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SUMMARY

We propose a linearized maximum rank correlation estimator for the single index model. Un-
like the existing maximum rank correlation and other rank-based methods, the proposed estima- 20

tor has a closed-form expression, making it appealing in theory and computation. The proposed
estimator is robust to outliers in the response and its construction does not need the knowledge
of the unknown link function or the error distribution. Under mild conditions, it is shown to
be consistent and asymptotically normal when the predictors satisfy the linearity of expectation
assumption. A more general class of estimators is also studied. Inference procedures based on 25

the plug-in rule or random weighting resampling are employed for variance estimation. The pro-
posed method can be easily modified to accommodate censored data. It can also be extended to
deal with high-dimensional data combined with a penalty function. Extensive simulation studies
provide strong evidence supporting that the proposed method works well in various practical
situations. Its application is illustrated with the Beijing PM 2.5 dataset. 30
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1. INTRODUCTION

The single index model with an unknown univariate link function is popular and widely-used
in econometrics and statistics. Let (Y,X) be a pair of response and p-vector of covariates. A
classical single index model assumes35

Y = g(XTβ0) + ϵ, (1)

where ϵ is a random error satisfying E(ϵ | X) = 0, β0 is an unknown p-dimensional index coef-
ficient vector, and g(·) : R → R is an unknown link function. There is an extensive literature on
statistical inference for model (1), focusing on the estimation of the index parameters β0 and the
link function g (Xia & Li, 1999; Hristache et al., 2001; Xia & Tong, 2006; Kong & Xia, 2007;
Horowitz, 2009; Wang et al., 2010). Han (1987) studied a semiparametric monotonic linear index40

model

Y = D ◦ F (XTβ0, ϵ), (2)

where the function D : R → R is non-constant increasing, the function F : R2 → R is strictly
increasing in each of its arguments, and Y,X, ϵ, β0 are the same as in model (1). Given a random
sample (Xi, Yi)(i = 1, . . . , n) of size n, Han (1987) proposed maximum rank correlation esti-
mation based on Kendall’s τ for estimating β0 by maximizing

∑
i ̸=j I(Yi < Yj)I(X

T
i β < XT

j β)45

over β, where I(·) is the indicator function. Maximum rank correlation estimator is a nonpara-
metric and distribution-free estimator. A similar class of monotone rank estimators was con-
sidered by Cavanagh & Sherman (1998) by maximizing

∑n
i=1M(Yi)Rn(X

T
i β) over β, where

M(·) is a known increasing function on real line and Rn(X
T
i β) is the rank of XT

i β among
XT

1 β,X
T
2 β, . . . ,X

T
nβ. Khan & Tamer (2007) extended maximum rank correlation to accommo-50

date censored data and introduced the partial rank estimator under a general form of censoring.
The objective functions of maximum rank correlation and the monotone rank estimation are nei-
ther continuous nor convex. Though the computation of maximum rank correlation can be carried
out by the Nelder-Mead simplex search algorithm, it could be numerically unstable or even fail
when the number of predictors is relatively large. To alleviate the numerical complications, a55

smoothed approximation of the partial rank estimator was studied by Song et al. (2007). Rank
estimators in high dimensions were studied by Han et al. (2017) and Fan et al. (2020).

In this paper, we consider a general single index model

Y = f(XTβ0, ϵ), (3)

where ϵ is a random error, β0 is an unknown p-dimensional index coefficient vector, and
f(·, ·) : R2 → R is an unknown function satisfying condition (M) in section 2.2. Many popu-60

lar models, such as the linear model, binary choice model, censored regression, duration model,
transformation model, model (1) and model (2) fit into this framework. Recently, Neykov et al.
(2016b) proved that when X is Gaussian or satisfies the linearity of expectation in the direction
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of β0, the least squares estimation is consistent for estimating β0 up to a multiplicative scalar
for model (3), without the monotonicity assumption in the first argument of f . This finding was 65

further applied to recover the support of β0 in high dimension.
For model (3), we propose a class of new estimators and single out a typical one, linearized

maximum rank correlation estimator, which possesses superior properties in both theory and
computation. Similar to maximum rank correlation and monotone rank estimation, our proposed
estimator directly exploits the monotonic relationship between Y and the linear index, thus it is 70

robust to outliers in Y . The objective function of linearized maximum rank correlation is smooth
and concave, making it computationally efficient, especially for large p. A more general class
of estimators is also studied. The proposed methods can be easily extended to handle censored
data and high-dimensional data. With or without censoring, the estimation of the unknown link
function is avoided. An efficient plug-in method and a random weighting resampling scheme are 75

used for variance estimation.

2. METHODOLOGIES AND MAIN RESULTS

2.1. Linearized maximum rank correlation and its closed-form solution

For model (3), we restrict cov(βT
0X) = βT

0Σβ0 = 1 for identifiability, where Σ is the co-
variance matrix of X . The observations (Yi, Xi), i = 1, . . . , n, are independent and identically 80

distributed copies of (Y,X). Our proposed estimator for β0 is defined as

β̂∗n = argmax
β∈E(Σ)

Ln(β) =
1

n(n− 1)

n∑
i ̸=j

I(Yi < Yj)(Xj −Xi)
Tβ

 , (4)

where E(Σ) = {β ∈ Rp : βTΣβ = 1} is a p-dimensional ellipsoid related to Σ, which coincides
with the identifiability condition. When (Xj −Xi)

Tβ in (4) is replaced by I{(Xj −Xi)
Tβ >

0}, it becomes maximum rank correlation estimator. The objective function in (4) is linear and
smooth in β. We refer to the proposed estimator in (4) as linearized maximum rank correlation. 85

An advantage of using (Xj −Xi)
Tβ in (4) instead of the indicator function is that β̂∗n has a

closed form expression derived below.
When Σ is known, we solve (4) using the method of Lagrange multipliers:

ν⋆ ≡ argmin
ν∈R

max
β∈E(Σ)

Ln(β) + ν(βTΣβ − 1),

where ν > 0 is the Lagrange multiplier. Then, any solution pair (ν⋆, β̂∗n) necessarily satisfies

∇Ln(β̂
∗
n) + 2ν⋆Σβ̂∗n = 0 and β̂∗Tn Σβ̂∗n − 1 = 0,

where ∇Ln(β) =
∑n

i ̸=j I(Yi < Yj)(Xj −Xi)/{n(n− 1)} is the gradient of Ln(β) w.r.t β. 90

Note that ∇Ln(β) is independent of β, thus for notational simplicity, we write the U-
statistic ∇Ln(β) as Un. Solving the above two equations yields that ν⋆ = −β̂∗Tn Un/2 and
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β̂∗n − Σ−1Un/(β̂
∗T
n Un) = 0. It then follows that

β̂∗n = +
Σ−1Un

(Un
TΣ−1Un)1/2

, (5)

where the positive sign is determined by the definition that β̂∗n is the maximizer of the optimiza-95

tion problem in (4). The denominator in (5) is a normalization scalar to ensure that β̂∗n satisfies
β̂∗Tn Σβ̂∗n = 1. Intuitively, ignoring the denominator and letting n→ ∞, the direction of β̂∗n con-
verges to that of E(Σ−1Un) = E{I(Yi < Yj)Σ

−1(Xj −Xi)} for i ̸= j, which can be shown to
have the same direction as β0 under the linearity of expectation assumption on X (Li & Duan,
1989).100

