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Abstract
Contemporary works in change-point survival models mainly focus on an unknown
universal change-point shared by the whole study population. However, in some
situations, the change-point is plausibly individual-specific, such as when it
corresponds to the telomere length or menopausal age. Also, maximum-likelihood-
based inference for the fixed change-point parameter is notoriously complicated.
The asymptotic distribution of the maximum likelihood estimator is non-standard,
and computationally intensive bootstrap techniques are commonly used to retrieve
its sampling distribution. This paper is motivated by a breast cancer study, where
the disease-free survival time of the patients is postulated to be regulated by the
menopausal age, which is unobserved. As menopausal age varies across patients,
a fixed change-point survival model may be inadequate. Therefore, we propose
a novel proportional hazards model with a random change-point. We develop a
nonparametric maximum likelihood estimation approach and devise a stable EM
algorithm to compute the estimators. Because the model is regular, we employ
conventional likelihood theory for inference based on the asymptotic normality of
the Euclidean parameter estimates, and the variance of the asymptotic distribution
can be consistently estimated by a profile-likelihood approach. A simulation study
demonstrates the satisfactory finite-sample performance of the proposed methods,
which yield small bias and proper coverage probabilities. The methods are applied to
the motivating breast cancer study.
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1 Introduction

Change-point models are widely applicable in medical studies, where the effect of a
covariate on the response variable is not linear but is regulated by the same or another
covariate, often called a change-point variable. One motivation for considering a change-
point model is to develop a classification method for assigning patients into sub-groups
that possess different levels of disease risk according to the change-point variable.
This can improve risk prediction and identification of individuals who require intensive
treatments. For instance, patients with primary biliary cirrhosis can be classified as early-
phase or late-phase according to a change-point parameter (also referred to as a threshold
parameter), where the effect of bilirubin level when the level is above the parameter
differs from that when the level is below the parameter1. Also, the risk of diabetes
can be classified as high or low according to a change-point parameter of leukocyte
telomere length2. For both diseases, the disease risk of a patient changes substantially
when a covariate value exceeds a change-point parameter. The change-point parameter
is typically unknown and needs to be estimated from data.

The Cox proportional hazards (PH) model3 has been used extensively to analyze the
association between a time-to-event outcome and explanatory variables, with the constant
hazard ratio assumption. Generalizations of the Cox model to capture change-point
effects have been studied. There are mainly three types of change-point survival models
in the literature, namely (i) change-point in time models, where the effect of a time-
independent covariate changes when the time since origin exceeds a certain threshold4–7,
(ii) change-points in covariate models with smooth changes, where the effect of a
covariate changes when the value of the covariate exceeds one or more thresholds8–10,
and (iii) change-points in covariate models with one or more jumps, where the effects
of a set of covariates change when the value of another covariate exceeds the threshold
value(s)11–15. Model (i) typically aims to accommodate the time lag or fading out of the
treatment effects in clinical trials. Model (ii) aims to capture the nonlinear effects of a
covariate, serving as an alternative to the polynomial splines, and the inference on the
change-point(s) is also of interest. Model (iii) pertains to the regulation of the effects of
some covariates based on whether the change-point variable exceeds a threshold value(s).
In most contemporary works, the change-point parameter, namely η∗, is an unknown
universal quantity shared by all individuals. Under this model, whether the baseline risk
of a patient has shifted is completely determined by the observed data, and this facilitates
the stratification of patients into different risk levels according to a global reference
guideline.

Personalized medicine has garnered considerable attention recently, and we may wish
to perform a risk assessment using an individual-specific change-point. Notably, we
may be interested in evaluating how likely the baseline risk of a particular patient has
shifted. Lam et al.16 studied the disease-free survival of breast cancer patients based
on a piecewise linear covariate effect model and suggested that the change-point of age
effects on the survival pattern may be related to the menopausal status of the patients.
Along this line, Lee et al.17 proposed the maximal score and Wald tests for the presence
of a change-point in the (disease-free) survival rates of breast cancer patients using the
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2 MODEL AND ESTIMATION 3

following hazard function

λ∗(t) exp
{
γ∗TX + β∗Z + α∗

1I(Z ≥ η∗) + α∗
2I(Z ≥ η∗)(Z − η∗)

}
(1)

under slightly different notations, where λ∗ is an arbitrary baseline hazard function,
η∗ is an unknown fixed change-point parameter, and (γ∗, β∗, α∗

1, α
∗
2) are regression

coefficients. With Z being the age at diagnosis, they rejected the null hypothesis that
α∗
1 = α∗

2 = 0 for the German Breast Cancer dataset18;19. A threshold age of η∗ = 50
was detected, plausibly associated with age-at-menopause. They observed that patients
diagnosed at an age before the threshold have a better prognosis, whereas those diagnosed
at an age after the threshold have poorer survival rates. Intuitively, if the change-point
parameter is truly the age at menopause, it should not be treated as fixed, since the age at
menopause is highly dependent on family history and genetic predisposition. By contrast,
it is more plausible to assume that the menopausal age is random in nature. Random
change-point models have been tailored to a diverse field of studies, besides breast cancer
study. Under the Bayesian paradigm, Lange et al.20 modeled the disease progression of
the HIV-infected patients by the mean trajectory of the CD4 T-Cell numbers, where the
response variable is expected to change smoothly at a random change-point in time.
Slate and Turnbull21 modeled the disease progression of prostate cancer patients by their
trajectories of prostate-specific antigen with a random change-point for the onset time.
Based on the maximum likelihood approach, Jacqmin-Gadda et al.22 studied the joint
model for repeatedly measured cognitive test scores and the risk of dementia, where
a random change-point represents the individual’s age at accelerated cognitive decline.
However, the contemporary work mainly focused on modeling a longitudinal response
variable, instead of a survival outcome variable.

