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Abstract
Background  Falls pose a severe threat to the health of older adults worldwide. Determining gait and kinematic 
parameters that are related to an increased risk of falls is essential for developing effective intervention and fall 
prevention strategies. This study aimed to investigate the discriminatory parameter, which lay an important basis for 
developing effective clinical screening tools for identifying high-fall-risk older adults.

Methods  Forty-one individuals aged 65 years and above living in the community participated in this study. The older 
adults were classified as high-fall-risk and low-fall-risk individuals based on their BBS scores. The participants wore an 
inertial measurement unit (IMU) while conducting the Timed Up and Go (TUG) test. Simultaneously, a depth camera 
acquired images of the participants’ movements during the experiment. After segmenting the data according to 
subtasks, 142 parameters were extracted from the sensor-based data. A t-test or Mann-Whitney U test was performed 
on the parameters for distinguishing older adults at high risk of falling. The logistic regression was used to further 
quantify the role of different parameters in identifying high-fall-risk individuals. Furthermore, we conducted an 
ablation experiment to explore the complementary information offered by the two sensors.

Results  Fifteen participants were defined as high-fall-risk individuals, while twenty-six were defined as low-fall-risk 
individuals. 17 parameters were tested for significance with p-values less than 0.05. Some of these parameters, such 
as the usage of walking assistance, maximum angular velocity around the yaw axis during turn-to-sit, and step length, 
exhibit the greatest discriminatory abilities in identifying high-fall-risk individuals. Additionally, combining features 
from both devices for fall risk assessment resulted in a higher AUC of 0.882 compared to using each device separately.
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Introduction
Falls have been recognized as a major health problem 
for older adults with significant physical and psycho-
logical consequences [1]. Community-dwelling older 
adults (age ≥ 65 years) experience 0.3–1.6 falls per person 
annually, of which approximately 5% result in fractures 
or require hospitalization [2]. As reported [3], falls have 
become the second leading cause of injury-related deaths 
among older adults worldwide, and they are a major 
cause of both death and injury in people over 65 years of 
age. Existing literature shows that several inherent risk 
factors can contribute to different gait and balance defi-
cits that would result in falling, such as decreased muscle 
strength, limited range of movement, abnormal muscle 
tone, lack of motor coordination, poor sensory organi-
zation, and cognitive deficit [4]. It is crucial to reduce 
the burden of the disease brought by falls. Studies have 
shown that timely identifying people at risk of falls and 
implementing fall prevention programs can successfully 
reduce fall occurrences [5].

There are some clinical measurements that were widely 
used to evaluate the fall risk of older adults, such as the 
Berg Balance Scale (BBS), Tinetti Performance Oriented 
Mobility Assessment (POMA), Balance Evaluation Sys-
tem Test (BESTest), and Functional Gait Assessment 
(FGA) [6–8]. Among these BBS is a 14-item scale that 
demonstrates a strong correlation with prospective fall 
events [9]. It has been widely employed in the assess-
ment of fall risk and has proven its effectiveness in vari-
ous research investigations [10, 11]. However, it takes 
15–20  min and requires expert supervision to perform 
the BBS test [10]. Conventional assessment instruments 
entail considerable time and effort, which impedes their 
rapid and extensive application at the communal level 
[12].

The advancement of information technology and 
sensor-based methodologies has facilitated the imple-
mentation of efficacious fall risk assessment techniques. 
Sensors, through the extraction of objective and quantifi-
able human motion data, have been validated in multiple 
studies for their effectiveness in fall risk assessment [13–
16]. These techniques contain sophisticated information, 
provide comprehensive data, and can significantly reduce 
the time and labour required for assessment. Among 
these methods, nearable (environmental perception) and 
wearable sensors are widely employed due to their high 

efficacy. Typical examples of environmental perception 
sensors are infrared sensors, Doppler radar, depth cam-
era systems, and force platforms [17–20] which facilitate 
accurate and precise monitoring, detection, and analysis 
of various environmental parameters. Typical examples 
of wearable sensors are pressure insoles and inertial 
measurement units (IMUs) [21, 22] which can monitor 
human activities in real-time and provide kinematic data 
for subsequent analysis.