For illustration, we consider a simple example when X follows Gaussian distribution with
mean µ and identity covariance matrix Ip, which satisfies linearity of expectation in all directions.
Then for i ̸= j, E{I(Yi < Yj)I

−1
p (Xj −Xi)} is a weighted expectation of Xj −Xi, i.e.,

E{I(Yi < Yj)I
−1
p (Xj −Xi)} =E

[
E{I(Yi < Yj) | Xi, Xj}(Xj −Xi)

]
=E
{
W (XT

i β0, X
T
j β0)(Xj −Xi)

}
,105

where W (XT
i β0, X

T
j β0) ≡ pr{f(XT

i β0, ϵi) < f(XT
j β0, ϵj) | Xi, Xj} is non-negative with

mean 1/2, depending on Xi, Xj only through XT
i β0 and XT

j β0. Under the standard multivariate
normal assumption, for any vector b satisfying bTβ0 = 0, W (XT

i β0, X
T
j β0) and (Xj −Xi)

Tb

are independent, as

bTE
{
W (XT

i β0, X
T
j β0)(Xj −Xi)

}
= E

{
W (XT

i β0, X
T
j β0)

}
E{(Xj −Xi)

Tb} = 0.110

Next, it follows from the definition of W (XT
i β0, X

T
j β0) and f is increasing in its first argu-

ment that E
{
W (XT

i β0, X
T
j β0)(Xj −Xi)

Tβ0
}
> 0. Hence, E

{
W (XT

i β0, X
T
j β0)(Xj −Xi)

}
is nonzero and has the same direction as β0.

The multivariate normal distribution implies independence of XTβ0 and XTb for all b satis-
fying bTβ0 = 0, and thus ensures the consistency of β̂∗n. A weaker and sufficient condition to115

guarantee consistency is that X satisfies linearity of expectation in the direction of β0.

DEFINITION 1. (Linearity of Expectation) A p-dimensional random vectorX is said to satisfy
linearity of expectation in the direction β if for any direction b ∈ Rp,

E[XTb | XTβ] = cbX
Tβ + ab,

where ab, cb ∈ R are some real constants which may depend on the direction b (Li & Duan, 1989;
Li, 1991).

For a random vector X satisfying linearity of expectation with mean µ and covariance matrix
Σ, if βTΣβ ̸= 0, then cb = bTΣβ/βTΣβ and ab = bTµ− cbβ

T
0 µ. The proof is given in Lemma120

S2 in section 2 of the supplementary material. Elliptical distributions, including the multivariate
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normal distribution and t-distribution, satisfy the linearity of expectation uniformly in all direc-
tions. The construction and definition of elliptical distributions can be found in Cambanis et al.
(1981).

Remark 1. Like maximum rank correlation estimation in Han (1987), the objective function 125

in (4) depends on the responses only through their ranks, making it robust to outliers in Y .
When X satisfies the linearity of expectation, the proposed estimator is shown to be consistent,
more efficient and stable than maximum rank correlation estimator, especially for large p. But
maximum rank correlation estimator is robust to outliers in the covariates and does not need the
linearity of expectation for consistency. 130

Remark 2. For model (3) without the monotonicity assumption on f , the least squares esti-
mator by Neykov et al. (2016b) consistently estimates the direction of β0 (up to a sign) if the
constant E(Y XTβ0) ̸= 0. A main advantage of the proposed method over the least squares esti-
mator by Neykov et al. (2016b) is its robustness to outliers in the response variable.

Remark 3. Our linearized maximum rank correlation estimation shares similar assumption on 135

the distribution of X with the well-known sliced inverse regression (SIR) in Li (1991). Specifi-
cally, Li (1991) considered a general multiple-index model Y = f(XTβ1, . . . , X

TβK , ϵ), where
βk’s (k = 1, . . . ,K) are unknown parameter vectors, f : RK+1 → R is an unknown function,
and the error ϵ is independent of X . It reduces to model (3) when K = 1 and f is non-constant
increasing in its first argument. Linearized maximum rank correlation estimation and sliced in- 140

verse regression both focus on the estimation of the direction(s) of or the linear space spanned
by the unknown vector(s) βk’s, k = 1, . . . ,K, without the estimation of f . Different from the
sliced inverse regression, linearized maximum rank correlation estimation has a closed-form so-
lution and no tuning parameter is involved, making it easy to implement in practice and relatively
easy to analyze in theory. Both methods can be extended to handle censored data (Chen et al., 145

1999) and high-dimensional data with some penalty term (Neykov et al., 2016a; Lin et al., 2018).
Numerical comparisons are given in Section 5.

Remark 4. Similar to the sliced inverse regression (Li, 1991), our linearized maximum rank
correlation estimation can be inefficient and theoretically fails for symmetric single index mod-
els. For example, if Y = f(XTβ0) + ϵ for some symmetric function f , and XTβ0 is also sym- 150

metric about 0, E(X | Y ) = 0 and E{I(Y1 < Y2)(X2 −X1)
Tβ0} = 0, thus the resulting esti-

mator is a poor estimator of β0. Cook & Weisberg (1991) proposed a remedy to this problem
for sliced inverse regression by exploring higher conditional moments of X given Y , called
sliced average variance estimate. How to apply the idea of sliced average variance estimate to
our method for symmetric single index models is a very interesting research problem. We leave 155

space here for future research.
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When Σ is unknown, our proposed estimator is defined as

β̂n ≡ argmax
β∈E(Σ̂)

1

n(n− 1)

n∑
i ̸=j

I(Yi < Yj)(Xj −Xi)
Tβ, (6)

where Σ̂ is a consistent estimator of Σ. A closed-form solution of (6) can be obtained:

β̂n = (Un
TΣ̂−1Un)

−1/2Σ̂−1Un, (7)160

which is computationally straightforward and efficient.

2.2. Asymptotic properties

Let Z = (Y,XT)T be a random vector with distribution P on the set S ⊂ R⊗ Rp, and write
the observations as D = {Zi, i = 1, . . . , n}. Let ϵi, i = 1, . . . , n, be the error terms. Let ∥ · ∥1
and ∥ · ∥2 denote the ℓ1 and the ℓ2 norms of a vector in Euclidean space. Define the ℓ2-norm165

of a matrix A as ∥A∥2 = max∥x∥2=1 ∥Ax∥2, and ∥ · ∥ denotes the matrix norm: ∥(aij)∥ =

(
∑

i,j a
2
ij)

1/2. Define L(β) = E{Ln(β)} and U = E(Un).
Some basic properties of L(β) and Ln(β) are first introduced. First, L(β) and Ln(β) are un-

bounded in Rp, and achieve their maximum at β = ∞; namely, without any bounded constraint
on β, maximizing Ln(β) results in a trivial solution β̂n = ∞. Second, for any constant c ∈ R170

and n ≥ 1, Ln(cβ) = cLn(β), i.e., Ln(β) is proportional to the norm of those β with the same
direction in Rp. Thus, the maximum of Ln(β) will be achieved on the boundary of the constraint
region, suggesting that the optimization can be conducted on a manifold. Moreover, under model
(3), Y depends on X only through XTβ0. Hence, to search over all directions in Rp uniformly,
Ln(β) is maximized subject to the constraint cov(XTβ) = 1. Third, by letting α = Σ1/2β and175

X̃i = Σ−1/2Xi, i = 1, 2, . . . , n, problem (4) can be cast into

β̂∗n = Σ−1/2 argmax
α∈Rp

1

n(n− 1)

n∑
i ̸=j

I(Yi < Yj)(X̃j − X̃i)
Tα, subject to αTα = 1,

which may simplify the numerical computation as the feasible region of α is a unit hypersphere.
The following conditions are needed to establish the asymptotic properties.

