i=1, \ldots, n)$ of size n, Han (1987) proposed maximum rank correlation estimation based on Kendall's τ for estimating β_{0} by maximizing $\sum_{i \neq j} I\left(Y_{i}<Y_{j}\right) I\left(X_{i}^{\mathrm{T}} \beta<X_{j}^{\mathrm{T}} \beta\right)$ over β, where $I(\cdot)$ is the indicator function. Maximum rank correlation estimator is a nonparametric and distribution-free estimator. A similar class of monotone rank estimators was considered by Cavanagh \& Sherman (1998) by maximizing $\sum_{i=1}^{n} M\left(Y_{i}\right) R_{n}\left(X_{i}^{\mathrm{T}} \beta\right)$ over β, where $M(\cdot)$ is a known increasing function on real line and $R_{n}\left(X_{i}^{\mathrm{T}} \beta\right)$ is the rank of $X_{i}^{\mathrm{T}} \beta$ among $X_{1}^{\mathrm{T}} \beta, X_{2}^{\mathrm{T}} \beta, \ldots, X_{n}^{\mathrm{T}} \beta$. Khan \& Tamer (2007) extended maximum rank correlation to accommodate censored data and introduced the partial rank estimator under a general form of censoring. The objective functions of maximum rank correlation and the monotone rank estimation are neither continuous nor convex. Though the computation of maximum rank correlation can be carried out by the Nelder-Mead simplex search algorithm, it could be numerically unstable or even fail when the number of predictors is relatively large. To alleviate the numerical complications, a smoothed approximation of the partial rank estimator was studied by Song et al. (2007). Rank estimators in high dimensions were studied by Han et al. (2017) and Fan et al. (2020).
In this paper, we consider a general single index model

$$
\begin{equation*}
Y=f\left(X^{\mathrm{T}} \beta_{0}, \epsilon\right), \tag{3}
\end{equation*}
$$

where ϵ is a random error, β_{0} is an unknown p-dimensional index coefficient vector, and $f(\cdot, \cdot): \mathbb{R}^{2} \rightarrow \mathbb{R}$ is an unknown function satisfying condition (M) in section 2.2. Many popular models, such as the linear model, binary choice model, censored regression, duration model, transformation model, model (1) and model (2) fit into this framework. Recently, Neykov et al. (2016b) proved that when X is Gaussian or satisfies the linearity of expectation in the direction
of β_{0}, the least squares estimation is consistent for estimating β_{0} up to a multiplicative scalar for model (3), without the monotonicity assumption in the first argument of f. This finding was further applied to recover the support of β_{0} in high dimension.

For model (3), we propose a class of new estimators and single out a typical one, linearized maximum rank correlation estimator, which possesses superior properties in both theory and computation. Similar to maximum rank correlation and monotone rank estimation, our proposed estimator directly exploits the monotonic relationship between Y and the linear index, thus it is robust to outliers in Y. The objective function of linearized maximum rank correlation is smooth and concave, making it computationally efficient, especially for large p. A more general class of estimators is also studied. The proposed methods can be easily extended to handle censored data and high-dimensional data. With or without censoring, the estimation of the unknown link function is avoided. An efficient plug-in method and a random weighting resampling scheme are used for variance estimation.

2. Methodologies and Main results

2.1. Linearized maximum rank correlation and its closed-form solution

For model (3), we restrict $\operatorname{cov}\left(\beta_{0}^{\mathrm{T}} X\right)=\beta_{0}^{\mathrm{T}} \Sigma \beta_{0}=1$ for identifiability, where Σ is the covariance matrix of X. The observations $\left(Y_{i}, X_{i}\right), i=1, \ldots, n$, are independent and identically distributed copies of (Y, X). Our proposed estimator for β_{0} is defined as

$$
\begin{equation*}
\hat{\beta}_{n}^{*}=\underset{\beta \in \mathcal{E}(\Sigma)}{\arg \max }\left\{L_{n}(\beta)=\frac{1}{n(n-1)} \sum_{i \neq j}^{n} I\left(Y_{i}<Y_{j}\right)\left(X_{j}-X_{i}\right)^{\mathrm{T}} \beta\right\} \tag{4}
\end{equation*}
$$

where $\mathcal{E}(\Sigma)=\left\{\beta \in \mathbb{R}^{p}: \beta^{\mathrm{T}} \Sigma \beta=1\right\}$ is a p-dimensional ellipsoid related to Σ, which coincides with the identifiability condition. When $\left(X_{j}-X_{i}\right)^{\mathrm{T}} \beta$ in (4) is replaced by $I\left\{\left(X_{j}-X_{i}\right)^{\mathrm{T}} \beta>\right.$ $0\}$, it becomes maximum rank correlation estimator. The objective function in (4) is linear and smooth in β. We refer to the proposed estimator in (4) as linearized maximum rank correlation. An advantage of using $\left(X_{j}-X_{i}\right)^{\mathrm{T}} \beta$ in (4) instead of the indicator function is that $\hat{\beta}_{n}^{*}$ has a closed form expression derived below.

When Σ is known, we solve (4) using the method of Lagrange multipliers:

$$
\nu^{\star} \equiv \underset{\nu \in \mathbb{R}}{\arg \min } \max _{\beta \in \mathcal{E}(\Sigma)} L_{n}(\beta)+\nu\left(\beta^{\mathrm{T}} \Sigma \beta-1\right)
$$

where $\nu>0$ is the Lagrange multiplier. Then, any solution pair $\left(\nu^{\star}, \hat{\beta}_{n}^{*}\right)$ necessarily satisfies

$$
\nabla L_{n}\left(\hat{\beta}_{n}^{*}\right)+2 \nu^{\star} \Sigma \hat{\beta}_{n}^{*}=0 \quad \text { and } \quad \hat{\beta}_{n}^{* \mathrm{~T}} \Sigma \hat{\beta}_{n}^{*}-1=0
$$

where $\nabla L_{n}(\beta)=\sum_{i \neq j}^{n} I\left(Y_{i}<Y_{j}\right)\left(X_{j}-X_{i}\right) /\{n(n-1)\}$ is the gradient of $L_{n}(\beta)$ w.r.t β. Note that $\nabla L_{n}(\beta)$ is independent of β, thus for notational simplicity, we write the U statistic $\nabla L_{n}(\beta)$ as U_{n}. Solving the above two equations yields that $\nu^{\star}=-\hat{\beta}_{n}^{* \mathrm{~T}} U_{n} / 2$ and
$\hat{\beta}_{n}^{*}-\Sigma^{-1} U_{n} /\left(\hat{\beta}_{n}^{* \mathrm{~T}} U_{n}\right)=0$. It then follows that

$$
\begin{equation*}
\hat{\beta}_{n}^{*}=+\frac{\Sigma^{-1} U_{n}}{\left(U_{n}{ }^{\mathrm{T}} \Sigma^{-1} U_{n}\right)^{1 / 2}} \tag{5}
\end{equation*}
$$ guarantee consistency is that X satisfies linearity of expectation in the direction of β_{0}.

DEFINITION 1. (Linearity of Expectation) A p-dimensional random vector X is said to satisfy linearity of expectation in the direction β if for any direction $b \in \mathbb{R}^{p}$,

$$
E\left[X^{\mathrm{T}} b \mid X^{\mathrm{T}} \beta\right]=c_{b} X^{\mathrm{T}} \beta+a_{b}
$$

where $a_{b}, c_{b} \in \mathbb{R}$ are some real constants which may depend on the direction b(Li \& Duan, 1989; Li, 1991).

For a random vector X satisfying linearity of expectation with mean μ and covariance matrix Σ, if $\beta^{\mathrm{T}} \Sigma \beta \neq 0$, then $c_{b}=b^{\mathrm{T}} \Sigma \beta / \beta^{\mathrm{T}} \Sigma \beta$ and $a_{b}=b^{\mathrm{T}} \mu-c_{b} \beta_{0}^{\mathrm{T}} \mu$. The proof is given in Lemma S 2 in section 2 of the supplementary material. Elliptical distributions, including the multivariate
normal distribution and t-distribution, satisfy the linearity of expectation uniformly in all directions. The construction and definition of elliptical distributions can be found in Cambanis et al. (1981).

Remark 1. Like maximum rank correlation estimation in Han (1987), the objective function in (4) depends on the responses only through their ranks, making it robust to outliers in Y. When X satisfies the linearity of expectation, the proposed estimator is shown to be consistent, more efficient and stable than maximum rank correlation estimator, especially for large p. But maximum rank correlation estimator is robust to outliers in the covariates and does not need the linearity of expectation for consistency.

Remark 2. For model (3) without the monotonicity assumption on f, the least squares estimator by Neykov et al. (2016b) consistently estimates the direction of β_{0} (up to a sign) if the constant $E\left(Y X^{\mathrm{T}} \beta_{0}\right) \neq 0$. A main advantage of the proposed method over the least squares estimator by Neykov et al. (2016b) is its robustness to outliers in the response variable.

Remark 3. Our linearized maximum rank correlation estimation shares similar assumption on the distribution of X with the well-known sliced inverse regression (SIR) in Li (1991). Specifically, Li (1991) considered a general multiple-index model $Y=f\left(X^{\mathrm{T}} \beta_{1}, \ldots, X^{\mathrm{T}} \beta_{K}, \epsilon\right)$, where β_{k} 's $(k=1, \ldots, K)$ are unknown parameter vectors, $f: \mathbb{R}^{K+1} \rightarrow \mathbb{R}$ is an unknown function, and the error ϵ is independent of X. It reduces to model (3) when $K=1$ and f is non-constant increasing in its first argument. Linearized maximum rank correlation estimation and sliced inverse regression both focus on the estimation of the direction(s) of or the linear space spanned by the unknown vector(s) β_{k} 's, $k=1, \ldots, K$, without the estimation of f. Different from the sliced inverse regression, linearized maximum rank correlation estimation has a closed-form solution and no tuning parameter is involved, making it easy to implement in practice and relatively easy to analyze in theory. Both methods can be extended to handle censored data (Chen et al., 1999) and high-dimensional data with some penalty term (Neykov et al., 2016a; Lin et al., 2018). Numerical comparisons are given in Section 5.