There is a pressing need to develop effective statistical methods for the analysis of
survival outcomes with a random change-point. To this end, we propose a novel model
formulated based on (1) with η∗ treated as random, and provide an effective and reliable
inference procedure for parameter estimation. The rest of this article is structured as
follows. In Section 2, we first outline the model and the likelihood function and propose a
nonparametric maximum likelihood estimator (NPMLE). In Section 3, we devise an EM
algorithm for computation of the NPMLE, where a quadrature rule based on the truncated
normal distribution is adopted for the E-step, and propose a profile likelihood approach
for variance estimation for the Euclidean parameter estimates. In Section 4, we conduct
a simulation study to evaluate the finite-sample performance of the proposed methods,
and investigate the scenario when the fixed change-point model in (1) is misfitted to the
data, which are generated with a random change-point. In Section 5, we demonstrate
the practical utility of the proposed methods using the motivating breast cancer dataset.
Concluding remarks are given in Section 6.

2 Model and estimation
Consider a study that comprises n independent subjects. For the ith subject (i =
1, . . . , n), let Ti be the failure time, Xi be a vector of covariates, Zi be a continuous
change-point variable, and ηi be an individual-specific random change-point. Based on
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the formulation in (1), we assume that the hazard function of Ti conditional on the
covariates and ηi is

λ(t|Xi, Zi, ηi) = λ(t) exp
{
γTXi + βZi + α1I(Zi ≥ ηi) + α2I(Zi ≥ ηi)(Z − ηi)

}
(2)

where λ is an unspecified baseline hazard function, and (γ, β, α1, α2) are regression
parameters. We assume that ηi ∼ N(µ, σ2). Model (2) implies that as Zi increases
beyond the threshold ηi, the effect of a unit change in Zi changes from β to (β + α2),
and also the hazard changes by a multiplicative factor of eα1 . This is analogous to a
piecewise linear model with two partitions but with a vertical jump at a random point ηi.

Suppose that the subjects are followed until they experience the event or are right-
censored. For the ith subject, we use Ci to denote the censoring time, ∆i ≡ I(Ti ≤ Ci)
to denote the event indicator, and Yi ≡ min(Ti, Ci) to denote the observed failure or
censoring time. Then, the random sample consists of O = {Yi,∆i,Xi, Zi}i=1,...,n. We
assume that T and C are independent given (X, Z). In particular, this requires that
C is independent of η given the covariates. Let θ = (Λ, ξ), where Λ(t) ≡

∫ t

0
λ(u) du

is the baseline cumulative hazard function, ξ ≡ (ζ, µ, σ) is the collection of all
Euclidean parameters, and ζ ≡ (γ, β, α1, α2) is the set of regression parameters in the
survival model. Let hi(ζ; η) = γTXi + βZi + α1I(Zi ≥ η) + α2I(Zi ≥ η)(Zi − η).
The observed likelihood is

Lobs(θ|O) =

n∏
i=1

∫ [
λ(Yi) exp {hi(ζ; ηi)}

]∆i

(3)

× exp
[
− Λ(Yi) exp {hi(ζ; ηi)}

]
ϕ(ηi;µ, σ) dηi

where ϕ(.;µ, σ) is the normal density with mean µ and variance σ2. Note that the
maximizer of (3) does not exist due to the infinite-dimensional parameter Λ. We adopt
a nonparametric maximum likelihood estimation (NPMLE) approach, where we set Λ
as a step function that jumps only at the observed failure times and replaces λ(Yi) by
the jump size of Λ at Yi. Let (Λ̂, ξ̂) be the maximizer of the resulting nonparametric
likelihood function.

Under some mild regularity conditions, the proposed model is identifiable; details
on model identifiability are given in the Appendix. In addition, the proposed model
falls under the general framework described in Zeng and Lin23. The estimators are
strongly consistent and asymptotically Gaussian, whereas the estimators of the Euclidean
parameters achieve the semiparametric efficiency bound. Because the derivations of the
theoretical properties of the estimators are largely similar to existing works24–26, we
omit them here. There is an interesting contrast with the fixed change-point model.
The conventional fixed change-point model is irregular, and sophisticated techniques
(such as the m-out-of-n bootstrap) have to be employed for inference. When we allow
the change-point to be random, the model becomes regular, the maximum likelihood
estimators are

√
n-consistent, and standard likelihood approaches that involve inversion

of the information are applicable.
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3 COMPUTATION OF THE NPMLE 5

3 Computation of the NPMLE
Since η can be thought of as a missing variable, we propose to use the EM
algorithm27 to compute the NPMLE. The complete-data log-likelihood based on
{Yi,∆i,Xi, Zi, ηi}i=1,...,n is

n∑
i=1

∆i log Λ{Yi}+∆ihi(ζ; ηi)− Λ(Yi) exp{hi(ζ; ηi)}+ log ϕ(ηi;µ, σ),

where Λ{t} is the jump size of Λ at t. In the E-step of the dth iteration (d = 1, 2, . . .),
we need to evaluate terms of the form Ê[ηai I(Zi ≥ ηi)

b exp {chi(ζ; ηi)}] for a = 0, 1, 2,
b = 0, 1 and c = 0, 1, where Ê(·) denotes the expectation taken with respect to the
conditional density of ηi given Oi evaluated at the current estimate, namely θ(d).
Specifically, for any function g of ηi, we have

Ê {g(ηi)} =

∫
g(ηi)f

∗
i (ηi,Oi;θ

(d))dηi∫
f∗
i (ηi,Oi;θ(d))dηi

,

where

f∗
i (η,Oi;θ) = exp

{
∆ihi(ζ; η)

}
exp

[
− Λ(Yi) exp {hi(ζ; η)}

]
ϕ(η;µ, σ).