(M) The unknown function f(·, ·) : R2 → R is non-constant increasing in its first argument180

on the support of (XTβ0, ϵ) and E{f(XTβ0, ϵ) | XTβ0} has non-zero variance. And X and ϵ
are independent.

(C1) The predictor vector X satisfies linearity of expectation in the direction of β0.
(C2) The covariance matrix Σ exists and is positive definite.

THEOREM 1. (Consistency, known Σ) Assume that model (3) is true, and Conditions (M),185

(C1)-(C2) hold. Then, β̂∗n defined in (4) is consistent for β0.
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Remark 5. Without the monotonicity assumption on f in Condition (M), our estimator β̂n can
still be consistent for β0 up to a sign if (Σ−1U)Tβ0 ̸= 0, whose proof is given in the proof of
Theorem 1 in section 2 of the supplementary material.

Since the parameter space E(Σ) = {β ∈ Rp : βTΣβ = 1} is a hyper ellipsoid, to study the 190

asymptotic distribution of β̂∗n, we focus on a subvector of β̂∗n. Without loss of generality, let
A = (0, Ip−1) be a (p− 1)× p matrix with the first column being zeros and Ip−1 be an identity
matrix of order p− 1. Let θ ≡ Aβ = (β2, . . . , βp)

T ∈ Rp−1, a (p− 1)-subvector of β excluding
its first component. Actually, A can be other matrices mapping β to any of its (p− 1)-subvector.
Due to the constraint βTΣβ = 1, θ ∈ Θ ≡ {Aβ : β ∈ E(Σ)}, which is a compact set, as it is the 195

projection of E(Σ) onto a (p− 1)-dimensional hyperplane perpendicular to β1 (the first compo-
nent of β). Similarly, we write θ0 = Aβ0 and θ̂∗n = Aβ̂∗n. To establish the asymptotic distribution
of θ̂∗n, an additional regularity condition is needed.

(C3) The true parameter θ0 is an interior point of Θ, a compact subset of Rp−1.

THEOREM 2. (Asymptotic Normality, known Σ) Assume that model (3) is true, and Conditions 200

(M), (C1)-(C3) hold. For each z = (y, xT)T ∈ S, define ξ(z) = E{I(y < Y )(X − x) + I(Y <

y)(x−X)− 2U}. Then, as n→ ∞, n1/2(θ̂∗n − θ0)→N(0, AV∆V TAT) in distribution, where
V = (Σ−1 − β0β

T
0 )(U

TΣ−1U)−1/2 and ∆ = E{ξ(Z)ξ(Z)T}.

It is not hard to show that the matrices V and ∆ can be consistently estimated by the plug-in es-
timators V̂n = (Σ−1 − β̂∗nβ̂

∗T
n )(UnΣ

−1Un)
−1/2 and ∆̂n =

∑n
i=1 ξ̂n(Zi)ξ̂n(Zi)

T/n respectively, 205

where ξ̂n(z) =
∑n

j=1{I(y < Yj)(Xj − x) + I(Yj < y)(x−Xj)− 2Un}/n.
When Σ is unknown, the estimation of a covariance matrix and its inverse has been studied by

many authors (Muirhead (2009); Yuan (2010); Cai et al. (2010); etc). Theorem 3 establishes the
consistency of β̂n defined in (6).

THEOREM 3. (Consistency, unknown Σ) Assume that model (3) is true, and Conditions (M), 210

(C1)-(C2) hold. If Σ̂ is consistent for Σ, then β̂n is consistent for β0.

The sample covariance matrix Σ̂S =
∑n

i=1(Xi − X̄)(Xi − X̄)T/(n− 1) is a consistent esti-
mator of Σ in low-dimensional models, where X̄ =

∑n
i=1Xi/n. Similar to Theorem 2, we write

θ̂n = Aβ̂n and present its asymptotic distribution in the next theorem.

THEOREM 4. (Asymptotic distribution, unknown Σ) Assume that model (3) is true, and Con- 215

ditions (M) and (C1)-(C3) hold.
(i) If ∥Σ̂− Σ∥2 = op(n

−1/2), then as n→ ∞, n1/2(θ̂n − θ0)→N(0, AV∆V TAT) in distri-
bution, which is the limiting distribution in Theorem 2;

(ii) If Σ̂ = Σ̂S =
∑n

i=1(Xi − X̄)(Xi − X̄)T/(n− 1) and E∥X∥42 < +∞, then as n→ ∞,
n1/2(θ̂n − θ0) → N(0, ABAT) in distribution, where B = E{V ξ(Z) +Hψ(Z)}{V ξ(Z) + 220
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Hψ(Z)}T, ψ(Z) = {(X − µ)(X − µ)T − Σ}β0, H = β0β
⊤
0 /2− Σ−1, V and ξ(·) are defined

in Theorem 2.

Theorem 4 part (i) states that, if ∥Σ̂− Σ∥2 = op(n
−1/2), then θ̂n = θ̂∗n + op(n

−1/2); thus,
θ̂n is asymptotically as efficient as θ̂∗n when Σ is known. However, if Σ̂ = Σ̂S , the asymptotic
distribution in Theorem 4 part (ii) is generally different from that in part (i). Furthermore, if Σ̂225

satisfies ∥Σ̂− Σ∥2 = Op(n
−1/2), it can be shown that n1/2(θ̂n − θ0) = Op(1).

Remark 6. A surprising and seemingly paradoxical observation in our numerical studies is
that, when Σ is unknown and a plug-in estimator Σ̂S is used, the resulting estimator is generally
more efficient (with smaller variance) than the counterpart when Σ is assumed known. Similar
observations were reported by Henmi & Eguchi (2004); Henmi et al. (2007) and Tarpey et al.230

(2014). For more insights, we consider the case when p = 1 and focus on the numerators of β̂∗n
and β̂n. When Σ is known, the numerator of β̂∗n in (5), Σ−1Un converges to cβ0 in probability for
some constant c > 0, where Σ is a positive scalar when p = 1 and Un =

∑n
i ̸=j I(Yi < Yj)(Xj −

Xi)/{n(n− 1)} can be viewed as a new measure of the correlation between Y and X . It is not
hard to check that Un is positively (negatively) correlated with Σ̂S when β0 > 0 (β0 < 0). When235

Σ is unknown, the numerator of β̂n can be written as (Σ/Σ̂S)(Un/Σ), which is also consistent
for cβ0 under the regularity conditions. Without loss of generality, we consider β0 > 0. Given the
data, if Un/Σ > cβ0, then Σ/Σ̂S is more likely to be less than 1 due to the positive correlation
between Un and Σ̂S ; when Σ−1Un over-estimates (under-estimates) cβ0, Σ/Σ̂S can help pull
down (up) the term (Σ/Σ̂S)(Un/Σ) towards the target cβ0. Thus, it produces estimates with240

smaller variance. Similarly, the denominator of β̂n can be argued to be more stable than that of
β̂∗n. The above discussions offer some insights into why β̂n can be more efficient than β̂∗n for the
univariate case. Nonetheless, a rigorous proof for a general setting has yet to be found.