The integration of standard tests and sensor-based 
devices can not only simplify the fall risk assessment pro-
cess, but also assess fall risk in older adults accurately by 
extracting gait parameters during their movement [23, 
24]. Previous studies have demonstrated the validity and 
reliability of each type of sensor individually [16, 25–27]. 
Due to variations in measured parameters and modeling 
techniques, reported accuracy ranges of fall risk assess-
ments in different studies vary widely, ranging from 47.9 
to 100% [14]. There was various existing research con-
cerning gait parameters extracted from IMU or depth 
camera data of the Timed Up and Go (TUG) test assess-
ing mobility or balance among older adults. Diao et al. 
conducted an IMU-instrumented, environment-adapt-
ing TUG test to extract and quantify gait parameters 
potentially associated with falls. The results indicate that 
parameters extracted by wearable inertial sensors could 
effectively differentiate individuals with high and low fall 
risks [15]. Dubois et al. automated the TUG test with the 
Microsoft Kinect v2 application. Based on the Kinect data 
collected from tests, several parameters relating to the 
gait and turn pattern, the sitting position, and the dura-
tion of each phase were extracted to build an evaluation 
system for the mobility and balance of individuals. The 
evaluation system can objectively quantify the change in 
parameters of different subtasks of TUG to provide dis-
crimination of high risk for falls in older adults [28].

The combination of IMUs and depth cameras for gait 
and fall risk analysis is a novel and promising approach 
that has received growing attention in the literature. In 
the realm of utilizing sensors for fall risk assessment, a 
prevalent approach involves the use of a single type of 
sensor [14, 22, 29]. However, the simultaneous use of 
nearable and wearable sensors is only observed in a sub-
set of fall monitoring studies [30, 31]. This research gap 
motivates further exploration of the potential advan-
tages of integrating these two types of sensors in fall risk 

Conclusions  Utilizing different types of sensors can offer more comprehensive information. Interpreting parameters 
to physiology provides deeper insights into the identification of high-fall-risk individuals. High-fall-risk individuals 
typically exhibited a cautious gait, such as larger step width and shorter step length during walking. Besides, we 
identified some abnormal gait patterns of high-fall-risk individuals compared to low-fall-risk individuals, such as less 
knee flexion and a tendency to tilt the pelvis forward during turning.
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assessment. While IMUs can precisely record the move-
ment of particular body parts, more IMUs are necessary 
to record additional parts. Conversely, depth camera can 
capture more key points during motion despite their lack 
of precision. Their complementary and synergistic effects 
have not been thoroughly examined. Therefore, we com-
bined parameters from the IMU and depth camera used 
in previous studies to investigate their role in fall risk 
assessment among community-dwelling older adults. 
From a clinical perspective, employing sensors for fall 
risk assessment can alleviate the burden on healthcare 
professionals and facilitate large-scale, long-term moni-
toring. Our emphasis is on interpreting the meaning of 
the parameters, with the goal of providing additional 
clinical insights into individuals at high risk.

This study utilized depth camera technology and IMU 
to measure gait parameters in geriatric community mem-
bers. The objective was to identify factors distinguishing 
between individuals at high and low risk of falls, utiliz-
ing 142 parameters primarily derived from the 3 m-TUG 
subtask. These parameters encompassed demographic, 
gait, kinematic, and anatomical variables. Logistic regres-
sion models were employed to evaluate the contribution 
of these factors to fall risk. The paper aimed at discuss-
ing and interpreting the significant parameters associated 
with fall risk. This discussion considered the physiology 
of older adults and drew insights from relevant litera-
ture. Furthermore, it delineated the potential comple-
mentarity of depth camera technology and IMUs for gait 
assessment.

Methods
Participants
We recruited older adults who met all the following 
inclusion criteria: at least 65 years old, living in a com-
munity setting, having the ability to walk independently 
or with walking assistance, with normal (or corrected-
to-normal) vision, and having the ability to provide 
informed consent. We excluded older adults with abnor-
mal vision, physical impairments, and life-threatening 
illnesses, as they were likely unable to complete the gait 
and balance assessment. The pilot study was approved by 
the Research Ethics Committee of the City University of 
Hong Kong (reference number: 3-2020-02-F). All partici-
pants provided written informed consent before the ini-
tiation of our study.

The data collection was conducted between December 
2019 and January 2020, and fifty-four participants from 4 
different community settings were recruited based on the 
inclusion and exclusion criteria. However, only forty-one 
participants (thirty-six women and five men) aged 68–89 
years (79.07 ± 6.47 years) completed all the tests due to 
some participants declining the depth camera recording 
or withdrawing from the experiment. These community 

settings are distributed across different districts in Hong 
Kong, without fixed residential types, thereby endowing 
the results with a high degree of generalizability.

Assessment and protocol
During the experiment phase, participants were required 
to complete two sets of tests: the BBS assessment and the 
3 m-TUG test.