The above expectations do not have closed-form expressions but can be approximated
by numerical integration. Since the integrand is not smooth at ηi = Zi, the usual Gauss–
Hermite quadrature rule may perform poorly even with a large number of knots, and
the adaptive Gaussian quadrature rule28 is not applicable since the functions inside
the integrals are not unimodal. To overcome these difficulties, we perform integration
over ηi < Zi and ηi > Zi separately. Note that on each partition, the integration
can be thought of as an expectation under a truncated normal distribution, and the
expectation can be approximated using the quadrature rule of Golub and Welsch29;
see also Burkardt30. In particular, for X ∼ TN(µ, σ2, a, b) and a function g, where
TN(µ, σ2, a, b) denotes the N(µ, σ2) distribution truncated to be within (a, b) with
−∞ ≤ a < b ≤ ∞, we approximate E{g(X)} using the following algorithm:

1. Compute ςk ≡ E(Xk) for k = 0, . . . , 2m, where X ∼ TN(µ, σ2, a, b), and m is a
positive integer.

2. Construct the (m+ 1) by (m+ 1) moment matrix M = (ςj+k−2)j,k=1,...,m+1,
and obtain the upper triangular Cholesky factor R of M .

3. Using R, construct the m by m symmetric tridiagonal matrix J as defined in
Formulae 2.2 and 4.3 in Golub and Welsch29.

4. Let x1, . . . , xm be the eigenvalues of J and w1, . . . , wm be the squares of the
first entries of the corresponding eigenvectors. We approximate E{g(X)} by∑m

j=1 wjg(xj).
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In general, a larger m results in higher approximation precision. Although the moment
matrix M is positive semidefinite by construction, numerical instability may arise when
the truncation is far away from the center of the normal distribution, resulting in a
non-positive semidefinite M . In the implementation, if the numerical evaluation of the
moment matrix is not positive semidefinite with the specified m, then we set the number
of nodes to be the largest integer smaller than m that yields a positive semidefinite M .
The proposed random change-point model includes the fixed change-point model as
the limiting case with σ = 0. Computationally, we cannot allow the estimator of σ to
approach the boundary value of 0 (we set a small lower bound of 0.05 instead), as the
numerical integration in the E-step is highly unstable for a very small value of σ.

In the M-step, we update (Λ, ζ) by maximizing the expected complete-data log-
likelihood. In particular, ζ(d+1) can be computed by maximizing the following partial-
likelihood-type function:

ℓ(ζ) =

n∑
i=1

∆i

Ê{hi(ζ; ηi)} − log


n∑

j=1

I(Yj ≥ Yi)Ê [exp{hj(ζ; ηj)}]


 .

To improve computational efficiency, we set ζ(d+1) to be the output from a one-step
Newton Raphson algorithm on ℓ(ζ). Then, we update Λ by

Λ(d+1)(t) =

n∑
i=1

∆iI(Yi ≤ t)
n∑

j=1

I(Yj ≥ Yi)Ê
[
exp{hj(ζ(d+1); ηj)}

] .
Lastly, we update µ and σ2 by maximizing

∑n
i=1 Ê {log ϕ(ηi;µ, σ)}, with

closed-form solutions µ(d+1) = n−1
∑n

i=1 Ê(ηi) and σ2(d+1)
= n−1

∑n
i=1 Ê(η

2
i )−{

n−1
∑n

i=1 Ê(ηi)
}2

. The EM algorithm is computationally efficient because (i) in the
E-step, only a one-dimensional integration is involved; and (ii) in the M-step, the high-
dimensional parameter Λ is updated with an explicit formulation that does not require
the inversion of a large matrix, whereas the low-dimensional parameter ζ is updated via
the Newton–Raphson algorithm.

The conventional EM algorithm iterates between the E- and M-steps, but it may
converge very slowly in our application and tends to stop early before the observed
likelihood function reaches the maximum, as the difference in consecutive parameter
vector update may be small in the intermediate steps. To enhance the speed of
convergence, we adopt the accelerated EM algorithm proposed by Varadhan and
Roland31. Let s(θ) be the updated parameter vector obtained from a regular EM step
with the initial parameter vector value set at θ. Given that the current estimate is θ(k),
k = 1, 2, . . . , a step of the accelerated EM algorithm comprises the following four steps:

1. Compute θ1 = s(θ(k)).

2. Compute θ2 = s(θ1).
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3. Compute r = θ1 − θ(k), v = θ2 − θ1 − r, and a = −∥r∥2/∥v∥2.

4. Update the vector of parameter estimates by θ(k+1) = s(θ(k) − 2ar + a2v).

We terminate the accelerated EM algorithm when the maximum absolute difference
between two consecutive estimates of θ is less than a small threshold.