2.3. A general class of estimators

The identity function we adopt in (4) is not necessarily the unique choice. A general class of245

objective functions can be considered:

Lg
n(β) ≡

1

n(n− 1)

n∑
i ̸=j

I(Yi < Yj)g{(Xj −Xi)
Tβ}, (8)

where g(·) is a known non-constant increasing function. When Σ is known, the estimator is de-
fined as β̂gn = argmaxβ∈E(Σ) L

g
n(β). With a slight abuse of notation, when Σ is unknown, we

plug in a consistent estimator Σ̂ in E(Σ) and still denote the resulting estimator as β̂gn. When
g(a) = a in (8), it is linearized maximum rank correlation estimation in Section 2.1; when250

g(a) = I(a > 0), it is maximum rank correlation. One may also consider g(a) = −([−a]+)γ ,
g(a) = ([a]+)

γ for any real number γ > 0 or g(a) = log(1 + [a]+), where [a]+ = max{0, a} is
the rectified linear unit (ReLU). Such choices of g would be valid to produce consistent estimate
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for β0 under suitable conditions, albeit the objective function is no longer concave for some cases
such as g(a) = I(a > 0), g(a) = ([a]+)

γ or g(a) = −([−a]+)γ when γ < 1. 255

For such choices of g, asymptotic theories analogous to Theorems 1-4 can be established. For
technical convenience, we reparameterize β according to the identifiability constraint. Without
loss of generality, let θ = (β2, . . . , βp)

T ∈ Rp−1 be the (p− 1)-subvector of β. Under the con-
straint βTΣβ = 1, the first component of β can be represented as β1(θ,Σ) = −Σ12θ/Σ11 +

(s/Σ11)
{
(Σ12θ)

2 +Σ11(1− θTΣ22θ)
}1/2

, where s ∈ {1,−1}, Σ11 is a scalar and Σ22 is 260

a (p− 1)× (p− 1) submatrix of Σ such that Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. Then, β = β(θ, s,Σ) is

uniquely determined by (θ, s,Σ) for s ∈ {1,−1} and θ ∈ Θ = {θ ∈ Rp−1 : (Σ12θ)
2 +Σ11(1−

θTΣ22θ) ≥ 0}. Similarly, we write β0 = β0(θ0, s0,Σ) and β̂gn = β̂gn(θ̂
g
n, ŝg,Σ). Without loss of

generality, we fix s0 = 1 and write β0 = β0(θ0,Σ) and β = β(θ,Σ). With consistent ŝg, we can
write β̂gn(θ̂

g
n,Σ) = (β̂g1 , θ̂

gT
n )T. Some conditions are assumed to prove the asymptotic distribution 265

of θ̂gn.

(G1) (i) There exists a β ∈ E(Σ) such thatE∥g{(X1 −X2)
Tβ}∥2 <∞, and the function g(t)

is non-constant increasing in t on the support of (X1 −X2)
Tβ. (ii) For any β ∈ E(Σ) and any

t ∈ R, the class of sets {(x1, x2, t) ∈ R2p+1 : g{(x1 − x2)
Tβ} > t, x1, x2 ∈ Rp} is a VC class.

(G2) Let a(t, c) ≡ E{I(Yi < Yj) | Xj −Xi = t, tTΣ−1t = c}. For each c > 0 and any t1, t2 270

satisfying tTi Σ
−1ti = c, i = 1, 2, assume that a(t1, c) ≥ a(t2, c) if and only if tT1β0 ≥ tT2β0.

Moreover, there exist some t1, t2 such that tT1β0 ≥ tT2β0 and a(t1, c) > a(t2, c) for each c > 0.
(G3) For each z ∈ S and each θ ∈ Θ, define τg(z, θ) = E[I(y < Y )g{(X − x)Tβ(θ,Σ)}+

I(Y < y)g{(x−X)Tβ(θ,Σ)}]. Let ∇m denote them-th partial derivative operator with respect
to θ. 275

(i) For each z ∈ S, the function τg(z, ·) is twice differentiable in a neighborhood of θ0, and
∥∇2τg(z, θ)−∇2τg(z, θ0)∥ ⩽Mg(z)∥θ∥2, where Mg(z) is an integrable function of z.

(ii) E∥∇1τg(Z, θ0)∥22 <∞ and E∥∇2τg(Z, θ0)∥2 <∞.
(iii) The matrix E∇2τg(Z, θ0) is non-singular.

Condition (G1) part (i) is a moment condition for g(·), and part (ii) is a technical condition to 280

prove the uniform convergence. Condition (G3) is a regular condition to ensure a Taylor expan-
sion of the conditional expectation of the objective function.

THEOREM 5. (Consistency) Assume model (3) is true, and Conditions (M), (C2), (G1) part
(i) and (G2) hold. If X is elliptically distributed and (i) Σ is known or (ii) Σ is unknown and Σ̂

is consistent for Σ, then, β̂gn is consistent for β0. 285

Remark 7. Theorem 5 presents the global consistency of β̂gn under the elliptical distributed
assumption and other suitable conditions. In fact, under Conditions (C1), (C2), (G1) part (i),
together with g is concave, we can prove the local consistency of β̂gn.
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THEOREM 6. (Asymptotic Normality) Assume that model (3) is true, and Con-
ditions (M), (C2)-(C3), (G1)-(G3) hold and X is elliptically distributed. Define290

Diff(θ,Σ) = g{(Xj −Xi)
Tβ(θ,Σ)} − g{(Xj −Xi)

Tβ(θ0,Σ)}. If uniformly over op(1)

neighborhoods of θ0, ∥Diff(θ, Σ̂)−Diff(θ,Σ)∥2 = op(n
−1/2∥θ − θ0∥2), then n1/2(θ̂gn −

θ0)→N(0, (V g)−1∆g(V g)−1) in distribution, where ∆g = E[∇1τg(·, θ0){∇1τg(·, θ0)}T] and
V g = (1/2)E{∇2τg(·, θ0)}.

Two numerical algorithms are given in Section 1 of the supplementary material to compute295

β̂gn, depending on the differentiability of g.

3. EXTENSION TO CENSORED DATA

For model (3) under random censoring, the observations are (vi, Xi, di), i = 1, . . . , n, inde-
pendent and identically distributed copies of (v,X, d), where v = min(Y,C), C is the censoring
variable and d = I(Y < C) is the censoring indicator. We focus on the case that Σ is unknown.300

Motivated by the partial rank estimator of Khan & Tamer (2007), our proposed linearized partial
rank estimator of β0 is defined as

β̂cn = argmax
β∈E(Σ̂)

Lc
n(β), where Lc

n(β) =
1

n(n− 1)

n∑
i ̸=j

diI(vi < vj)(Xj −Xi)
Tβ, (9)

and E(Σ̂) is given in Section 2.1. Similar to the complete data case, a closed-form solution to
(9) is β̂cn = (U c

n
TΣ̂−1U c

n)
−1/2Σ̂−1U c

n, where U c
n =

∑n
i ̸=j diI(vi < vj)(Xj −Xi)/{n(n− 1)}305

is the gradient of Lc
n(β) w.r.t β. Additional assumptions are needed.

(A1) The error ϵ is independent of (C,X), and C is independent of X .
(A2) Let SX denote the support of X , and Xuc = {x ∈ SX : pr(d = 1 | X = x) > 0}, then

pr(X ∈ Xuc) > 0.
(A3) The set Xuc is not contained in any proper linear subspace of Rp.310

Condition (A2) requires that the probability of censoring is not 1 for all x ∈ SX . Condition
(A3) is slightly stronger than a full rank assumption and it is often needed in the censored case.
The independence of C and X in Condition (A1) is imposed for technical convenience.