 	• BBS: The BBS consists of 14 items examining the 
balance capability of older adults, and each item 
is scored on a scale of 0 to 4. If the participant is 
unable to do the task, the score is recorded as 0, 
and if the participant is able to complete the task 
according to the criteria assigned to it, the score 
is 4. The maximum total score on the test is 56. 
The BBS was developed as a balance assessment to 
objectively assess a person’s ability to control balance 
in a functional task [32]. For the prediction of falls 
in community-dwelling older adults, a cutoff score 
of 50 was proposed [33]. Participants were labeled 
as low-fall-risk individuals if their BBS score was 
> 50. Otherwise, they were labeled as high-fall-risk 
individuals. Therefore, we identified twenty-six 
low-fall-risk individuals and fifteen high-fall-risk 
individuals.

 	• 3 m-TUG test: participants were required to stand 
up from a chair, walk 3 m, turn around 180°, then 
walk back around and sit in the chair again [34]. 
The TUG is a simple and feasible tool that can be 
administered in any setting and at any time [35]. It 
involves basic mobility skills such as rising, turning, 
sitting, and walking. Therefore, it is recommended as 
a screening tool to identify older adults with balance 
or gait impairments [36]. Figure 1 demonstrates the 
general process of 3 m-TUG. In our experiment, all 
participants finish the TUG without any walking 
assistance.

During the experiment, we used a commercial IMU 
sensor (9 Degrees of Freedom) and a Kinect (Microsoft 
Kinect for Windows v2) device to capture the partici-
pants’ movement parameters while they completed the 
3 m-TUG.

 	• IMUs are widely used for the analysis of gait 
parameters and fall risk assessment due to their 
accuracy, portability, and low price [37]. IMU with 
a sampling frequency of 5 Hz consisting mainly of 
an accelerometer and a gyroscope was placed on 
the participants’ lower back area between the L3 
and L5 vertebrae. Acceleration signals were derived 
from three axes: vertical (V), mediolateral (ML), 
and anterior-posterior (AP). Angular velocity of a 
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gyroscope: yaw, pitch, and roll rotate around V, ML, 
and AP, respectively, as shown in Fig. 2.

 	• Kinect is a portable device with an integrated 
depth sensor and a micro camera. Different from 
the traditional camera system, the depth camera 
technology obtains 3D information about subjects 
with the application of the stereo calibration method, 
which can produce RGB images and dynamically 
capture the movement of the human body for 
accurate analysis of human posture [38, 39]. As Fig. 3 

shows, the key-point data collected from Kinect is 
presented in the form of 25 human skeletal joints 
in the three-dimensional coordinate, which means 
that the motion of each key-point can be studied 
individually.

Divide the TUG into subtasks
Dividing the TUG into subtasks can provide a more 
detailed and nuanced assessment of mobility and 

Fig. 2  (a) The IMU is positioned between L3 and L5 vertebrae. (b) IMU’s three axes

 

Fig. 1  The process of 3 m-TUG.
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functional ability in older adults. Figure 4 shows an illus-
trated example of the gyroscope data of a person during 
the TUG test. TUG was divided into five subtasks: sit-to-
stand, walking forward, turn, walking back, and turn-to-
sit. The five segmentations were detected with angular 
velocities in the yaw and pitch axes using the developed 
algorithm presented by previous related work [40, 41]. 
Data segmentation was achieved by capturing transi-
tions in axis fluctuations. The algorithm leverages stable 
angular velocity values during sitting, facilitating the 

identification of TUG test initiation and termination. The 
pitch axis experiences significant fluctuations in sit-to-
stand and stand-to-sit phases, while the yaw axis exhibits 
pronounced peaks during turning. Notably, both pitch 
and yaw show minimal fluctuations during the walking 
phase.

Parameters extraction and statistical analysis
The goal of this analysis was to identify the signifi-
cant difference between high-fall-risk individuals and 

Fig. 4  An example of the gyroscope data of a person during the TUG test

 

Fig. 3  25 human key-point detected by Kinect

 



Page 6 of 12Wang et al. BMC Geriatrics          (2024) 24:125 

low-fall-risk individuals. Each subtask provides differ-
ent physical function information, so the parameters 
were extracted based on different tasks. A walking phase 
is created by merging the two walking segments. The 
study examined a total of 142 parameters that have been 
employed in previous studies on fall risk identification 
[16, 25–27]. Table 1 shows the main parameters extracted 
from IMU and Kinect.