The likelihood function involves the high-dimensional parameter Λ, and thus
the computation of the inverse of the observed Fisher information matrix can be
computationally intensive. Alternatively, we propose to estimate the covariance matrix
for the Euclidean parameter estimator ξ̂ based on the profile likelihood approach32.
Define the following profile log-likelihood:

pl(ξ) = max
Λ∈BΛ

logLobs(Λ; ξ),

where BΛ is the set of step functions with nonnegative jumps at the observed distinct
failure times, and this function can be computed by updating only Λ in the EM algorithm
with ξ fixed. Then, the covariance matrix estimate is the inverse of

n∑
i=1


 ∂

∂ξ
pli(ξ)

∣∣∣∣∣
ξ=ξ̂


⊗2

 ,

where pli is the contribution to pl from the ith subject, and a⊗2 = aaT . For k = 1, . . . , p
where p = dim(ξ), the kth element in the vector ∂pli(ξ)/∂ξ can be approximated
numerically by the central numerical difference:

pli(ξ + hnek)− pli(ξ − hnek)

2hn
,

where ek is the kth canonical vector in Rp and hn is a pre-specified perturbation constant.
Setting Λ̂ as the initial value, the abridged EM algorithm typically converges in just a few
iterations.

4 Simulation Studies
We conduct a simulation study to evaluate the finite-sample performance of the
proposed methods. The covariates X and Z are generated independently from N(0, 1)
and Unif(0, 4), respectively. The survival times are generated according to model
(2) with Λ(t) = t2. Two scenarios, namely Scenarios I and II, are considered, with
regression parameters set to be (γ, β, α1, α2) = (0.5,−1, 2, 1.5) and (−0.5, 1,−2,−1),
respectively. The major difference between Scenarios I and II lies in the change-point
pattern. For Scenario I, the effect of Z on the log-hazard function is negative for Z < η
(because β < 0), while the effect of Z is positive for Z ≥ η (because β + α2 > 0).
For Scenario II, the effect of Z is positive for Z < η and is zero for Z ≥ η. The
value of α1 represents a vertical shift in the log-hazard function when Z passes the
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Figure 1. Plot of the effects of Z on the log-hazard function in the simulation study, based on
one set of realizations of the change-point η for each scenario with µ = 2 and σ = 0.5.

change point η. For each scenario, we consider two values for the mean of the change-
point ηi’s, specifically µ = 1.5 and µ = 2, and set the standard deviation of ηi’s to be
σ = 0.5. Figure 1 illustrates the change-point patterns for µ = 2 in the two scenarios. For
µ = 1.5 and µ = 2, about 63% and 50% of subjects have Z exceeding the corresponding
change-point η, respectively. The censoring time follows Unif(0, 5), and the censoring
proportions vary between 10% and 20% in the two scenarios. We consider sample sizes
of n = 500, 1000, and 2000.

We set m = 10 nodes in applying the quadrature rule for truncated normal
distributions. The convergence criterion of the EM algorithm is set to be 10−3. The
perturbation constant hn for variance estimation is set to be Kn−1 where K = 5; our
empirical results show that the standard error estimate differs only in the third decimal
places when K increases from 1 to 10.

Table 1 summarizes the parameter estimates obtained based on 1000 replicates for
each scenario. In both scenarios, the proposed estimator is virtually unbiased, and the
averaged standard error estimate closely resembles the empirical standard deviation,
suggesting that the profile likelihood approach provides a good approximation to the
variance-covariance matrix. Also, the confidence intervals generated based on the normal
approximation provide proper coverage probabilities, which are close to the 95% nominal
level, for all Euclidean parameters. As expected, the parameter estimates become more
accurate as the sample size n increases. The EM algorithm always converges in the
estimation procedures.

To investigate the performance of the fixed change-point model when the change-point
is random, we fit model (1) to the previous sets of simulated data. A grid search method,
considering a profile of the change-point parameter η∗, is adopted. To avoid edge effects,
we partition the interval [0.5, 3.5] equally with grid size 0.01 to search for the optimal
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Table 1. Main simulation results

Scenario Par True n = 500 n = 1000 n = 2000
Bias ESD ESE EC Bias ESD ESE EC Bias ESD ESE EC

I γ 0.5 −0.002 0.077 0.077 0.95 0.000 0.052 0.053 0.95 0.001 0.035 0.037 0.96
β −1 −0.008 0.247 0.243 0.95 −0.006 0.167 0.163 0.95 −0.005 0.110 0.113 0.96
α1 2 0.020 0.312 0.310 0.95 0.017 0.219 0.214 0.94 0.014 0.155 0.150 0.94
α2 1.5 −0.012 0.342 0.322 0.94 −0.006 0.220 0.219 0.95 0.001 0.147 0.152 0.97
µ 1.5 0.009 0.118 0.109 0.93 0.003 0.077 0.076 0.95 0.001 0.051 0.054 0.96
σ 0.5 −0.020 0.088 0.085 0.95 −0.008 0.059 0.058 0.95 −0.005 0.040 0.040 0.95

I γ 0.5 0.002 0.072 0.073 0.95 0.005 0.051 0.051 0.95 0.000 0.035 0.035 0.96
β −1 −0.009 0.189 0.185 0.94 −0.009 0.122 0.126 0.96 −0.003 0.088 0.088 0.95
α1 2 0.015 0.344 0.317 0.96 0.028 0.222 0.219 0.94 0.008 0.167 0.154 0.93
α2 1.5 −0.001 0.311 0.305 0.95 0.002 0.210 0.210 0.94 −0.006 0.151 0.147 0.94
µ 2 −0.002 0.124 0.112 0.93 0.002 0.077 0.076 0.94 0.000 0.056 0.054 0.94
σ 0.5 −0.012 0.078 0.079 0.96 −0.009 0.054 0.053 0.94 −0.006 0.038 0.038 0.94