Remark 4. Similar to the sliced inverse regression (Li, 1991), our linearized maximum rank correlation estimation can be inefficient and theoretically fails for symmetric single index models. For example, if $Y=f\left(X^{\mathrm{T}} \beta_{0}\right)+\epsilon$ for some symmetric function f, and $X^{\mathrm{T}} \beta_{0}$ is also symmetric about $0, E(X \mid Y)=0$ and $E\left\{I\left(Y_{1}<Y_{2}\right)\left(X_{2}-X_{1}\right)^{\mathrm{T}} \beta_{0}\right\}=0$, thus the resulting estimator is a poor estimator of β_{0}. Cook \& Weisberg (1991) proposed a remedy to this problem for sliced inverse regression by exploring higher conditional moments of X given Y, called sliced average variance estimate. How to apply the idea of sliced average variance estimate to our method for symmetric single index models is a very interesting research problem. We leave space here for future research.

When Σ is unknown, our proposed estimator is defined as

$$
\begin{equation*}
\hat{\beta}_{n} \equiv \underset{\beta \in \mathcal{E}(\hat{\Sigma})}{\arg \max } \frac{1}{n(n-1)} \sum_{i \neq j}^{n} I\left(Y_{i}<Y_{j}\right)\left(X_{j}-X_{i}\right)^{\mathrm{T}} \beta \tag{6}
\end{equation*}
$$

where $\hat{\Sigma}$ is a consistent estimator of Σ. A closed-form solution of (6) can be obtained:

$$
\begin{equation*}
\hat{\beta}_{n}=\left(U_{n}{ }^{\mathrm{T}} \hat{\Sigma}^{-1} U_{n}\right)^{-1 / 2} \hat{\Sigma}^{-1} U_{n} \tag{7}
\end{equation*}
$$

which is computationally straightforward and efficient.

2.2. Asymptotic properties

Let $Z=\left(Y, X^{\mathrm{T}}\right)^{\mathrm{T}}$ be a random vector with distribution P on the set $S \subset \mathbb{R} \otimes \mathbb{R}^{p}$, and write the observations as $\mathbb{D}=\left\{Z_{i}, i=1, \ldots, n\right\}$. Let $\epsilon_{i}, i=1, \ldots, n$, be the error terms. Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ denote the ℓ_{1} and the ℓ_{2} norms of a vector in Euclidean space. Define the ℓ_{2}-norm of a matrix A as $\|A\|_{2}=\max _{\|x\|_{2}=1}\|A x\|_{2}$, and $\|\cdot\|$ denotes the matrix norm: $\left\|\left(a_{i j}\right)\right\|=$ $\left(\sum_{i, j} a_{i j}^{2}\right)^{1 / 2}$. Define $L(\beta)=E\left\{L_{n}(\beta)\right\}$ and $U=E\left(U_{n}\right)$.

Some basic properties of $L(\beta)$ and $L_{n}(\beta)$ are first introduced. First, $L(\beta)$ and $L_{n}(\beta)$ are unbounded in \mathbb{R}^{p}, and achieve their maximum at $\beta=\infty$; namely, without any bounded constraint on β, maximizing $L_{n}(\beta)$ results in a trivial solution $\hat{\beta}_{n}=\infty$. Second, for any constant $c \in \mathbb{R}$ and $n \geq 1, L_{n}(c \beta)=c L_{n}(\beta)$, i.e., $L_{n}(\beta)$ is proportional to the norm of those β with the same direction in \mathbb{R}^{p}. Thus, the maximum of $L_{n}(\beta)$ will be achieved on the boundary of the constraint region, suggesting that the optimization can be conducted on a manifold. Moreover, under model (3), Y depends on X only through $X^{\mathrm{T}} \beta_{0}$. Hence, to search over all directions in \mathbb{R}^{p} uniformly, $L_{n}(\beta)$ is maximized subject to the constraint $\operatorname{cov}\left(X^{\mathrm{T}} \beta\right)=1$. Third, by letting $\alpha=\Sigma^{1 / 2} \beta$ and $\tilde{X}_{i}=\Sigma^{-1 / 2} X_{i}, i=1,2, \ldots, n$, problem (4) can be cast into

$$
\hat{\beta}_{n}^{*}=\Sigma^{-1 / 2} \underset{\alpha \in \mathbb{R}^{p}}{\arg \max } \frac{1}{n(n-1)} \sum_{i \neq j}^{n} I\left(Y_{i}<Y_{j}\right)\left(\tilde{X}_{j}-\tilde{X}_{i}\right)^{\mathrm{T}} \alpha, \text { subject to } \alpha^{\mathrm{T}} \alpha=1
$$

which may simplify the numerical computation as the feasible region of α is a unit hypersphere.
The following conditions are needed to establish the asymptotic properties.
(M) The unknown function $f(\cdot, \cdot): \mathbb{R}^{2} \rightarrow \mathbb{R}$ is non-constant increasing in its first argument on the support of $\left(X^{\mathrm{T}} \beta_{0}, \epsilon\right)$ and $E\left\{f\left(X^{\mathrm{T}} \beta_{0}, \epsilon\right) \mid X^{\mathrm{T}} \beta_{0}\right\}$ has non-zero variance. And X and ϵ are independent.
(C1) The predictor vector X satisfies linearity of expectation in the direction of β_{0}.
(C2) The covariance matrix Σ exists and is positive definite.

Theorem 1. (Consistency, known Σ) Assume that model (3) is true, and Conditions (M), (C1)-(C2) hold. Then, $\hat{\beta}_{n}^{*}$ defined in (4) is consistent for β_{0}.

Remark 5. Without the monotonicity assumption on f in Condition (M), our estimator $\hat{\beta}_{n}$ can still be consistent for β_{0} up to a sign if $\left(\Sigma^{-1} U\right)^{\mathrm{T}} \beta_{0} \neq 0$, whose proof is given in the proof of Theorem 1 in section 2 of the supplementary material.

Since the parameter space $\mathcal{E}(\Sigma)=\left\{\beta \in \mathbb{R}^{p}: \beta^{\mathrm{T}} \Sigma \beta=1\right\}$ is a hyper ellipsoid, to study the asymptotic distribution of $\hat{\beta}_{n}^{*}$, we focus on a subvector of $\hat{\beta}_{n}^{*}$. Without loss of generality, let $A=\left(0, I_{p-1}\right)$ be a $(p-1) \times p$ matrix with the first column being zeros and I_{p-1} be an identity matrix of order $p-1$. Let $\theta \equiv A \beta=\left(\beta_{2}, \ldots, \beta_{p}\right)^{\mathrm{T}} \in \mathbb{R}^{p-1}$, a $(p-1)$-subvector of β excluding its first component. Actually, A can be other matrices mapping β to any of its $(p-1)$-subvector. Due to the constraint $\beta^{\mathrm{T}} \Sigma \beta=1, \theta \in \Theta \equiv\{A \beta: \beta \in \mathcal{E}(\Sigma)\}$, which is a compact set, as it is the projection of $\mathcal{E}(\Sigma)$ onto a $(p-1)$-dimensional hyperplane perpendicular to β_{1} (the first component of β). Similarly, we write $\theta_{0}=A \beta_{0}$ and $\hat{\theta}_{n}^{*}=A \hat{\beta}_{n}^{*}$. To establish the asymptotic distribution of $\hat{\theta}_{n}^{*}$, an additional regularity condition is needed.
(C3) The true parameter θ_{0} is an interior point of Θ, a compact subset of \mathbb{R}^{p-1}.

THEOREM 2. (Asymptotic Normality, known Σ) Assume that model (3) is true, and Conditions (M), (C1)-(C3) hold. For each $z=\left(y, x^{\mathrm{T}}\right)^{\mathrm{T}} \in S$, define $\xi(z)=E\{I(y<Y)(X-x)+I(Y<$ $y)(x-X)-2 U\}$. Then, as $n \rightarrow \infty, n^{1 / 2}\left(\hat{\theta}_{n}^{*}-\theta_{0}\right) \rightarrow N\left(0, A V \Delta V^{\mathrm{T}} A^{\mathrm{T}}\right)$ in distribution, where $V=\left(\Sigma^{-1}-\beta_{0} \beta_{0}^{\mathrm{T}}\right)\left(U^{\mathrm{T}} \Sigma^{-1} U\right)^{-1 / 2}$ and $\Delta=E\left\{\xi(Z) \xi(Z)^{\mathrm{T}}\right\}$.

It is not hard to show that the matrices V and Δ can be consistently estimated by the plug-in estimators $\hat{V}_{n}=\left(\Sigma^{-1}-\hat{\beta}_{n}^{*} \hat{\beta}_{n}^{* \mathrm{~T}}\right)\left(U_{n} \Sigma^{-1} U_{n}\right)^{-1 / 2}$ and $\hat{\Delta}_{n}=\sum_{i=1}^{n} \hat{\xi}_{n}\left(Z_{i}\right) \hat{\xi}_{n}\left(Z_{i}\right)^{\mathrm{T}} / n$ respectively, $\quad{ }^{205}$ where $\hat{\xi}_{n}(z)=\sum_{j=1}^{n}\left\{I\left(y<Y_{j}\right)\left(X_{j}-x\right)+I\left(Y_{j}<y\right)\left(x-X_{j}\right)-2 U_{n}\right\} / n$.