 	• 8 parameters were obtained from the subtasks’ 
temporal data: duration is the time required to 
complete the subtasks; the percentage of duration 
(POD) is the subtask duration divided by the TUG 
duration.

 	• 3*22 parameters were obtained from acceleration 
data: the maximum, minimum, median, range, root 
mean square (RMS), coefficient of variation (CV), 
maximum jerk (Max jerk), and mean jerk of the 
triaxial accelerometers during each subtask were 
calculated. It is noteworthy that all parameters were 
computed for the entire subtask. For example, in the 
Sit-to-stand task, the Max jerk corresponds to the 
maximum change in acceleration during this specific 
task period [16, 42], calculated as the maximum 
difference in acceleration values.

 	• 3*18 parameters were obtained from angular velocity 
data: the maximum, minimum, median, range, RMS, 
and CV of the triaxial angular velocity during each 
subtask were calculated.

 	• 10 parameters were obtained from key-point data: 
legs angle is the angle between the two legs, defined 
as the angle between the two vectors of the line 
between the joints 0 and 17 and the line between 0 
and 13 (Fig. 3); knee angle is the angle between the 
thigh and the calf, for example, the right knee angle 
is the angle between the two vectors 17 and 16 of the 
joint and 17 and 18 of the joint (Fig. 3); step counts 

is the number of steps during walking; step length 
is the total length of walking (6 m) divided by the 
number of steps; step duration is the duration of 
walking divided by the number of steps; step width is 
the average width between the two feet.

 	• 1 parameter was the duration of the TUG test.
 	• 3 parameters were obtained from demographic 

information, including gender, age, and the use of 
walking assistance.

These parameters can be classified into four categories 
based on previous studies [26, 43], the first category of 
parameters being demographic parameters (e.g., age); the 
second category being kinematic parameters extracted 
from the IMU (e.g., maximum acceleration, the angular 
velocity at turn); the third category being gait parameters 
(e.g., step count, step length, and walking duration); and 
the fourth category being anatomical parameters (e.g., 
knee angle). For all extracted parameters, after checking 
the normality of the distribution within the two groups 
using the Shapiro-Wilk test, statistical comparisons 
between high-fall-risk individuals and low-fall-risk indi-
viduals were conducted. The tests employed included the 
t-test or Mann-Whitney U test, with a significance level 
ofα = 0.05. The Cohen’s d parameter was calculated to 
obtain the effect size for each variable, aiming to assess 
its discriminative power [10]. The value of d greater than 
0.8 is considered to have a large effect size [44]. Univari-
ate logistic regression was employed to assess parameters 
with a large effect size. This approach allowed us to fur-
ther quantify the role of different parameters in iden-
tifying individuals at high risk of falls. Additionally, we 
conducted ablation experiments using these parameters 
in conjunction with multivariate logistic regression to 
examine whether the information from the two sensors 
is complementary. Statistical analyses were conducted 
using the R-4.2.1.

Table 1  Summary of the main parameters extracted from IMU and Kinect
Sit-to-stand Walking Turn Turn-to-sit

Temporal(8) Duration(G), POD(G) Duration(G), POD(G) Duration(G), POD(G) Duration(G), POD(G)

Acceleration(3*22)
(V, ML, AP)

Maximum(K), Minimum(K), 
Range(K), RMS(K), Max 
jerk(K), Mean jerk(K)

Range(K), RMS(K), Median(K), 
CV(K)

Range(K), RMS(K), 
Median(K), CV(K)

Maximum(K), 
Minimum(K), Range(K), 
RMS(K), Median(K), 
CV(K), Max jerk(K), Mean 
jerk(K)

Angular velocity(3*18)
(yaw, pitch, roll)

Maximum(K), Minimum(K), 
Range(K), RMS(K)

Range(K), RMS(K), Median(K), 
CV(K)

Range(K), RMS(K), 
Median(K), CV(K)

Maximum(K), 
Minimum(K), Range(K), 
RMS(K), Median(K), CV(K)

Key-point(10) Legs angle(A), Left knee angle(A), 
Right knee angle(A), Step 
counts(G), Step length(G), Step 
duration(G), Step width(G)

Legs angle(A), Left knee 
angle(A), Right knee 
angle(A)

Note: Each parameter is annotated with its type: K for kinematic parameters, D for demographic parameters, G for gait parameters, and A for anatomical parameters. 
In addition to the 138 parameters presented in this table, there is an extra parameter indicating the duration of the TUG test, along with three demographic 
parameters
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Results
Demographic parameters of participants
The general parameters of the participants are presented 
in Table 2. It can be seen that the two groups differ sig-
nificantly in the parameters ‘Age’ and ‘usage of walk-
ing assistance’ in daily life. Compared with low-fall-risk 
individuals, older age and use of walking assistance in 
daily life were observed in high-fall-risk individuals, as 
expected.