II γ −0.5 0.001 0.072 0.070 0.94 0.001 0.051 0.049 0.94 −0.001 0.035 0.035 0.96
β 1 −0.026 0.250 0.233 0.93 −0.013 0.166 0.163 0.94 −0.006 0.115 0.115 0.95
α1 −2 −0.011 0.275 0.270 0.95 −0.017 0.185 0.188 0.95 −0.006 0.133 0.132 0.95
α2 −1 0.040 0.309 0.289 0.94 0.029 0.204 0.201 0.94 0.013 0.143 0.141 0.94
µ 1.5 0.012 0.111 0.101 0.92 0.005 0.074 0.070 0.93 0.001 0.048 0.050 0.95
σ 0.5 −0.014 0.106 0.095 0.94 −0.009 0.070 0.065 0.93 −0.004 0.047 0.046 0.93

II γ −0.5 −0.005 0.068 0.066 0.94 0.000 0.046 0.046 0.94 0.001 0.032 0.032 0.96
β 1 −0.003 0.174 0.161 0.94 −0.005 0.121 0.113 0.92 −0.006 0.079 0.080 0.95
α1 −2 −0.029 0.263 0.267 0.96 −0.012 0.181 0.186 0.96 −0.006 0.130 0.130 0.95
α2 −1 0.033 0.277 0.254 0.93 0.020 0.185 0.177 0.94 0.013 0.124 0.124 0.95
µ 2 0.003 0.108 0.096 0.91 0.003 0.071 0.068 0.94 0.003 0.048 0.048 0.95
σ 0.5 −0.018 0.088 0.083 0.94 −0.010 0.059 0.058 0.95 −0.006 0.042 0.040 0.94

Par, parameter; ESD, empirical standard deviation; ESE, estimated standard error; EC, empirical
coverage with 95% nominal level.

change-point parameter value that maximizes the likelihood function. When the change-
point is fixed and the survival times are right-censored, the partial likelihood approach
can be easily implemented to obtain the maximum likelihood estimates of the regression
parameters. Table 2 provides the bias and empirical standard deviation of the maximum
likelihood estimator. Here, we regard the value of µ as the true value of η∗. Overall, the
estimator is severely biased and does not resemble the true value of the parameter of
interest, including the change-point unrelated parameter γ. Therefore, if the underlying
model contains a random rather than a fixed change-point, assuming a fixed change-point
can be problematic and may give misleading results for almost all regression parameters.

It is also of interest to evaluate the finite-sample performance of the proposed estimator
when the change point is indeed fixed. We re-consider scenario I with µ = 2 and σ = 0,
and the results are provided in the supplemental material. We observe that the estimator
of the regression parameters is unbiased with averaged standard error aligned closely
with the empirical standard deviation. However, the standard error of the estimator of σ
is overestimated and the coverage probability for µ is inflated. These might be due to the
fact that the proposed estimator of σ cannot be sufficiently close to the true value 0.

To mimic the setting of the real data, we perform an additional simulation study with
a binary covariate and with the censoring time C generated from U(0, 2) (yielding a
censoring proportion of about 50%). The simulation settings and results are presented
in the supplemental material. We can see that the estimators are virtually unbiased,
the averaged standard errors closely match the empirical standard derivations, and the
confidence intervals yield proper coverage probabilities.
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Table 2. Estimation results based on the fixed change-point model in (1)

Scenario Par True n = 500 n = 1000 n = 2000
Bias ESD Bias ESD Bias ESD

I γ∗ 0.5 −0.138 0.059 −0.145 0.040 −0.146 0.028
β∗ −1 0.635 0.394 0.658 0.256 0.660 0.212
α∗
1 2 −1.232 0.388 −1.343 0.313 −1.425 0.258

α∗
2 1.5 −0.672 0.478 −0.654 0.331 −0.622 0.279

η∗ 1.5 0.157 0.401 0.110 0.346 0.074 0.315
I γ∗ 0.5 −0.127 0.060 −0.128 0.041 −0.133 0.030

β∗ −1 0.437 0.232 0.417 0.161 0.398 0.130
α∗
1 2 −1.355 0.588 −1.471 0.468 −1.592 0.387

α∗
2 1.5 −0.361 0.357 −0.281 0.255 −0.225 0.193

η∗ 2 −0.084 0.437 −0.139 0.362 −0.210 0.321
II γ∗ −0.5 0.104 0.058 0.109 0.041 0.111 0.028

β∗ 1 −0.589 0.485 −0.676 0.327 −0.750 0.265
α∗
1 −2 1.190 0.357 1.256 0.186 1.346 0.129

α∗
2 −1 0.496 0.582 0.594 0.397 0.647 0.320

η∗ 1.5 −0.066 0.470 −0.134 0.322 −0.162 0.253
II γ∗ −0.5 0.099 0.058 0.106 0.041 0.110 0.028

β∗ 1 −0.374 0.355 −0.413 0.228 −0.446 0.167
α∗
1 −2 1.146 0.319 1.254 0.236 1.332 0.154

α∗
2 −1 0.240 0.424 0.244 0.301 0.250 0.227

η∗ 2 −0.322 0.323 −0.350 0.276 −0.371 0.222

Par, parameter; ESD, empirical standard deviation.