THEOREM 7. (Consistency) Assume that model (3) is true, and Conditions (M), (C1)-(C2),
(A1)-(A3) hold and Σ̂ is consistent for Σ, then β̂cn is consistent for β0.315

For the general transformation model in Khan & Tamer (2007), a special case of model (3),
the consistency still holds when condition (A1) is weakened to allow for more general forms of
censoring. Similar to section 2.2, we next study the limiting distribution of θ̂cn = Aβ̂cn, a (p− 1)-
subvector of β̂cn, where A = (0, Ip−1) is a (p− 1)× p matrix with its first column being zeros
and Ip−1 is an identity matrix of order p− 1. Let Zi = (di, vi, Xi) and U c = E(U c

n). For each320
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z = (d, v, x), define ξc(z) = E{diI(vi < v)(x−Xi) + dI(v < vi)(Xi − x)T − 2U c}. Denote
V c = (Σ−1 − β0β

T
0 )(U

cTΣ−1U c)−1/2 and ∆c = E{ξc(Z)ξc(Z)T}.

THEOREM 8. Assume that model (3) is true, and Conditions (M), (C1)-(C2) and (A1)-(A3)
hold.
(i) If ∥Σ̂− Σ∥2 = op(n

−1/2), then n1/2(θ̂cn − θ0)→N(0, AV c∆c(V c)TAT) in distribution as 325

n→ ∞.
(ii) If Σ̂ = Σ̂S =

∑n
i=1(Xi − X̄)(Xi − X̄)T/(n− 1) and E∥X∥42 < +∞, then

n1/2(θ̂cn − θ0) → N(0, ABcAT) in distribution as n→ ∞, where Bc = E{V cξc(Z) +

Hψ(Z)}{V cξc(Z) +Hψ(Z)}T, ψ(Z) = {(X − µ)(X − µ)T − Σ}β0 and H = (β0β
T
0 /2−

Σ−1) . 330

For a general estimator Σ̂ satisfying ∥Σ̂− Σ∥2 = Op(n
−1/2), we can similarly show that

n1/2(θ̂cn − θ0) = Op(1). Although linearized partial rank estimator in (9) is designed for right
censoring, it can be easily modified to accommodate left-censored data or doubly-censored data.

4. EXTENSION TO HIGH DIMENSIONS

In this section, we extend our methods to handle variable selection and parameter estima- 335

tion for model (3) with high-dimensional predictors. For simplicity, we write Xi as the i-th
observation of X , the pn-vector of predictors. Let A = {j : β0j ̸= 0} be the true active set,
Ac = {j : β0j = 0}, sn be the cardinality of AT , βA be the subvector of β indexed by A and
let dn = infj∈A |β0j |. Both pn and sn may vary with n. We consider the following objective
function with lasso penalty: 340

PLn(β) ≡
1

n(n− 1)

n∑
i ̸=j

I(Yi < Yj)(Xi −Xj)
Tβ + λn∥β∥1, (10)

where λn is the regularization parameter. With a slight abuse of notation, we define the penalized
linearized maximum rank correlation estimator as β̂n ≡ argminβ∈E(Σ) PLn(β).

THEOREM 9. (Oracle inequality) Assume that model (3) is true, Conditions (C1)-(C2) and
Assumptions (M*), (D1)-(D2) given in the supplementary material hold and Σ is known. Let 345

an be a sequence of positive numbers diverging to ∞ at an arbitrarily slow rate. If λn =

{an log(n) log(pn)/n}1/2 and ans2n log(n) log(pn)/n→ 0 as n→ ∞, then with probability at
least 1− 4 exp(−an)− (2 + c1)/pn,

∥β̂n − β0∥2 ≤ c2a
1/2
n

{
sn log(n) log(pn)

n

}1/2

, ∥β̂n − β0∥1 ≤ c2a
1/2
n

{
s2n log(n) log(pn)

n

}1/2

,

where c1, c2 > 0 are some universal constants, ∥ · ∥1 and ∥ · ∥2 denote the ℓ1 and the ℓ2 norm of 350

a vector respectively.
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Theorem 9 implies that ans2n log(n) log(pn) = o(n), i.e., our method can handle high-
dimensional case when Σ is known. Nevertheless, it is nontrivial to prove the oracle inequality
when Σ is unknown. We leave space here for future research. A proximal (stochastic) gradient
decent algorithm is given to solve the penalized linearized maximum rank correlation estimation355

in Algorithm S3 in Section 1 of the supplementary material.

5. NUMERICAL STUDIES

5.1. Complete data

The covariate X are generated from a multivariate normal distribution with mean 0

and covariance matrix Σ = (ρij) with ρij = ρ
|i−j|
0 , ρ0 = 0.3 or 0.8. Set p = 5 and β0 =360

(1, 1, 0, 0,−1)T, p = 15 and β0 = (1, 1, 0, 0,−1, 1, 1, 0, 0,−1, 1, 1, 0, 0,−1)T, or p = 30 and
β0 = (1, 1, 0, 0,−1, 1, 1, 0, 0,−1, 1, 1, 0, 0,−1, 1, 1, 0, 0,−1, 1, 1, 0, 0,−1, 1, 1, 0, 0,−1)T. Set
n = 100, 200 or 300. Four models are considered: M1: Y = XTβ0 + ϵ; M2: Y = exp{XTβ0 +

sin(XTβ0)− ϵ} − ϵ; M3: Y = exp(XTβ0) + 0.5XTβ0 × |ϵ|+ 2 cos(ϵ); M4: Y = I[{1 +
exp(−XTβ0 − ϵ)}−1 > 0.5]. In M2 and M3, the model assumptions of maximum rank cor-365

relation estimation and monotone rank estimation are not satisfied, as the link function is not
increasing in ϵ; and Y is binary in M4. Two error distributions are tried: Chi-square distribution
with 1 degree of freedom (denoted by χ2(1)) and Poisson distribution with parameter 1 (denoted
by Pois(1)). For each setting, a = βT

0Σβ0 can be computed. We compute the proposed linearized
maximum rank correlation estimator (LMRC), the MRC estimator, the monotone rank estima-370

tor (MRE) by Cavanagh & Sherman (1998) with M(·) = Rn(·), and the least squares estimator
(LSE) in Neykov et al. (2016b) and the sliced inverse regression by Li (1991) for comparison.
For all methods, we scale the resulting estimators to satisfy βTΣβ = a in each setting. With a
known Σ, we refer our method as LMRC∗; otherwise, we refer it as LMRC when Σ is unknown
and the sample covariance matrix Σ̂S is used to estimate Σ.375

The results in the tables are based on 500 replications. We report the averaged absolute
bias (BIAS), the averaged standard error (SE), the averaged empirical coverage probabil-
ity (CP) of 95% confidence intervals, and the mean ℓ1 and ℓ2 distances. To be precise, let
{β̂(r)}500r=1 denote the estimates. The averaged absolute bias is the averaged absolute value of
{(
∑R

r=1 β̂
(r)/R)− β0} over its components; the standard error is the averaged standard error380

of {β̂(r)}500r=1 over components; the coverage probability of 95% confidence intervals is the av-
eraged empirical coverage probability over components; the mean ℓ1 distance is the mean of
{∥β̂(r) − β0∥1}500r=1 and the mean ℓ2 distance is the mean of {∥β̂(r) − β0∥2}500r=1. The estimated
standard errors are computed by the bootstrap method with resampling size 200 for maximum
rank correlation estimator in Han (1987) and monotone rank estimator in Cavanagh & Sherman385

(1998).
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Table 1: Summary statistics with dimension p = 5 and correlation ρ0 = 0.3.

