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Analysis and prediction of ship energy efficiency 

based on the MRV system 

Abstract 

To reduce CO2 emissions from shipping activities to, from, and within the European 

Union (EU) area, a system of monitoring, reporting, and verification (MRV) of CO2 

emissions from ships are implemented in 2015 by the EU. Although the MRV records 

in 2018 and 2019 have been published, there are scarce studies on the MRV system. In 

the current related studies, the majority of them are in a qualitative manner, and thus 

restrain the usefulness of the MRV and hinder the managerial insights that can be 

generated. To bridge this gap, this paper first analyzes and compares the MRV records 

in 2018 and 2019, and then develops prediction models for the annual average fuel 

consumption for each ship type combining ship features from an external database. The 

performance of the prediction models is accurate, with the mean absolute percentage 

error (MAPE) on the test set no more than 12% and the average R-squared of all the 

models at 0.78. Based on the analysis and prediction results, model meanings, 

implications, and extensions are thoroughly discussed. This study is a pioneer to 

analyze the emission reports in the MRV system from a quantitative perspective. It also 

develops the first average fuel consumption prediction models from a macro 

perspective using the MRV data. It can contribute to MRV data analysis and system 

improvement as well as green shipping strategies promotion.  
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1. Introduction 

Shipping is an essential link in the global supply chain. While shipping is 

comparatively less polluting than other transport modes, greenhouse gases (GHGs), 

such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3), 

emitted from vessels are not negligible (Shi et al., 2018; Xing et al., 2018; Wang et al., 

2019). At global level, emissions from the maritime transport sector were accounted for 

2.76% in 2012 of the global total CO2 emissions and the percentage further increased 

to 2.89% in 2018 as reported by the 4th International Maritime Organization (IMO) 

GHG Study (IMO, 2020). Due to the expected growth of world economy and the 

associated transport demand, the emission percentage is expected to reach 5% in 2050 

(European Commission, 2013a). Given this condition, the IMO has implemented 

measures to reduce the GHG emissions and thus to slow down the pace of climate 

change. Main measures include the energy efficiency design index (EEDI) for newly 

built ships from 2013 onwards, and the ship energy efficiency management plan 

(SEEMP) for existing ships. In addition, the energy efficiency operational indicator 

(EEOI) is suggested as a tool for SEEMP implementation, but only on a voluntary basis 

(Lu et al., 2014; Sampson et al., 2016).  

CO2 emissions from maritime transport related to the voyages within EU as well as 

the incoming and outcoming voyages of EU increased by 48% between 1990 and 2008 

(European Commission, 2013a). The EU has set the goal to achieve a reduction in CO2 

emissions from maritime transport by 40% (if feasible 50%) by 2050 compared to 2005 

level (European Commission, 2013b). The slow pace of decision-making at IMO 

motivated the EU to adopt its own regimes to monitor and reduce the CO2 emissions 

from vessels. A system for accurate MRV of fuel consumption, CO2 emissions, and 

transport work (product of cargo onboard and distance sailed) of ships with a gross 

tonnage above 5,000 arriving at, within, or departing from ports under the jurisdiction 

of a Member State (MS) of EU was proposed in 2015 and implemented since 1 January 

2018. The main objective of the MRV system is to collect and publish accurate 

information on large ships’ energy efficiency using EU ports and incentivize energy 

efficiency improvement (EU, 2015).  

According to Article 9 of EU Regulation 2015/757 (EU, 2015), ship companies are 

responsible for their vessels’ compliance with the MRV system. They need to monitor 

several voyage and emission related parameters on a per-voyage basis as required and 

also to report the aggregated parameters on an annual basis. After collecting such data 

from a vessel, a shipping company should first submit an emission report (ER) to a 

verifier, which is a legal entity carrying out verification activities. The verifier will 
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evaluate the data and docs provided by the shipping company to check whether there 

are non-conformities or misstatements identified. If not, a verification report will be 

issued to the shipping company. The verified annual vessel-specific ER which contains 

the basic information of the ship, company, and verifier as well as the monitoring 

methods and results, is finally submitted to the Commission and the flag state by the 

shipping company by 30 April each year. The Document of Compliance (DOC) will 

then be issued to the ships by 30 June of the same year (European Commission, 2020). 

By 1 July, the Commission will make publicly available the MRV data.  

The MRV data for 2018 and 2019 reporting period has already been published and 

can be accessed from the European Maritime Safety Agency (EMSA) website 

(THETIS-MRV, 2020). It is noted that ship identity, i.e., IMO number and vessel name, 

is also provided. However, to the best of our knowledge, there is no literature aiming to 

analyze and compare the key fields reported in the MRV system so far. In addition, it is 

widely accepted that accurate estimation of ship fuel consumption is the foundation of 

reducing fuel costs, and it is important as “Encouraging further efficiency and 

sustainability in the shipping sector through reduced fuel cost and better serving 

customers’ expectations will maintain its competitiveness” (EU, 2011). However, there 

is no existing literature that develops prediction models for the annual average fuel 

consumption per sailing distance and thus to explore the information behind the raw 

data. These limitations significantly obstruct the value and implication of the MRV 

system. To bridge this gap, this study first thoroughly analyzes ship reports in 2018 and 

2019 from the MRV system, and then proposes highly accurate machine learning based 

models for annual average fuel consumption prediction for each ship type. Based on 

the results, model implications and extensions are then discussed. The innovations and 

contributions of this study are summarized as follows.  