5 Application
The German Breast Cancer Study Group (GBSG) conducted a randomized clinical trial
between 1983 and 198918;19 and the data consisted of the disease-free survival times of
686 primary node-positive breast cancer patients. Lee et al.17 analyzed this motivating
dataset and tested for the presence of change-point(s) in age effects, but the change-
point(s) were assumed to be unknown constant(s). The authors demonstrated the presence
of a change-point in model (1) with its estimate located at age 50 using the maximal
score and Wald tests. In a similar setting, Lee and Lam10 proposed a sequential maximal
likelihood ratio testing approach for the presence of multiple change-points in the model
related to (1) and showed that there were two estimated (fixed) change-points in age
located before and after the menopausal age. In this paper, we re-analyze the data using
model (2), assuming that the change-point is individual-specific and random in nature.
In the model, we assume that the multiplicative effect of the age variable on the baseline
hazard changes as age passes a subject-specific change-point η, whereas the effects of
other covariates are constant.

By the end of the study, 299 of the patients experienced recurrence or death, and
the rest were right-censored. Various baseline covariates, treated as X , were present
in the data, including tumor grade, hormonal treatment indicator, and the number of
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positive nodes. We dichotomize tumor grade into grade I and grade II/III, and, following
the research work of Schumacher et al.18, categorize the number of positive nodes into
(0, 3], (3, 9] and [9,∞]. The age at diagnosis is treated as Z in the model. Seven patients
aged at or below 30 are excluded from the analysis as in the work of Lee et al.17. The
resulting data set contains 679 observations, and the age at diagnosis ranges from 31 to
80.

We set the convergence criterion to be 10−5, initial values for ξ and Λ to be ξ(0) = 0
and Λ(0){Yi} = n−1 for each Yi where ∆i = 1, respectively, and consider three sets of
initial values, namely (45, 10), (50, 10) and (55, 10) for (µ, σ), in the EM algorithm. For
all three sets of initial values, the algorithm converges to the same set of estimates. The
estimated standard errors and 95% confidence intervals are computed based on K = 5
as in the simulation studies. The results are summarized in Table 3. All the change-point
related regression parameters (β, α1, α2) are shown to be significant. The change-point
distribution is centered at 49.55 which is almost identical to 50 as reported in Lee et al.17.
However, the change-point we considered here is random and has an estimated standard
deviation of 1.169, whereas the change-point estimate in Lee et al.17 is fixed without
variation.

For further illustration of the results, we obtain the posterior expectation Ê(ηi) for
i = 1, . . . , 679 which is a by-product of the EM algorithm upon convergence, and plot
the predicted age effects of the subjects on the log-hazard function in Figure 2. We can
interpret the diagram in the following manner: (i) the effect of age comprises two (lower
and upper) regimes that characterize whether a change has occurred; (ii) it is almost
certain that individuals from the age group (30, 48] belong to the lower regime; (iii) For
those aged 49 or above, the risk shifts from the lower to the upper regime with a jump
of magnitude α1 at age Ê(ηi); and (iv) patients with their age at diagnosis surpassing
Ê(ηi) stay in the upper regime, such that this group may deserve more attention in the
therapy. Our findings are largely similar to the pattern obtained in the research work
of Adami et al.33 where they analyzed the survival of 57, 068 patients diagnosed with
breast cancer; they reported that women aged 45 to 49 have the best prognosis, but the
relative survival rate declined markedly after the age of 49. The medically diagnosed
menopausal statuses at the study entry of the patients are also available in the dataset. To
further explore how the latent change-point variable could potentially be associated with
the menopausal status of the patients, we compare their age at diagnosis with Ê(ηi)’s. In
particular, 235 out of 283 peri-menopausal patients (83.0%) have their age at diagnosis
smaller than Ê(ηi), whereas 370 out of 396 post-menopausal patients (93.4%) have their
age at diagnosis larger than or equal to Ê(ηi). These findings suggest that the change
in the baseline risk pattern may be attributed to the change in menopausal statuses,
induced by a random threshold in age, thus being related to the changes in the hormonal
environment of a patient.

For comparison, we fit the Cox PH model with covariates age at diagnosis, menopausal
status, their interaction term, and other covariates in the random change-point model;
menopausal age is not observed in the data. Note that this model is different from
the proposed model even if ηi truly corresponds to the menopausal age, because our
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Table 3. Application to GBSG data based on the random change-point model

Covariate Estimate Standard error 95% Confidence interval
Tumor grade (II/III) 0.739 0.251 ( 0.247, 1.230)
Hormonal treatment −0.478 0.129 (−0.730, −0.226)
Positive node ∈ (3, 9] 0.742 0.135 ( 0.478, 1.006)
Positive node > 9 1.405 0.165 ( 1.082, 1.727)
Age −0.068 0.020 (−0.107, −0.028)
I(Age > η) 0.898 0.289 ( 0.331, 1.465)
I(Age > η)×(Age−η) 0.061 0.025 ( 0.013, 0.109)
µ 49.55 0.994 ( 47.60, 51.50)
σ 1.169 1.041 ( 0.204, 6.694)

