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We study the properties of nonparametric least squares regression using
deep neural networks. We derive nonasymptotic upper bounds for the excess
risk of the empirical risk minimizer of feedforward deep neural regression.
Our error bounds achieve minimax optimal rate and improve over the exist-
ing ones in the sense that they depend polynomially on the dimension of the
predictor, instead of exponentially on dimension. We show that the neural
regression estimator can circumvent the curse of dimensionality under the as-
sumption that the predictor is supported on an approximate low-dimensional
manifold or a set with low Minkowski dimension. We also establish the opti-
mal convergence rate under the exact manifold support assumption. We inves-
tigate how the prediction error of the neural regression estimator depends on
the structure of neural networks and propose a notion of network relative ef-
ficiency between two types of neural networks, which provides a quantitative
measure for evaluating the relative merits of different network structures. To
establish these results, we derive a novel approximation error bound for the
Hölder smooth functions using ReLU activated neural networks, which may
be of independent interest. Our results are derived under weaker assumptions
on the data distribution and the neural network structure than those in the
existing literature.

1. Introduction. Consider a nonparametric regression model

(1) Y = f0(X) + η,

where Y ∈ R is a response, X ∈ R
d is a d-dimensional vector of predictors, f0 : [0,1]d → R

is an unknown regression function, η is an error with mean 0 and finite variance σ 2, inde-
pendent of X. A basic problem in statistics and machine learning is to estimate the unknown
target regression function f0 based on a random sample, (Xi, Yi), i = 1, . . . , n, where n is
the sample size, that are independent and identically distributed (i.i.d.) as (X,Y ).

There is a vast literature on nonparametric regression based on minimizing the empirical
least squares loss function, see, for example, Nemirovskiı̆, Polyak and Tsybakov (1985), van
de Geer (1990), Birgé and Massart (1993) and the references therein. The consistency of the
nonparametric least squares estimators under general conditions was studied by Geman and
Hwang (1982), Nemirovskiı̆, Polyak and Tsybakov (1983), Nemirovskiı̆, Polyak and Tsy-
bakov (1984), van de Geer (1987) and van de Geer and Wegkamp (1996), among others.
In the context of pattern recognition, comprehensive results concerning empirical risk min-
imization can be found in Devroye, Györfi and Lugosi (1996) and Györfi et al. (2002). In
addition to the consistency, the convergence rate of the empirical risk minimizers was ana-
lyzed in many important works. Examples include Stone (1982), Pollard (1984), Rafajłowicz
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(1987), Cox (1988), Shen and Wong (1994), Lee, Bartlett and Williamson (1996), Birgé and
Massart (1998) and van de Geer (2000). These results were generally established under cer-
tain smoothness assumption on the unknown target function f0. Typically, it is assumed that
f0 is in a Hölder class with a smoothness index β > 0 (β-Hölder smooth), that is, all the
partial derivatives up to order �β� exist and the partial derivatives of order �β� are β − �β�
Hölder continuous, where �β� denotes the largest integer strictly smaller than β . For such
an f0, the optimal convergence rate of the prediction error is Cdn−2β/(2β+d) under mild con-
ditions (Stone (1982)), where Cd is a prefactor independent of n but depending on d and
other model parameters. In low-dimensional models with a small d , the impact of Cd on the
convergence rate is not significant, however, in high-dimensional models with a large d , the
impact of Cd can be substantial, see, for example, Ghorbani et al. (2020). Therefore, it is
crucial to elucidate how this prefactor depends on the dimensionality so that the error bounds
are meaningful in the high-dimensional settings.

Recently, several elegant and stimulating papers have studied the convergence properties
of nonparametric regression estimation based on neural network approximation of the re-
gression function f0 (Bauer and Kohler (2019), Schmidt-Hieber (2019, 2020), Chen et al.
(2022), Kohler, Krzyżak and Langer (2022), Nakada and Imaizumi (2020), Farrell, Liang
and Misra (2021)). These works show that deep neural network regression can achieve the
optimal-minimax rate established by Stone (1982) under certain conditions. However, the
convergence rate can be extremely slow when the dimensionality d of the predictor X is
high. Therefore, nonparametric regression using deep neural networks cannot escape the
well-known problem of curse of dimensionality in high-dimensions without any conditions
on the underlying model. There has been much effort devoted to deriving better convergence
rates under certain assumptions that mitigate the curse of dimensionality. There are two main
types of assumptions in the existing literature: structural assumptions on the target function
f0 (Bauer and Kohler (2019), Kohler, Krzyżak and Langer (2022), Schmidt-Hieber (2020))
and distributional assumptions on the input X (Chen et al. (2022), Nakada and Imaizumi
(2020), Schmidt-Hieber (2019)). Under either of these assumptions, the convergence rate
Cdn−2β/(2β+d) could be improved to Cd,d∗n−2β/(2β+d∗) for some d∗ � d , where Cd,d∗ is
a constant depending on (d∗, d) and d∗ is the intrinsic dimension of f0 or the intrinsic di-
mension of the support of the predictor. We will provide a detailed comparison between our
results and the existing results in Section 7.

In this paper, we study the properties of nonparametric least squares regression using deep
neural networks. Our main contributions are as follows:

(i) We derive novel approximation error bounds for Hölder smooth functions with
smoothness index β > 0 using ReLU activated neural networks. Our work builds on the
results of Shen, Yang and Zhang (2020) and Lu et al. (2021). Shen, Yang and Zhang (2020)
derived approximation error bound with prefactor depending on d polynomially for Hölder
continuous functions (with smoothness index β ∈ (0,1]). Lu et al. (2021) derived approxi-
mation error bound explicitly in network depth and width for higher-order smooth functions
(with smoothness index β ≥ 1 being positive integer) but with prefactor depending on d ex-
ponentially. For β > 1, the prefactor of our error bound is significantly improved in the sense
that it depends on d polynomially instead of exponentially. This approximation result is of
independent interest and may be useful in other problems.

(ii) We alleviate the curse of dimensionality by assuming that X is supported on an ap-
proximate low-dimensional manifold. Under such an approximate low-dimensional manifold
support assumption, we show that the rate of convergence O(n−2β/(2β+d)) can be improved
to O(n−2β/(2β+dM log(d))), where dM is the intrinsic dimension of the low-dimensional
manifold and β > 0 is the order of the Hölder-smoothness of f0. Moreover, under the
exact manifold support assumption, we established a result that achieves the optimal rate
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O(n−2β/(2β+dM)) (up to a logarithmic factor) with a prefactor only depending linearly on d .
We also consider a low Minkowski dimension assumption as in Nakada and Imaizumi (2020)
and derive an error bound that alleviates the curse of dimensionality with different network
architectures and using a different proof technique.

(iii) We show explicitly how the error bounds are determined by the neural network pa-
rameters, including the width, the depth and the size of the network. We propose a notion
of network relative efficiency between two types of neural networks, defined as the ratio of
the logarithms of the network sizes needed to achieve the optimal convergence rate. This
provides a quantitative measure for evaluating the relative merits of network structures. We
quantitatively demonstrate that deep networks have advantages over shallow networks in the
sense that they achieve the same error bound with a smaller network size.

The remainder of the paper is organized as follows. In Section 2, we describe the setup of
the problem and the class of ReLU activated feedforward neural networks used in estimat-
ing the regression function. In Section 3, we present a basic inequality for the excess risk in
terms of the stochastic and approximation errors and describe our approach to the analysis
of these errors. We also establish a novel approximation error bound for the Hölder smooth
functions with smoothness index β > 0 using ReLU activated neural networks, In Section 4,
we provide sufficient conditions under which the neural regression estimator possesses the
basic consistency property, establish nonasymptotic error bounds for the neural regression es-
timator using deep feedforward neural networks. In Section 5, we present the results on how
the error bounds depend on the network structures and propose a notion of network relative
efficiency between two types of neural networks, defined as the ratio of the logarithms of the
network sizes needed to achieve the optimal convergence rate. This can be used as a quanti-
tative measure for evaluating the relative merits of different network structures. In Section 6,
we show that the neural regression estimator can circumvent the curse of dimensionality if
the data distribution is supported on an (approximate) low-dimensional manifold or a set with
a low Minkowski dimension. Detailed comparison between our results and the related works
are presented in Section 7. Concluding remarks are given in Section 8.

2. Preliminaries. In this section, we describe the basic setup of nonparametric regres-
sion and define the excess risk and the prediction error for which we wish to establish
nonasymptotic error bounds. We also describe the structure of feedforward neural networks
to be used in the estimation of the regression function.

2.1. Least squares estimation. A basic paradigm for estimating f0 is to minimize the
mean squared error or the L2 risk. For a possibly random function f , let Z ≡ (X,Y ) be a
random vector independent of f . The L2 risk is defined by L(f ) = EZ|Y − f (X)|2. At the
population level, the least-squares estimation is to find a measurable function f ∗ : Rd → R

satisfying

f ∗ := arg min
f

L(f ) = arg min
f

EZ

∣∣Y − f (X)
∣∣2.

Under the assumption that E(η|X) = 0, the underlying regression function f0 is the optimal
solution f ∗ on X . However, in applications, the distribution of (X,Y ) is typically unknown
and only a random sample S ≡ {(Xi, Yi)}ni=1 is available. Let

(2) Ln(f ) =
n∑

i=1

∣∣Yi − f (Xi)
∣∣2/n
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be the empirical risk of f on the sample S. Based on the observed random sample, our
primary goal is to construct an estimators of f0 within a certain class of functions Fn by min-
imizing the empirical risk. Such an estimator is called the empirical risk minimizer (ERM),
defined by

(3) f̂n ∈ arg min
f ∈Fn

Ln(f ).

Throughout the paper, we choose Fn to be a function class consisting of feedforward neural
networks. For any estimator f̂n, we evaluate its quality via its excess risk, defined as the
difference between the L2 risks of f̂n and f0,

L(f̂n) − L(f0) = EZ

∣∣Y − f̂n(X)
∣∣2 −EZ

∣∣Y − f0(X)
∣∣2.

Because of the simple form of the least squares loss, the excess risk can be simply expressed
as

‖f̂n − f0‖2
L2(ν)

= EX

∣∣f̂n(X) − f0(X)
∣∣2,

where ν denotes the marginal distribution of X. A good estimator f̂n should have a small
excess risk ‖f̂n −f0‖2

L2(ν)
. Thereafter, we focus on deriving the nonasymptotic upper bounds

of the excess risk ‖f̂n − f0‖2
L2(ν)

and the prediction error ES‖f̂n − f0‖2
L2(ν)

.

2.2. ReLU feedforward neural networks. In recent years, deep neural network model-
ing has achieved impressive successes in many applications. Also, neural network functions
have proven to be an effective approach for approximating high-dimensional functions. We
consider regression function estimators based on the feedforward neural networks with rec-
tified linear unit (ReLU) activation function. Specifically, we set the function class Fn to be
FD,W,U,S,B , a class of feedforward neural networks fφ : Rd →R with parameter φ, depth D,
width W , size S , number of neurons U and fφ satisfying ‖fφ‖∞ ≤ B for some 0 < B < ∞,
where ‖f ‖∞ is the sup-norm of a function f . Note that the network parameters may depend
on the sample size n, but the dependence is omitted in the notation for simplicity. A brief
description of the feedforward neural networks are given below.