From the perspective of MRV data analysis, ship reports via the MRV system in 

2018 and 2019 are first analyzed and compared. Specifically, we explore ship related 

factors, ship sailing behaviors, and ship energy efficiency indicators. We found that the 

distributions of ship related factors were relatively similar in 2018 and 2019. For ship 

sailing behavior, the average sailing speed showed a slight decrease in 2019. As for ship 

energy efficiency factors, the percentage of data that were not applicable (e.g., null 

value, “not applicable” value, and “not-a-number” value) in 2019 was much smaller 

than that in 2018, which indicates that the MRV data quality significantly improved 

from 2018 to 2019. In addition, the total and average fuel consumption/CO2 emissions 

for all ships and in separate ship types as well as the technical efficiency indicators all 

showed that ship energy efficiency improved from 2018 to 2019. 
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Apart from analyzing the MRV data, highly accurate machine learning models to 

predict the average fuel consumption per sailing distance is then developed and 

validated by combining the MRV system with an external database. We develop one 

regression model for each ship type with more than 500 valid records. The results show 

that the MAPE in the test set is within 12% and the average R-squared is 0.78, which 

we believe are promising and applicable in practice. 

From the perspective of model meanings and implications, we argue that the MRV 

system itself and the developed prediction models can be further utilized by both policy 

makers and ship owners/operators to generate vessel management insights, rationalize 

commercial and political decisions, attract more attention to improving ship energy 

efficiency, and promote green shipping practices. More specific application scenarios 

include but are not limited to scheduling of ships’ maintenance and management work, 

rationalizing decisions on ship chartering and charter rates, second-hand ship pricing, 

addressing the market failure in time charter market, and assisting in evaluating the 

investment of technological practices in green shipping. In addition, it is also the first 

study that provides a viable way to predict vessel fuel consumption from a macro 

perspective by combining the MRV system with external data sources.    

 

2. Literature review 

The literature on MRV system is scarce, and most of the related literature is 

published in 2018 and beyond. The literature can be roughly divided into qualitative 

and quantitative categories. For qualitative literature, analysis of the MRV system itself 

and comparisons of the monitoring methods adopted in the MRV system are discussed. 

Zaman et al. (2017) analyzed the opportunities and challenges of applying big data 

technologies in the shipping industry including the MRV system, as it heavily relies on 

collecting and reporting of massive shipping data. The authors stated that the big data 

technologies would increase the capability of performance monitoring, remove human 

error, and increase interdependencies of components. Nelissen and Faber (2014) 

examined the new obligations and costs associated with the implementation of the MRV 

system to the ship owners and operators from an economy perspective. The potential 

environmental benefit in terms of CO2 reductions was also discussed. Faber et al. (2013) 

introduced and compared four fuel consumption and CO2 emission monitoring methods 

that could be used in the MRV system in detail, i.e., methods based on bunker delivery 

notes, tank monitoring, flow meters, and direct emission monitoring. Particularly, the 

need for equipment, the associated costs, the monitoring quality, and the resulted 

emission reduction incentives of each monitoring method were compared. Castells-
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Sanabra et al. (2020) analyzed eleven existing methods to monitor ship emission 

inventories considering the key MRV elements: quality, uncertainty, and confidence. 

The authors concluded that ship-based methods (SBMs) were the most appropriate to 

comply with MRV regulation. Psaraftis and Woodall (2019) connected the market-

based measures (MBMs) to reduce GHG emissions from shipping with the MRV 

system. A practical implementation of the MRV system in the Ro/Ro sector was 

introduced, and the challenges encountered in the process were presented.  

Regarding quantitative literature, by conducting online survey among maritime 

professionals, the potential barriers and industry’s standpoint with regard to the 

implementation of the MRV system were discussed by Rony et al. (2019). Panagakos 

et al. (2019) gave an early assessment of the MRV regulation by calculating the MRV 

energy efficiency indicators on a global basis using the operational data of 1,041 dry 

bulk carriers. The result showed that the geographic coverage restrictions of the MRV 

system resulted in significant bias, and thus prohibited it from contributing to better 

decision-making by the market actors. Mannarini et al. (2020) augmented the original 

MRV data in 2018 with another three datasets and associated a geographical location 

with each Ro-Pax vessel. Energy efficiency indicators were then calculated and 

compared in different vessel clusters.  

The MRV system is analyzed and compared with the data collection system (DCS) 

implemented by the IMO is several studies in a qualitative manner. By providing a 

holistic analysis of the MRV system and DCS, Akoel and Miler (2019) presented their 

economical and operational implications on the maritime transport processes. Deane et 

al. (2019) analyzed the MRV system and the DCS against the standards of transparency 

and answerability in different steps of the monitoring process. Wang et al. (2020) 

commented that there were three potential benefits of the MRV system and the DCS 

apart from fuel consumption and CO2 emissions monitoring: “efficient ships will carry 

cargos and inefficient ships will be idle”; “ship owners will maintain their ships in 

excellent fuel-efficiency conditions”; and “charters can operate ships more efficiently 

based on historical data”. 