Significant parameters extracted from IMU and Kinect
Seventeen parameters showed significant differences 
between the two groups. Table 3 shows the p-values and 
effect size of the significant parameters. The utilization of 
walking aids, Max-Ang-Yaw during the turn-to-sit phase, 
and step length exhibited the most substantial effect sizes 
in discriminating between the two groups. The low-fall-
risk group demonstrated reduced reliance on walking 
aids in their daily activities. Notably, during the turn-to-
sit phase, the angular velocity in yaw manifested a higher 

maximum value, and the step length during walking was 
greater for low-fall-risk individuals. Complete results, 
including test results for 142 parameters, are provided in 
the Additional file 1.

Logistic regression model
We employed univariate logistic regression to investi-
gate the association between parameters demonstrat-
ing significance and a large effect size (d > 0.8) with the 
risk of falls. The parameters considered included the 
usage of walking assistance, Max-Ang-Yaw during turn-
to-sit, CV-Ang-Yaw during turn-to-sit, step length, step 
width, and Max-Acc-V during turn-to-sit, as presented in 
Table 4.

The findings suggest that heightened utilization of 
walking assistance, reduced variability in Yaw during 
the turn-to-sit subtask, and diminished step length dur-
ing walking are associated with an increased risk of falls. 
Although all participants were able to perform the TUG 
without walking aids in our experiments, the historical 
use of such aids in their daily lives still plays a key role 
in assessing fall risk. Conversely, an expanded step width 
and elevated maximum velocity during the Turn-to-sit 
subtask are indicative of significantly heightened fall risk.

To assess whether different sensor-extracted features 
contribute complementarily to the assessment of fall risk, 
we conducted an ablation experiment. Three feature sets 
were employed (IMU feature set: Max-Ang-Yaw during 
turn-to-sit, CV-Ang-Yaw during turn-to-sit, and Max-
Acc-V during turn-to-sit; Depth Camera feature set: step 

Table 2  Demographic parameters of the participants
Parameter Low-fall-risk 

individuals
High-fall-risk 
individuals

p-
Val-
ues

Participants (n) 26 15 –

Age (years ± standard deviation) 77.38 ± 5.34 82.00 ± 7.36 0.041

Gender (M/F) 2/24 3/12 0.262

Usage of walking assistance 
(Yes/NO)