We begin with the multi-layer perceptron (MLP), an important and widely used subclass
of feedforward neural networks in practice. The architecture of an MLP can be expressed as
a composition of a series of functions

fφ(x) = LD ◦ σ ◦LD−1 ◦ σ ◦ · · · ◦ σ ◦L1 ◦ σ ◦L0(x), x ∈ R
p0,

where p0 = d and σ(x) = max(0, x) is the rectified linear unit (ReLU) activation function
(defined for each component of x if x is a vector) and Li (x) = Wix + bi , i = 0,1, . . . ,D,
where Wi ∈ R

pi+1×pi is a weight matrix, pi is the width (the number of neurons or com-
putational units) of the ith layer, and bi ∈ R

pi+1 is the bias vector in the ith linear trans-
formation Li . The input data consisting of predictor values is the first layer and the output
is the last layer. Such a network fφ has D hidden layers and (D + 2) layers in total. We
use a (D + 2)-vector (p0,p1, . . . , pD,pD+1)

� to describe the width of each layer; particu-
larly, p0 = d is the dimension of the input X and pD+1 = 1 is the dimension of the response
Y in model (1). The width W is defined as the maximum width of hidden layers, that is,
W = max{p1, . . . , pD}; the size S is defined as the total number of parameters in the net-
work fφ , that is, S = ∑D

i=0{pi+1 × (pi + 1)}; the number of neurons U is defined as the
number of computational units in hidden layers, that is, U = ∑D

i=1 pi . Note that the neurons
in consecutive layers of a MLP are connected to each other via linear transformation matrices
Wi , i = 0,1, . . . ,D. In other words, an MLP is fully connected between consecutive layers
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and has no other connections. For an MLP class FD,U,W,S,B, its parameters satisfy the simple
relationship

max{W,D} ≤ S ≤W(d + 1) + (
W2 +W

)
(D − 1) +W + 1 = O

(
W2D

)
.

The network parameters can depend on the sample size n, that is, S = Sn, D = Dn, W = Wn,
and B = Bn. This makes it possible to approximate the target regression function by neural
networks as n increases. For notational simplicity, we omit the subscript below. The approx-
imation and excess error rates will be determined in part by how these network parameters
depend on n.

Different from multilayer perceptrons, a general feedforward neural network may not be
fully connected. For such a network, each neuron in layer i may be connected to only a
small subset of neurons in layer i + 1. The total number of parameters S is reduced and the
computational cost required to evaluate the network will also be reduced.

Though our discussion focuses on multi-layer perceptrons due to their simplicity, our
theoretical results are valid for general feedforward neural networks. Moreover, our results
for ReLU networks can be extended to networks with piecewise-linear activation functions
without further difficulty, based on the approximation results (Yarotsky (2017)) and the VC-
dimension bounds (Bartlett et al. (2019)) for piecewise linear neural networks.

3. Basic error analysis. In this section, we present a basic inequality for the excess risk
in terms of the stochastic and approximation errors and describe our approach to the analysis
of these errors.

3.1. A basic inequality. To begin with, we give a basic upper bound on the excess risk
of the empirical risk minimizer. For a general loss function L and any estimator f̂n belong-
ing to a function class Fn, its excess risk can be decomposed as (Mohri, Rostamizadeh and
Talwalkar (2018)):

L(f̂n) − L(f0) =
{
L(f̂n) − inf

f ∈Fn

L(f )
}

+
{

inf
f ∈Fn

L(f ) − L(f0)
}
.

The first term of the right hand side is the stochastic error, and the second term is the ap-
proximation error. The stochastic error depends on the estimator f̂n, which measures the
difference of the error of f̂n and the best one in Fn. The approximation error depends on
the function class Fn and the target f0, which measures how well the function f0 can be
approximated using Fn with respect to the loss L.

For least squares estimation, the loss function L is the L2 loss and f̂n is the ERM defined
in (3). We first establish an upper bound on the excess risk of f̂n with least squares loss.

LEMMA 3.1. For any random sample S = {(Xi, Yi)}ni=1, the excess risk of ERM satisfies

ES

[‖f̂n − f0‖2
L2(ν)

] = ES

[
L(f̂n) − L(f0)

]
≤ ES

[
L(f0) − 2Ln(f̂n) + L(f̂n)

] + 2 inf
f ∈Fn

‖f − f0‖2
L2(ν)

.

By Lemma 3.1, the excess risk of ERM is bounded above by the sum of two terms:
the stochastic error bound ES[L(f0) − 2Ln(f̂n) + L(f̂n)] and the approximation error
inff ∈Fn ‖f − f0‖2

L2(ν)
. The first term ES[L(f0) − 2Ln(f̂n) + L(f̂n)] can be bounded by

the complexity of Fn using the empirical process theory (van der Vaart and Wellner (1996),
Anthony and Bartlett (1999), Bartlett et al. (2019)). The second term inff ∈Fn ‖f − f0‖2

L2(ν)

measures the approximation error of the function class Fn to f0. The approximation of high-
dimensional functions using neural networks has been studied by many authors, some recent
works include Lu et al. (2021), Shen, Yang and Zhang (2019), Shen, Yang and Zhang (2022),
Yarotsky (2017), Yarotsky (2018), Shen, Yang and Zhang (2020), among others.
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3.2. Stochastic error. In this subsection, we focus on the stochastic error of ERM imple-
mented using the feedforward neural networks and establish an upper bound on the prediction
error, or the expected excess risk. For the least-squares estimator of neural networks nonpara-
metric regression, oracle inequalities for a bounded response variable were studied by Györfi
et al. (2002) and Farrell, Liang and Misra (2021). Without the boundedness assumption on
Y , Bauer and Kohler (2019), Schmidt-Hieber (2020) derived the oracle inequality for a sub-
Gaussian Y . We consider a subexponentially distributed Y .

ASSUMPTION 1. The response variable Y is subexponentially distributed, that is, there
exists a constant σY > 0 such that E exp(σY |Y |) < ∞.

For a class F of functions: X → R, its pseudo dimension, denoted by Pdim(F), is the
largest integer m for which there exists (x1, . . . , xm, y1, . . . , ym) ∈ Xm ×R

m such that for any
(b1, . . . , bm) ∈ {0,1}m there exists f ∈ F such that ∀i : f (xi) > yi ⇐⇒ bi = 1 (Anthony
and Bartlett (1999), Bartlett et al. (2019)). For a class of real-valued functions generated by
neural networks, pseudo dimension is a natural measure of its complexity. In particular, if
F is the class of functions generated by a neural network with a fixed architecture and fixed
activation functions, we have Pdim(F) = VCdim(F) (Theorem 14.1 in Anthony and Bartlett
(1999)) where VCdim(F) is the VC dimension of F . In our results, we require the sample
size n to be greater than the pseudo dimension of the class of neural networks considered.

For a given sequence x = (x1, . . . , xn) ∈ X n, let Fn|x = {(f (x1), . . . , f (xn) : f ∈ Fn}
be the subset of R

n. For a positive number δ, let N (δ,‖ · ‖∞,Fn|x) be the cover-
ing number of Fn|x under the norm ‖ · ‖∞ with radius δ. Define the uniform covering
number Nn(δ,‖ · ‖∞,Fn) to be the maximum over all x ∈ X of the covering number
N (δ,‖ · ‖∞,Fn|x), that is,

(4) Nn

(
δ,‖ · ‖∞,Fn

) = max
{
N

(
δ,‖ · ‖∞,Fn|x) : x ∈ X

}
.

LEMMA 3.2. Consider the d-variate nonparametric regression model in (1) with an un-
known regression function f0. Let Fn = FD,W,U,S,B be the class of feedforward neural net-
works with a continuous piecewise-linear activation function with finitely many inflection
points and f̂n ∈ arg minf ∈Fn Ln(f ) be the empirical risk minimizer over Fn. Assume that
Assumption 1 holds and ‖f0‖∞ ≤ B for B ≥ 1. Then, for n ≥ Pdim(Fn)/2,

(5) ES

[
L(f0) − 2Ln(f̂n) + L(f̂n)

] ≤ c0B4(logn)4 1

n
logN2n

(
n−1,‖ · ‖∞,Fn

)
,

where c0 > 0 is a constant independent of d , n, B, D, W and S , and

(6) E‖f̂n − f0‖2
L2(ν)

≤ C0B5(logn)5 1

n
SD log(S) + 2 inf

f ∈Fn

‖f − f0‖2
L2(ν)

,

where C0 > 0 is a constant independent of d , n, B, D, W and S .

The stochastic error is bounded by a term determined by the metric entropy of Fn in
(5), which is measured by the covering number of Fn. To obtain (6), we further bound
the covering number of Fn by its pseudo dimension (VC dimension). Based on Bartlett
et al. (2019), the pseudo dimension (VC dimension) of Fn with piecewise-linear activa-
tion function can be further contained and represented by its parameters D and S , that is,
Pdim(Fn) = O(SD log(S)). This leads to the upper bound for the prediction error by the
sum of the stochastic error and the approximation error of Fn to f0 in (6).

Results similar to Lemma 3.2 with slightly different constants have been obtained for a
bounded Y (Györfi et al. (2002)) and a sub-Gaussian Y (Bauer and Kohler (2019), Schmidt-
Hieber (2020)).
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3.3. Approximation error. The approximation error depends on Fn = FD,W,U,S,B
through its parameters and is related to the smoothness of f0. The existing works on ap-
proximation posit different smoothness assumptions on f0. For example, Bauer and Kohler
(2019) assume that f0 is β-Hölder smooth with β ≥ 1, that is, all partial derivatives of f0
up to order �β� exist and the partial derivatives of order �β� are β − �β� Hölder contin-
uous. Farrell, Liang and Misra (2021) requires that f0 lies in a Sobolev ball with smooth-
ness β ∈ N

+, that is, f0(x) ∈ Wβ,∞([−1,1]d). Approximation theories on Korobov spaces
(Mohri, Rostamizadeh and Talwalkar (2018)), Besov spaces (Suzuki (2018)) or function
space with f0 ∈ Cβ[0,1]d with integer β ≥ 1 can be found in Liang and Srikant (2016), Lu
et al. (2017), Yarotsky (2017) and Lu et al. (2021).

Here, we assume that f0 is a β-Hölder smooth function as stated in Assumption 2 below.
We aim to develop an approximation theory by utilizing the smoothness of f0 and obtain an
explicit approximation error bound in terms of the network depth and width with an improved
prefactor compared to previous results.

Let β = s + r > 0, r ∈ (0,1] and s = �β� ∈ N0, where �β� denotes the largest integer
strictly smaller than β and N0 denotes the set of nonnegative integers. For a finite constant
B0 > 0, the Hölder class of functions Hβ([0,1]d,B0) is defined as

(7)

Hβ([0,1]d,B0
)

=
{
f : [0,1]d →R, max‖α‖1≤s

∥∥∂αf
∥∥∞ ≤ B0, max‖α‖1=s

sup
x �=y

|∂αf (x) − ∂αf (y)|
‖x − y‖r

2
≤ B0

}
,

where ∂α = ∂α1 · · · ∂αd with α = (α1, . . . , αd)� ∈ N
d
0 and ‖α‖1 = ∑d

i=1 αi .

ASSUMPTION 2 (Hölder smoothness). The target function f0 belongs to the Hölder class
Hβ([0,1]d,B0) defined in (7) for a given β > 0 and a finite constant B0 > 0.

Under Assumption 2, all partial derivatives of f0 up to the �β�th order exist. When β ∈
(0,1), f0 is a Hölder continuous function with order β and Hölder constant B0; when β = 1,
f0 is a Lipschitz function with Lipschitz constant B0; when β > 1, f0 belongs to the Cs

class with s = �β�, which is a class of functions whose sth partial derivatives exist and are
bounded.