It can be concluded from the above review that most of the studies on the EU MRV 

system alone or with the IMO DCS are from a qualitative perspective, where extensive 

introduction, analysis, and discussion of various aspects of the MRV system (and DCS) 

are presented. Although quantitative analysis is conducted in three pioneer studies, they 

mainly aim at conducting online survey or analyzing only one ship type (i.e., dry bulk 

carriers or ferries). In addition, although the data in 2019 has been published in June 

2020, only the MRV data in 2018 is used in current literature. To the best of our 
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knowledge, there are neither studies analyzing the whole picture of the reports in the 

MRV system regarding various compulsory data fields nor studies comparing the 

records in 2018 and 2019. In addition, there is no model developed for fuel consumption 

or CO2 emission prediction based on the MRV data to make full use of the ERs. These 

limitations will undoubtedly restrain the usefulness of the MRV data and hinder the 

managerial insights that can be generated. To bridge this gap, the records of 2018 and 

2019 in the MRV system are first analyzed and compared in this study. By combining 

with the World Register of Ships database, accurate annual average fuel consumption 

prediction models for each ship type are then developed and validated. Finally, model 

meanings, implications, and extensions are thoroughly discussed.  

 

3. Analysis of MRV data 

In this section, we first give an overview of ship ERs reported via the MRV system. 

Then, we analyze and compare the MRV data in 2018 and 2019. The original data is 

downloaded from the THETIS-MRV database provided by EMSA. There are totally 

12,155 reports in 2018 and 12,134 reports in 2019. An overview of the MRV data is 

presented in Appendix A. We analyze the MRV data from the following three 

perspectives: ship basic information, ship report information, and ship energy efficiency 

information. 

3.1 Analysis of ship basic information in the MRV system 

Two factors of ship basic information are analyzed in this section: ship type and 

ship flag state. Ship type is presented in the MRV data, while ship flag state is searched 

from a database called World Register of Ships based on ship IMO number. Regarding 

the types of ships that used EU ports in 2018 and 2019, Figure 1(1) shows that a total 

of 15 types of ships reported their ERs, and the ranking of ship types regarding the 

number of reports was the same in both years. The top five ship types all had more than 

1,000 reports each year, and they contributed to more than 80% of the total MRV reports. 

Especially, the number of reports sent by bulk carriers showed a significant decrease 

from 3,810 in 2018 to 3,597 in 2019, and the number of reports from oil tankers 

increased from 1,876 in 2018 to 1,985 in 2019.   

The distributions of ship flag states in 2018 and 2019 are shown in Figure 1(2). The 

rank of the top eight flag states remained unchanged from 2018 to 2019, and the top 

five flag states were in charge of about half of the ships reporting to the MRV system.  

<Insert Figure 1 here> 

3.2 Analysis of ship report information in the MRV system 

We then analyze the verifiers the ships chose to verify and report their ERs. The 
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distributions of verifiers selected in 2018 and 2019 are shown in Figure 2. As indicated 

in Figure 2, more than 90% of the ships reported their ERs via the top 10 verifiers in 

2018 and 2019. Among them, DNV GL was the most popular verifier in both 2018 and 

2019, which was employed by more than 20% of the ships reported to the MRV system. 

ABS Hellenic S.M. Ltd. (American Bureau of Shipping Hellenic Single Member 

Limited Liability Company) was the second popular verifier in both years which was 

selected by about 17% of the ships. Lloyd's Register Quality Assurance Ltd. was the 

third popular verifier in 2018 which held the market share of nearly 12%. However, 

only about 8% of the ships chose it in 2019, and it ranked no. 5 in that year.  

<Insert Figure 2 here> 

As mentioned in Appendix A, there are four monitoring methods of fuel 

consumption/CO2 emissions, i.e., method A: BDN and periodic stock takes of fuel tanks; 

methods B: bunker fuel tank monitoring on board; methods C: flow meters for 

applicable combustion processes, and method D: direct CO2 emissions measurements. 

Note that more than one method to monitor the fuel consumption/CO2 emissions can 

be selected by one ship. The numbers of ships choosing each method in 2018 and 2019 

are illustrated in Figure 3(1). It can be seen that there was a growing number of ships 

using monitoring method A from 2018 to 2019 as it is the simplest method requiring 

the least investment costs. Meanwhile, there was no ship using method D in 2018, while 

there were two pioneer ships adopting this method in 2019. The number of ships using 

methods B and C were similar in these two years.  

Among the 12,155 ships reporting their ERs to the MRV system in 2018, 638 of 

them had zero annual total fuel consumption, which are obviously outliers. In 2019, the 

number of ships reporting zero total fuel consumption significantly reduced to 338 

among all the 12,134 reports. Regarding the reports with non-zero fuel consumption, 

the mean value decreased from 4009.93 in 2018 to 3938.98 in 2019. We further divide 

the fuel consumption values into several bins and compare the percentage of ships with 

positive fuel consumption in each bin as shown in Figure 3(2). It shows that nearly half 

of the ships reporting positive annual total fuel consumption to the MRV system 

consumed no more than 2,000 m tonnes (mt) of fuel each year in both 2018 and 2019. 

Meanwhile, more than 20% of the ships consumed more than 5,000 mt fuel in each year. 

Figure 3(2) also indicates that the distribution of ship annual total fuel consumption 

was similar in both years.  

As for the annual total CO2 emissions which is highly related to the total fuel 

consumption, the number of ships reporting zero CO2 emissions were the same as the 

number of ships reporting zero fuel consumption in 2018 and 2019, respectively. The 
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mean value of annual total CO2 emissions was 12525.31 and 12295.69 in 2018 and 

2019, respectively, which also showed a decreasing trend like that in the annual total 

fuel consumption. We divide the ships into several bins according to the total CO2 

emission values as presented in Figure 3(3). It shows that more than 60% of the ships 

with reports in the MRV system emitted no more than 10,000 mt CO2 of each year in 

2018 and 2019. Meanwhile, more than 10% ships generated more than 25,000 mt CO2 

each year. Like the annual total fuel consumption, the distributions of annual total CO2 

emissions were similar in 2018 and 2019.  