Model Error Method n = 100 n = 200

BIAS SE CP ℓ1 ℓ2 BIAS SE CP ℓ1 ℓ2
M1 χ2(1) LMRC∗ 0.021 0.227 0.939 0.910 0.264 0.012 0.159 0.953 0.638 0.128

LMRC 0.007 0.140 0.952 0.547 0.098 0.005 0.099 0.950 0.389 0.049
SIR 0.018 0.199 - 0.775 0.201 0.007 0.139 - 0.566 0.105
LSE 0.014 0.181 - 0.718 0.167 0.008 0.126 - 0.497 0.081
MRC 0.083 0.312 0.806 1.132 0.555 0.060 0.267 0.758 0.899 0.416
MRE 0.081 0.324 0.891 1.197 0.588 0.067 0.283 0.884 0.979 0.458

Pois(1) LMRC∗ 0.018 0.209 0.944 0.842 0.221 0.011 0.154 0.947 0.620 0.120
LMRC 0.008 0.128 0.940 0.513 0.082 0.004 0.086 0.939 0.340 0.037

SIR 0.013 0.156 - 0.625 0.124 0.009 0.110 - 0.440 0.062
LSE 0.010 0.142 - 0.568 0.102 0.006 0.101 - 0.401 0.051
MRC 0.081 0.313 0.808 1.123 0.554 0.061 0.261 0.783 0.851 0.402
MRE 0.078 0.302 0.895 1.105 0.513 0.059 0.263 0.892 0.887 0.395

M2 χ2(1) LMRC∗ 0.021 0.228 0.955 0.895 0.264 0.014 0.170 0.953 0.682 0.147
LMRC 0.004 0.143 0.942 0.562 0.103 0.003 0.098 0.950 0.386 0.048

SIR 0.012 0.173 - 0.679 0.151 0.005 0.115 - 0.451 0.067
LSE 0.239 0.704 - 2.969 2.887 0.245 0.715 - 3.002 2.984
MRC 0.091 0.334 0.807 1.236 0.625 0.054 0.263 0.800 0.879 0.399
MRE 0.089 0.332 0.886 1.243 0.626 0.055 0.264 0.890 0.917 0.398

Pois(1) LMRC∗ 0.024 0.215 0.958 0.859 0.236 0.011 0.161 0.947 0.643 0.131
LMRC 0.006 0.125 0.954 0.498 0.078 0.007 0.088 0.941 0.352 0.039

SIR 0.007 0.122 - 0.483 0.075 0.006 0.086 - 0.344 0.037
LSE 0.081 0.431 - 1.718 0.976 0.055 0.346 - 1.352 0.618
MRC 0.086 0.324 0.810 1.164 0.599 0.059 0.260 0.787 0.852 0.398
MRE 0.075 0.308 0.894 1.118 0.526 0.061 0.265 0.892 0.889 0.397

Averaged absolute bias (BIAS), averaged standard errors (SE) and averaged coverage probability (CP) of 95%
confidence interval over components of the index parameter. Mean ℓ1 and ℓ2 distances between the estimate and the
true parameter; LMRC*, the Linearized maximum rank estimator with a known σ; LMRC, the Linearized maximum
rank estimator when σ is unknown and the sample covariance matrix Σ̂S is used to estimate Σ; SIR, sliced inverse
regression by Li (1991); LSE, the MRC estimator the least squares estimator of Neykov et al. (2016b); MRC, the
maximum correlation estimator; MRE, the monotone rank estimator by Cavanagh & Sherman (1998).

Tables 1-2 show that our proposed estimators LMRC∗ and LMRC are generally unbiased for
all cases and robust to outliers under M1-M2. And LMRC∗ and LMRC are more efficient than
MRE and MRC for all configurations. Table 2 contains the results for p = 30 and ρ0 = 0.8 (high
dependence among predictors), indicating that LMRC∗ and LMRC perform reasonably well. The 390

simulation results under M3-M4 with p = 5 or p = 30, and those with p = 15 are given in Table
S1-S3 in Section 3 of the supplementary material.

A sensitivity analysis is conducted to check the robustness of the proposed method when
the linearity in expectation assumption of X is violated. Set p = 5, β0 = (1, 1, 0, 0,−1)T and
ϵ ∼ N(0, 0.52). For models M1-M4, three distributions of X are tried: (i) multivariate Student’s 395

t distribution with 2 degrees of freedom and correlation matrix Σcorr = (ρcorrij ), where ρcorrij =

0.3|i−j|, denoted by t(2); (ii) each component of X are independent Unif[−2, 10], denoted by
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U [−2, 10]; (iii) a hybrid of Uniform and Bernoulli distributions with the first 4 components of
X being i.i.d from U [−2, 10] and the last element follows Bernoulli distribution with parameter
0.5. The results are summarized in Table 3. It can be observed that the proposed estimator is400

fairly robust to the linearity of expectation assumption. We also conduct additional simulations
with three models in which the monotonicity condition of f is not satisfied. The results can be
found in Table S4 in Section 3 of the supplementary material, which contain supportive evidence
that our estimators are still consistent for β0 up to a sign when the monotonic assumption of f is
violated.405

Table 2: Summary statistics with dimension p = 30 and ρ = 0.8.

Model Error Method n = 200 n = 300

BIAS SE CP ℓ1 ℓ2 BIAS SE CP ℓ1 ℓ2

M1 χ2(1) LMRC∗ 0.054 0.457 0.940 11.029 2.498 0.039 0.376 0.942 9.053 2.047
LMRC 0.013 0.258 0.956 6.190 2.008 0.010 0.202 0.958 4.831 1.230

SIR 0.019 0.375 - 8.857 4.217 0.026 0.296 - 7.112 2.651
LSE 0.021 0.269 - 6.335 2.187 0.018 0.228 - 5.446 1.575
MRC 0.303 0.605 0.445 18.127 16.304 0.244 0.565 0.461 16.331 12.972
MRE 0.283 0.588 0.600 17.342 14.935 0.263 0.572 0.603 16.713 13.719

Pois(1) LMRC∗ 0.058 0.442 0.942 10.657 2.420 0.040 0.365 0.945 8.806 1.994
LMRC 0.014 0.223 0.956 5.309 1.496 0.007 0.176 0.951 4.211 0.937

SIR 0.020 0.286 - 6.754 2.467 0.018 0.205 - 4.917 1.280
LSE 0.018 0.218 - 5.239 1.437 0.012 0.176 - 4.197 0.939
MRC 0.286 0.595 0.451 17.520 15.155 0.235 0.551 0.481 15.675 12.361
MRE 0.280 0.589 0.610 17.142 14.446 0.229 0.554 0.612 15.746 12.385

M2 χ2(1) LMRC∗ 0.058 0.454 0.945 10.963 2.492 0.047 0.379 0.943 9.140 2.069
LMRC 0.014 0.260 0.958 6.154 2.032 0.011 0.207 0.954 4.937 1.289

SIR 0.033 0.385 - 9.099 4.505 0.019 0.283 - 6.714 2.422
LSE 0.417 2.204 - 54.038 151.650 0.372 2.148 - 52.412 143.839
MRC 0.290 0.602 0.451 17.765 15.566 0.244 0.554 0.479 15.785 12.601
MRE 0.296 0.600 0.595 17.675 15.600 0.231 0.556 0.620 15.823 12.265