4/22 10/5 0.001

Table 3  Significant parameters (p < 0.05)
Parameter Subtask Axis Low-fall-risk 

individuals
High-fall-risk 
individuals

p-Values Ef-
fect
size

CV [deg/s] Turn Pitch 2.19 ± 8.77 -3.75 ± 6.31 < 0.001 0.745

Usage of walking assistance [Yes/NO] – – 4/22 10/15 0.001 1.236

Max [deg/s] Turn-to-sit Yaw 161.28 ± 44.40 122.25 ± 33.24 0.003 0.957

CV [deg/s] Turn-to-sit Yaw 1.31 ± 0.31 1.09 ± 0.15 0.005 0.814

Step length [m] Walk – 0.37 ± 0.07 0.31 ± 0.06 0.007 0.909

Step width [m] Walk – 0.13 ± 0.03 0.16 ± 0.03 0.008 0.859

Median [deg/s] Turn Pitch 2.10 ± 6.45 -2.80 ± 5.86 0.021 0.786

Right knee angle [deg] Walk – 158.95 ± 5.48 162.18 ± 3.19 0.022 0.673

RMS [deg/s] Walk Pitch 8.16 ± 2.41 6.64 ± 1.77 0.026 0.692

Max [m/s2] Turn-to-sit V 1.14 ± 0.05 1.19 ± 0.07 0.026 0.859

Mean jerk [m/s2] Turn-to-sit AP 0.10 ± 0.03 0.08 ± 0.02 0.029 0.641

POD [%] Walk – 39.27 ± 6.53 43.43 ± 6.74 0.031 0.624

Right knee angle [deg] Turn – 157.71 ± 10.60 164.44 ± 9.05 0.034 0.666

Age [years] – – 77.38 ± 5.34 82.00 ± 7.36 0.041 0.752

Mean jerk [m/s2] Sit-to-stand ML 0.04 ± 0.02 0.05 ± 0.02 0.050* 0.456

RMS [deg/s] Turn-to-sit Yaw 71.24 ± 24.6 57.22 ± 17.33 0.050* 0.630

Max [deg/s] Turn-to-sit Roll 18.72 ± 11.3 26.67 ± 11.55 0.050* 0.698
Note: The results of ranking for 17 significant parameters’ p-values from smallest to largest for the t-test or Mann-Whitney U test. The values on each parameter were 
reported as mean ± standard deviation. The asterisk (*) denotes that the displayed value is 0.050, constrained by significant figures. When retaining six significant 
figures, all three p-values are 0.049724. The effect size is represented by Cohen’s d value
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length, step width; combination of IMU and Depth Cam-
era) to construct multivariate logistic regression models. 
The area under the curve (AUC) values were computed. 
The results, as depicted in Fig. 5, indicate that the com-
bined use of IMU and Depth Camera features enhances 
the classification AUC values (AUC = 0.882).

Discussion
General considerations
An important contribution of this study is the quantita-
tive assessment of multiple parameters associated with 
fall risks among community-dwelling residents aged 65 
years old and above. Our results indicate that 17 param-
eters are relevant for assessing the fall risk of older adults, 
comprising 11 kinematic parameters, 3 gait parameters, 
2 demographic parameters, and 1 anatomical param-
eter. This suggests that electronic devices such as IMUs 
and Kinect can extract relevant features to facilitate the 
detection of gait abnormalities in older adults, reduc-
ing the reliance on healthcare professionals for manual 
assessment of fall risk.

Participants performed a simple TUG test, which is a 
widely used assessment tool for older adults [45]. Various 
subtasks within the test can be employed to assess dif-
ferent aspects of daily living activities in the elderly. Sit-
to-stand involved lifting from a chair with momentum 
transfer and body stabilization [46]. Walking required 

regulating angular momentum for fall prevention, 
employing “elevating” and “lowering” strategies [47]. 
Turning involved translating and rotating the body while 
maintaining dynamic stability [48]. Stand-to-sit required 
synchronized trunk and knee control for center of grav-
ity displacement [49]. The choice of the TUG aligns with 
our objective to efficiently gather rich and diverse data 
on balance abilities in a real-world context, facilitating 
a nuanced exploration of balance-related parameters 
across different TUG subtasks. We identified more sig-
nificant parameters in the turn-to-sit phase compared to 
the other phases, with seven in total. This is followed by 
five significant parameters in the walking phase, where 
previous studies have demonstrated the highest correla-
tion between walking and the incidence of falls [50].

Interpretation of parameters associated with fall risk
Using TUG duration alone to distinguish fallers from 
non-fallers has long been controversial. Although similar 
to the results of previous studies [6], the TUG duration 
in this experiment was longer in high-fall-risk individuals 
than in low-fall-risk individuals, but the p-value was non-
significant (high-fall-risk individual: 16.11 ± 6.36, low-
fall-risk individual: 13.53 ± 3.52, p = 0.208). A systematic 
review [51] noted that the TUG duration is not useful in 
distinguishing fallers from non-fallers in a healthy state 
but is more valuable in less-healthy older adults. This is 
consistent with our results because our participants were 
older healthy residents from the community, so no sig-
nificant TUG time threshold was found to identify high 
risk in the older adults. However, we found that the per-
centage of the duration (POD) of walking is a significant 
parameter to distinguish between the two groups (high-
fall-risk individual: 43.43 ± 6.74, low-fall-risk individual: 
39.27 ± 6.53, p = 0.031). Motor control is a complex inter-
play of cognitive and sensorimotor systems, and studies 
have demonstrated that the speed of information pro-
cessing declines with age (i.e., time increases) by approxi-
mately 26% [52]. The difference in the POD of walking 
between the two groups may be associated with the dif-
ferent speeds of information processing for postural tran-
sitions or different walking strategies.