Table 4. Application to GBSG data based on the Cox PH model with µ̂ = 49.55

Covariate Estimate Standard error 95% Confidence interval
Tumor grade (II/III) 0.760 0.244 ( 0.281, 1.239)
Hormonal treatment −0.429 0.130 (−0.683, −0.175)
Positive node ∈ (3, 9] 0.741 0.136 ( 0.474, 1.007)
Positive node > 9 1.349 0.154 ( 1.048, 1.651)
Age −0.031 0.017 (−0.064, 0.001)
Post-menopausal 0.180 0.194 (−0.201, 0.561)
Post-menopausal×(Age−µ̂) 0.045 0.020 ( 0.006, 0.084)

model includes the latent menopausal age, whereas the Cox PH model includes just the
menopausal status. The results based on the Cox PH model are reported in Table 4. We
subtract the age by µ̂ in the interaction term to make an easier comparison with the results
of our model. This subtraction will not affect the model’s predictive accuracy as any
constant terms associated with α2 are absorbed by α1. One can see that the effects of all
covariates share the same signs as in the proposed model. In particular, the effect of age is
also negative before menopause and changes to positive after menopause. We use a cross-
validation method to evaluate the predictive performance of the two models. The original
data (n = 679) are randomly split into a training set and a testing set with the ratio 2 : 1,
which corresponds to 453 and 226 observations, respectively. Then, use the training data
to fit the random change-point model and the Cox PH model and evaluate the estimated
risk scores of the subjects in the testing set using the fitted models; for the random
change-point model, we replace the random effect ηi by Ê(ηi) for i = 1, . . . , 226. We
estimate the C-index of the estimated risk scores in the testing data, using the estimator
of Uno et al.34. We repeat the splitting procedure 100 times. The proposed model yields
a larger C-index than the Cox PH model 73 times, and the average C-index values of the
proposed and Cox PH model are 0.678 and 0.666, respectively. This suggests that the
random change-point model has higher predictive power than the Cox PH model for the
survival outcomes of the breast cancer patients.
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Figure 2. The fitted age effects for the GBSG data, with the change-point ηi predicted by the
posterior expectation of ηi.

6 Conclusion
The change-point model serves as an important alternative to the linear model in
biomedical studies when the effect of a covariate on the response variable is indeed non-
linear. The traditional fixed universal change-point model assumes that the change-point
parameter is fixed. The method is less appealing when conducting statistical inference
for the change-point estimator because its asymptotic distribution is mathematically
intractable. Motivated by the GBSG study, we consider the plausibly individual-specific
nature of the change-point and develop a novel survival model with a random change-
point. The maximum likelihood estimator of the Euclidean parameter is shown to be
consistent and asymptotically normal, so the confidence intervals for the parameters can
be easily obtained based on normal approximation.

The proposed model is similar to a fixed change-point model with measurement error
on the change-point variable Z. In particular, let ηi = µ+ ϵi, where ϵi’s are independent
and identically distributed according to a zero mean normal distribution with variance
σ2. If we let Z∗

i = Zi − ϵi, the conditional hazard function in (2) for the ith individual
(i = 1, . . . , n) can be written as

λ(t) exp
{
γTXi + βZ∗

i + βϵi + α1I(Z
∗
i ≥ µ) + α2I(Z

∗
i ≥ µ)(Z∗

i − µ)
}
.

Here, we can think of Z∗ as the true covariate and Z as the observed value with an
additive measurement error of −ϵ. If there is no main effect of Z (that is, β = 0), then the
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proposed model coincides with a fixed change-point model with measurement error on
the change-point covariate. When β ̸= 0, the two models differ by an individual-specific
log-normal frailty term with parameters 0 and β2σ2.

In clinical trials, a typical phenomenon is that not all individuals are susceptible to the
event of interest, and the non-susceptible individuals are typically regarded as cured. For
instance, a breast cancer patient can be free from recurrence and death caused by breast
cancer. In this case, a cure rate model with a change-point in the survival component
may be more suitable in describing the underlying survival mechanism of the patients.
For right-censored data, Zhao et al.35 considered the mixture cure model assuming a
Cox PH model with a change-point for the latency component, and they estimated the
parameters based on the Bayesian paradigm. Wang et al.36 recently studied a similar
mixture cure model under the classical approach where the change-point parameter is
assumed to be fixed. Following their work, the proposed random change-point model
can be extended naturally to accommodate a cure fraction in the population. Presumably,
with a covariate-dependent/independent cure rate parameter, the EM algorithm stated in
Section 2 can be reused with a modification made for the presence of an additional cure
status latent variable.

In this paper, we assume that the change-point of each subject follows a common
normal distribution. In the future, we may consider a population with a subgroup of
subjects with fixed change-point. In particular, we define a latent binary variable U , such
that the change-point is (1− U)η0 + Uη, where η0 is a fixed unknown parameter, and η
is as defined in this paper. In this model, subjects with U = 0 has a fixed change-point
at η0, whereas subjects with U = 1 has a random change-point η. The proposed EM
algorithm can be extended to incorporate the additional latent variable U .

For ease of computation and interpretation, we assume a normal distribution for the
change-point, but this parametric assumption could be restrictive. Alternatively, we may
consider a more flexible parametric class of distributions or treat it as a nonparametric
component in the model. For the latter, nonparametric approaches, such as kernel
density estimation method or polynomial splines approximation, can be used. However,
this typically requires a much larger sample size for accurate approximation, and the
numerical stability of the estimation procedures for this type of model is in question.
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Appendix — Model Identifiability

Let Λ0 be the true value of Λ and τ be the end-of-study time. The following conditions
are required for model identifiability.