In this work, the function class Fn consists of feedforward neural networks with the ReLU
activation function. An important result on deep neural network approximation proved by
Yarotsky (2017) is the following: for any ε ∈ (0,1), any d , β , and any f0 in the Sobolev
ball Wβ,∞([0,1]d) with β > 0, there exists a ReLU network f̂ with depth D at most
c{log(1/ε) + 1}, size S and number of neurons U at most cε−d/β{log(1/ε) + 1} such that
‖f̂ − f0‖∞ ≡ maxx∈[0,1]d |f̂ (x) − f0(x)| ≤ ε, where c is some constant depending on d

and β . In particular, it is required that the constant c = O(2d), an exponential rate of d , due
to the technicality in the proof. The main idea of Yarotsky (2017) is to show that, small neu-
ral networks can approximate polynomials well locally, and stacked neural networks using
2d small subnetworks can further approximate smooth function by approximating its Tay-
lor expansions. Yarotsky (2018) derived the optimal rate of approximation for continuous
functions by deep ReLU networks in terms of the network size S and the modulus of conti-
nuity of f0. He showed that inff ∈Fn ‖f − f0‖∞ ≤ c1ωf0(c2S−p/d) for some p ∈ [1,2] and
some constants c1, c2 possibly depending on d , p but not S , f0. The upper bound holds
for any p ∈ (1,2] if the network Fn = FD,W,U,S,B satisfies D ≥ c3Sp−1/ log(S) for some
constant c3 possibly depending on p and d . Shen, Yang and Zhang (2022) established the
optimal rate of approximation for Hölder continuous functions by deep ReLU networks in
terms of both width and depth. They showed by construction that deep ReLU networks with
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width W = O((max{d�N1/d�,N +2})) and depth D = O(L) can approximate a Hölder con-
tinuous function on [0,1]d with an approximation rate O(B0

√
d(N2L2 logN)−β/d), where

β ∈ (0,1] and B0 > 0 are the Hölder order and constant, respectively.
Several recent studies have considered approximation properties of deep neural networks

(Chen, Jiang and Zhao (2019), Nakada and Imaizumi (2020), Schmidt-Hieber (2019, 2020)).
These studies used a construction similar to that of Yarotsky (2017). A common feature of
these results is that, the prefactor of the approximation error is of the order O(ad) for some
a ≥ 2 and the size S or the width W of the network grows at least exponentially in d . Unfor-
tunately, a prefactor of the order O(ad) with a ≥ 2 can be very large even for a moderate d ,
which severely deteriorates the quality of the error bound. For example, for a typical genomic
dataset, the dimensionality d = 20,531 and the sample size n = 801 (Cancer Genome Atlas
Research Network et al. (2013)), which leads to a prohibitively large prefactor.

Next, we present a new ReLU network approximation result for Hölder smooth functions
in Hβ([0,1]d,B0) with a prefactor in the error bound only depending on the dimension d

polynomially.

THEOREM 3.3. Assume that f ∈ Hβ([0,1]d,B0) with β = s + r , s ∈ N0 and r ∈ (0,1].
For any M,N ∈ N

+, there exists a function φ0 implemented by a ReLU network with width
W = 38(�β�+1)2d�β�+1N�log2(8N)� and depth D = 21(�β�+1)2M�log2(8M)� such that∣∣f (x) − φ0(x)

∣∣ ≤ 18B0
(�β� + 1

)2
d�β�+(β∨1)/2(NM)−2β/d,

for all x ∈ [0,1]d\�([0,1]d,K, δ), where a ∨ b := max{a, b}, �a� denotes the smallest inte-
ger no less than a, and

�
([0,1]d,K, δ

) =
d⋃

i=1

{
x = [x1, x2, . . . , xd ]� : xi ∈

K−1⋃
k=1

(k/K − δ, k/K)

}
,

where K = �(MN)2/d� and δ is an arbitrary number in (0,1/(3K)].

Theorem 3.3 is inspired by and builds on the results of Shen, Yang and Zhang (2020)
and Lu et al. (2021). Similar to the results of Shen, Yang and Zhang (2020) and Lu et al.
(2021), the approximation error bound in Theorem 3.3 has the optimal approximation rate
(NM)−2β/d . This error bound is nonasymptotic in the sense that it is valid for an arbitrary
network architecture with width and depth specified by N and M . The error bound is also
explicit since it does not any unknown or undefined parameters. Moreover, our error bound
is given in terms of the network width and depth, which is more informative than the bounds
just in terms of the network size as in many existing works.

However, the prefactor in the approximation error bound and the network width in Theo-
rem 3.3 are different from those in the result of Lu et al. (2021), who showed that, for a pos-
itive integer β and with the network width and depth chosen to be 16βd+1(N + 2) log2(8N)

and 18β2(M + 2) log2(4M), respectively, the approximation error bound is of the form
84(β + 1)d8β(NM)−2β/d . The prefactor in this bound depends on d exponentially through
the term (β + 1)d8β . In comparison, the prefactor in the error bound in Theorem 3.3 depends
on d polynomially through (�β� + 1)2d�β�+(β∨1)/2. This is a significant improvement for a
large d with a moderate β , which is a probable situation in nonparametric regression. Even
in the unlikely case when β = O(d) is a large number, our prefactor is still comparable with
O((β + 1)d8β).

The basic idea of our proof follows that of Lu et al. (2021): we approximate a Hölder
smooth function f using Taylor expansion locally over a discretization of [0,1]d , however,
we have a more careful control of the number of the partial derivatives. More specifically, our
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proof consists of three steps: (a) we first construct a network ψ that discretizes [0,1]d ; (b) we
construct a second network φα to approximate the Taylor coefficient; (c) We construct a third
network Pα(x) to approximate the polynomial xα . Putting all these together, we approximate
f by

φ(x) = ∑
‖α‖1≤s

φ×
(

φα(x)

α! ,Pα

(
x − ψ(x)

))
,

where φ×(·, ·) is a network function approximating the product function of two scalar inputs.
To use the information of higher-order smoothness, the existing results such as Yarotsky

(2017) and Lu et al. (2021) are also based on the idea of approximating the Taylor expansion
of the target function locally on a discretized hyper cube. Two key components of the tech-
nique used in the proof affects the prefactor of the approximation error: (a) how the hyper
cube is discretized and the target function is locally approximated; (b) how the number of
partial derivatives is upper bounded. We use the method of discretization and local approx-
imation in Lu et al. (2021), which avoids the 2d prefactor appeared in Yarotsky (2017) and
Schmidt-Hieber (2020). At the same time, we changed the way of bounding the number of
partial derivatives, which leads to a O(dβ) prefactor instead of O(8β(β + 1)d) in Lu et al.
(2021) and O((2e)d(β + 1)d) in Theorem 5 of Schmidt-Hieber (2020). The dβ prefactor is
clearly an improvement over (β + 1)d when d is large and β is moderate.

Based on Theorem 3.3, we can establish the approximation error bounds under the Lp(ν)

norm for p ∈ (0,∞) with a distribution ν absolutely continuous with respect to the Lebesgue
measure on R

d . For the approximation result under the L∞([0,1]d) norm, we have the fol-
lowing corollary of Theorem 3.3.

COROLLARY 3.1. Assume that f ∈ Hβ([0,1]d,B0) with β = s + r , s ∈ N0 and
r ∈ (0,1]. For any M,N ∈ N

+, there exists a function φ implemented by a ReLU net-
work with width W = 38(�β� + 1)23dd�β�+1N�log2(8N)� and depth D = 21(�β� +
1)2M�log2(8M)� + 2d such that∣∣f (x) − φ(x)

∣∣ ≤ 19B0
(�β� + 1

)2
d�β�+(β∨1)/2(NM)−2β/d, x ∈ [0,1]d .

The approximation error under L∞([0,1]d) is the same as that of Theorem 3.3, at the price
that the network width should be as large as 3d times of that in Theorem 3.3.

Lastly, we note that, by Proposition 1 of Yarotsky (2017), in terms of the computational
power and complexity of a neural network, there is no substantial difference in using the
ReLU activation function and other piece-wise linear activation functions with finitely many
inflection points. To elaborate, let ζ : R → R be any continuous piece-wise linear function
with M inflection points (1 ≤ M < ∞). If a network fζ is activated by ζ , of depth D, size S
and the number of neurons U , then there exists a ReLU activated network with depth D, size
not more than (M + 1)2S , the number of neurons not more than (M + 1)U , that computes
the same function as fζ . Conversely, let fσ be a ReLU activated network of depth D, size S
and the number of neurons U , then there exists a network with activation function ζ , of depth
D, size 4S and the number of neurons 2U that computes the same function fσ on a bounded
subset of Rd .

4. Nonasymptotic error bounds. Lemma 3.2 provides the basis for establishing con-
sistency and nonasymptotic error bounds of the ERM. To ensure consistency, the two items
on the right hand side of (6) should vanish as n → ∞. For the nonasymptotic error bound,
the exact rate of convergence will be determined by a trade-off between the stochastic error
and the approximation error. We first state a consistency result and then present the result on
nonasymptotic error bounds of nonparametric regression estimator using neural networks.
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THEOREM 4.1 (Consistency). Under model (1), suppose that Assumption 1 holds, the
target function f0 is continuous on [0,1]d , and ‖f0‖∞ ≤ B for some B ≥ 1, and the function
class of feedforward neural networks Fn = FD,W,U,S,B with continuous piecewise-linear
activation function with finitely many inflection points satisfies

S → ∞ and B5(logn)5 1

n
SD log(S) → 0 as n → ∞.

Then, the prediction error of the empirical risk minimizer f̂n is consistent in the sense that

E‖f̂n − f0‖2
L2(ν)

→ 0 as n → ∞.

Theorem 4.1 is a direct consequence of Lemma 3.2 and Theorem 1 on the approximation
of continuous function by ReLU neural networks in Yarotsky (2018). The conditions in Theo-
rem 4.1 are sufficient for the consistency of the deep neural regression, and they are relatively
mild in terms of the assumptions on the underlying target f0 and the distribution of Y . van
de Geer and Wegkamp (1996) gave sufficient and necessary conditions for the consistency
of the least squares estimation in nonparametric regression model (1) under the assumptions
that f0 ∈ Fn, the error η is symmetric about 0 and it has zero point mass at 0. Their results
are for the convergence of the empirical error ‖f̂n − f0‖2

n := ∑n
i=1 |f̂n(Xi) − f0(Xi)|2/n.

THEOREM 4.2 (Nonasymptotic error bounds). Under model (1), suppose that Assump-
tions 1–2 hold, the probability measure of the covariate ν is absolutely continuous with re-
spect to the Lebesgue measure and B ≥ max{B0,1}. Then, for any N,M ∈ N

+, the func-
tion class of ReLU multi-layer perceptrons Fn = FD,W,U,S,B with width W = 38(�β� +
1)2d�β�+1N�log2(8N)� and depth D = 21(�β� + 1)2M�log2(8M)�, for n ≥ Pdim(Fn)/2,
the prediction error of the ERM f̂n satisfies

E‖f̂n − f0‖2
L2(ν)

≤ CB5(logn)5 1

n
SD log(S) + 324B2

0
(�β� + 1

)4
d2�β�+β∨1(NM)−4β/d,

where C > 0 is a constant not depending on n, d , B, S , D, B0, β , N or M .