When Σ is unknown, the estimation of a covariance matrix and its inverse has been studied by many authors (Muirhead (2009); Yuan (2010); Cai et al. (2010); etc). Theorem 3 establishes the consistency of $\hat{\beta}_{n}$ defined in (6).

THEOREM 3. (Consistency, unknown Σ) Assume that model (3) is true, and Conditions (M), (C1)-(C2) hold. If $\hat{\Sigma}$ is consistent for Σ, then $\hat{\beta}_{n}$ is consistent for β_{0}.

The sample covariance matrix $\hat{\Sigma}_{S}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{\mathrm{T}} /(n-1)$ is a consistent estimator of Σ in low-dimensional models, where $\bar{X}=\sum_{i=1}^{n} X_{i} / n$. Similar to Theorem 2, we write $\hat{\theta}_{n}=A \hat{\beta}_{n}$ and present its asymptotic distribution in the next theorem.

THEOREM 4. (Asymptotic distribution, unknown Σ) Assume that model (3) is true, and Conditions (M) and (C1)-(C3) hold.
(i) If $\|\hat{\Sigma}-\Sigma\|_{2}=o_{p}\left(n^{-1 / 2}\right)$, then as $n \rightarrow \infty, n^{1 / 2}\left(\hat{\theta}_{n}-\theta_{0}\right) \rightarrow N\left(0, A V \Delta V^{\mathrm{T}} A^{\mathrm{T}}\right)$ in distribution, which is the limiting distribution in Theorem 2;
(ii) If $\hat{\Sigma}=\hat{\Sigma}_{S}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{\mathrm{T}} /(n-1)$ and $E\|X\|_{2}^{4}<+\infty$, then as $n \rightarrow \infty$, $n^{1 / 2}\left(\hat{\theta}_{n}-\theta_{0}\right) \rightarrow N\left(0, A B A^{\mathrm{T}}\right)$ in distribution, where $B=E\{V \xi(Z)+H \psi(Z)\}\left\{V \xi(Z)+\quad{ }_{220}\right.$
$H \psi(Z)\}^{\mathrm{T}}, \psi(Z)=\left\{(X-\mu)(X-\mu)^{\mathrm{T}}-\Sigma\right\} \beta_{0}, H=\beta_{0} \beta_{0}^{\top} / 2-\Sigma^{-1}, V$ and $\xi(\cdot)$ are defined in Theorem 2.

Theorem 4 part (i) states that, if $\|\hat{\Sigma}-\Sigma\|_{2}=o_{p}\left(n^{-1 / 2}\right)$, then $\hat{\theta}_{n}=\hat{\theta}_{n}^{*}+o_{p}\left(n^{-1 / 2}\right)$; thus, $\hat{\theta}_{n}$ is asymptotically as efficient as $\hat{\theta}_{n}^{*}$ when Σ is known. However, if $\hat{\Sigma}=\hat{\Sigma}_{S}$, the asymptotic distribution in Theorem 4 part (ii) is generally different from that in part (i). Furthermore, if $\hat{\Sigma}$ satisfies $\|\hat{\Sigma}-\Sigma\|_{2}=O_{p}\left(n^{-1 / 2}\right)$, it can be shown that $n^{1 / 2}\left(\hat{\theta}_{n}-\theta_{0}\right)=O_{p}(1)$.

Remark 6. A surprising and seemingly paradoxical observation in our numerical studies is that, when Σ is unknown and a plug-in estimator $\hat{\Sigma}_{S}$ is used, the resulting estimator is generally more efficient (with smaller variance) than the counterpart when Σ is assumed known. Similar observations were reported by Henmi \& Eguchi (2004); Henmi et al. (2007) and Tarpey et al. (2014). For more insights, we consider the case when $p=1$ and focus on the numerators of $\hat{\beta}_{n}^{*}$ and $\hat{\beta}_{n}$. When Σ is known, the numerator of $\hat{\beta}_{n}^{*}$ in (5), $\Sigma^{-1} U_{n}$ converges to $c \beta_{0}$ in probability for some constant $c>0$, where Σ is a positive scalar when $p=1$ and $U_{n}=\sum_{i \neq j}^{n} I\left(Y_{i}<Y_{j}\right)\left(X_{j}-\right.$ $\left.X_{i}\right) /\{n(n-1)\}$ can be viewed as a new measure of the correlation between Y and X. It is not hard to check that U_{n} is positively (negatively) correlated with $\hat{\Sigma}_{S}$ when $\beta_{0}>0\left(\beta_{0}<0\right)$. When Σ is unknown, the numerator of $\hat{\beta}_{n}$ can be written as $\left(\Sigma / \hat{\Sigma}_{S}\right)\left(U_{n} / \Sigma\right)$, which is also consistent for $c \beta_{0}$ under the regularity conditions. Without loss of generality, we consider $\beta_{0}>0$. Given the data, if $U_{n} / \Sigma>c \beta_{0}$, then $\Sigma / \hat{\Sigma}_{S}$ is more likely to be less than 1 due to the positive correlation between U_{n} and $\hat{\Sigma}_{S}$; when $\Sigma^{-1} U_{n}$ over-estimates (under-estimates) $c \beta_{0}, \Sigma / \hat{\Sigma}_{S}$ can help pull down (up) the term $\left(\Sigma / \hat{\Sigma}_{S}\right)\left(U_{n} / \Sigma\right)$ towards the target $c \beta_{0}$. Thus, it produces estimates with smaller variance. Similarly, the denominator of $\hat{\beta}_{n}$ can be argued to be more stable than that of $\hat{\beta}_{n}^{*}$. The above discussions offer some insights into why $\hat{\beta}_{n}$ can be more efficient than $\hat{\beta}_{n}^{*}$ for the univariate case. Nonetheless, a rigorous proof for a general setting has yet to be found.

2.3. A general class of estimators

The identity function we adopt in (4) is not necessarily the unique choice. A general class of objective functions can be considered:

$$
\begin{equation*}
L_{n}^{g}(\beta) \equiv \frac{1}{n(n-1)} \sum_{i \neq j}^{n} I\left(Y_{i}<Y_{j}\right) g\left\{\left(X_{j}-X_{i}\right)^{\mathrm{T}} \beta\right\} \tag{8}
\end{equation*}
$$

where $g(\cdot)$ is a known non-constant increasing function. When Σ is known, the estimator is defined as $\hat{\beta}_{n}^{g}=\arg \max _{\beta \in \mathcal{E}(\Sigma)} L_{n}^{g}(\beta)$. With a slight abuse of notation, when Σ is unknown, we plug in a consistent estimator $\hat{\Sigma}$ in $\mathcal{E}(\Sigma)$ and still denote the resulting estimator as $\hat{\beta}_{n}^{g}$. When $g(a)=a$ in (8), it is linearized maximum rank correlation estimation in Section 2.1; when $g(a)=I(a>0)$, it is maximum rank correlation. One may also consider $g(a)=-\left([-a]_{+}\right)^{\gamma}$, $g(a)=\left([a]_{+}\right)^{\gamma}$ for any real number $\gamma>0$ or $g(a)=\log \left(1+[a]_{+}\right)$, where $[a]_{+}=\max \{0, a\}$ is the rectified linear unit (ReLU). Such choices of g would be valid to produce consistent estimate
for β_{0} under suitable conditions, albeit the objective function is no longer concave for some cases such as $g(a)=I(a>0), g(a)=\left([a]_{+}\right)^{\gamma}$ or $g(a)=-\left([-a]_{+}\right)^{\gamma}$ when $\gamma<1$.