(C1) The function Λ0 is strictly increasing and continuous on [0, τ ] with Λ0(0) = 0.
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(C2) The variable Z is continuous, and the support of the conditional distribution of Z
given any value of X is R.

(C3) If there exist a number a and a vector b of appropriate dimension such that
a+ bTX = 0 with probability 1, then a = 0 and b = 0.

(C4) The censoring time C satisfies P (C ≥ τ) = P (C = τ) > ϵ for some positive
constant ϵ.

Under conditions (C1)–(C4), the parametric components of model (2) are identifiable,
and Λ(t) is identifiable over t ∈ [0, τ ].

To prove model identifiability, we consider a single observation and drop the subscript
i. By the continuity of Λ0 and condition (C4), we can set the survival time to be right
censored at any time point within [0, τ ] when establishing identifiability. Suppose that
there exist two sets of parameters, θ and θ̃, such that the survival probabilities at t ∈ [0, τ ]
evaluated at the two sets of parameters are equal almost surely, i.e.,∫

e−Λ(t)eγ
T X+βZ+α1I(Z≥η)+α2I(Z≥η)(Z−η)

ϕ(η;µ, σ) dη (4)

=

∫
e−Λ̃(t)eγ̃

T X+β̃Z+α̃1I(Z≥η)+α̃2I(Z≥η)(Z−η)

ϕ(η; µ̃, σ̃) dη

for all (X, Z) and t ∈ [0, τ ]. It suffices to show that (4) implies γ = γ̃,β = β̃, α1 =

α̃1, α2 = α̃2, µ = µ̃, σ = σ̃ and Λ(t) = Λ̃(t) for t ∈ [0, τ ]. The left-hand side of (4) is∫ Z

−∞
e−Λ(t)eγ

T X+(β+α2)Z+α1−α2η

ϕ(η;µ, σ) dη + P (η ≥ Z)e−Λ(t)eγ
T X+βZ

(5)

= e−Λ(t)eγ
T X+βZ

+O(e−Z2/(2σ2)),

where the second term is finite as Z → −∞. Differentiation with respect to t and setting
t = 0 yield −λ(0)eγ

TX+βZ +O(e−Z2/(2σ2)). Hence, we have

λ(0)eγ
TX = λ̃(0)eγ̃

TXe(β̃−β)Z +
O(e−Z2/(2σ2)) +O(e−Z2/(2σ̃2))

eβZ

Considering Z → −∞, we conclude that λ(0) = λ̃(0), β = β̃ and γ = γ̃.
Next, differentiating (5) with respect to t and setting t = 0 yield

−λ(0)eγ
TX+βZ

{
1 + eα1+α2(Z−µ)+ 1

2σ
2α2

2Φ

(
Z − µ

σ
+ σα2

)
− Φ

(
Z − µ

σ

)}
,

where Φ denotes the distribution function of a standard normal random variable.
Therefore,

eα1+α2(Z−µ)+ 1
2σ

2α2
2Φ

(
Z − µ

σ
+ σα2

)
− Φ

(
Z − µ

σ

)
(6)

= eα̃1+α̃2(Z−µ̃)+ 1
2 σ̃

2α̃2
2Φ

(
Z − µ̃

σ̃
+ σ̃α̃2

)
− Φ

(
Z − µ̃

σ̃

)
.
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We obtain α2 = α̃2 by considering Z → ∞. Differentiating (6) with respect to Z yields

α2e
α1+α2(Z−µ)+ 1

2σ
2α2

2Φ

(
Z − µ

σ
+ σα2

)
− 1

σ
ϕ

(
Z − µ

σ

)
(7)

+
1

σ
eα1+α2(Z−µ)+ 1

2σ
2α2

2ϕ

(
Z − µ

σ
+ σα2

)
= α̃2e

α̃1+α̃2(Z−µ̃)+ 1
2 σ̃

2α̃2
2Φ

(
Z − µ̃

σ̃
+ σ̃α̃2

)
− 1

σ̃
ϕ

(
Z − µ̃

σ̃

)
+

1

σ̃
eα̃1+α̃2(Z−µ̃)+ 1

2 σ̃
2α̃2

2ϕ

(
Z − µ̃

σ̃
+ σ̃α̃2

)
.

Note that

Φ

(
Z − µ

σ
+ σα2

)
= h(Z)e−

Z2

2σ2 +( µ

σ2 −α2)Z

for some h(Z) = O(1/Z) as Z → −∞. Suppose that σ2 < σ̃2. Dividing both sides of
(7) by e−Z2/(2σ2) and setting Z → −∞, the left-hand side of (7) goes to ∞ but the
right-hand side remains finite. Therefore, σ2 < σ̃2 is impossible; we can similarly rule
out σ2 > σ̃2 and conclude that σ2 = σ̃2.

We suppose without loss of generality that µ ≤ µ̃. Dividing (7) on both sides by
e

1
σ2 µ̃Z , we obtain

{c1h(Z) + c2}e
1
σ2 (µ−µ̃)Z = c3h̃(Z) + c4

where c1, c2, c3 and c4 are constant with respect to Z, c1 > 0, and h̃(Z) = O(1/Z). If
µ ̸= µ̃, then the left-hand side goes to infinity and the right-hand side remains finite as
Z → −∞, so we conclude that µ = µ̃. Now, it is easy to see that α1 = α̃1 follows from
(6) and Λ(t) = Λ̃(t) for t ∈ [0, τ ] follows from (4).
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