Under the assumption that the target function f0 belongs to a Hölder class, nonasymp-
totic error bounds can be established. Similar results have been shown by Bauer and Kohler
(2019), Nakada and Imaizumi (2020), Schmidt-Hieber (2020) and Kohler and Langer (2021).
Our error bound is different from the existing ones in the sense that the prefactor of our ap-
proximation error depends on d polynomially, instead of exponentially.

The upper bound of the prediction error in Theorem 4.2 is a sum of the upper bound
on the stochastic error CB5SD log(S)(logn)5/n and the approximation error 324B2

0 (�β� +
1)4d2�β�+β∨1(NM)−4β/d . Two important aspects worth noting. First, our error bound is
nonasymptotic and explicit in the sense that no unclearly defined constant is involved. The
prefactor 324B2

0 (�β� + 1)4d2�β�+β∨1 in the upper bound of approximation error depends
on the dimension d polynomially, drastically different from the exponential dependence
in existing results. Second, the approximation rate (NM)−4β/d is in terms of the width
W = 38(�β� + 1)2d�β�+1N�log2(8N)� and depth D = 21(�β� + 1)2M�log2(8M)�, rather
than just the size S of the network. This provides insights into the relative merits of different
the network designs and provides some qualitative guidance on the network design.

To achieve the best error rate, we need to balance the trade-off between the stochastic
error and the approximation error. On one hand, the upper bound for the stochastic error
CB5SD log(S)(logn)5/n increases as the complexity and richness of FD,W,U,S,B increase;
larger D, S and B lead to a larger upper bound on the stochastic error. On the other hand, the
upper bound for the approximation error 324B2

0 (�β� + 1)4d2�β�+β∨1(NM)−4β/d decreases
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as the size of FD,W,U,S,B increases; larger D and W lead to smaller upper bound on the
approximation error.

In Section 5, we present the specific error bounds for various designs of network struc-
tures, including detailed descriptions of how the prefactors in these bounds depend on the
dimension d of the predictor.

5. Comparing network structures. Theorem 4.2 provides an explicit expression of
how the nonasymptotic error bounds depend on the network parameters, which can be used
to quantify the relative efficiency of networks with different shapes in terms of the network
size needed to achieve the optimal error bound. The calculations given below demonstrate the
advantages of deep networks over shallow ones in the sense that deep networks can achieve
the same error bound as the shallow networks with a fewer total number of parameters in the
network. We will make this statement quantitatively clear in terms of the notion of relative
efficiency between networks defined below.

5.1. Relative efficiency of network structures. Let S1 and S2 be the sizes of two neural
networks N1 and N2 needed to achieve the same nonasymptotic error bound as given in
Theorem 4.2. We define the network relative efficiency between two networks N1 and N2 as

(8) NRE(N1,N2) = logS2

logS1
.

Here we use the logarithm of the size because the size of the network for achieving the opti-
mal error rate has the form S = [nd/(d+2β)]s for some s > 0 up to a factor only involving the
power of logn, as will be seen below. Let r = NRE(N1,N2). In terms of sample complexity,
this definition of relative efficiency implies that, if it takes a sample of size n for network N1

to achieve the optimal error rate, then it will take a sample of size nr to achieve the same
error rate.

For any multilayer neural network in FD,W,U,S,B , its parameters naturally satisfy

(9) max{W,D} ≤ S ≤W(d + 1) + (
W2 +W

)
(D − 1) +W + 1 = O

(
W2D

)
.

Corollaries 5.1–5.3 below follow from this relationship and Theorem 4.2.

COROLLARY 5.1 (Deep with fixed width networks). Under model (1), suppose that
Assumptions 1–2 hold, ν is absolutely continuous with respect to the Lebesgue mea-
sure, and B ≥ max{1,B0}. Then, for any N ∈ N

+ and the function class of ReLU multi-
layer perceptrons Fn = FD,W,U,S,B with depth D, width W and size S given by D =
21(�β� + 1)2�nd/2(d+2β) log2(8nd/2(d+2β))�, W = 38(�β� + 1)2ds+1N�log2(8N)�, S =
O(nd/2(d+2β) log2 n), the ERM f̂n ∈ arg minf ∈Fn Ln(f ) satisfies

E‖f̂n − f0‖2
L2(ν)

≤ {
c1B5(logn)8 + 324B2

0d2�β�+β∨1N−4β/d}(�β� + 1
)4

n−2β/(d+2β)

≤ c2B5N−4β/d(�β� + 1
)4

d2�β�+β∨1(logn)8n−2β/(d+2β),

for n ≥ Pdim(Fn)/2, where c1, c2 > 0 are constants which do not depend on n, B, B0, β

or N .

Corollary 5.1 is a direct consequence of Theorem 4.2. We note that the prefactor depends
on d at most polynomially.
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COROLLARY 5.2 (Wide with fixed depth networks). Under model (1), suppose that
Assumptions 1–2 hold, ν is absolutely continuous with respect to Lebesgue measure
and B ≥ max{1,B0}. Then, for any M ∈ N

+ and the function class of ReLU multi-
layer perceptrons Fn = FD,W,U,S,B with depth D, width W and size S given by D =
21(�β� + 1)2M�log2(8M)�, W = 38(�β� + 1)2d�β�+1�nd/2(d+2β) log2(8nd/2(d+2β))�, S =
O(nd/(d+2β)(log2 n)2), the ERM f̂n ∈ arg minf ∈Fn Ln(f ) satisfies

E‖f̂n − f0‖2
L2(ν)

≤ {
c1B5(logn)8 + 324B2

0d2�β�+β∨1M−4β/d}(�β� + 1
)4

n−2β/(d+2β)

≤ c2B5M−4β/d(�β� + 1
)4

d2�β�+β∨1n−2β/(d+2β)(logn)8,

for 2n ≥ Pdim(Fn), where c1, c2 > 0 are constants which do not depend on n, B, B0, β or M .

By Corollaries 5.1 and 5.2, the size of the deep with fixed width network SDFW and the size
of the wide with fixed depth network SWFD to achieve the same error rate are

(10) SDFW = O
(
nd/2(d+2β)(logn)

)
and SWFD = O

(
nd/(d+2β)(logn)2)

,

respectively. So we have the relationship SDFW ≈ √
SWFD. The relative efficiency of these

two networks as defined in (8) is

(11) NRE(NDFW,NWFD) = logSWFD

logSDFW
= 2.

Thus deep networks are twice as efficient as wide networks in terms of NRE. In terms of
sample complexity, (11) means that, if the sample size needed for a deep with fixed width
network to achieve the optimal error rate is n, then it is about n2 for a wide with fixed depth
network.

Limitations of the approximation capabilities of shallow neural networks and the advan-
tages of deep neural networks have been well studied (Chui, Li and Mhaskar (1996), Eldan
and Shamir (2016), Telgarsky (2016)). In Telgarsky (2016), it was shown that for any inte-
ger k ≥ 1 and dimension d ≥ 1, there exists a function computed by a ReLU neural network
with 2k3 + 8 layers, 3k2 + 12 neurons and 4 + d different parameters such that it cannot be
approximated by networks activated by piecewise polynomial functions with no more than
k layers and O(2k) neurons. In addition, Lu et al. (2017) showed that depth can be more
effective than width for the expressiveness of ReLU networks. Our calculation directly links
the network structure with the sample complexity in the context of nonparametric regression.

COROLLARY 5.3 (Deep and wide networks). Under model (1), suppose that Assump-
tions 1–2 hold, ν is absolutely continuous with respect to Lebesgue measure and B ≥
max{1,B0}. Then, for the function class of ReLU multilayer perceptrons Fn = FD,W,U,S,B
with depth D, width W and size S given by

W = O
(
nd/4(d+2β) log2(n)

)
, D = O

(
nd/4(d+2β) log2(n)

)
,

S = O
(
n3d/4(d+2β)(logn)4)

,

the ERM f̂n satisfies

E‖f̂n − f0‖2
L2(ν)

≤ {
c1B5(logn)11 + 324B2

0d2�β�+β∨1N−4β/d}(�β� + 1
)4

n−2β/(d+2β)

≤ c2B5(�β� + 1
)4

d2�β�+β∨1n−2β/(d+2β)(logn)11,

for 2n ≥ Pdim(Fn), where c1, c2 > 0 are constants which do not depend on n, B, B0 or β .
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By Corollary 5.3, the size SDAW of the deep and wide network achieving the optimal error
bound is

(12) SDAW = O
(
n3d/4(d+2β)(logn)−8)

.

Combining (10) and (12) and ignoring the logn factors, we have S2
DFW ≈ SWFD ≈ S4/3

DAW.
Therefore, the relative efficiencies are

NRE(NDFW,NDAW) = 3/4

1/2
= 3

2
and NRE(NWFD,NDAW) = 3/4

1
= 3

4
.

The relative sample complexity of a deep with fixed width network versus a deep and wide
network is n : n3/2; and the relative sample complexity of a wide with fixed depth network
versus a deep and wide network is n : n3/4.

We note that the choices of the network parameters are not unique to achieve the optimal
convergence rate. For deep and wide networks, there are multiple choices that attain the op-
timal rate. For example, the following two different specifications of the network parameters
achieve the same convergence rate:

D = 21
(�β� + 1

)2⌈
nd/2(d+2β) log2

(
8nd/2(d+2β))⌉,

W = 38
(�β� + 1

)2
d�β�+1(logn)

⌈
log2

(
8(logn)

)⌉
, S = O

(
nd/2(d+2β)(logn)4)

,

and

D = 21
(�β� + 1

)2⌈
(logn) log2

(
8(logn)

)⌉
,

W = 38
(�β� + 1

)2
d�β�+1⌈

nd/2(d+2β) log2
(
8nd/2(d+2β))⌉, S = O

(
nd/(d+2β)(logn)4)

.

The above calculations suggest that there is no unique optimal selection of network pa-
rameters for achieving the optimal rate of convergence in nonparametric regression. Instead,
we should consider the efficient design of the network structure for achieving the optimal
convergence rate with the minimal network size.

5.2. Efficient design of rectangle networks. We now discuss the efficient design of rect-
angle networks, that is, networks with equal width for each hidden layer. For such networks
with a regular shape, we have an exact relationship between the size of the network and the
depth and the width:

(13) S = W(d + 1) + (
W2 +W

)
(D − 1) +W + 1 = O

(
W2D

)
.

Based on this relationship and Theorem 4.2, we can determine the depth and the width of the
network to achieve the optimal error with the minimal size.

Specifically, to achieve the optimal rate with respect to the sample size n with a minimal
network size, we can set

W = 114
(�β� + 1

)2
d�β�+1, D = 21

(�β� + 1
)2⌈

nd/2(d+2β) log2
(
8nd/2(d+2β))⌉,

S = O
(
W2D

) = O
((�β� + 1

)6
d2�β�+2⌈

nd/2(d+2β)(log2 n)
⌉)

.

It is interesting to note that the most efficient network’s shape is a fixed-width rectangle;
its width is a multiple of d�β�+1, a polynomial of dimension d , but does not depend on
the sample size n. Its depth D = 21(�β� + 1)2�nd/2(d+2β) log2(8nd/2(d+2β))� ≈ O(

√
n) for

d � β .
The calculation in this subsection suggests that, in designing neural networks for high-

dimensional nonparametric regression with a large n and d � β , we may consider setting the
width of the network to be of the order O(d�β�+1) and the depth to be proportional to

√
n,



704 JIAO, SHEN, LIN AND HUANG

so as to achieve the optimal convergence rate with a minimal number of network parameters.
Qualitatively, this suggests that the depth of the network should be roughly proportional to
the square root of sample size and the width of the network should roughly be proportional
to a polynomial order of the data dimension. However, we note that the design of a network
architecture is very much problem specific and requires careful data-driven tuning in practice.
Also, we did not consider the optimization aspect where deeper neural networks can be more
challenging to optimize. In general, gradient descent and stochastic gradient decent will find
a reasonable solution for the optimization problems in deep leaning tasks with overparame-
terized deep networks, see, for example, Allen-Zhu, Li and Song (2019), Du et al. (2019) and
Nguyen and Pham (2020). Also, the results here are based on the use of feedforward neu-
ral networks in the context of nonparametric regression. In other types of problems such as
image classification using convolutional neural networks, the calculation here may not apply
and new derivations are needed.