Pois(1) LMRC∗ 0.056 0.445 0.939 10.736 2.4319 0.039 0.372 0.944 8.937 2.032
LMRC 0.011 0.221 0.953 5.259 1.471 0.007 0.176 0.951 4.211 0.937

SIR 0.016 0.287 - 6.837 2.474 0.018 0.216 - 5.128 1.405
LSE 0.361 2.162 - 53.064 145.540 0.383 2.065 - 50.118 133.249
MRC 0.279 0.586 0.457 17.272 14.600 0.246 0.559 0.465 16.016 12.748
MRE 0.280 0.583 0.595 16.882 14.195 0.242 0.548 0.619 15.661 12.250

5.2. Censored data

We generate X in the same way as in Section 5.1 and the error ϵ follows normal distribu-
tion with mean 0 and standard deviation 0.5. We generate Y from M2 and M4. Set p = 5 and
β0 = (1, 1, 0, 0,−1)T. Three censoring mechanisms are considered: CV1: C ∼ 2χ2(2); CV2:
C = 5× (XTβ0)

2 − 3× sin(|XTβ0|); CV3: C = 10× (X2
1 ×X2 +X3), where Xj is the j-th410

component of X . In (CV1), C is independent of X; C is correlated with XTβ0 in (CV2) and
intricately depends on X in (CV3). For comparison, we also compute the partial rank estimator
(PRE) by Khan & Tamer (2007). Model M4 violates the transformation model assumption of



Linearized Maximum Rank Correlation Estimation 15

PRE. Other than the BIAS, SE, CP, ℓ1 and ℓ2, we report the censoring rate (CR) in Table 4. One
can see that LMRC∗ and LMRC give smaller ℓ1 and ℓ2 distances compared with the PRE in all 415

scenarios, especially under M4. Our methods are generally more efficient in terms of smaller
standard errors and robust to different censoring mechanisms.

Table 3: Summary statistics for differently distributed covariates when dimension p = 5 and
correlation ρ0 = 0.3.

Model Covariate Method n = 100 n = 200

BIAS SE CP ℓ1 ℓ2 BIAS SE CP ℓ1 ℓ2
M1 t(2) LMRC 0.063 0.328 0.885 1.329 0.702 0.045 0.275 0.903 1.089 0.574

LMRC∗ 0.070 0.348 0.911 1.361 0.724 0.054 0.315 0.874 1.198 0.633
U [−2, 10] LMRC 0.005 0.059 0.950 0.234 0.019 0.001 0.040 0.953 0.159 0.009

LMRC∗ 0.021 0.186 0.959 0.745 0.399 0.006 0.089 0.928 0.355 0.190
Hybrid LMRC 0.015 0.076 0.972 0.309 0.050 0.011 0.053 0.957 0.215 0.025

LMRC∗ 0.041 0.274 0.946 1.118 0.824 0.030 0.199 0.899 0.791 0.594
M2 t(2) LMRC 0.066 0.345 0.886 1.382 0.740 0.034 0.209 0.818 0.824 0.476

LMRC∗ 0.065 0.337 0.916 1.320 0.702 0.025 0.135 0.925 0.534 0.303
U [−2, 10] LMRC 0.006 0.066 0.972 0.262 0.022 0.003 0.048 0.947 0.191 0.012

LMRC∗ 0.016 0.143 0.943 0.571 0.302 0.006 0.008 0.956 0.384 0.203
Hybrid LMRC 0.011 0.082 0.974 0.337 0.055 0.016 0.063 0.944 0.266 0.040

LMRC∗ 0.027 0.258 0.963 0.788 0.467 0.013 0.130 0.934 0.517 0.288
M3 t(2) LMRC 0.069 0.350 0.874 1.399 0.739 0.049 0.281 0.893 1.099 0.581

LMRC∗ 0.072 0.327 0.920 1.257 0.670 0.059 0.309 0.880 1.192 0.631
U [−2, 10] LMRC 0.004 0.060 0.957 0.237 0.019 0.001 0.041 0.961 0.164 0.009

LMRC∗ 0.013 0.146 0.948 0.582 0.313 0.009 0.104 0.951 0.423 0.225
Hybrid LMRC 0.011 0.070 0.975 0.273 0.042 0.011 0.048 0.968 0.204 0.022

LMRC∗ 0.022 0.170 0.940 0.670 0.379 0.014 0.124 0.949 0.490 0.274
M4 t(2) LMRC 0.064 0.332 0.904 1.336 0.708 0.039 0.254 0.923 1.006 0.532

LMRC∗ 0.070 0.348 0.901 1.368 0.724 0.069 0.337 0.834 1.313 0.696
U [−2, 10] LMRC 0.012 0.148 0.948 0.599 0.110 0.008 0.108 0.941 0.434 0.058

LMRC∗ 0.026 0.198 0.935 0.797 0.425 0.013 0.138 0.941 0.543 0.292
Hybrid LMRC 0.181 0.426 0.729 1.853 1.141 0.105 0.341 0.784 1.388 0.839

LMRC∗ 0.163 0.420 0.848 1.779 1.074 0.103 0.344 0.911 1.395 0.835

5.3. Variable selection

The covariates X are generated from a multivariate normal distribution with mean 0 and Σ =

(ρij) with ρij = 0.1|i−j|. We consider models M1-M4 with n = 100 and p = 40 or p = 80. The 420

first 5 components of β0 are 2 and the rest are 0. Two error distributions are tried: Chi-square
distribution with 1 degree of freedom (denoted by χ2(1)) and Poisson distribution with mean 1

(denoted by Pois(1)). The sample covariance matrix X is computed with n samples. The tuning
parameter λn is selected by the generalized information criterion (Nishii, 1984): GICan(λ) =

Ln{β̂n(λ)} − (an/n)∥β̂n(λ)∥0, where β̂n(λ) is defined in Section 4, ∥β∥0 is the number of 425

nonzero components of β and an is a positive sequence depending on n. In practice, we let
an = log(n), and select λ by maximizing the GICan over [0, 1] with 100 lattice points (Fan &
Tang, 2013). For comparison, we also compute the sliced inverse regression with lasso (Lin et al.,
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2018), denoted by Lasso sliced inverse regression. Based on 500 replications, the simulation
results with p = 80 are presented in Table 5, and more results with p = 40 are provided in Table430

S5 in Section 3 of the supplementary material. We report the averaged false positive rate (FP),
false negative rate (FN), the empirical probability of choosing the correct model (CM), absolute
bias (BIAS), standard errors (SE), and the mean ℓ1, ℓ2 distances between β0 and its estimates.
It can be seen that our method performs better than Lasso sliced inverse regression in terms of
smaller BIAS, SE and FP.435

Table 4: Summary statistics for censored data with dimension p = 5. We consider different
censoring variable mechanisms and censoring rates (in parentheses)

Model Censoring (CR) Method n = 100 n = 200

Bias SE CP ℓ1 ℓ2 Bias SE CP ℓ1 ℓ2
M2 CV1 (0.521) LMRC∗ 0.032 0.218 0.937 0.881 0.463 0.016 0.151 0.943 0.603 0.321

LMRC 0.009 0.144 0.942 0.572 0.104 0.006 0.103 0.934 0.408 0.054
PRE 0.161 0.469 0.898 1.826 0.990 0.105 0.385 0.895 1.310 0.722

CV2 (0.391) LMRC∗ 0.026 0.212 0.938 0.851 0.450 0.014 0.154 0.947 0.615 0.326
LMRC 0.004 0.138 0.945 0.545 0.095 0.005 0.092 0.953 0.369 0.043