For such choices of g, asymptotic theories analogous to Theorems 1-4 can be established. For technical convenience, we reparameterize β according to the identifiability constraint. Without loss of generality, let $\theta=\left(\beta_{2}, \ldots, \beta_{p}\right)^{\mathrm{T}} \in \mathbb{R}^{p-1}$ be the $(p-1)$-subvector of β. Under the constraint $\beta^{\mathrm{T}} \Sigma \beta=1$, the first component of β can be represented as $\beta_{1}(\theta, \Sigma)=-\Sigma_{12} \theta / \Sigma_{11}+$ $\left(s / \Sigma_{11}\right)\left\{\left(\Sigma_{12} \theta\right)^{2}+\Sigma_{11}\left(1-\theta^{\mathrm{T}} \Sigma_{22} \theta\right)\right\}^{1 / 2}$, where $s \in\{1,-1\}, \Sigma_{11}$ is a scalar and Σ_{22} is a $(p-1) \times(p-1)$ submatrix of Σ such that $\Sigma=\left(\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right)$. Then, $\beta=\beta(\theta, s, \Sigma)$ is uniquely determined by (θ, s, Σ) for $s \in\{1,-1\}$ and $\theta \in \Theta=\left\{\theta \in \mathbb{R}^{p-1}:\left(\Sigma_{12} \theta\right)^{2}+\Sigma_{11}(1-\right.$ $\left.\left.\theta^{\mathrm{T}} \Sigma_{22} \theta\right) \geq 0\right\}$. Similarly, we write $\beta_{0}=\beta_{0}\left(\theta_{0}, s_{0}, \Sigma\right)$ and $\hat{\beta}_{n}^{g}=\hat{\beta}_{n}^{g}\left(\hat{\theta}_{n}^{g}, \hat{s}^{g}, \Sigma\right)$. Without loss of generality, we fix $s_{0}=1$ and write $\beta_{0}=\beta_{0}\left(\theta_{0}, \Sigma\right)$ and $\beta=\beta(\theta, \Sigma)$. With consistent \hat{s}^{g}, we can write $\hat{\beta}_{n}^{g}\left(\hat{\theta}_{n}^{g}, \Sigma\right)=\left(\hat{\beta}_{1}^{g}, \hat{\theta}_{n}^{g \mathrm{~T}}\right)^{\mathrm{T}}$. Some conditions are assumed to prove the asymptotic distribution of $\hat{\theta}_{n}^{g}$.
(G1) (i) There exists a $\beta \in \mathcal{E}(\Sigma)$ such that $E\left\|g\left\{\left(X_{1}-X_{2}\right)^{\mathrm{T}} \beta\right\}\right\|_{2}<\infty$, and the function $g(t)$ is non-constant increasing in t on the support of $\left(X_{1}-X_{2}\right)^{\mathrm{T}} \beta$. (ii) For any $\beta \in \mathcal{E}(\Sigma)$ and any $t \in \mathbb{R}$, the class of sets $\left\{\left(x_{1}, x_{2}, t\right) \in \mathbb{R}^{2 p+1}: g\left\{\left(x_{1}-x_{2}\right)^{\mathrm{T}} \beta\right\}>t, x_{1}, x_{2} \in \mathbb{R}^{p}\right\}$ is a VC class.
(G2) Let $a(t, c) \equiv E\left\{I\left(Y_{i}<Y_{j}\right) \mid X_{j}-X_{i}=t, t^{\mathrm{T}} \Sigma^{-1} t=c\right\}$. For each $c>0$ and any t_{1}, t_{2} satisfying $t_{i}^{\mathrm{T}} \Sigma^{-1} t_{i}=c, i=1,2$, assume that $a\left(t_{1}, c\right) \geq a\left(t_{2}, c\right)$ if and only if $t_{1}^{\mathrm{T}} \beta_{0} \geq t_{2}^{\mathrm{T}} \beta_{0}$. Moreover, there exist some t_{1}, t_{2} such that $t_{1}^{\mathrm{T}} \beta_{0} \geq t_{2}^{\mathrm{T}} \beta_{0}$ and $a\left(t_{1}, c\right)>a\left(t_{2}, c\right)$ for each $c>0$.
(G3) For each $z \in S$ and each $\theta \in \Theta$, define $\tau_{g}(z, \theta)=E\left[I(y<Y) g\left\{(X-x)^{\mathrm{T}} \beta(\theta, \Sigma)\right\}+\right.$ $\left.I(Y<y) g\left\{(x-X)^{\mathrm{T}} \beta(\theta, \Sigma)\right\}\right]$. Let ∇_{m} denote the m-th partial derivative operator with respect to θ.
(i) For each $z \in S$, the function $\tau_{g}(z, \cdot)$ is twice differentiable in a neighborhood of θ_{0}, and $\left\|\nabla_{2} \tau_{g}(z, \theta)-\nabla_{2} \tau_{g}\left(z, \theta_{0}\right)\right\| \leqslant M_{g}(z)\|\theta\|_{2}$, where $M_{g}(z)$ is an integrable function of z.
(ii) $E\left\|\nabla_{1} \tau_{g}\left(Z, \theta_{0}\right)\right\|_{2}^{2}<\infty$ and $E\left\|\nabla_{2} \tau_{g}\left(Z, \theta_{0}\right)\right\|_{2}<\infty$.
(iii) The matrix $E \nabla_{2} \tau_{g}\left(Z, \theta_{0}\right)$ is non-singular.

Condition (G1) part (i) is a moment condition for $g(\cdot)$, and part (ii) is a technical condition to prove the uniform convergence. Condition (G3) is a regular condition to ensure a Taylor expansion of the conditional expectation of the objective function.

Theorem 5. (Consistency) Assume model (3) is true, and Conditions (M), (C2), (G1) part (i) and (G2) hold. If X is elliptically distributed and (i) Σ is known or (ii) Σ is unknown and $\hat{\Sigma}$ is consistent for Σ, then, $\hat{\beta}_{n}^{g}$ is consistent for β_{0}.

Remark 7. Theorem 5 presents the global consistency of $\hat{\beta}_{n}^{g}$ under the elliptical distributed assumption and other suitable conditions. In fact, under Conditions (C1), (C2), (G1) part (i), together with g is concave, we can prove the local consistency of $\hat{\beta}_{n}^{g}$.

THEOREM 6. (Asymptotic Normality) Assume that model (3) is true, and Con- ditions (M), (C2)-(C3), (G1)-(G3) hold and X is elliptically distributed. Define $\operatorname{Diff}(\theta, \Sigma)=g\left\{\left(X_{j}-X_{i}\right)^{\mathrm{T}} \beta(\theta, \Sigma)\right\}-g\left\{\left(X_{j}-X_{i}\right)^{\mathrm{T}} \beta\left(\theta_{0}, \Sigma\right)\right\}$. If uniformly over or (1) neighborhoods of $\theta_{0}, \quad\|\operatorname{Diff}(\theta, \hat{\Sigma})-\operatorname{Diff}(\theta, \Sigma)\|_{2}=o_{p}\left(n^{-1 / 2}\left\|\theta-\theta_{0}\right\|_{2}\right)$, then $n^{1 / 2}\left(\hat{\theta}_{n}^{g}-\right.$ $\left.\theta_{0}\right) \rightarrow N\left(0,\left(V^{g}\right)^{-1} \Delta^{g}\left(V^{g}\right)^{-1}\right)$ in distribution, where $\Delta^{g}=E\left[\nabla_{1} \tau_{g}\left(\cdot, \theta_{0}\right)\left\{\nabla_{1} \tau_{g}\left(\cdot, \theta_{0}\right)\right\}^{\mathrm{T}}\right]$ and $V^{g}=(1 / 2) E\left\{\nabla_{2} \tau_{g}\left(\cdot, \theta_{0}\right)\right\}$.

Two numerical algorithms are given in Section 1 of the supplementary material to compute $\hat{\beta}_{n}^{g}$, depending on the differentiability of g.

3. Extension to Censored Data

For model (3) under random censoring, the observations are $\left(v_{i}, X_{i}, d_{i}\right), i=1, \ldots, n$, independent and identically distributed copies of (v, X, d), where $v=\min (Y, C), C$ is the censoring variable and $d=I(Y<C)$ is the censoring indicator. We focus on the case that Σ is unknown. Motivated by the partial rank estimator of Khan \& Tamer (2007), our proposed linearized partial rank estimator of β_{0} is defined as

$$
\begin{equation*}
\hat{\beta}_{n}^{c}=\underset{\beta \in \mathcal{E}(\hat{\Sigma})}{\arg \max } L_{n}^{c}(\beta), \text { where } L_{n}^{c}(\beta)=\frac{1}{n(n-1)} \sum_{i \neq j}^{n} d_{i} I\left(v_{i}<v_{j}\right)\left(X_{j}-X_{i}\right)^{\mathrm{T}} \beta \tag{9}
\end{equation*}
$$

and $\mathcal{E}(\hat{\Sigma})$ is given in Section 2.1. Similar to the complete data case, a closed-form solution to (9) is $\hat{\beta}_{n}^{c}=\left(U_{n}^{c \mathrm{~T}} \hat{\Sigma}^{-1} U_{n}^{c}\right)^{-1 / 2} \hat{\Sigma}^{-1} U_{n}^{c}$, where $U_{n}^{c}=\sum_{i \neq j}^{n} d_{i} I\left(v_{i}<v_{j}\right)\left(X_{j}-X_{i}\right) /\{n(n-1)\}$ is the gradient of $L_{n}^{c}(\beta)$ w.r.t β. Additional assumptions are needed.
(A1) The error ϵ is independent of (C, X), and C is independent of X.
(A2) Let S_{X} denote the support of X, and $\mathcal{X}_{u c}=\left\{x \in S_{X}: \operatorname{pr}(d=1 \mid X=x)>0\right\}$, then $\operatorname{pr}\left(X \in \mathcal{X}_{u c}\right)>0$.
(A3) The set $\mathcal{X}_{u c}$ is not contained in any proper linear subspace of \mathbb{R}^{p}.
Condition (A2) requires that the probability of censoring is not 1 for all $x \in S_{X}$. Condition (A3) is slightly stronger than a full rank assumption and it is often needed in the censored case. The independence of C and X in Condition (A1) is imposed for technical convenience.

THEOREM 7. (Consistency) Assume that model (3) is true, and Conditions (M), (C1)-(C2), (A1)-(A3) hold and $\hat{\Sigma}$ is consistent for Σ, then $\hat{\beta}_{n}^{c}$ is consistent for β_{0}.

For the general transformation model in Khan \& Tamer (2007), a special case of model (3), the consistency still holds when condition (A1) is weakened to allow for more general forms of censoring. Similar to section 2.2, we next study the limiting distribution of $\hat{\theta}_{n}^{c}=A \hat{\beta}_{n}^{c}$, a $(p-1)$ subvector of $\hat{\beta}_{n}^{c}$, where $A=\left(0, I_{p-1}\right)$ is a $(p-1) \times p$ matrix with its first column being zeros and I_{p-1} is an identity matrix of order $p-1$. Let $Z_{i}=\left(d_{i}, v_{i}, X_{i}\right)$ and $U^{c}=E\left(U_{n}^{c}\right)$. For each
$z=(d, v, x)$, define $\xi_{c}(z)=E\left\{d_{i} I\left(v_{i}<v\right)\left(x-X_{i}\right)+d I\left(v<v_{i}\right)\left(X_{i}-x\right)^{\mathrm{T}}-2 U^{c}\right\}$. Denote $V^{c}=\left(\Sigma^{-1}-\beta_{0} \beta_{0}^{\mathrm{T}}\right)\left(U^{c \mathrm{~T}} \Sigma^{-1} U^{c}\right)^{-1 / 2}$ and $\Delta^{c}=E\left\{\xi_{c}(Z) \xi_{c}(Z)^{\mathrm{T}}\right\}$.