6. Circumventing the curse of dimensionality. In many modern statistical and ma-
chine learning problems, the dimension d of the input data can be large, which results in an
extremely slow rate of convergence even if the sample size is big. This problem is known
as the curse of dimensionality. A promising way to mitigate the curse of dimensionality is
to impose additional conditions on the data distribution and the target function f0. In Lem-
mas 3.1 and 3.2, the approximation error inff ∈Fn ‖f − f0‖2

L2(ν)
is defined with respect to the

probability measure ν, this provides us a chance to improve the rate. Although the domain
of f0 is high dimensional, when the support of X is concentrated on some neighborhood of
a low-dimensional manifold, the upper bound of the approximation error can be much im-
proved in terms of the exponent of the convergence rate (Baraniuk and Wakin (2009), Shen,
Yang and Zhang (2020)).

There have been growing evidence and examples indicating that high-dimensional data
tend to have low-dimensional latent structures in many applications such as image pro-
cessing, video analysis, natural language processing (Belkin and Niyogi (2003), Hoffmann,
Schaal and Vijayakumar (2009)). Goodfellow, Bengio and Courville (2016) suggested that
the approximately low-dimensional manifold assumption is generally correct for images,
supported by two observations. First, natural images are locally connected, with each im-
age surrounded by other highly similar images reachable through image transformations
(e.g., contrast, brightness). Second, natural images seem to lie on an approximately low-
dimensional structure, as the probability distribution of images is highly concentrated; uni-
formly sampled pixels can hardly assemble a meaningful image. Furthermore, results from
numerical experiments strongly support the low-dimensional manifold hypothesis for many
image datasets (Brand (2002), Fefferman, Mitter and Narayanan (2016), Roweis and Saul
(2000), Tenenbaum, de Silva and Langford (2000)). For example, for the well-known bench-
mark image datasets MNIST (LeCun, Cortes and Burges (2010)), whose ambient dimen-
sion d = 28 × 28 = 784, CIFAR-10, whose ambient dimension d = 32 × 32 × 3 = 1024
(Krizhevsky (2009)), and ImageNet (Deng et al. (2009)), whose ambient dimension d =
224 × 224 × 3 = 150,528, the estimated intrinsic dimensions of these three datasets are be-
tween 9 and 43 (Pope et al. (2020), Recanatesi et al. (2019)). Therefore, it is important to
study the properties deep nonparametric regression under the assumption that the intrinsic
dimension is lower than its ambient dimension.

In this section, we establish nonasymptotic error bounds for the ERM f̂n under three dif-
ferent cases of low-dimensional support of X: (a) an approximate low-dimensional manifold;
(b) an exact low-dimension manifold; and (c) a low Minkowski dimension set. Case (a) is a
realistic assumption. Case (b) is of theoretical interest, since in this case we can show that
the convergence rate is determined by the exact dimension of the manifold. The Minkowski
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dimension is a more general notion than the topological dimension of a manifold. In partic-
ular, case (c) includes (b) as a special case, but does not include (a). Since the Minkowski
dimension only depends on the metric, it can also be used to measure the dimensionality of
highly nonregular sets (Falconer (2003)).

6.1. Approximate low-dimensional manifold assumption. The assumption that high-
dimensional data tend to lie in the vicinity of a low-dimensional manifold is the basis of
manifold learning (Fefferman, Mitter and Narayanan (2016)). It is also one of the basic as-
sumptions in semisupervised learning (Belkin and Niyogi (2004)). In applications, one rarely
observes data that are located on an exact manifold. It is more reasonable to assume that
they are concentrated on a neighborhood of a low-dimensional manifold. For instance, the
empirical studies by Carlsson (2009) suggest that image data tend to have low intrinsic di-
mensions and be supported on approximate lower-dimensional manifolds. We formally state
the approximate low-dimensional manifold support assumption below.

ASSUMPTION 3. The predictor X is supported on Mρ , a ρ-neighborhood of M ⊂
[0,1]d , where M is a compact dM-dimensional Riemannian submanifold (Lee (2006)) and

Mρ = {
x ∈ [0,1]d : inf

{‖x − y‖2 : y ∈ M
} ≤ ρ

}
, ρ ∈ (0,1).

The following theorem gives excess risk bounds under Assumption 3 and other appropriate
conditions.

THEOREM 6.1 (Nonasymptotic error bound). Under model (1), suppose that Assump-
tions 1–3 hold, the probability measure ν of X is absolutely continuous with respect to the
Lebesgue measure and B ≥ max{1,B0}. Then for any N,M ∈ N

+, the function class of ReLU
multi-layer perceptrons Fn =FD,W,U,S,B with width W = 38(�β�+1)2d

�β�+1
δ N�log2(8N)�

and depth D = 21(�β� + 1)2M�log2(8M)�, the prediction error of the empirical risk mini-
mizer f̂n satisfies

E‖f̂n − f0‖2
L2(ν)

≤ C1B5SD log(S)(logn)5

n
+ (36 + C2)

2B2
0

(1 − δ)2β

(�β� + 1
)4

dd
3�β�
δ (NM)−4β/dδ

for n ≥ Pdim(Fn)/2 and ρ ≤ C2(NM)−2β/dδ (s+1)2d1/2d
3s/2
δ (

√
d/dδ +1−δ)−1(1−δ)1−β ,

where dδ = O(dMlog(d/δ)/δ2) is an integer such that dM ≤ dδ < d for any δ ∈ (0,1), and
C1,C2 > 0 are constants that do not depend on n, B, S , D, B0, β , ρ, δ, N or M .

As in Section 5, to achieve the optimal convergence rate with a minimal network size,
we can set Fn = FD,W,U,S,B to consist of fixed-width networks with W = 114(�β� +
1)2d

�β�+1
δ , D = 21(�β� + 1)2�ndδ/2(dδ+2β) log2(8ndδ/2(dδ+2β))�, S = O(W2D) = O((�β� +

1)6d
2�β�+2
δ �ndδ/2(dδ+2β)(log2 n)�). Then the prediction error of f̂n in Theorem 6.1 becomes

E‖f̂n − f0‖2
L2(ν)

≤ C3(1 − δ)−2βB5dd
3�β�+3
δ

(�β� + 1
)9

n−2β/(dδ+2β)(logn)8,(14)

where C3 > 0 is a constant not depending on n, d , dδ , B, S , D, B0, δ or β . We can also con-
sider the relative efficiencies of networks with different shapes in a way completely similar
to those in Section 5.

Theorem 6.1 shows that nonparametric regression using deep neural networks can allevi-
ate the curse of dimensionality under an approximate manifold assumption. This is different
from the hierarchical structure assumption on f0 (Bauer and Kohler (2019), Schmidt-Hieber
(2020)). We note that under the approximate manifold assumption, the dimension of the
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support of X is still d and only shrinks to dM. The convergence rate in (14) depends on
dδ = O(dM log(d)), which is smaller than d but still greater than dM with an extra log(d)

factor. Intuitively, this log(d) factor is due to the fact that the dimension of the approximate
manifold is still d . It is not clear if it is possible to remove the effect of d on the convergence
rate under the approximate low-dimensional manifold assumption. This is a technically chal-
lenging problem and deserves further study in the future.

6.2. Exact low-dimensional manifold assumption. Under the exact manifold support as-
sumption, we show that the log(d) factor in (14) can be removed. We establish error bounds
that achieve the minimax optimal convergence rate with a prefactor only depending linearly
on the ambient dimension d .

ASSUMPTION 4. The predictor X is supported on M ⊂ [0,1]d , where a M is a compact
dM-dimensional Riemannian manifold isometrically embedded in R

d with condition number
(1/τ) and area of surface SM.

For a compact Riemannian manifold M, the condition number (1/τ) controls both local
properties of the manifold (such as curvature) and global properties (such as self-avoidance)
(Baraniuk and Wakin (2009)). Some authors refers to τ as the geometric concept “reach”
(Aamari et al. (2019), Federer (1959)), which is the largest number having the following
property: The open normal bundle about M of radius r is embedded in R

d for all r < τ

(Baraniuk and Wakin (2009), Niyogi, Smale and Weinberger (2008)). Intuitively, at each
point x ∈ M, the radius of the osculating circle is no less than τ , where a large τ prevents
the manifold M to be curvy. Condition number (1/τ) or the reach τ here influences the
complexity of function approximation on M using neural networks.

The surface area SM of a manifold M is defined as the integral of 1 over the manifold with
respect to the Riemannian volume element (Chapter 10, Lee (2003); Chapter 8, Lee (2006);
and Chapter 5, Hubbard and Hubbard (2015)). For example, for the surface area of a d-
dimensional unit ball, this definition gives the well-known result 2πd/2/�(d/2), where � is
the gamma function. For function approximation on M by neural networks, we approximate
the function on a finite number of charts which cover M. Larger surface area SM only leads
to a larger number of charts, which further leads to a wider (linearly in SM) neural network
width and larger prefactor of the approximation error.

THEOREM 6.2 (Nonasymptotic error bound). Under model (1), suppose that As-
sumptions 1–2 and 4 hold, and B ≥ max{1,B0}. Then for any N,M ∈ N

+, the func-
tion class of ReLU multi-layer perceptrons Fn = FD,W,U,S,B with W = 266(�β� +
1)2�SM(6/τ)dM�(dM)�β�+2N�log2(8N)� and depth D = 21(�β� + 1)2M�log2(8M)� +
2dM + 2, the prediction error of the empirical risk minimizer f̂n satisfies

E‖f̂n − f0‖2
L2(ν)

≤ C1B5SD log(S)(logn)5

n
+ C2B

2
0
(�β� + 1

)4
d(dM)3�β�+1(NM)−4β/dM

for n ≥ Pdim(Fn)/2, where C2 > 0 is a constant independent of n, d , dM, B, S , D, N , M ,
β , B0, τ and SM. Furthermore, if we set Fn =FD,W,U,S,B to consist of fixed-width networks
with

W = 798
(�β� + 1

)2⌈
SM(6/τ)dM

⌉
(dM)�β�+2,

D = 21
(�β� + 1

)2⌈
ndM/2(dM+2β) log2

(
8ndM/2(dM+2β))⌉ + 2dM + 2,

S = O
((�β� + 1

)6
d(6/τ)2dM(dM)2�β�+5ndM/2(dM+2β) log2(n)

)
,
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the prediction error of f̂n satisfies

E‖f̂n − f0‖2
L2(ν)

≤ C3B5(�β� + 1
)9

(6/τ)2dM(dM)3�β�+6d(logn)8n−2β/(dM+2β),

where C3 > 0 is a constant independent of n, d , dM, B, B0, β , τ and SM.