Based on the annual total fuel consumption and CO2 emissions, we further calculate 

the equivalent types of fuel consumed by the ships. We deem it to be “equivalent” 

because different types of fuel might be used in different shipping activities, but we 

only have one ratio between the CO2 emitted and the fuel consumed for each ship on 

an annual basis. The calculation method of equivalent fuel oil type is presented in Table 

1. 

<Insert Table 1 here> 

Similar to the total fuel consumption and CO2 emissions, 638 and 338 records are 

not applicable to calculate the equivalent fuel type. The mean value of the calculated 

carbon ratio is 3.133 in 2018 and 3.137 in 2019. The distribution of the equivalent fuel 

oil type in 2018 and 2019 is presented in Figure 3(4). It illustrates that except for the 

HFO, which was used by 84.76% ships in 2018 and by 82.57% ships in 2019, showed 

a downward trend, all the other fuel oil types showed an upward trend. Moreover, there 

was an obvious increasing trend in the adoption of LFO and LNG. This phenomenon 

can be explained by the fact that more ships would switch to fuel types with less sulphur 

content to comply with the sulphur emission control area (SECA) regulations, and thus 

the market share of HFO with high sulfur content significantly decreased from 2018 to 

2019. Meanwhile, as the LNG infrastructure was constantly upgrading on board and in 

ports, more ships chose LNG in 2019. Therefore, it can be concluded that although the 

calculated carbon ratio was slightly increased by 0.004 from 2018 to 2019, the overall 

sulphur content in the ship fuel oil reduced, which could lead to reduction of SO2 

emissions.  

<Insert Figure 3 here> 

3.3 Analysis of ship energy efficiency information in the MRV system 

Before examining the annual average energy efficiency provided in the MRV 

system, we first explore the annual average sailing speed of the ships based on the MRV 

data. We calculate the total sailing distance considering the annual average fuel 

consumption per distance (kg/nm) and the total fuel consumption (mt). By combining 
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annual total time spent at sea (hours), annual average sailing speed (knots) can be 

calculated. 643 and 339 reports were not applicable in 2018 and 2019, respectively. For 

the 11,512 and 11,795 valid reports in 2018 and 2019, the mean value of annual average 

sailing speed was 11.03 and 10.96, respectively. The distributions are presented in 

Figure 4(1). It can be seen that the annual average sailing speed of most ships was no 

more than 15 knots, while less than 1% of the ships sailed at an average speed of more 

than 20 knots.  

We then move on to analyze the annual average fuel consumption and annual 

average CO2 emissions per distance (kg/nm) provided in the MRV data. For both fields, 

640 and 339 records were not applicable (“divided by zero” in the original MRV data) 

in 2018 and 2019, respectively. For the annual average fuel consumption, the mean 

value was 137.01 in 2018 and it decreased to 132.75 in 2019. For the annual CO2 

emissions, the mean value was 427.94 in 2018 and it decreased to 414.95 in 2019 in 

compliance with the pattern in the annual average fuel consumption. The distributions 

of the annual average fuel consumption and CO2 emissions in 2018 and 2019 are shown 

in Figure 4(2). It implies that the number of ships with average fuel consumption/CO2 

emissions “Not applicable” significantly reduced by nearly half from 2018 to 2019. 

Meanwhile, with similar total number of reports in both years, most new valid reports 

in 2019 were with average fuel consumption less than 200 mt and CO2 emissions less 

than 600 mt. Therefore, both of the annual average fuel consumption and CO2 emissions 

reduced from 2018 to 2019, indicating that the shipping industry has been driving to an 

environmentally friendly direction to a certain extent.  

Finally, we analyze the ship technical efficiency indicator reported in the MRV 

system in 2018 and 2019. Ships should generally report the attained EEDI in 

accordance with MARPOL Annex VI. For those ships not covered by the EEDI, 

estimated index value (EIV) should be reported by the certain types of ships. Otherwise, 

this field is “Not applicable” in the MRV system. Both EEDI and EIV express the CO2 

emissions in grams per ship’s transport work (tonne-nautical mile), with smaller values 

indicating more energy efficient ships. The equation to calculate EEDI is complex, so 

we only give a general form to calculate EEDI in Eq. (1). Its complete form can be 

found in MEPC (2014).  

 
2 emission

Transport work

CO
EEDI = . (1) 

The equation to calculate EIV of a ship (excluding containerships and ro-ro cargo ships) 

is given in Eq. (2). 
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where MEP   is 75% of the total installed power of one main engine, NME   is the 

number of main engines, AEP  is the auxiliary power, and 
refV  is a ship’s service speed. 

For the equations to calculate other ship types not covered by Eq. (2), readers are 

referred to MEPC (2013). 

Among all the 12,155 ships reporting to the MRV system in 2018, 3,373 (27.75%) 

ships had “Not applicable” technical efficiency indicator, and 2,157 (17.75%) and 6,625 

(54.50%) ships reported the EEDI and EIV, respectively. In 2019, only 354 (2.92%) of 

the total 12,134 ships reported “Not applicable” in this field, and there were 2,839 

(23.40%) and 8,941 (73.69%) of the ships reporting EEDI and EIV, respectively. The 

remarkable reduction of the number of records with technical efficiency indicator “Not 

applicable” indicates that the rules and management schemes of the MRV system are 

becoming more efficient, and the data quality is constantly improving.  