Theorem 8. Assume that model (3) is true, and Conditions (M), (C1)-(C2) and (A1)-(A3) hold.
(i) If $\|\hat{\Sigma}-\Sigma\|_{2}=o_{p}\left(n^{-1 / 2}\right)$, then $n^{1 / 2}\left(\hat{\theta}_{n}^{c}-\theta_{0}\right) \rightarrow N\left(0, A V^{c} \Delta^{c}\left(V^{c}\right)^{\mathrm{T}} A^{\mathrm{T}}\right)$ in distribution as ${ }_{32}$ $n \rightarrow \infty$.
(ii) If $\hat{\Sigma}=\hat{\Sigma}_{S}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{\mathrm{T}} /(n-1) \quad$ and $\quad E\|X\|_{2}^{4}<+\infty$, then $n^{1 / 2}\left(\hat{\theta}_{n}^{c}-\theta_{0}\right) \rightarrow N\left(0, A B^{c} A^{\mathrm{T}}\right)$ in distribution as $n \rightarrow \infty$, where $B^{c}=E\left\{V^{c} \xi_{c}(Z)+\right.$ $H \psi(Z)\}\left\{V^{c} \xi_{c}(Z)+H \psi(Z)\right\}^{\mathrm{T}}, \quad \psi(Z)=\left\{(X-\mu)(X-\mu)^{\mathrm{T}}-\Sigma\right\} \beta_{0}$ and $H=\left(\beta_{0} \beta_{0}^{\mathrm{T}} / 2-\right.$ $\left.\Sigma^{-1}\right)$.

For a general estimator $\hat{\Sigma}$ satisfying $\|\hat{\Sigma}-\Sigma\|_{2}=O_{p}\left(n^{-1 / 2}\right)$, we can similarly show that $n^{1 / 2}\left(\hat{\theta}_{n}^{c}-\theta_{0}\right)=O_{p}(1)$. Although linearized partial rank estimator in (9) is designed for right censoring, it can be easily modified to accommodate left-censored data or doubly-censored data.

4. Extension to High Dimensions

In this section, we extend our methods to handle variable selection and parameter estimation for model (3) with high-dimensional predictors. For simplicity, we write X_{i} as the i-th observation of X, the p_{n}-vector of predictors. Let $\mathcal{A}=\left\{j: \beta_{0 j} \neq 0\right\}$ be the true active set, $\mathcal{A}^{c}=\left\{j: \beta_{0 j}=0\right\}, s_{n}$ be the cardinality of $\mathcal{A}_{T}, \beta_{\mathcal{A}}$ be the subvector of β indexed by \mathcal{A} and let $d_{n}=\inf _{j \in \mathcal{A}}\left|\beta_{0 j}\right|$. Both p_{n} and s_{n} may vary with n. We consider the following objective function with lasso penalty:

$$
\begin{equation*}
P L_{n}(\beta) \equiv \frac{1}{n(n-1)} \sum_{i \neq j}^{n} I\left(Y_{i}<Y_{j}\right)\left(X_{i}-X_{j}\right)^{\mathrm{T}} \beta+\lambda_{n}\|\beta\|_{1} \tag{10}
\end{equation*}
$$

where λ_{n} is the regularization parameter. With a slight abuse of notation, we define the penalized linearized maximum rank correlation estimator as $\hat{\beta}_{n} \equiv \arg \min _{\beta \in \mathcal{E}(\Sigma)} P L_{n}(\beta)$.

Theorem 9. (Oracle inequality) Assume that model (3) is true, Conditions (C1)-(C2) and Assumptions $\left(M^{*}\right)$, (D1)-(D2) given in the supplementary material hold and Σ is known. Let a_{n} be a sequence of positive numbers diverging to ∞ at an arbitrarily slow rate. If $\lambda_{n}=$ $\left\{a_{n} \log (n) \log \left(p_{n}\right) / n\right\}^{1 / 2}$ and $a_{n} s_{n}^{2} \log (n) \log \left(p_{n}\right) / n \rightarrow 0$ as $n \rightarrow \infty$, then with probability at least $1-4 \exp \left(-a_{n}\right)-\left(2+c_{1}\right) / p_{n}$,

$$
\left\|\hat{\beta}_{n}-\beta_{0}\right\|_{2} \leq c_{2} a_{n}^{1 / 2}\left\{\frac{s_{n} \log (n) \log \left(p_{n}\right)}{n}\right\}^{1 / 2},\left\|\hat{\beta}_{n}-\beta_{0}\right\|_{1} \leq c_{2} a_{n}^{1 / 2}\left\{\frac{s_{n}^{2} \log (n) \log \left(p_{n}\right)}{n}\right\}^{1 / 2}
$$

where $c_{1}, c_{2}>0$ are some universal constants, $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ denote the ℓ_{1} and the ℓ_{2} norm of ${ }_{350}$ a vector respectively.

Theorem 9 implies that $a_{n} s_{n}^{2} \log (n) \log \left(p_{n}\right)=o(n)$, i.e., our method can handle highdimensional case when Σ is known. Nevertheless, it is nontrivial to prove the oracle inequality when Σ is unknown. We leave space here for future research. A proximal (stochastic) gradient decent algorithm is given to solve the penalized linearized maximum rank correlation estimation in Algorithm S3 in Section 1 of the supplementary material.

5. NuMERICAL STUDIES

5.1. Complete data

The covariate X are generated from a multivariate normal distribution with mean 0 and covariance matrix $\Sigma=\left(\rho_{i j}\right)$ with $\rho_{i j}=\rho_{0}^{|i-j|}, \rho_{0}=0.3$ or 0.8 . Set $p=5$ and $\beta_{0}=$ $(1,1,0,0,-1)^{\mathrm{T}}, p=15$ and $\beta_{0}=(1,1,0,0,-1,1,1,0,0,-1,1,1,0,0,-1)^{\mathrm{T}}$, or $p=30$ and $\beta_{0}=(1,1,0,0,-1,1,1,0,0,-1,1,1,0,0,-1,1,1,0,0,-1,1,1,0,0,-1,1,1,0,0,-1)^{\mathrm{T}}$. Set $n=100,200$ or 300 . Four models are considered: M1: $Y=X^{\mathrm{T}} \beta_{0}+\epsilon ; \mathrm{M} 2: Y=\exp \left\{X^{\mathrm{T}} \beta_{0}+\right.$ $\left.\sin \left(X^{\mathrm{T}} \beta_{0}\right)-\epsilon\right\}-\epsilon ; \mathbf{M} 3: \quad Y=\exp \left(X^{\mathrm{T}} \beta_{0}\right)+0.5 X^{\mathrm{T}} \beta_{0} \times|\epsilon|+2 \cos (\epsilon) ; \mathbf{M} 4: \quad Y=I[\{1+$ $\left.\left.\exp \left(-X^{\mathrm{T}} \beta_{0}-\epsilon\right)\right\}^{-1}>0.5\right]$. In M2 and M3, the model assumptions of maximum rank correlation estimation and monotone rank estimation are not satisfied, as the link function is not increasing in ϵ; and Y is binary in M4. Two error distributions are tried: Chi-square distribution with 1 degree of freedom (denoted by $\chi^{2}(1)$) and Poisson distribution with parameter 1 (denoted by Pois(1)). For each setting, $a=\beta_{0}^{\mathrm{T}} \Sigma \beta_{0}$ can be computed. We compute the proposed linearized maximum rank correlation estimator (LMRC), the MRC estimator, the monotone rank estimator (MRE) by Cavanagh \& Sherman (1998) with $M(\cdot)=R_{n}(\cdot)$, and the least squares estimator (LSE) in Neykov et al. (2016b) and the sliced inverse regression by Li (1991) for comparison. For all methods, we scale the resulting estimators to satisfy $\beta^{\mathrm{T}} \Sigma \beta=a$ in each setting. With a known Σ, we refer our method as LMRC*; otherwise, we refer it as LMRC when Σ is unknown and the sample covariance matrix $\hat{\Sigma}_{S}$ is used to estimate Σ.

The results in the tables are based on 500 replications. We report the averaged absolute bias (BIAS), the averaged standard error (SE), the averaged empirical coverage probability (CP) of 95% confidence intervals, and the mean ℓ_{1} and ℓ_{2} distances. To be precise, let $\left\{\hat{\beta}^{(r)}\right\}_{r=1}^{500}$ denote the estimates. The averaged absolute bias is the averaged absolute value of $\left\{\left(\sum_{r=1}^{R} \hat{\beta}^{(r)} / R\right)-\beta_{0}\right\}$ over its components; the standard error is the averaged standard error of $\left\{\hat{\beta}^{(r)}\right\}_{r=1}^{500}$ over components; the coverage probability of 95% confidence intervals is the averaged empirical coverage probability over components; the mean ℓ_{1} distance is the mean of $\left\{\left\|\hat{\beta}^{(r)}-\beta_{0}\right\|_{1}\right\}_{r=1}^{500}$ and the mean ℓ_{2} distance is the mean of $\left\{\left\|\hat{\beta}^{(r)}-\beta_{0}\right\|_{2}\right\}_{r=1}^{500}$. The estimated standard errors are computed by the bootstrap method with resampling size 200 for maximum rank correlation estimator in Han (1987) and monotone rank estimator in Cavanagh \& Sherman (1998).