PRE 0.171 0.488 0.884 1.967 1.069 0.105 0.382 0.888 1.321 0.732
CV3 (0.196) LMRC∗ 0.078 0.192 0.889 0.901 0.482 0.077 0.141 0.837 0.740 0.404

LMRC 0.092 0.129 0.837 0.711 0.171 0.095 0.089 0.854 0.603 0.124
PRE 0.129 0.430 0.896 1.589 0.867 0.083 0.358 0.876 1.186 0.666

M4 CV1 (0.685) LMRC∗ 0.041 0.256 0.938 1.049 0.552 0.023 0.186 0.937 0.743 0.394
LMRC 0.014 0.210 0.938 0.843 0.222 0.015 0.148 0.950 0.596 0.111

PRE 0.225 0.561 0.837 2.331 1.243 0.109 0.376 0.886 1.347 0.743
CV2 (0.441) LMRC∗ 0.033 0.220 0.926 0.885 0.469 0.015 0.150 0.947 0.597 0.314

LMRC 0.005 0.140 0.947 0.547 0.097 0.004 0.095 0.958 0.371 0.045
PRE 0.208 0.544 0.836 2.159 1.163 0.109 0.387 0.868 1.291 0.714

CV3 (0.214) LMRC∗ 0.087 0.187 0.871 0.911 0.492 0.088 0.138 0.895 0.787 0.432
LMRC 0.098 0.131 0.829 0.741 0.188 0.105 0.088 0.087 0.643 0.143

PRE 0.179 0.513 0.850 1.954 1.067 0.126 0.451 0.874 1.554 0.853

CV, censoring variable; CR, censoring rate.

5.4. Analysis of Beijing PM 2.5 dataset

We apply our method to analyze a Beijing PM 2.5 dataset originally studied by Liang et al.
(2015). The dataset consists of hourly PM 2.5 readings taken at the US Embassy in Beijing
located at (116.47 E, 39.95 N) and hourly meteorological measurements at Beijing Capital Inter-
national Airport (BCIA) obtained from weather.nocrew.org. Both data series run from 1 January440

2010 to 31 December 2014 with 43824 observations. There are 8 attributes in total, i.e, PM 2.5
concentration (PM, µg/m3), Dew Point (DEWP, in Celsius Degree), Temperature (TEMP, in
Celsius Degree), Pressure (PRES, in hPa), Combined wind direction (CBWD), Cumulated wind
speed (CWP, m/s), Cumulated hours of snow (CS), Cumulated hours of rain (CR). The weather
data have 16 wind directions. Based on the locations of major polluting industries around Bei-445

jing, the directions can be grouped into four broad categories: northwest (NW), northeast (NE),
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south (S), and calm and variable (CV). CWP is the cumulated wind speed from the start of the
wind direction to the time of interest. CS and CR can be similarly defined.

Table 5: Summary statistics with dimension p = 80.

Dimension Model Error Method n = 100
BIAS SE ℓ1 ℓ2 FP FN CM

p = 80

M1
χ2(1)

Lasso LMRC 0.001 0.022 1.279 0.688 0.000 0.001 0.996
Lasso SIR 0.009 0.131 4.634 1.152 0.262 0.001 0.997

Pois(1) Lasso LMRC 0.002 0.017 1.013 0.538 0.001 0.000 1.000
Lasso SIR 0.008 0.124 4.306 1.059 0.267 0.000 1.000

M2
χ2(1)

Lasso LMRC 0.001 0.023 1.202 0.635 0.002 0.002 0.992
Lasso SIR 0.009 0.134 4.769 1.181 0.271 0.001 0.997

Pois(1) Lasso LMRC 0.001 0.017 1.041 0.562 0.000 0.000 1.000
Lasso SIR 0.008 0.111 3.920 0.982 0.255 0.000 1.000

M3
χ2(1)

Lasso LMRC 0.002 0.026 1.444 0.776 0.001 0.002 0.992
Lasso SIR 0.022 0.227 8.343 2.069 0.273 0.005 0.983

Pois(1) Lasso LMRC 0.000 0.023 1.293 0.696 0.001 0.001 0.996
Lasso SIR 0.019 0.203 7.253 1.831 0.260 0.003 0.987

M4
χ2(1)

Lasso LMRC 0.001 0.014 0.881 0.471 0.000 0.000 1.000
Lasso SIR 0.012 0.153 5.438 1.395 0.249 0.001 0.997

Pois(1) Lasso LMRC 0.001 0.016 0.955 0.499 0.000 0.001 0.996
Lasso SIR 0.012 0.148 5.112 1.313 0.243 0.000 1.000

FP, averaged false positive rate; FN, averaged false negative rate; CM, the empirical probability of choosing the
correct model.

Table 6: Correlation matrix of six covariates in Beijing PM 2.5 data.

DEWP TEMP PRES CWP CS CR
DEWP 1.000
TEMP 0.824 1.000
PRES -0.778 -0.827 1.000
CWP -0.293 -0.150 0.179 1.000
CS -0.035 -0.095 0.071 0.023 1.000
CR 0.125 0.050 -0.081 -0.009 -0.010 1.000

DEWP, dew point in degrees Celsius; TEMP, temperature in degrees Celsius; PRES, pressure in hPa; CWP,
cumulated wind speed in m/s; CS, cumulated hours of snow; CR, cumulated hours of rain.

The response variable is PM 2.5. The sample covariance matrix of 6 continuously-distributed
predictors is calculated and their sample correlation are given in Table 6. Under different wind 450

directions (NW,NE,S and CV), we fit model (3) to this dataset with the proposed linearized MRC,
and present the results in Table 7, suggesting that the main source of pollution in Beijing is the
heating in winter and the dense heavy industries nearby. First, PM 2.5 significantly increases with
a lower temperature, indicating that the main reason of pollution in Beijing is the use of coal for
heating in winter. Second, there is more pollution under a southern wind, and the southern wind 455

reduces the pollution less significantly than wind from other directions, as Beijing is hemmed in
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by mountains to the west and north, and the south and the east of Beijing are dense with heavy
industries. Third, the meteorological variables are mutually correlated. Thus, a decrease in the
dew point and an increase in the pressure are usually accompanied by the arrival of the northerly
wind, which brings in drier and fresher air, and reduces the pollution.460

Table 7: The estimation results (estimated standard errors in parenthesis) of the Beijing PM 2.5
Data. The first row shows the mean (standard errors in parenthesis) PM 2.5 reading under

different wind directions.

NW NE S CV
PM2.5 70.128(89.064) 90.178(95.197) 110.822(80.050) 126.152(100.403)
DEWP 7.237(0.068) 9.336(0.131) 12.665(0.061) 12.564(0.098)
TEMP -11.190(0.085) -12.65(0.158) -15.881(0.098) -16.849(0.071)
PRES -4.725(0.113) -3.328(0.204) -2.830(0.193) -1.809(0.196)
CWP -0.505(0.009) -2.008(0.093) -0.379(0.040) -1.106(0.184)
CS 6.342(1.355) -3.075(1.739) -11.630(0.647) -9.564(1.287)
CR -9.942(0.351) -11.456(0.561) -18.523(0.870) -20.568(1.158)

NW, northwest; NE, northeast; S, south; CV, calm and variable.
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SUPPLEMENTARY MATERIAL

The supplementary material contains three numerical algorithms, lemmas and technical proofs
for the main theorems and additional simulation results.
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