The distributions of the values of EEDI and EIV in 2018 and 2019 regarding all 

types of ships are shown in Figure 4(3). It is shown that null values, including the 

reports with blank or zero values for an indicator, reduced about two thirds from 2018 

to 2019, which further implicates that data quality of the MRV regime is improving. 

Furthermore, regarding the EEDI, the mean value of all the valid records was 14.0 in 

2018 and it significantly reduced to 6.75 in 2019. For the EIV index, the mean value of 

all the valid reports was 15.54 in 2018 and it reduced to 12.99 in 2019. These results 

are remarkable: for one thing, it is evident that data quality of the MRV regime notably 

improved from 2018 to 2019; for another, the mean values and distributions of the 

technical efficiency indicators show that the shipping activities involving ports in EU 

are becoming more environmentally friendly. This is a result of the joint efforts of 

effective and efficient regulations and controls.  

<Insert Figure 4 here> 

To explore the changes in the annual average fuel consumption and CO2 emissions 

per sailing distance as well as the EEDI and EIV indicators over all voyages from 2018 

to 2019 more deeply, we further calculate the mean values of the related data fields 

regarding the top 5 ship types in 2018 and 2019 (which contributed to more than 80% 

of the MRV reports in both years), respectively. Furthermore, we present the annual 

average energy efficiency per transport work (mass) of each ship type reported in the 

MRV system. The results and analysis are presented in Appendix B.  

Based on the above analysis and comparisons regarding all ships and the classified 
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ships in major types, we can draw the following conclusions. First, the distributions of 

the ship basic information provided by or derived from the MRV system as well as the 

selected verifiers are relatively similar in 2018 and 2019. Second, the data quality of 

the MRV system has significantly improved from 2018 to 2019. This indicates that the 

MRV system is gradually improving and the data is becoming more reliable. Third, the 

energy efficiency of the ships involved in commercial activities in the EU territory is 

enhanced in all voyages and in loaded voyages, and the GHG emissions from shipping 

activities and the sulphur content of the vessel fuel oil are gradually reducing.  

 

4. Development of fuel consumption prediction models  

In this section, one prediction model for the annual average fuel consumption per 

sailing distance is developed for one ship type with more than 500 valid records in the 

MRV system in 2018 and 2019 after data preprocessing. Compared to the tailored 

models developed for a single ship on an hourly or daily basis, the prediction models 

developed in this section are from a macro perspective on a yearly basis.  

4.1 Data preprocessing 

The initial dataset downloaded from the THETIS database provided by EMSA 

contains 12,155 reports in 2018 and 12,134 reports in 2019 (totally 24,289 MRV 

records). To develop the average fuel consumption prediction models, we use the 

calculated annual average sailing speed from the MRV system as an input. Furthermore, 

based on ship IMO number provided in the MRV system, we further incorporate several 

ship features from the World Register of Ships (WRS) database (WRS, 2020). The 

description and preprocessing method of the prediction target, i.e., the annual average 

fuel consumption per distance (kg/nm) and the features considered in the regression 

models are presented in Table 2.  

<Insert Table 2 here> 

After deleting the records with missing values and anomalies, there are a total of 

19,487 valid records in 2018 and 2019 in the whole dataset. We mainly focus on the 

eight ship types with more than 500 valid records in the dataset listed as follows. 

Ship type Bulk 

carrier 

Chemical 

tanker 

Container and 

container/ro-ro ship 

Gas 

carrier 

General 

cargo ship 

Oil 

tanker 

Ro-pax 

ship 

Vehicle 

carrier 

No. of 

records 

5,927 2,272 3,057 513 1,870 3,046 597 799 

4.2 Model development 

A detailed introduction of the gradient boosting regression tree (GBRT) model and 

the model evaluation metrics are given in Appendix C. In this study, we develop one 

GBRT model per ship type considered. The GBRT models are developed by using 
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Python to call the scikit-learn (sklearn) library. In each GBRT model, we first randomly 

divide the whole dataset to training set (80% records) and test set (20% records). The 

GBRT model is constructed on the training set, and its performance is validated on the 

test set. Specifically, we use 5-fold cross validation combined with grid search method 

on the training set using MSE as the metric to find the optimal values of the main 

hyperparameters. The tuning process can be found in Appendix C.  

After constructing the GBRT models using the whole training set with the optimal 

hyperparameter values, model performance on the hold-out test set is presented in Table 

3. 

 <Insert Table 3 here> 

Table 3 shows that all the eight fuel consumption prediction models achieve quite 

satisfactory prediction performance on the test set under the condition that only macro 

level data is used. More specifically, the highest MAE among the eight models is from 

Ro-pax ship at 16.60, while the MAE of most of the other models is less than 15. 

Meanwhile, the R-squired of all the models are more than 0.6 with the mean at 0.78, 

and half of them are over 0.8, which indicates an accurate model fitting and prediction 

performance. The most striking result to emerge from the table is that the MAPE of all 

the models is less than 12%, which means that on average, the predicted annual average 

fuel consumption is within 12% more or less than the real annual average fuel 

consumption. Overall, the performance of the prediction models developed is accurate 

and acceptable. The results can be further analyzed to generate strategic and managerial 

implications for policy makers and shipping practitioner.  