Table 1: Summary statistics with dimension $p=5$ and correlation $\rho_{0}=0.3$.

Model	Error	Method	$n=100$					$n=200$				
			BIAS	SE	CP	ℓ_{1}	ℓ_{2}	BIAS	SE	CP	ℓ_{1}	ℓ_{2}
M1	$\chi^{2}(1)$	LMRC*	0.021	0.227	0.939	0.910	0.264	0.012	0.159	0.953	0.638	0.128
		LMRC	0.007	0.140	0.952	0.547	0.098	0.005	0.099	0.950	0.389	0.049
		SIR	0.018	0.199	-	0.775	0.201	0.007	0.139	-	0.566	0.105
		LSE	0.014	0.181	-	0.718	0.167	0.008	0.126		0.497	0.081
		MRC	0.083	0.312	0.806	1.132	0.555	0.060	0.267	0.758	0.899	0.416
		MRE	0.081	0.324	0.891	1.197	0.588	0.067	0.283	0.884	0.979	0.458
	Pois(1)	LMRC*	0.018	0.209	0.944	0.842	0.221	0.011	0.154	0.947	0.620	0.120
		LMRC	0.008	0.128	0.940	0.513	0.082	0.004	0.086	0.939	0.340	0.037
		SIR	0.013	0.156	-	0.625	0.124	0.009	0.110	-	0.440	0.062
		LSE	0.010	0.142	-	0.568	0.102	0.006	0.101	-	0.401	0.051
		MRC	0.081	0.313	0.808	1.123	0.554	0.061	0.261	0.783	0.851	0.402
		MRE	0.078	0.302	0.895	1.105	0.513	0.059	0.263	0.892	0.887	0.395
M2	$\chi^{2}(1)$	LMRC*	0.021	0.228	0.955	0.895	0.264	0.014	0.170	0.953	0.682	0.147
		LMRC	0.004	0.143	0.942	0.562	0.103	0.003	0.098	0.950	0.386	0.048
		SIR	0.012	0.173	-	0.679	0.151	0.005	0.115	-	0.451	0.067
		LSE	0.239	0.704	-	2.969	2.887	0.245	0.715	-	3.002	2.984
		MRC	0.091	0.334	0.807	1.236	0.625	0.054	0.263	0.800	0.879	0.399
		MRE	0.089	0.332	0.886	1.243	0.626	0.055	0.264	0.890	0.917	0.398
	Pois(1)	LMRC*	0.024	0.215	0.958	0.859	0.236	0.011	0.161	0.947	0.643	0.131
		LMRC	0.006	0.125	0.954	0.498	0.078	0.007	0.088	0.941	0.352	0.039
		SIR	0.007	0.122	-	0.483	0.075	0.006	0.086	-	0.344	0.037
		LSE	0.081	0.431	-	1.718	0.976	0.055	0.346	-	1.352	0.618
		MRC	0.086	0.324	0.810	1.164	0.599	0.059	0.260	0.787	0.852	0.398
		MRE	0.075	0.308	0.894	1.118	0.526	0.061	0.265	0.892	0.889	0.397

Averaged absolute bias (BIAS), averaged standard errors (SE) and averaged coverage probability (CP) of 95\% confidence interval over components of the index parameter. Mean ℓ_{1} and ℓ_{2} distances between the estimate and the true parameter; LMRC*, the Linearized maximum rank estimator with a known σ; LMRC, the Linearized maximum rank estimator when σ is unknown and the sample covariance matrix $\hat{\Sigma}_{S}$ is used to estimate Σ; SIR, sliced inverse regression by Li (1991); LSE, the MRC estimator the least squares estimator of Neykov et al. (2016b); MRC, the maximum correlation estimator; MRE, the monotone rank estimator by Cavanagh \& Sherman (1998).

Tables 1-2 show that our proposed estimators LMRC* and LMRC are generally unbiased for all cases and robust to outliers under M1-M2. And LMRC* and LMRC are more efficient than MRE and MRC for all configurations. Table 2 contains the results for $p=30$ and $\rho_{0}=0.8$ (high dependence among predictors), indicating that LMRC* and LMRC perform reasonably well. The simulation results under M3-M4 with $p=5$ or $p=30$, and those with $p=15$ are given in Table S1-S3 in Section 3 of the supplementary material.

A sensitivity analysis is conducted to check the robustness of the proposed method when the linearity in expectation assumption of X is violated. Set $p=5, \beta_{0}=(1,1,0,0,-1)^{\mathrm{T}}$ and $\epsilon \sim N\left(0,0.5^{2}\right)$. For models M1-M4, three distributions of X are tried: (i) multivariate Student's t distribution with 2 degrees of freedom and correlation matrix $\Sigma^{\text {corr }}=\left(\rho_{i j}^{\text {corr }}\right)$, where $\rho_{i j}^{\text {corr }}=$ $0.3^{|i-j|}$, denoted by $t(2)$; (ii) each component of X are independent Unif[-2, 10], denoted by
$U[-2,10]$; (iii) a hybrid of Uniform and Bernoulli distributions with the first 4 components of X being i.i.d from $U[-2,10]$ and the last element follows Bernoulli distribution with parameter 0.5. The results are summarized in Table 3. It can be observed that the proposed estimator is fairly robust to the linearity of expectation assumption. We also conduct additional simulations with three models in which the monotonicity condition of f is not satisfied. The results can be found in Table S4 in Section 3 of the supplementary material, which contain supportive evidence that our estimators are still consistent for β_{0} up to a sign when the monotonic assumption of f is violated.

Table 2: Summary statistics with dimension $p=30$ and $\rho=0.8$.

Model	Error	Method	$n=200$					$n=300$				
			BIAS	SE	CP	ℓ_{1}	ℓ_{2}	BIAS	SE	CP	ℓ_{1}	ℓ_{2}
M1	$\chi^{2}(1)$	LMRC*	0.054	0.457	0.940	11.029	2.498	0.039	0.376	0.942	9.053	2.047
		LMRC	0.013	0.258	0.956	6.190	2.008	0.010	0.202	0.958	4.831	1.230
		SIR	0.019	0.375	-	8.857	4.217	0.026	0.296		7.112	2.651
		LSE	0.021	0.269	-	6.335	2.187	0.018	0.228		5.446	1.575
		MRC	0.303	0.605	0.445	18.127	16.304	0.244	0.565	0.461	16.331	12.972
		MRE	0.283	0.588	0.600	17.342	14.935	0.263	0.572	0.603	16.713	13.719
	Pois(1)	LMRC*	0.058	0.442	0.942	10.657	2.420	0.040	0.365	0.945	8.806	1.994
		LMRC	0.014	0.223	0.956	5.309	1.496	0.007	0.176	0.951	4.211	0.937
		SIR	0.020	0.286	-	6.754	2.467	0.018	0.205	-	4.917	1.280
		LSE	0.018	0.218		5.239	1.437	0.012	0.176		4.197	0.939
		MRC	0.286	0.595	0.451	17.520	15.155	0.235	0.551	0.481	15.675	12.361
		MRE	0.280	0.589	0.610	17.142	14.446	0.229	0.554	0.612	15.746	12.385
M2	$\chi^{2}(1)$	LMRC*	0.058	0.454	0.945	10.963	2.492	0.047	0.379	0.943	9.140	2.069
		LMRC	0.014	0.260	0.958	6.154	2.032	0.011	0.207	0.954	4.937	1.289
		SIR	0.033	0.385	-	9.099	4.505	0.019	0.283	-	6.714	2.422
		LSE	0.417	2.204	-	54.038	151.650	0.372	2.148	-	52.412	143.839
		MRC	0.290	0.602	0.451	17.765	15.566	0.244	0.554	0.479	15.785	12.601
		MRE	0.296	0.600	0.595	17.675	15.600	0.231	0.556	0.620	15.823	12.265
	Pois(1)	LMRC*	0.056	0.445	0.939	10.736	2.4319	0.039	0.372	0.944	8.937	2.032
		LMRC	0.011	0.221	0.953	5.259	1.471	0.007	0.176	0.951	4.211	0.937
		SIR	0.016	0.287	-	6.837	2.474	0.018	0.216	-	5.128	1.405
		LSE	0.361	2.162	-	53.064	145.540	0.383	2.065	-	50.118	133.249
		MRC	0.279	0.586	0.457	17.272	14.600	0.246	0.559	0.465	16.016	12.748
		MRE	0.280	0.583	0.595	16.882	14.195	0.242	0.548	0.619	15.661	12.250

5.2. Censored data

We generate X in the same way as in Section 5.1 and the error ϵ follows normal distribution with mean 0 and standard deviation 0.5 . We generate Y from M2 and M4. Set $p=5$ and $\beta_{0}=(1,1,0,0,-1)^{\mathrm{T}}$. Three censoring mechanisms are considered: CV1: $C \sim 2 \chi^{2}(2)$; CV2: $C=5 \times\left(X^{\mathrm{T}} \beta_{0}\right)^{2}-3 \times \sin \left(\left|X^{\mathrm{T}} \beta_{0}\right|\right) ; \mathrm{CV} 3: C=10 \times\left(X_{1}^{2} \times X_{2}+X_{3}\right)$, where X_{j} is the j-th component of X. In (CV1), C is independent of $X ; C$ is correlated with $X^{\mathrm{T}} \beta_{0}$ in (CV2) and intricately depends on X in (CV3). For comparison, we also compute the partial rank estimator (PRE) by Khan \& Tamer (2007). Model M4 violates the transformation model assumption of

PRE. Other than the BIAS, SE, CP, ℓ_{1} and ℓ_{2}, we report the censoring rate (CR) in Table 4. One can see that LMRC* and LMRC give smaller ℓ_{1} and ℓ_{2} distances compared with the PRE in all scenarios, especially under M4. Our methods are generally more efficient in terms of smaller standard errors and robust to different censoring mechanisms.