Theorem 6.2 shows that the ERM f̂n achieves the optimal minimax rate n−2β/(dM+2β)

up to a logarithmic factor under the exact manifold assumption. Under this assumption, the
optimal rate up to a logarithmic factor has also been obtained by Chen et al. (2022) and
Schmidt-Hieber (2019). Our result differs from these previous ones in two important aspects.
First, the prefactor in the error bound depends on the ambient dimension d linearly instead of
exponentially. Second, the network structure in our result can be more flexible, which does
not need to be fixed-width or fixed-depth. Moreover, in our proof of Theorem 6.2, we apply
linear coordinate maps instead of smooth coordinate maps used in the existing work. An
attractive property of linear coordinate maps is that they can be exactly represented by ReLU
shallow networks without error. We also weaken the regularity conditions. We do not require
the smoothness index of each coordinate map and the functions in the partition of unity to be
βd/dM, which depends on the ambient dimension d and can be large.

6.3. Low Minkowski dimension assumption. Lastly, we consider the important case when
data is supported on a set with a low Minkowski dimension (Bishop and Peres (2017)).

DEFINITION 1 (Minkowski dimension). The upper and lower Minkowski dimension of
a set A ⊆ R

d are defined respectively, as

dimM(A) := lim sup
ε→0

logN (ε,‖ · ‖2,A)

log(1/ε)
, dimM(A) := lim inf

ε→0

logN (ε,‖ · ‖2,A)

log(1/ε)
.

If dimM(A) = dimM(A) = dimM(A), then dimM(A) is called the Minkowski dimension of
the set A.

For simplicity, we denote d∗ = dimM(A) below. The Minkowski dimension measures how
the covering number of a set A grows when the radius of the covering balls converges to zero.
When A is a manifold, its Minkowski dimension is the same as the dimension of the mani-
fold. Since the Minkowski dimension only depends on the metric, it can be used to measure
the dimensionality of highly nonregular sets such as fractals (Falconer (2003)). Nakada and
Imaizumi (2020) showed that deep neural networks can adapt to the low-dimensional struc-
ture of data, and the convergence rates do not depend on the nominal high dimensionality of
data, but on its lower intrinsic Minkowski dimension. Based on random projection, the curse
of dimensionality can also be lessened when data is supported on a set with low Minkowski
dimension.

THEOREM 6.3 (Nonasymptotic error bound). Under model (1), suppose that Assump-
tions 1–2 hold, B ≥ max{1,B0} and X is supported on a set A ⊆ [0,1]d with Minkowski
dimension d∗ ≡ dimM(A) < d . Then for any N,M ∈ N

+, the function class of ReLU multi-
layer perceptrons Fn = FD,W,U,S,B with width W = 38(�β� + 1)23d0d

�β�+1
0 N�log2(8N)�

and depth D = 21(�β� + 1)2M�log2(8M)� + 2d0, the prediction error of the empirical risk
minimizer f̂n satisfies

E‖f̂n − f0‖2
L2(ν)

≤ C1B5SD log(S)(logn)5

n

+ C2
B2

0

(1 − δ)β

(�β� + 1
)4

d
2�β�+β∨1+1
0 d(NM)−4β/d0
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for n ≥ Pdim(Fn)/2, where d ≥ d0 ≥ κd∗/δ2 = O(d∗/δ2) for δ ∈ (0,1) and some constant
κ > 0, and C1,C2 > 0 are constants not depending on n, B, S , D, B0, β , κ , δ, N or M .

As discussed in Section 5, to achieve the optimal convergence rate with a minimal network
size, we can set Fn = FD,W,U,S,B to consist of fixed-width networks with

W = 114
(�β� + 1

)23d0d
�β�+1
0 , D = 21

(�β� + 1
)2⌈

nd0/2(d0+2β) log2
(
8nd0/2(d0+2β))⌉,

S = O
(
W2D

) = O
((�β� + 1

)632d0d
2�β�+2
0

⌈
nd0/2(d0+2β)(logn)

⌉)
.

Then, the prediction error of f̂n in Theorem 6.3 is

E‖f̂n − f0‖2
L2(ν)

≤ C3(1 − δ)−βB533d0d
3�β�+3
0

(�β� + 1
)9

dn−2β/(d0+2β)(logn)8,

where C3 > 0 is a constant not depending on n, d , d0, B, S , D, B0, δ or β .
Prior to this work, Nakada and Imaizumi (2020) obtained an error bound with conver-

gence rate n−2β/(d#+2β) up to a logn factor for a d# > dimM(A) = d∗, where d# can be
arbitrarily close to the Minkowski dimension d∗ of the support of X. While our obtained
convergence rate is n−2β/(d0+2β) up to a logn factor for d0 = O(d∗/δ2) with δ ∈ (0,1). The
convergence rate of Nakada and Imaizumi (2020) can be faster than that of ours. On the
other hand, the prefactor in the error bound of Nakada and Imaizumi (2020) is O(dd∗ + 5d),
while ours is O(d9d∗

d∗3�β�+3), which can be much smaller. In their proof of the approx-
imation result (Theorem 5 of Nakada and Imaizumi (2020)), the minimum set of hyper-
cubes covering the support of X is partitioned into 5d subsets. Within each subset, the
hypercubes are separated by a constant distance from each other. For each such subset, a
trapezoid-type deep neural network approximates the Taylor expansion of f0 locally. Then
a large neural network combining these local approximators is used to realize the whole
approximation on the support of X. To ensure an overall ε approximation error, the net-

work size must be C1ε
−d#/β + C2, where C1 = 2[(50d + 17)dd#

(3M)d
#/βc1 + 2d{11 + (1 +

β)/d#}c2{2d#/β + c3d
d#

(3M)d
#/β}] = O(dd#

3d#/β) for some constants c1, c2, c3,M > 0 and
C2 = 2[12 + 42 ∗ 5d + 2d + 2d{11 + (1 + β)/d#}(1 + �log2 β�)] = O(5d); and, these pref-
actors of the network size, which could be large for a moderate d or d#, will lead to a large
prefactor of the overall nonasymptotic error bound. In comparison, in Theorem 6.3, we allow
more flexible network shapes, and the network width could be a multiple of 3d0d

�β�+1
0 rather

than dd0 or 5d , to achieve a 9d0dd
3�β�+3
0 prefactor of the error bound.

In our proof of Theorem 6.3, we leverage a generalized Johnson–Lindenstrauss lemma for
infinite sets (see, for example, Theorem 13.15 in Boucheron, Lugosi and Massart (2013)) to
project the closure of the support of X into lower-dimensional space. Then our newly proved
approximation result Theorem 3.3 is applied in the lower-dimensional space, which is in
terms of a smaller effective dimensionality related to the Minkowski dimension of the support
of X. The projection is approximately a linear transformation and can be exactly represented
by a three-layer ReLU network, thus it causes no approximation error. In addition, this also
avoids the 5d prefactor in the formula of error bounds or the network width.

Finally, we note that the results of Nakada and Imaizumi (2020) and Theorem 6.3 do
not cover Theorem 6.1, nor vice versa. On one hand, an approximate manifold assumption
allows a closed ball or a sphere in R

d contained in the support of X, in which case the
Minkowski dimension of such approximate low-dimensional manifold is d and no faster
convergence rate can be obtained. To see this, if a closed ball B(a) (or a sphere) with radius
a > 0 in R

d is contained in A ⊆ [0,1]d , the support of X, then the ε-covering number of A

is no less than (a/ε)d (see, e.g., Corollary 4.2.13 in Vershynin (2018)), which implies that
the Minkowski dimension of A is d . On the other hand, the Minkowski dimension can be
used to measure nonsmooth low-dimensional set such as fractals which may not be a low-
dimensional manifold or a neighborhood of a low-dimensional manifold.
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7. Related works. In this section, we discuss the connections and differences between
our work and the related works. We focus on the following aspects: the error bounds for the
estimator, the structural assumptions on the target regression function f0, and the assumptions
on the support of the data distribution.

7.1. Error bounds. Recently, Bauer and Kohler (2019), Schmidt-Hieber (2020) and
Farrell, Liang and Misra (2021) studied the convergence properties of nonparametric regres-
sion using feedforward neural networks. Bauer and Kohler (2019) required that the activation
function satisfies certain smoothness conditions; Schmidt-Hieber (2020) and Farrell, Liang
and Misra (2021) considered the ReLU activation function. Bauer and Kohler (2019) and
Schmidt-Hieber (2020) assumed that the regression function has a composition structure sim-
ilar. They showed that nonparametric regression using feedforward neural networks with a
polynomial-growing network width W = O(dβ) achieves the optimal rate of convergence
(Stone (1982)) up to a logn factor, however, with a prefactor Cd = O(ad) for some a ≥ 2,
unless the network width W = O(ad) and size S = O(ad) grow exponentially as d grows.

A key difference between our work and the existing results is in how the prefactor Cd

depends on d . Specifically, the prefactor Cd in our results depends polynomially on d and
involves dβ as a linear factor. In comparison, the prefactor Cd in the error bounds obtained
by Bauer and Kohler (2019), Schmidt-Hieber (2020), Farrell, Liang and Misra (2021) and
others depends on d exponentially. For high-dimensional data with a large d , it is not clear
when such an error bound is useful in a nonasymptotic sense. Similar concerns about this
type of error bounds as established in Schmidt-Hieber (2020) are raised in the discussion by
Ghorbani et al. (2020), who looked at the example of additive models and pointed out that in
the upper bound of the form E‖f̂n − f0‖2

L2(ν)
≤ C(d)n−ε∗ log2 n for some ε∗ > 0 obtained in

Schmidt-Hieber (2020), the d-dependence of the prefactor C(d) is not characterized. It also
assumes n large enough, that is, n ≥ n0(d) for an unspecified n0(d). They further pointed out
that using the proof technique in the paper, it requires n � dd for the error bound to hold in
the additive models. For large d , such a sample size requirement is difficult to be satisfied in
practice. Another important difference between our results and the existing ones is that our
error bounds are given explicitly in terms of the width and the depth of the network. This
is more informative than the results characterized by just the network size. Such an explicit
error bound can provide guidance to the design of networks. For example, we are able to
provide more insights into how the error bounds depend on the network structures, as given
in Corollaries 5.1–5.3 in Section 5.

Finally, in contrast to the results of Györfi et al. (2002) and Farrell, Liang and Misra (2021),
we do not make the boundedness assumption on the response Y and only assume Y to be
subexponential. Bauer and Kohler (2019) assumes that Y is sub-Gaussian. Schmidt-Hieber
(2020) assumes i.i.d. normal error terms and requires the network parameters (weights and
bias) to be bounded by 1 and satisfy a sparsity constraint, which is not the usual practice in
the training of neural network models in applications.

7.2. Structural assumptions on the regression function. A well-known semiparametric
model for mitigating the curse of dimensionality is the single index model f0(x) = g(θ�x),
x ∈ R

d , where g : R → R is a univariate function and θ ∈ R
d is a d-dimensional vector

(Härdle, Hall and Ichimura (1993), Horowitz and Härdle (1996), Kong and Xia (2007)).
A generalization of the single index model is f0(x) = ∑K

k=1 gk(θ
�
k x), x ∈ R

d , where
K ∈ N, gk : R → R and θk ∈ R

d (Friedman and Stuetzle (1981)). In these models, the rate
of convergence can be n−2β/(2β+1) up to some logarithmic factor if the univariate func-
tions gk(·) are β-Hölder smooth. Another well-known model is the additive model (Stone
(1986)) f0(x1, . . . , xd) = f0,1(x1) + · · · + f0,d (xd), x = (x1, . . . , xd)� ∈ R

d . For β-Hölder
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smooth univariate functions f0,1, . . . , f0,d , Stone (1982) showed that the optimal mini-
max rate of convergence is n−2β/(2β+1). Stone (1994) also generalized the additive model
to an interaction model f0(x) = ∑

I⊆{1,...,d},|I |=d∗ fI (xI ), x = (x1, . . . , xd)� ∈ R
d , where

d∗ ∈ {1, . . . , d}, I = {i1, . . . , id∗}, 1 ≤ i1 < · · · < id∗ ≤ d , xI = (xi1, . . . , xid∗ ) and all fI are
β-Hölder smooth functions defined on R

|I |. In this model, the optimal minimax rate of con-
vergence was proved to be n−2β/(2β+d∗).