Apart from evaluating model performance, we also figure out the ten most 

important features for average fuel consumption prediction. Feature importance 

presented here is the impurity-based feature importance which can be derived directly 

from a constructed GBRT. In sklearn library, it is the total decrease in node impurity 

when using a feature for splitting (which is approximated by the proportion of samples 

reaching that node) averaged over all trees of the ensemble. The result and analysis are 

given in Appendix D. 

 

5. Meanings, implication, and extensions of the analysis of MRV data and the 

prediction models 

The meanings, implications, and extensions of the analysis of the MRV data and 

the fuel consumption prediction models proposed in section 4 can be summarized in 

Table 4. Detailed descriptions are given in the following subsections.  

<Insert Table 4 here> 
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5.1 Providing vessel management insights  

The development and validation of the ship fuel consumption prediction models 

provide a viable and effective way to combine the MRV system with external data 

sources, e.g., the World Register of Ships database. The results suggest that among all 

the features considered in the average fuel consumption prediction models, ship age, 

ship flag performance, ship RO performance, and the annual average sailing speed 

might vary in different years for one ship. Ship operators and managers can thus 

estimate their ships’ fuel consumption rates under different conditions when features 

change. The prediction results can also help them to schedule their ships’ maintenance 

and management activities more efficiently. In addition, ship owners can also benefit 

from these prediction results when choosing which flag to fly and the RO. On top of 

that, shipping companies can also leverage the prediction models to decide their ships’ 

annual average sailing speed from a strategic perspective which can contribute to 

deploying and scheduling the shipping network.  

5.2 Rationalizing commercial decisions 

 Fuel costs constitute a large proportion of ship operational costs (Wang et al., 

2020). In time charter market where ship charterers need to pay for the fuel costs instead 

of ship owners, charterers would prefer more energy efficient ships. By exploring the 

MRV system where ship identifies are transparent, ship energy efficiency can be figured 

out. However, the hiring period can last days, months, and even years, and the ship 

energy efficiency might change due to several factors that are hard to capture like the 

wear of power and propulsion system. Therefore, ship energy efficiency in the near or 

far future cannot be obtained directly from the MRV system. Under this condition, the 

developed prediction models which can predict ship energy efficiency as ship age grows 

and some other features change can be used to rationalize the charterers’ chartering 

in/out decisions and the owners’ decisions on their vessels’ charter rates. It can also be 

expected that ships that are more energy efficient would become more popular and earn 

higher charter rates, while the wipeout risk of energy inefficient ships is largely 

increased. Similarly, the average fuel consumption prediction models can also be 

applied to second-hand ships’ market for second-hand vessel pricing and sale/purchase 

decisions as bunker/fuel consumption costs should be considered as an explanatory 

variable for pricing modeling (Pruyn et al., 2011).  

5.3 Rationalizing political decisions 

The analysis of the MRV data in 2018 and 2019 and the average fuel consumption 

prediction models could help policy makers to evaluate and adjust the strategic plans 

for CO2 emission reduction by shedding light on the energy efficiency of each 
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individual ship in the coming years. Such strategic plans include but are not limited to 

the EU 2011 White Paper on Transport (EU, 2011) and the IMO’s goal to reduce total 

annual GHG emissions from shipping (IMO, 2018). In addition, it is believed that the 

MRV system is a critical step for any MBMs to reduce GHG emissions from ships 

implemented in the future, such as the emissions trading system, levy on bunker fuels, 

and hybrid with EEDI as a benchmark (Lagouvardou et al., 2020). It is interesting to 

note that although the MRV system is designed to monitor CO2 emissions, the sulphur 

content in fuel is also required to be “specified” if monitoring methods (a) and (b) are 

used, and “monitored” if method (c) is used. Such information might be useful to the 

enforce the global sulphur cap from 2020 onward (Psaraftis and Woodall, 2019). To 

maximize its utility, we also suggest the MRV system to publish the specific amount of 

fuel of each type consumed by the ships, and more information about the sailing routes 

which allows for combining with sea and weather data to achieve more accurate 

predictions. 

5.4 Attracting more attention to improving ship energy efficiency 

The analysis of the MRV system and the prediction models developed in this study 

can help to deal with a market failure in the current time charter market: more energy 

efficient ships do not earn enough time charter rates they deserve to cover the 

investment and management costs (Wang et al., 2020), which makes the owners 

reluctant to carry out such investments. The main reason is that although ship owners 

know the fuel efficiency of their ships, they cannot guarantee that to the charterers as it 

can be influenced by various conditions in a complex manner featured with 

uncertainties. Therefore, charters are only willing to accept charter rates considering 

verifiable conditions such as ship age and some other ship conditions (Wang et al., 

2020). This situation can be improved by leveraging the prediction models, where the 

predicted annual average fuel consumption per sailing distance with MAPE within 12% 

can help access ship energy efficiency and thus motivate charterers to pay much higher 

rates for more energy efficient ships. This will in return motivate ship owners to pay 

more attention to improving ship energy efficiency and to maintaining their ships in 

excellent conditions. Additionally, the outliers presented in the published MRV data and 

the predicted fuel consumption value for individual ships can provide reference and 

guideline to ship selection and procedure optimization in vessel inspections, such as the 

flag state control, port state control, classification society inspection, and tanker vetting, 

and thus to motivate the ship owners and operators to improve their ships’ energy 

efficiency.  