Table 3: Summary statistics for differently distributed covariates when dimension $p=5$ and correlation $\rho_{0}=0.3$.

Model	Covariate	Method	$n=100$					$n=200$				
			BIAS	SE	CP	ℓ_{1}	ℓ_{2}	BIAS	SE	CP	ℓ_{1}	ℓ_{2}
M1	$t(2)$	LMRC	0.063	0.328	0.885	1.329	0.702	0.045	0.275	0.903	1.089	0.574
		LMRC*	0.070	0.348	0.911	1.361	0.724	0.054	0.315	0.874	1.198	0.633
	$U[-2,10]$	LMRC	0.005	0.059	0.950	0.234	0.019	0.001	0.040	0.953	0.159	0.009
		LMRC*	0.021	0.186	0.959	0.745	0.399	0.006	0.089	0.928	0.355	0.190
	Hybrid	LMRC	0.015	0.076	0.972	0.309	0.050	0.011	0.053	0.957	0.215	0.025
		LMRC*	0.041	0.274	0.946	1.118	0.824	0.030	0.199	0.899	0.791	0.594
M2	$t(2)$	LMRC	0.066	0.345	0.886	1.382	0.740	0.034	0.209	0.818	0.824	0.476
		LMRC*	0.065	0.337	0.916	1.320	0.702	0.025	0.135	0.925	0.534	0.303
	$U[-2,10]$	LMRC	0.006	0.066	0.972	0.262	0.022	0.003	0.048	0.947	0.191	0.012
		LMRC*	0.016	0.143	0.943	0.571	0.302	0.006	0.008	0.956	0.384	0.203
	Hybrid	LMRC	0.011	0.082	0.974	0.337	0.055	0.016	0.063	0.944	0.266	0.040
		LMRC*	0.027	0.258	0.963	0.788	0.467	0.013	0.130	0.934	0.517	0.288
M3	$t(2)$	LMRC	0.069	0.350	0.874	1.399	0.739	0.049	0.281	0.893	1.099	0.581
		LMRC*	0.072	0.327	0.920	1.257	0.670	0.059	0.309	0.880	1.192	0.631
	$U[-2,10]$	LMRC	0.004	0.060	0.957	0.237	0.019	0.001	0.041	0.961	0.164	0.009
		LMRC*	0.013	0.146	0.948	0.582	0.313	0.009	0.104	0.951	0.423	0.225
	Hybrid	LMRC	0.011	0.070	0.975	0.273	0.042	0.011	0.048	0.968	0.204	0.022
		LMRC*	0.022	0.170	0.940	0.670	0.379	0.014	0.124	0.949	0.490	0.274
M4	$t(2)$	LMRC	0.064	0.332	0.904	1.336	0.708	0.039	0.254	0.923	1.006	0.532
		LMRC*	0.070	0.348	0.901	1.368	0.724	0.069	0.337	0.834	1.313	0.696
	$U[-2,10]$	LMRC	0.012	0.148	0.948	0.599	0.110	0.008	0.108	0.941	0.434	0.058
		LMRC*	0.026	0.198	0.935	0.797	0.425	0.013	0.138	0.941	0.543	0.292
	Hybrid	LMRC	0.181	0.426	0.729	1.853	1.141	0.105	0.341	0.784	1.388	0.839
		LMRC*	0.163	0.420	0.848	1.779	1.074	0.103	0.344	0.911	1.395	0.835

5.3. Variable selection

The covariates X are generated from a multivariate normal distribution with mean 0 and $\Sigma=$ $\left(\rho_{i j}\right)$ with $\rho_{i j}=0.1^{|i-j|}$. We consider models M1-M4 with $n=100$ and $p=40$ or $p=80$. The first 5 components of β_{0} are 2 and the rest are 0 . Two error distributions are tried: Chi-square distribution with 1 degree of freedom (denoted by $\chi^{2}(1)$) and Poisson distribution with mean 1 (denoted by $\operatorname{Pois}(1)$). The sample covariance matrix X is computed with n samples. The tuning parameter λ_{n} is selected by the generalized information criterion (Nishii, 1984): $\operatorname{GIC}_{a_{n}}(\lambda)=$ $L_{n}\left\{\hat{\beta}_{n}(\lambda)\right\}-\left(a_{n} / n\right)\left\|\hat{\beta}_{n}(\lambda)\right\|_{0}$, where $\hat{\beta}_{n}(\lambda)$ is defined in Section $4,\|\beta\|_{0}$ is the number of nonzero components of β and a_{n} is a positive sequence depending on n. In practice, we let $a_{n}=\log (n)$, and select λ by maximizing the $\mathrm{GIC}_{a_{n}}$ over $[0,1]$ with 100 lattice points (Fan $\&$ Tang, 2013). For comparison, we also compute the sliced inverse regression with lasso (Lin et al.,
2018), denoted by Lasso sliced inverse regression. Based on 500 replications, the simulation results with $p=80$ are presented in Table 5, and more results with $p=40$ are provided in Table S5 in Section 3 of the supplementary material. We report the averaged false positive rate (FP), false negative rate (FN), the empirical probability of choosing the correct model (CM), absolute bias (BIAS), standard errors (SE), and the mean ℓ_{1}, ℓ_{2} distances between β_{0} and its estimates. It can be seen that our method performs better than Lasso sliced inverse regression in terms of smaller BIAS, SE and FP.

Table 4: Summary statistics for censored data with dimension $p=5$. We consider different censoring variable mechanisms and censoring rates (in parentheses)

Model Censoring (CR)		Method	$n=100$					$n=200$					
		Bias	SE	CP	ℓ_{1}	ℓ_{2}	Bias	SE	CP	ℓ_{1}	ℓ_{2}		
M2	CV1 (0.521)		LMRC*	0.032	0.218	0.937	0.881	0.463	0.016	0.151	0.943	0.603	0.321
		LMRC	0.009	0.144	0.942	0.572	0.104	0.006	0.103	0.934	0.408	0.054	
		PRE	0.161	0.469	0.898	1.826	0.990	0.105	0.385	0.895	1.310	0.722	
	CV2 (0.391)	LMRC*	0.026	0.212	0.938	0.851	0.450	0.014	0.154	0.947	0.615	0.326	
		LMRC	0.004	0.138	0.945	0.545	0.095	0.005	0.092	0.953	0.369	0.043	
		PRE	0.171	0.488	0.884	1.967	1.069	0.105	0.382	0.888	1.321	0.732	
	CV3 (0.196)	LMRC*	0.078	0.192	0.889	0.901	0.482	0.077	0.141	0.837	0.740	0.404	
		LMRC	0.092	0.129	0.837	0.711	0.171	0.095	0.089	0.854	0.603	0.124	
		PRE	0.129	0.430	0.896	1.589	0.867	0.083	0.358	0.876	1.186	0.666	
M4	CV1 (0.685)	LMRC*	0.041	0.256	0.938	1.049	0.552	0.023	0.186	0.937	0.743	0.394	
		LMRC	0.014	0.210	0.938	0.843	0.222	0.015	0.148	0.950	0.596	0.111	
		PRE	0.225	0.561	0.837	2.331	1.243	0.109	0.376	0.886	1.347	0.743	
	CV2 (0.441)	LMRC*	0.033	0.220	0.926	0.885	0.469	0.015	0.150	0.947	0.597	0.314	
		LMRC	0.005	0.140	0.947	0.547	0.097	0.004	0.095	0.958	0.371	0.045	
		PRE	0.208	0.544	0.836	2.159	1.163	0.109	0.387	0.868	1.291	0.714	
	CV3 (0.214)	LMRC*	0.087	0.187	0.871	0.911	0.492	0.088	0.138	0.895	0.787	0.432	
		LMRC	0.098	0.131	0.829	0.741	0.188	0.105	0.088	0.087	0.643	0.143	
		PRE	0.179	0.513	0.850	1.954	1.067	0.126	0.451	0.874	1.554	0.853	

CV , censoring variable; CR , censoring rate.

5.4. Analysis of Beijing PM 2.5 dataset

We apply our method to analyze a Beijing PM 2.5 dataset originally studied by Liang et al. (2015). The dataset consists of hourly PM 2.5 readings taken at the US Embassy in Beijing located at ($116.47 \mathrm{E}, 39.95 \mathrm{~N}$) and hourly meteorological measurements at Beijing Capital International Airport (BCIA) obtained from weather.nocrew.org. Both data series run from 1 January 2010 to 31 December 2014 with 43824 observations. There are 8 attributes in total, i.e, PM 2.5 concentration (PM, $\mu g / m^{3}$), Dew Point (DEWP, in Celsius Degree), Temperature (TEMP, in Celsius Degree), Pressure (PRES, in hPa), Combined wind direction (CBWD), Cumulated wind speed (CWP, m / s), Cumulated hours of snow (CS), Cumulated hours of rain (CR). The weather data have 16 wind directions. Based on the locations of major polluting industries around Beijing, the directions can be grouped into four broad categories: northwest (NW), northeast (NE),
south (S), and calm and variable (CV). CWP is the cumulated wind speed from the start of the wind direction to the time of interest. CS and CR can be similarly defined.

Table 5: Summary statistics with dimension $p=80$.