Yang and Tokdar (2015) studied the minimax-optimal nonparametric regression under the
so-called sparsity inducing condition, under which f0 depends on a small subset of d∗ pre-
dictors with d∗ ≤ min{n,d}. Under this assumption, for a β-Hölder smooth function f0 and
continuously distributed X with a bounded density on [0,1]d , they proved that the prediction
error is of the order O(c1n

−2β/(d∗+2β) + c2 log(d/d∗)d∗/n). Yang and Tokdar (2015) noted
that, under the sparsity inducing assumption, the estimation still suffers from the curse of
dimensionality in the large d small n settings, unless d∗ is substantially smaller than d .

For sigmoid or bounded continuous activated deep regression networks, Bauer and Kohler
(2019) showed that the curse of dimension can be circumvented by assuming that f0 satisfies
the β-Hölder smooth generalized hierarchical interaction model of order d∗ and level l. Un-
der such a structural assumption, the target function f0 is essentially a composition of multi-
index model and d∗-dimensional smooth functions. Bauer and Kohler (2019) showed that the
convergence rate of the prediction error with this assumption achieves (logn)3n−2β/(2β+d∗).
For the ReLU activated deep regression networks, Schmidt-Hieber (2020) alleviated the
curse of dimensionality by assuming that f0 is a composition of a sequence of functions:
f0 = gq ◦gq−1 ◦ · · · ◦g1 ◦g0 with gi : [ai, bi]di → [ai+1, bi+1]di+1 and |ai |, |bi | ≤ K for some
positive K and all i. For each gi = (gij )

�
j=1,...,di+1

with di+1 components, let ti denote the
maximal number of variables on which each of the gij depends on, and it is assumed that each
gij is a ti-variate function belonging to the ball of βi -Hölder smooth functions with radius K ,
The convergence rate is φn = maxi=0,...,q n−2β∗

i /(2β∗
i +ti ), where β∗

i = βi�
q
�=i+1 min{β�,1}.

The resulting rate of convergence is shown to be Cd(logn)3φn. However, the prefactor Cd in
these results may depend on d exponentially.

Recently, Kohler, Krzyżak and Langer (2022) assumed that the regression function f0 has
a locally low dimensionality d∗ and obtained results that can circumvent the curse of di-
mensionality. Since such a function f is generally not globally smooth, not even continuous,
Kohler, Krzyżak and Langer (2022) assumed the true target function f0 is bounded between
two functions with low local dimensionality. Under the β-Hölder smoothness assumption on
f0, proper distributional assumptions on X and other suitable conditions, they showed that
the prediction error of networks with the sigmoidal activation function can attain the rate
(logn)3n−2β/(d∗+2β).

7.3. Assumptions on the support of data distribution. There have been growing evi-
dence and examples indicating that high-dimensional data tend to have low-dimensional
latent structures in many applications such as image processing, video analysis, and nat-
ural language processing (Belkin and Niyogi (2003), Hoffmann, Schaal and Vijayakumar
(2009), Nakada and Imaizumi (2020)). The traditional nonparametric methods, including
kernel method (Kpotufe and Garg (2013)), k-nearest neighbor (Kpotufe (2011))), local re-
gression (Aswani, Bickel and Tomlin (2011), Bickel and Li (2007), Cheng and Wu (2013)),
and Gaussian process regression (Yang and Dunson (2016)), are not able to alleviate the
curse of dimensionality even the support of the data distribution is concentrated on a lower-
dimensional manifold. Several studies have focused on representing the data on the mani-
fold itself, for example, manifold learning or dimensionality reduction (Belkin and Niyogi
(2003), Donoho and Grimes (2003), Hendriks (1990), Lee and Verleysen (2007), Pelletier
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(2005), Tenenbaum, de Silva and Langford (2000)). Once data can be mapped into a lower-
dimensional space or well represented by a lower-dimensional feature, the curse of dimen-
sionality can be mitigated.

Recently, several authors considered nonparametric regression using neural networks with
a low-dimensional manifold support assumption (Chen et al. (2022), Chen, Jiang and Zhao
(2019), Schmidt-Hieber (2019), Cloninger and Klock (2020), Nakada and Imaizumi (2020)).
In Chen et al. (2022), they focus on the estimation of the target function f0 on a bounded
d∗-dimensional compact Riemannian manifold isometrically embedded in R

d . When f0 is
assumed to be β-Hölder smooth, approximation rate with ReLU networks for f0 was derived.
The resulting prediction error is of the rate O(n−2β/(d∗+2β)(logn)3), when the network class
FD,U,W,S,B is properly designed with depth D = O(logn), width W = O(nd∗/(2β+d∗)), size
S = O(nd∗/(2β+d∗) logn) and each parameter is bounded by a given constant. Under simi-
lar assumptions, Nakada and Imaizumi (2020) established an approximation rate with deep
ReLU networks for f0 defined on a set with a low Minkowski dimension. Their rate is in
terms of Minkowski Dimension d∗

0 . The Minkowski dimension can describe a broad class of
low dimensional sets where the manifold needs not to be smooth. The relation between the
Minkowski dimension and other dimensions can be found in Nakada and Imaizumi (2020).
Similar convergence rates were obtained by Schmidt-Hieber (2019) in terms of the manifold
dimension under the exact manifold support assumption. Our Theorem 6.2 reduces the ex-
ponentially dependence of the prefactor on d in these previous works into linearly allowing
more flexible network structures.

Theorem 6.1 differs from the aforementioned existing results in several aspects. First, these
existing results assume that the distribution of X is supported on an exact low-dimensional
manifold or a set with low Minkowski dimension, whereas in Theorem 6.1 we assume that
it is supported on an approximate low-dimensional manifold, whose Minkowski dimension
can be the same as that of the ambient space d . Second, the size S of the network or the
nonzero weights and bias need to grow at the rate of 2dM with respect to the dimension dM
in many existing results. The term 2dM will dominate the prefactor in the excess risk bound,
which could destroy the bound even when the sample size n is large. In comparison, our error
bound depends on dM polynomially through (dM logd)3�β�+3 in the approximate manifold
case. Third, to achieve the optimal rate of convergence, the network shape is generally limited
to certain types such as a fixed-depth network in Nakada and Imaizumi (2020) or a network
with depth D = O(logn) in Schmidt-Hieber (2019) and Chen et al. (2022), while we allow
relatively more flexible network designs. Moreover, our assumptions on the data distribution
are weaker as discussed earlier. Lastly, in Theorem 6.3 we derived an error bound with a con-
vergence rate n−2β/(2β+d0) with d0 = O(d∗) in terms of the Minkowski dimension d∗, which
alleviates the curse of dimensionality. As discussed below Theorem 6.3, we used a differ-
ent argument based on a generalized Johnson–Lindenstrauss lemma for dimension reduction
in our proof from that of Nakada and Imaizumi (2020). We allow a relatively more flexible
network architecture and achieve an improved prefactor in the excess risk bound.

8. Conclusions. In this paper, we have established neural network approximation
error bounds with polynomial prefactors for Hölder smooth functions and nonasymp-
totic excess risk bounds for deep nonparametric regression. We have also derived new
nonasymptotic excess risk bounds under manifold assumptions, including an approximate
low-dimensional manifold assumption. To the best of our knowledge, our work is the first
to show that deep nonparametric regression can mitigate the curse of dimensionality under
an approximate manifold assumption. Moreover, we have provided a characterization of how
excess risk bounds depend on the network architecture, obtained a new error bound with a
new proof under the Minkowski dimension assumption and established a new error bound
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with the optimal convergence rate and an improved prefactor under the exact manifold as-
sumption.

As discussed in the remarks following Theorem 3.3, our work builds on the results of Shen,
Yang and Zhang (2020) and Lu et al. (2021). Specifically, Shen, Yang and Zhang (2020) de-
rived a quantitative and nonasymptotic approximation rate 19

√
dωf (N−2/dL−2/d) in terms

of width O(N) and depth O(L) of the ReLU networks for a continuous target function f ,
where ωf (·) denotes its modulus of continuity. When this result is applied to Hölder con-
tinuous target functions with order (or smoothness index) α ∈ (0,1], the approximation rate
becomes 19

√
dN−2α/dL−2α/d , which is nearly optimal. Lu et al. (2021) showed that deep

ReLU networks of width O(N logN) and depth O(L logL) can approximate smooth func-
tion f ∈ Cs([0,1]d) with a nearly optimal (up to a logarithmic factor) approximation error
85(s + 1)d8s‖f ‖Cs([0,1]d )n

−2s/dL−2s/d , where Cs([0,1]d) denotes smooth function space
with smoothness index s ∈ N+ (a positive integer), and ‖ · ‖Cs([0,1]d ) denotes the Hölder
norm. The result holds for a smooth target function with its smoothness index being a positive
integer s ≥ 1, while the prefactor of the approximation error bound is (s+1)d , which depends
on the dimension d exponentially. In comparison, our approximation results hold for Hölder
smooth target functions with smoothness index β > 0. Moreover, when the smoothness index
β > 1, our approximation error bound has a prefactor depending on d polynomially.

This work has several limitations. First, the optimal rate of convergence under the approx-
imate manifold assumption remains unknown to us. It appears that it is unlikely to obtain
an error bound with rate depending only on the intrinsic dimension dM of the manifold, as
the dimension of an approximate manifold is still d . Second, it is not clear what are the best
prefactors for the error bounds in the present setting. This is an interesting and challeng-
ing problem. Finally, it would be interesting to generalize the results in this work to other
problems, such as density estimation, conditional density estimation and generative learning.
These problems deserve further study in the future.

Acknowledgments. The authors wish to thank the Editors, the Associate Editor and
three anonymous reviewers for their insightful comments and constructive suggestions that
helped improve the paper significantly. We are especially grateful to them for their sugges-
tions to consider ReLU network approximation for higher-order Hölder smooth functions, the
generalization error bound under an exact manifold assumption and when data is supported
on a set with a low Minkowski dimension, which led to Theorems 3.3, 6.2 and 6.3.

Yuling Jiao and Guohao Shen contributed equally to this work.
Yuanyunan Lin and Jian Huang are co-corresponding authors.

Funding. Y. Jiao is supported by the National Science Foundation of China grant
11871474 and by the research fund of KLATASDSMOE of China.

Y. Lin is supported by the Hong Kong Research Grants Council (Grant No. 14306219 and
14306620), the National Natural Science Foundation of China (Grant No. 11961028) and
Direct Grants for Research, The Chinese University of Hong Kong.