 



15 
 

5.5 Promoting green shipping practices 

The analysis of the MRV system and the proposed annual average fuel consumption 

prediction models can also promote the application of both technological and 

operational green shipping practices, and thus to make shipping activities greener. One 

example is that the MRV data and the prediction models can assist in the investment of 

technological practices. If ship managers or operators plan to upgrade the ship power 

and propulsion system or invest in cleaner fuels or alternative energy sources, they can 

either search for example ships in the MRV database to exam their performance or use 

the proposed average fuel consumption prediction models to estimate the ship energy 

efficiency after such investment. Another example is that if ship operators or charterers 

plan to decide the average sailing speed of their ships for a period, e.g., for several 

months or a year to reduce the total fuel consumption and CO2 emissions at a strategic 

level, they do not need to collect ship operational data from scratch. Instead, they can 

use the related data fields provided in the MRV system (Wang et al., 2020) and the 

prediction results generated by the average fuel consumption prediction models. 

Alternatively, if they would just like to explore how much fuel can be saved if operating 

the ship at a lower operational speed, they can first search for similar ships in the MRV 

system and then compare the energy efficiencies when operating under different 

average speeds. They can also use the developed prediction models directly to predict 

the annual average fuel consumption rates under different average sailing speeds. 

 

6. Conclusion and future work 

To reduce GHG emissions from the shipping industry, EU proposed and 

implemented the MRV regulation in 2015 to collect and publish the emission reports of 

ships over 5,000 tonnes using EU ports, and the records in 2018 and 2019 have been 

published. However, it is noted that the MRV data is far from fully utilized as most of 

the current literature on the MRV system is in a qualitative manner. Although there are 

a few studies developing quantitative models to analyze the MRV data, they only focus 

on one ship type. To bridge this gap, ship reports in the MRV system in 2018 and 2019 

are first analyzed and compared in this study. We find that the MRV data quality has 

significantly improved from 2018 to 2019, as there are much less “not applicable” 

records in the system. Furthermore, several emission and technical indicators regarding 

all ships and ships in different types show that ship energy efficiency is enhanced. The 

GHG emissions from shipping activities and the sulphur content of the vessel fuel oil 

are also gradually reducing. 

After data preprocessing, one GBRT model is developed for one ship type for 
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predicting the annual average fuel consumption. Model performance on hold-out test 

sets shows that the MAPE of all the models is within 12% and the average R-squared 

is 0.78. In addition, feature importance is generated and analyzed based on the GBRT 

models. Based on data analysis and fuel consumption prediction models development, 

model meanings, implications, and extensions are thoroughly discussed. We argue that 

the analysis results and prediction models can contribute to commercial and political 

decision making and promote GHG reduction plans.  

This paper makes the first attempt to analyze the emission reports in the MRV 

system from a quantitative perspective. It also develops the first annual average fuel 

consumption prediction models from a macro perspective using the MRV data. Besides, 

model implications and extensions are also discussed in this study. It is also noted that 

unlike the fuel consumption prediction models using noon reports and sensor data 

which are from a micro perspective and are able to consider the surrounding sea and 

weather conditions, it can be hard to directly combine such information in the prediction 

analysis based on the MRV data due to a lack of specific voyage information. Therefore, 

for future work, the MRV data can be further combined with the automatic 

identification system (AIS) to incorporate sailing route related features. Furthermore, 

sea and weather conditions and the emission regulations along the routes can also be 

taken into account to enhance the prediction accuracy and practicability. Besides, more 

comprehensive ship features, especially those related to ship structures and power 

systems, as well as ship maintenance data (e.g., dry docking and hull and propeller 

cleaning records) can be integrates into the fuel consumption prediction models. 

 

  



17 
 

Reference 

Akoel, A., Miler, R. K., 2019. Economic and operational impact of the MRV 

implementation on maritime transport processes. WSB Journal of Business and 

Finance 53(1), 133–143. 

Sanabra, M., Borén, C., 2020. Existing emission calculation methods applied to 

monitoring, reporting and verification (MRV) on board. Nase More: Znanstveni 

Casopis za More i Pomorstvo 67(2), 163–171.  

Deane, F., Huggins, A., Karim, M. S., 2019. Measuring, monitoring, reporting and 

verification of shipping emissions: evaluating transparency and answerability. 

Review of European, Comparative & International Environmental Law 28(3), 258–

267. 

Du, Y., Meng, Q., Wang, S., Kuang, H., 2019. Two-phase optimal solutions for ship 

speed and trim optimization over a voyage using voyage report data. Transportation 

Research Part B 122, 88–114. 

EU, 2011. White paper 2011 | Mobility and Transport. Accessed 24 December 2020. 

https://ec.europa.eu/transport/themes/european-strategies/white-paper-2011_en. 

EU, 2015. EU2015/757: regulations on the monitoring, reporting and verification of 

carbon dioxide emissions from maritime transport. Accessed 10 Sep 2020. 

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32015R0757. 

European Commission, 2013a, Integrating maritime transport emissions in the EU’s 

greenhouse gas reduction policies. Accessed 8 Dec 2020. 

https://ec.europa.eu/clima/policies/transport/shipping_en. 

European Commission, 2013b. Commission staff working document impact 

assessment. Accessed 6 Dec 2020. https://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=SWD:2013:0062:FIN:EN:PDF. 

European Commission, 2020. Strategy on maritime transport emissions. Accessed 12 

Dec 2020. https://ec.europa.eu/clima/policies/transport/shipping_en#tab-0-1. 

Faber, J., Nelissen, D., Smit, M., 2013. Monitoring of bunker fuel 

consumption. Scientific report of CE Delft. 