We also found that the demographic parameters were 
meaningful in distinguishing the two populations. Older 
adults or those who use walking assistance are more 

Table 4  Univariable logistic regression of fall risk
Parameter Subtask Axis B p-Values OR 95% CI
assistance – – 2.398 0.002 11.000 (2.619,56.297)

Max Turn-to-sit Yaw -0.026 0.013 0.974 (0.951,0.992)

CV Turn-to-sit Yaw -3.767 0.027 0.023 (0.001,0.44)

Step length Walk – -13.429 0.015 0.000 (0.000,0.032)

Step width Walk – 30.019 0.021 1.090*1013 (1042.921,5.385*1025)

Max Turn-to-sit V 14.316 0.020 1.649*106 (22.283,1.053*1012)

Fig. 5  ROC curve of different feature subsets
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likely to be defined as high-fall-risk individuals. This 
result is consistent with the reality that the rate of falls 
among older adults increases with age [53, 54]. A correla-
tion between age and BBS score was also mentioned in 
a study evaluating age and gender-related balance per-
formance in older adults [55]. The TUG is a brief activ-
ity that all participants were able to complete without 
aids. However, some individuals may require assistive 
devices for more frequent or prolonged daily activities 
to maintain balance. The reliance on assistive devices in 
the elderly’s daily life suggests potential issues with their 
balance or gait abilities. Another study [56] assessing 
the risk of falls among nursing home residents showed 
that although more people in the falls population used 
walking assistance, the p-value comparing fallers and 
non-fallers using whether or not walking assistance was 
nonsignificant. One potential reason for the inconsis-
tency between this result and ours is that our subjects 
were older adults generally in good physical condition 
living in the community, with 34% of them using walking 
assistance. In contrast, in this study, it was nursing home 
residents with 49% walking assistance use.

Older adults are more likely to be perceived as walk-
ing carefully, hobbling, and having short strides [57]. 
This walking characteristic is usually considered a sign 
of fear of falling in older people, which aligns with the 
“cautious gait” concept introduced by physiologists. The 
introduction of “cautious gait” [58] explains many of the 
movement patterns of older adults. The results of our 
experiments show that high-fall-risk individuals have 
a more cautious gait, a greater step width and a smaller 
step length to maintain body balance. There is also some 
evidence for a careful walking strategy in older adults, 
such as smaller values of CV, Rms, etc., for the angular 
velocity of yaw rotation in the turn-to-sit phase in high-
fall-risk individuals than in low-fall-risk individuals. 
Many older adults exhibit a timid, reserved, and slow gait 
as a consequence of the fear of falling [59]. This fear can 
have detrimental effects on the well-being of older adults, 
such as social withdrawal, depressive symptoms, and ele-
vated fall risk [60].

Dierick et al. [56] conducted a fall risk assessment 
in nursing homes using the TUG test. They found that 
non-fallers exhibited a higher Max-Ang-Yaw than fallers 
during the first turn, suggesting that older adults with a 
higher fall risk had a lower turning velocity. Our results 
showed that a similar phenomenon was found during the 
turn-to-sit phase (high-risk individual: 122.25 ± 33.24, 
low-risk individual: 161.28 ± 44.40, p = 0.003). The sec-
ond turn involves more cognitive skills than the first turn, 
as it requires planning the process of sitting down [61]. 
Older adults with turn difficulties adopted multi-step 
turns as a compensatory strategy to reduce the complex-
ity and coordination demands of pivoting turns, which 

were preferred by younger and older adults without turn 
difficulties [62]. This strategy resulted in a significantly 
lower Max-Ang-Yaw among high-fall-risk individuals. 
Multi-step turns involve fewer feedback mechanisms and 
allow for smaller or slower movements that are easier to 
execute.

Also, the significance test results showed that the 
CV-Ang-Pitch during the turn was the most significant 
parameter in distinguishing between the two popula-
tions, and Median-Ang-Pitch during the turn was also 
significant. Both parameters indicated a tendency to 
lean forward in the position where the IMU of the high-
fall-risk individuals was located during the turn. This is 
related to the presence of anterior pelvic tilt in the gait 
of older adults [63]. A study of joint angles in older and 
younger people showed that older subjects had more 
anterior pelvic tilt during walking than younger people 
[64]. In older adults, anterior pelvic tilt may be caused by 
postural changes caused by weakness in the abdominal 
and hip muscles or as compensation for fear of instability 
[65].

Another interesting phenomenon is that high-fall-
risk individuals have a greater right keen angle during 
the walking and turning phases, i.e., less knee flexion. A 
study [64] showed that knee range of motion was also 
reduced in older adults (55 ± 5°) compared to younger 
adults (59 ± 5°) during the gait cycle. Increased knee flex-
ion during walking can produce greater eccentric work 
[66]. A lower knee flexion angle may indicate impaired 
eccentric control of the knee, resulting in more difficult 
balance control and greater susceptibility to falls [67].