J. Huang is partially supported by the research grant P0042888 from The Hong Kong
Polytechnic University.

SUPPLEMENTARY MATERIAL

Supplement to “Deep nonparametric regression on approximate manifolds: Non-
asymptotic error bounds with polynomial prefactors” (DOI: 10.1214/23-AOS2266SUPP;
.pdf). Supplementary information (Jiao et al. (2023)).

https://doi.org/10.1214/23-AOS2266SUPP


DEEP NONPARAMETRIC REGRESSION 713

REFERENCES

AAMARI, E., KIM, J., CHAZAL, F., MICHEL, B., RINALDO, A. and WASSERMAN, L. (2019). Estimating the
reach of a manifold. Electron. J. Stat. 13 1359–1399. MR3938326 https://doi.org/10.1214/19-ejs1551

ALLEN-ZHU, Z., LI, Y. and SONG, Z. (2019). A convergence theory for deep learning via over-parameterization.
In International Conference on Machine Learning 242–252. PMLR.

ANTHONY, M. and BARTLETT, P. L. (1999). Neural Network Learning: Theoretical Foundations. Cambridge
Univ. Press, Cambridge. MR1741038 https://doi.org/10.1017/CBO9780511624216

ASWANI, A., BICKEL, P. and TOMLIN, C. (2011). Regression on manifolds: Estimation of the exterior derivative.
Ann. Statist. 39 48–81. MR2797840 https://doi.org/10.1214/10-AOS823

BARANIUK, R. G. and WAKIN, M. B. (2009). Random projections of smooth manifolds. Found. Comput. Math.
9 51–77. MR2472287 https://doi.org/10.1007/s10208-007-9011-z

BARTLETT, P. L., HARVEY, N., LIAW, C. and MEHRABIAN, A. (2019). Nearly-tight VC-dimension and
pseudodimension bounds for piecewise linear neural networks. J. Mach. Learn. Res. 20 Paper No. 63, 17.
MR3960917

BAUER, B. and KOHLER, M. (2019). On deep learning as a remedy for the curse of dimensionality in nonpara-
metric regression. Ann. Statist. 47 2261–2285. MR3953451 https://doi.org/10.1214/18-AOS1747

BELKIN, M. and NIYOGI, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Comput. 15 1373–1396.

BELKIN, M. and NIYOGI, P. (2004). Semi-supervised learning on Riemannian manifolds. Mach. Learn. 56 209–
239.

BICKEL, P. J. and LI, B. (2007). Local polynomial regression on unknown manifolds. In Complex Datasets and
Inverse Problems. Institute of Mathematical Statistics Lecture Notes—Monograph Series 54 177–186. IMS,
Beachwood, OH. MR2459188 https://doi.org/10.1214/074921707000000148

BIRGÉ, L. and MASSART, P. (1993). Rates of convergence for minimum contrast estimators. Probab. Theory
Related Fields 97 113–150. MR1240719 https://doi.org/10.1007/BF01199316

BIRGÉ, L. and MASSART, P. (1998). Minimum contrast estimators on sieves: Exponential bounds and rates of
convergence. Bernoulli 4 329–375. MR1653272 https://doi.org/10.2307/3318720

BISHOP, C. J. and PERES, Y. (2017). Fractals in Probability and Analysis. Cambridge Studies in Advanced
Mathematics 162. Cambridge Univ. Press, Cambridge. MR3616046 https://doi.org/10.1017/9781316460238

BOUCHERON, S., LUGOSI, G. and MASSART, P. (2013). Concentration Inequalities: A Nonasymptotic The-
ory of Independence. Oxford Univ. Press, Oxford. With a foreword by Michel Ledoux. MR3185193
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001

BRAND, M. (2002). Charting a manifold. Adv. Neural Inf. Process. Syst. 15.
CANCER GENOME ATLAS RESEARCH NETWORK, WEINSTEIN, J. N., COLLISSON, E. A., MILLS, G. B.,

SHAW, K. R. M., OZENBERGER, B. A., ELLROTT, K., SHMULEVICH, I., SANDER, C. et al. (2013). The
cancer genome atlas pan-cancer analysis project. Nat. Genet. 45 1113–1120. https://doi.org/10.1038/ng.2764

CARLSSON, G. (2009). Topology and data. Bull. Amer. Math. Soc. (N.S.) 46 255–308. MR2476414
https://doi.org/10.1090/S0273-0979-09-01249-X

CHEN, M., JIANG, H., LIAO, W. and ZHAO, T. (2022). Nonparametric regression on low-dimensional manifolds
using deep ReLU networks: Function approximation and statistical recovery. Inf. Inference 11 1203–1253.
MR4526322 https://doi.org/10.1093/imaiai/iaac001

CHEN, M., JIANG, H. and ZHAO, T. (2019). Efficient approximation of deep relu networks for functions on low
dimensional manifolds. Adv. Neural Inf. Process. Syst.

CHENG, M.-Y. and WU, H.-T. (2013). Local linear regression on manifolds and its geometric interpretation. J.
Amer. Statist. Assoc. 108 1421–1434. MR3174718 https://doi.org/10.1080/01621459.2013.827984

CHUI, C. K., LI, X. and MHASKAR, H. N. (1996). Limitations of the approximation capabilities of neu-
ral networks with one hidden layer. Adv. Comput. Math. 5 233–243. MR1399382 https://doi.org/10.1007/
BF02124745

CLONINGER, A. and KLOCK, T. (2020). ReLU nets adapt to intrinsic dimensionality beyond the target domain.
Available at arXiv:2008.02545.

COX, D. D. (1988). Approximation of least squares regression on nested subspaces. Ann. Statist. 16 713–732.
MR0947572 https://doi.org/10.1214/aos/1176350830

DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K. and FEI-FEI, L. (2009). Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255.
Ieee.

DEVROYE, L., GYÖRFI, L. and LUGOSI, G. (1996). A Probabilistic Theory of Pattern Recognition. Applications
of Mathematics (New York) 31. Springer, New York. MR1383093 https://doi.org/10.1007/978-1-4612-0711-5

https://mathscinet.ams.org/mathscinet-getitem?mr=3938326
https://doi.org/10.1214/19-ejs1551
https://mathscinet.ams.org/mathscinet-getitem?mr=1741038
https://doi.org/10.1017/CBO9780511624216
https://mathscinet.ams.org/mathscinet-getitem?mr=2797840
https://doi.org/10.1214/10-AOS823
https://mathscinet.ams.org/mathscinet-getitem?mr=2472287
https://doi.org/10.1007/s10208-007-9011-z
https://mathscinet.ams.org/mathscinet-getitem?mr=3960917
https://mathscinet.ams.org/mathscinet-getitem?mr=3953451
https://doi.org/10.1214/18-AOS1747
https://mathscinet.ams.org/mathscinet-getitem?mr=2459188
https://doi.org/10.1214/074921707000000148
https://mathscinet.ams.org/mathscinet-getitem?mr=1240719
https://doi.org/10.1007/BF01199316
https://mathscinet.ams.org/mathscinet-getitem?mr=1653272
https://doi.org/10.2307/3318720
https://mathscinet.ams.org/mathscinet-getitem?mr=3616046
https://doi.org/10.1017/9781316460238
https://mathscinet.ams.org/mathscinet-getitem?mr=3185193
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1038/ng.2764
https://mathscinet.ams.org/mathscinet-getitem?mr=2476414
https://doi.org/10.1090/S0273-0979-09-01249-X
https://mathscinet.ams.org/mathscinet-getitem?mr=4526322
https://doi.org/10.1093/imaiai/iaac001
https://mathscinet.ams.org/mathscinet-getitem?mr=3174718
https://doi.org/10.1080/01621459.2013.827984
https://mathscinet.ams.org/mathscinet-getitem?mr=1399382
https://doi.org/10.1007/BF02124745
http://arxiv.org/abs/arXiv:2008.02545
https://mathscinet.ams.org/mathscinet-getitem?mr=0947572
https://doi.org/10.1214/aos/1176350830
https://mathscinet.ams.org/mathscinet-getitem?mr=1383093
https://doi.org/10.1007/978-1-4612-0711-5
https://doi.org/10.1007/BF02124745


714 JIAO, SHEN, LIN AND HUANG

DONOHO, D. L. and GRIMES, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-
dimensional data. Proc. Natl. Acad. Sci. USA 100 5591–5596. MR1981019 https://doi.org/10.1073/pnas.
1031596100

DU, S., LEE, J., LI, H., WANG, L. and ZHAI, X. (2019). Gradient descent finds global minima of deep neural
networks. In International Conference on Machine Learning 1675–1685. PMLR.

ELDAN, R. and SHAMIR, O. (2016). The power of depth for feedforward neural networks. In Conference on
Learning Theory 907–940. PMLR.

FALCONER, K. (2003). Fractal Geometry: Mathematical Foundations and Applications, 2nd ed. Wiley, Hoboken,
NJ. MR2118797 https://doi.org/10.1002/0470013850

FARRELL, M. H., LIANG, T. and MISRA, S. (2021). Deep neural networks for estimation and inference. Econo-
metrica 89 181–213. MR4220387 https://doi.org/10.3982/ecta16901

FEDERER, H. (1959). Curvature measures. Trans. Amer. Math. Soc. 93 418–491. MR0110078 https://doi.org/10.
2307/1993504

FEFFERMAN, C., MITTER, S. and NARAYANAN, H. (2016). Testing the manifold hypothesis. J. Amer. Math. Soc.
29 983–1049. MR3522608 https://doi.org/10.1090/jams/852

FRIEDMAN, J. H. and STUETZLE, W. (1981). Projection pursuit regression. J. Amer. Statist. Assoc. 76 817–823.
MR0650892

GEMAN, S. and HWANG, C.-R. (1982). Nonparametric maximum likelihood estimation by the method of sieves.
Ann. Statist. 10 401–414. MR0653512

GHORBANI, B., MEI, S., MISIAKIEWICZ, T. and MONTANARI, A. (2020). Discussion of: “Nonparametric re-
gression using deep neural networks with ReLU activation function” [MR4134774]. Ann. Statist. 48 1898–
1901. MR4134775 https://doi.org/10.1214/19-AOS1910

GOODFELLOW, I., BENGIO, Y. and COURVILLE, A. (2016). Deep Learning. Adaptive Computation and Machine
Learning. MIT Press, Cambridge, MA. MR3617773

GYÖRFI, L., KOHLER, M., KRZY˙ ZAK, A. and WALK, H. (2002). A Distribution-Free Theory of Nonparametric
Regression. Springer, New York. https://doi.org/10.1007/b97848

HÄRDLE, W., HALL, P. and ICHIMURA, H. (1993). Optimal smoothing in single-index models. Ann. Statist. 21
157–178. MR1212171 https://doi.org/10.1214/aos/1176349020

HENDRIKS, H. (1990). Nonparametric estimation of a probability density on a Riemannian manifold using
Fourier expansions. Ann. Statist. 18 832–849. MR1056339 https://doi.org/10.1214/aos/1176347628

HOFFMANN, H., SCHAAL, S. and VIJAYAKUMAR, S. (2009). Local dimensionality reduction for non-parametric
regression. Neural Process. Lett. 29 109.

HOROWITZ, J. L. and HÄRDLE, W. (1996). Direct semiparametric estimation of single-index models with dis-
crete covariates. J. Amer. Statist. Assoc. 91 1632–1640. MR1439104 https://doi.org/10.2307/2291590

HUBBARD, J. H. and HUBBARD, B. B. (2015). Vector Calculus, Linear Algebra, and Differential Forms: A
Unified Approach. Matrix Editions. MR1657732

JIAO, Y., SHEN, G., LIN, Y. and HUANG, J. (2023). Supplement to “Deep nonparametric regression on
approximate manifolds: Nonasymptotic error bounds with polynomial prefactors.” https://doi.org/10.1214/
23-AOS2266SUPP
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