Friedman, J. H., 2001. Greedy function approximation: a gradient boosting 

machine. Annals of Statistics 29 (5), 1189–1232. 

Friedman, J., Hastie, T., Tibshirani, R., 2001. The Elements of Statistical Learning. 

Springer Publisher, Berlin, Germany. 

IMO, 2018. UN body adopts climate change strategy for shipping. Accessed 10

 December 2020. https://www.imo.org/en/MediaCentre/PressBriefings/Pages/06

GHGinitialstrategy.aspx. 

IMO, 2020. Fourth IMO GHG study 2020. Accessed 12 Sep 2020. 

https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-



18 
 

gas-emissions-from-ships.aspx. 

Lagouvardou, S., Psaraftis, H. N., Zis, T., 2020. A literature survey on market-based 

measures for the decarbonization of shipping. Sustainability 12(10), 1–23. 

Lu, C. S., Liu, W. H., Wooldridge, C., 2014. Maritime environmental governance and 

green shipping. Maritime Policy & Management 41(2), 131–133. 

Man B&W Diesel, 2018. Basic Principles of ship propulsion. Accessed 30 Sep 2020. 

https://spain.mandieselturbo.com/docs/librariesprovider10/sistemas-propulsivos-

marinos/basic-principles-of-ship-propulsion.pdf?sfvrsn=2.  

Mannarini, G., Carelli, L., Salhi, A., 2020. EU-MRV: an analysis of 2018’s Ro-Pax CO2 

data. In Proceedings of the 2020 21st IEEE International Conference on Mobile 

Data Management 287–292. 

MEPC, 2013. 2013 guidelines for calculation of reference lines for use with the energy 

efficiency design index (EEDI). Annex 14. Accessed 1 May 2021. 

https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolut

ions/MEPCDocuments/MEPC.231(65).pdf. 

MEPC, 2014. 2014 guidelines on the method of calculation of the attained energy 

efficiency design index (EEDI) for new ships, Annex 5. Accessed 1 May 2021. 

https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/24

5(66).pdf. 

Nelissen, D., Faber, J. F., 2014. Economic impacts of MRV of fuel and emissions in 

maritime transport. Scientific report of CE Delft. 

Panagakos, G., Pessôa, T., Dessypris, N., Barfod, M., Psaraftis, H., 2019. Monitoring 

the carbon footprint of dry bulk shipping in the EU: an early assessment of the 

MRV regulation. Sustainability 11(18), 5133. 

Paris MoU, 2019. 2018 Paris MoU annual report “Consistent Compliance”. Accessed 

13 July 2020. https://www.parismou.org/2018-paris-mou-annual-report-consistent-

compliance. 

Paris MoU, 2020. 2019 Paris MoU annual report “port state progression; detention rate 

down”. Accessed 13 July 2020. https://www.parismou.org/2019-paris-mou-annual-

report-port-state-progression-detention-rate-down. 

Pruyn, J. F. J., Van de Voorde, E., Meersman, H., 2011. Second hand vessel value 

estimation in maritime economics: a review of the past 20 years and the proposal 

of an elementary method. Maritime Economics & Logistics 13(2), 213–236. 

Psaraftis, H. N., Woodall, P., 2019. Reducing GHGs: the MBM and MRV agendas. 

Sustainable Shipping, 375–405. Switzerland. 

Rony, A., Kitada, M., Dalaklis, D., Ölçer, A., Ballini, F., 2019. Exploring the new policy 

framework of environmental performance management for shipping: a pilot study. 

WMU Journal of Maritime Affairs 18(1), 1–24. 



19 
 

Sampson, H., Bloor, M., Baker, S., Dahlgren, K., 2016. Greener shipping? A 

consideration of the issues associated with the introduction of emission control 

areas. Maritime Policy & Management 43(3), 295–308. 

Shi, W., Xiao, Y., Chen, Z., McLaughlin, H., Li, K. X., 2018. Evolution of green 

shipping research: themes and methods. Maritime Policy & Management 45(7), 

863–876. 

THETIS-MRV, 2020. CO2 emission report. Accessed 2 Sep 2020. 

https://mrv.emsa.europa.eu/#public/emission-report. 

Wang, S., Meng, Q., 2012. Sailing speed optimization for container ships in a liner 

shipping network. Transportation Research Part E 48(3), 701–714. 

Wang, S., Zhen, L., Psaraftis, H. N., 2020. Three potential benefits of the EU and IMO’s 

landmark efforts to monitor carbon dioxide emissions from shipping. Frontiers of 

Engineering Management 2020, 1–2. 

Wang, W., Huang, L., Gu, J., Jiang, L., 2019. Green port project scheduling with 

comprehensive efficiency consideration. Maritime Policy & Management 46(8), 

967–981. 

WRS, 2020. World Shipping Register. Accessed 22 Dec 2020. https://world-ships.com/. 

Xing, W., Liu, Q., Chen, G., 2018. Pricing strategies for port competition and 

cooperation. Maritime Policy & Management 45(2), 260–277. 

Yan, R., Wang, S., Du, Y., 2020. Development of a two-stage ship fuel consumption 

prediction and reduction model for a dry bulk ship. Transportation Research Part E: 

Logistics and Transportation Review 138, 101930. 

Zaman, I., Pazouki, K., Norman, R., Younessi, S., Coleman, S., 2017. Challenges and 

opportunities of big data analytics for upcoming regulations and future 

transformation of the shipping industry. Procedia engineering 194, 537–544. 