We recommend utilizing parameters with large effect 
sizes for analyzing the fall risk in older adults. Among 
all parameters extracted by IMU, the maximum angular 
velocity around the yaw axis during turn-to-sit exhib-
its optimal discriminatory power (i.e., the largest effect 
size) in distinguishing between high and low fall risks. 
According to the logistic regression results, during the 
Turn-to-sit subtask, a one-unit decrease in the maximum 
yaw angle is associated with a 2.6% reduction in the odds 
of fall risk. This result provides new evidence support-
ing the previous conclusion that turning speed induces 
changes in overall coordination among older adults [68]. 
Among all parameters measured by the depth camera, 
step length exhibits the highest discriminatory power and 
is considered a protective factor. Slower gait and shorter 
step length in high-fall-risk individuals are considered to 
enhance stability against balance threats [69].

Complementary effects of IMU and depth camera
IMU and depth camera technologies have been widely 
validated for assessing fall risk in the elderly [28, 70, 71]. 
They are considered low-cost and user-friendly tools for 
human motion analysis. However, their complementary 
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roles are rarely addressed in the literature. Both theoreti-
cally and practically, it seems evident that these two sen-
sors provide a certain degree of complementarity. IMU, 
as a prevalent wearable sensor, is extensively utilized in 
research [37]. It offers detailed acceleration and angu-
lar velocity data, reflecting nuanced movement patterns 
[72]. However, its applicability is limited to specific wear-
ing locations, and the optimal placement has been a sub-
ject of research discussion [73].On the other hand, depth 
cameras employ built-in and externally validated skeletal 
modeling algorithms to provide markerless 3D motion 
tracking of multiple joints in the body [14]. Nevertheless, 
they face challenges in offering detailed motion informa-
tion, such as angular velocity. We extracted various kine-
matic parameters from IMU signals and multiple gait 
and anatomical parameters from the depth camera, some 
of which are device-specific, like knee angle, which can 
only be obtained from the depth camera. To understand 
their roles in fall risk assessment, we conducted ablation 
experiments using logistic regression. The results indi-
cated that combining features from both sensors leads to 
a higher AUC value. However, we acknowledge that this 
is a preliminary validation, and further evidence is neces-
sary to substantiate the complementary nature of the two 
devices.

Limitations and future work
This study has several limitations. The sampling fre-
quency of IMU is only 5hz, which may result in a par-
tial loss of information. A greater percentage of elderly 
females than males took part in the experiment in the 
community, which is connected to the fact that elderly 
females are more engaged in health-related activities 
[74]. The systematic imbalance in demographic param-
eters and small sample size may limit the generalizabil-
ity of the results. The limited adoption of depth cameras 
among the elderly population is another issue that merits 
consideration. The utilization of a clinical assessment to 
infer fall risk, rather than prospectively monitoring fall 
occurrences, introduces an additional limitation to the 
study.

The 5  Hz sampling frequency constitutes a significant 
limitation in our study, requiring subsequent exploration 
of the consistency between low-frequency and high-fre-
quency sampling information. Investigating the variabil-
ity between individuals (i.e., differences in completing 
the TUG task each time) and its potential impact on 
assessment results will be a direction for future research. 
Additionally, we are interested in exploring the potential 
role of significant parameters in predicting high-fall-risk 
individuals in real-world settings. To this end, we will use 
interpretable machine learning algorithms to verify these 
parameters’ impact on prediction accuracy and gain 

further insight into the underlying mechanisms behind 
fall risk.

Conclusion
The high incidence of falls among the elderly popula-
tion significantly impacts their quality of life. Accurate 
identification of individuals at high risk for falls and the 
implementation of timely interventions are crucial. Con-
ventional clinical assessment methods can be resource-
intensive. Our research aims to effectively address this 
issue by leveraging sensor-based technology. In our 
experiments, participants only needed to complete a 
single TUG task, typically taking less than one minute. 
This streamlined protocol maximizes efficiency, mini-
mizing time and resource expenditure. We integrated 
the test with various economically priced and reusable 
sensor technologies, including IMU and depth cameras, 
to extract multiple parameters potentially related to fall 
risk. IMU and depth camera technologies allow for the 
extraction of different types of features, demonstrat-
ing a complementary role in assessing fall risk. Some of 
these parameters, such as the usage of walking assistance, 
maximum angular velocity around the yaw axis during 
turn-to-sit, and step length, exhibit robust discrimina-
tory abilities in identifying high-fall-risk individuals. We 
provided physiological explanations for their significance, 
offering crucial insights from a physiological perspective 
for identifying individuals at high risk of falls.
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