Dimension	Model	Error	Method				$=100$			
Dimension	Model	Error	Method	BIAS	SE	ℓ_{1}	ℓ_{2}	FP	FN	CM
$p=80$	M1	$\chi^{2}(1)$	Lasso LMRC	0.001	0.022	1.279	0.688	0.000	0.001	0.996
			Lasso SIR	0.009	0.131	4.634	1.152	0.262	0.001	0.997
		Pois(1)	Lasso LMRC	0.002	0.017	1.013	0.538	0.001	0.000	1.000
			Lasso SIR	0.008	0.124	4.306	1.059	0.267	0.000	1.000
	M2	$\chi^{2}(1)$	Lasso LMRC	0.001	0.023	1.202	0.635	0.002	0.002	0.992
			Lasso SIR	0.009	0.134	4.769	1.181	0.271	0.001	0.997
		Pois(1)	Lasso LMRC	0.001	0.017	1.041	0.562	0.000	0.000	1.000
			Lasso SIR	0.008	0.111	3.920	0.982	0.255	0.000	1.000
	M3	$\chi^{2}(1)$	Lasso LMRC	0.002	0.026	1.444	0.776	0.001	0.002	0.992
			Lasso SIR	0.022	0.227	8.343	2.069	0.273	0.005	0.983
		Pois(1)	Lasso LMRC	0.000	0.023	1.293	0.696	0.001	0.001	0.996
			Lasso SIR	0.019	0.203	7.253	1.831	0.260	0.003	0.987
	M4	$\chi^{2}(1)$	Lasso LMRC	0.001	0.014	0.881	0.471	0.000	0.000	1.000
			Lasso SIR	0.012	0.153	5.438	1.395	0.249	0.001	0.997
		Pois(1)	Lasso LMRC	0.001	0.016	0.955	0.499	0.000	0.001	0.996
			Lasso SIR	0.012	0.148	5.112	1.313	0.243	0.000	1.000

FP, averaged false positive rate; FN , averaged false negative rate; CM , the empirical probability of choosing the correct model.

Table 6: Correlation matrix of six covariates in Beijing PM 2.5 data.

	DEWP	TEMP	PRES	CWP	CS	CR
DEWP	1.000					
TEMP	0.824	1.000				
PRES	-0.778	-0.827	1.000			
CWP	-0.293	-0.150	0.179	1.000		
CS	-0.035	-0.095	0.071	0.023	1.000	
CR	0.125	0.050	-0.081	-0.009	-0.010	1.000

DEWP, dew point in degrees Celsius; TEMP, temperature in degrees Celsius; PRES, pressure in hPa; CWP, cumulated wind speed in m / s; CS, cumulated hours of snow; CR, cumulated hours of rain.

The response variable is PM 2.5. The sample covariance matrix of 6 continuously-distributed predictors is calculated and their sample correlation are given in Table 6. Under different wind directions (NW,NE,S and CV), we fit model (3) to this dataset with the proposed linearized MRC, and present the results in Table 7, suggesting that the main source of pollution in Beijing is the heating in winter and the dense heavy industries nearby. First, PM 2.5 significantly increases with a lower temperature, indicating that the main reason of pollution in Beijing is the use of coal for heating in winter. Second, there is more pollution under a southern wind, and the southern wind reduces the pollution less significantly than wind from other directions, as Beijing is hemmed in
by mountains to the west and north, and the south and the east of Beijing are dense with heavy industries. Third, the meteorological variables are mutually correlated. Thus, a decrease in the dew point and an increase in the pressure are usually accompanied by the arrival of the northerly wind, which brings in drier and fresher air, and reduces the pollution.

Table 7: The estimation results (estimated standard errors in parenthesis) of the Beijing PM 2.5
Data. The first row shows the mean (standard errors in parenthesis) PM 2.5 reading under different wind directions.

	NW	NE	S	CV
PM2.5	$70.128(89.064)$	$90.178(95.197)$	$110.822(80.050)$	$126.152(100.403)$
DEWP	$7.237(0.068)$	$9.336(0.131)$	$12.665(0.061)$	$12.564(0.098)$
TEMP	$-11.190(0.085)$	$-12.65(0.158)$	$-15.881(0.098)$	$-16.849(0.071)$
PRES	$-4.725(0.113)$	$-3.328(0.204)$	$-2.830(0.193)$	$-1.809(0.196)$
CWP	$-0.505(0.009)$	$-2.008(0.093)$	$-0.379(0.040)$	$-1.106(0.184)$
CS	$6.342(1.355)$	$-3.075(1.739)$	$-11.630(0.647)$	$-9.564(1.287)$
CR	$-9.942(0.351)$	$-11.456(0.561)$	$-18.523(0.870)$	$-20.568(1.158)$

NW, northwest; NE, northeast; S, south; CV, calm and variable.

Acknowledgement

The authors wish to thank the editor, the associate editor and two reviewers for their insightful comments and constructive suggestions that significantly helped improve the paper. The work of Chen was supported by the Hong Kong Research Grants Council. Lin was supported by the Hong Kong Research Grants Council and The Chinese University of Hong Kong.

SUPPLEMENTARY MATERIAL

The supplementary material contains three numerical algorithms, lemmas and technical proofs for the main theorems and additional simulation results.

REFERENCES

CAI, T. T., ZHANG, C.-H. \& ZHOU, H. H. (2010). Optimal rates of convergence for covariance matrix estimation. The Annals of Statistics 38, 2118-2144.
Cambanis, S., HuAng, S. \& Simons, G. (1981). On the theory of elliptically contoured distributions. Journal of Multivariate Analysis 11, 368-385
CAVANAGH, C. \& Sherman, R. P. (1998). Rank estimators for monotonic index models. Journal of Econometrics 84, 351-381.
Chen, C.-H., Li, K.-C. \& WANG, J.-L. (1999). Dimension reduction for censored regression data. The Annals of Statistics 27, 1-23.
Cook, R. D. \& WEisberg, S. (1991). Sliced inverse regression for dimension reduction: Comment. Journal of the American Statistical Association 86, 328-332.

Fan, Y., Han, F., Li, W. \& ZHOU, X.-H. (2020). On rank estimators in increasing dimensions. Journal of Econometrics 214, 379-412.

Fan, Y. \& Tang, C. Y. (2013). Tuning parameter selection in high dimensional penalized likelihood. Journal of the Royal Statistical Society: SERIES B: Statistical Methodology, 531-552.
Han, A. K. (1987). Non-parametric analysis of a generalized regression model: the maximum rank correlation estimator. Journal of Econometrics 35, 303-316.
Han, F., JI, H., JI, Z. \& WANG, H. (2017). A provable smoothing approach for high dimensional generalized regression with applications in genomics. Electronic Journal of Statistics 11, 4347-4403.
Henmi, M. \& Eguchi, S. (2004). A paradox concerning nuisance parameters and projected estimating functions. Biometrika 91, 929-941.
Henmi, M., Yoshida, R. \& Eguchi, S. (2007). Importance sampling via the estimated sampler. Biometrika 94, 985-991.
Horowitz, J. L. (2009). Semiparametric and nonparametric methods in econometrics, vol. 12. Springer.
Hristache, M., Juditsky, A., Polzehl, J. \& Spokoiny, V. (2001). Structure adaptive approach for dimension reduction. Annals of Statistics, 1537-1566.
Khan, S. \& TAMER, E. (2007). Partial rank estimation of duration models with general forms of censoring. Journal of Econometrics 136, 251-280.
Kong, E. \& XIA, Y. (2007). Variable selection for the single-index model. Biometrika 94, 217-229.
LI, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the American Statistical Association 86, 316-327.
Li, K.-C. \& Duan, N. (1989). Regression analysis under link violation. The Annals of Statistics , 1009-1052.
Liang, X., Zou, T., Guo, B., Li, S., Zhang, H., Zhang, S., Huang, H. \& Chen, S. X. (2015). Assessing beijing's pm 2.5 pollution: severity, weather impact, apec and winter heating. Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences 471, 20150257.
Lin, Q., Zhao, Z. \& Liu, J. S. (2018). On consistency and sparsity for sliced inverse regression in high dimensions. The Annals of Statistics 46, 580-610.
Muirhead, R. J. (2009). Aspects of multivariate statistical theory, vol. 197. John Wiley \& Sons.
Neykov, M., Lin, Q. \& Liu, J. S. (2016a). Signed support recovery for single index models in high-dimensions. Annals of Mathematical Sciences and Applications 1, 379-426.
Neykov, M., Liu, J. S. \& Cai, T. (2016b). L1-regularized least squares for support recovery of high dimensional single index models with gaussian designs. The Journal of Machine Learning Research 17, 2976-3012.
NishiI, R. (1984). Asymptotic properties of criteria for selection of variables in multiple regression. The Annals of Statistics , 758-765.
Song, X., MA, S., HuANG, J. \& Zhou, X.-H. (2007). A semiparametric approach for the nonparametric transformation survival model with multiple covariates. Biostatistics 8, 197-211.
Tarpey, T., Ogden, R. T., Petkova, E. \& Christensen, R. (2014). A paradoxical result in estimating regression coefficients. The American Statistician 68, 271-276.
Wang, J.-L., Xue, L., Zhu, L. \& Chong, Y. S. (2010). Estimation for a partial-linear single-index model. The Annals of statistics 38, 246-274.
XIA, Y. \& LI, W. K. (1999). On single-index coefficient regression models. Journal of the American Statistical Association 94, 1275-1285.

Xia, Y. \& Tong, H. (2006). On the efficiency of estimation for a single-index model. In Frontiers in statistics. World Scientific, pp. 63-85.
YUAN, M. (2010). High dimensional inverse covariance matrix estimation via linear programming. The Journal of Machine Learning Research 11, 2261-2286.

