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Abstract

One of the most critical issues in development of micromechanics models for TWIP steel is

to establish the continuum constitutive model which can accurately represent and model the

characteristic plastic deformation at macro level. However, the uncertainty in describing the

evolution of deformation state variables based on crystal plasticity theory poses a great

challenge in handling the complex plasticity deformation with different deformation

mechanisms and their complicated interactions and interplays at microscopic scale and thus

becomes a non-trivial issue. Many attempts to address this issue by coupling slip and

twinning or slip and transformation have been proven to be efficient via comparing and

corroborating the predicted texture evolution using crystal plasticity theory with experiments.

An accurate constitutive model, however, needs to be established to articulate and model the

interactions of slip, twinning and transformation, which have been observed in experiments.

In this paper, a micromechanics model for modeling of slip, twinning and transformation

induced plasticity deformation of twinning-induced plasticity (TWIP) steel is proposed by

using the crystal plasticity approach. The model serves as a feasible approach to reflecting the

micro deformation mechanisms during the plastic deformation process of TWIP crystals. The

phase transformation is introduced and represented by the classic elasto-plastic constitutive

model. The algorithms for realization of the developed model are implemented in
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ABAQUS/Standard platform using UMAT. Furthermore, different deformation mechanisms

of the microscopic plastic deformation modes of TWIP single crystals are analyzed based on

the proposed models. The simulation results by using the developed model reveals that both

twinning and transformation have an obvious effect on hardening and transformation, which

cause the decrease of stress of single crystal, and the sequence of transformation and

twinning rotation can be determined according to the proposed model.
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1. Introduction

The development of advanced steels with high strength, good ductility and toughness has

long been an eluded and tantalized issue. Typical high strength steels including dual phase,

TRIP and boron steels have been widely used in automobile industry. Recently, another

concept of advanced steel has gained a great deal of attention driven by the weight reduction

of vehicle, viz., development of low stacking fault energy (SFE) austenitic high Mn steels

showing twinning-induced plasticity (TWIP) effect. The so-called TWIP steels exhibit not

only high tensile strength (600-1100 MPa), admirable ductility (60-95%), but also excellent

plasticity, toughness and formability. Especially, the product of strength and elongation could

be up to 50000 MPa. %, which is four to five times the traditional IF steel and martensitic

steel, and at least two times the dual phase steel (Lee, W. et al., 2009; Sung et al., 2010;

Kadkhodapour, J., et al., 2011; Carvalho, T. et al., 2013; Sun and Wagoner, 2013) and TRIP

steel (Mohr, D. et al, 2010; Lee et al., 2010; Fischlschweiger et al., 2012). These excellent

mechanical properties are related to the occurrence of competitive and different deformation

modes, viz., crystallographic slip, mechanical twinning and martensitic phase transformation

(Shiekhelsouk et al., 2009).

In order to reveal the mechanism of the high strength plasticity product induced by coupling

different plastic deformation modes, a large number of experiments focused on

microstructure evolution of TWIP steel before and after plastic deformation had been

conducted by employing modern microscopic detection technologies, including SEM, XRD,

TEM, Electron Backscattered Scattering Detection (EBSD), et al. and attempting to explore

the different deformation mechanisms ( Mi et al.,2005; Barbier et al.,2009; Jin et al., 2009;

Liang et al., 2009; Sabet et al., 2009; Dini et al., 2010; Jiménez et al., 2010; Gutierrez et al.,

2012a). The coupling of dislocation slip and twinning induced plasticity has been considered

as a predominantly microscopic deformation mechanism for the low stack fault energy FCC
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materials. In order to reveal and dissect the deformation mechanism induced by slip and

twinning, which are competing and cooperating with each other, Barbier et al. (2009)

performed a tensile test of TWIP steel (Fe–22Mn–0.6C) with the average grain size of 2.6 um

at room temperature, and further analyzed the microstructure and the texture <111>//TD fiber,

<100>//TD fiber (parallel to TD direction) by using EBSD. The experiments showed that

the strong interaction among crystallographic slip, mechanical twinning and texture

components is described and discussed for the tensile test along tensile direction. In addition,

Jiménez et al. (2010) corroborated that the governing mechanism of TWIP single grain

depends on its crystallographic orientation relative to tensile direction. Furthermore, Saleh et

al. (2013) explained the activation of twinning systems with respect to the evolution of

dislocation slip and described the evolution of lattice strain during the cyclic loading of low

stacking fault energy materials deformed via concurrent slip and twinning. Particularly, a lot

of efforts (Vercammen et al., 2004; Yang et al., 2006; Jin et al., 2009; Sabet et al., 2009;

Sevillano et al., 2009; Dini et al., 2010; Gutierrez-Urrutia et al., 2012b; Yang et al. 2013)

have been provided to explain the phenomenon that twinning increases strain hardening.

Furthermore, Idrissi et al. (2010) took an efficient step to reveal the mechanism of twinning

nucleation and propagation by Transmission Electron Microscope (TEM). With an attempt to

explore the micro plastic deformation mechanisms of TWIP steel gradually, martensite

variant was observed during the deformation process at low temperature in the previous

experiments, showing the deformation mechanism of slip and transformation (Mi et al., 2005;

Huang et al., 2006; Liang et al., 2009; Yang et al., 2010; Koyama et al., 2011; Wu et al.,

2012).

Furthermore, qualitative analysis has been done to explain the reason why slip and

transformation, and twinning and transformation could induce plasticity (Koyama et al. 2011).

It indicates that there is also a plastic deformation mechanism, viz., transformation-coupling
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with slip or twinning (TRIP/TWIP effect) at a certain condition, which could enhance the

mechanical properties of TWIP steel. These studies reveal that the contribution to the

macroscopic plastic deformation is determined by the coupling different mechanisms, and

also provide a basis for the theoretical modeling of slip coupling twinning and transformation.

However, it is difficult, if not impossible, to observe the evolution process of slip, twinning

and transformation systems simultaneously. The experiments with the aim at explanation

for microscopic deformation mechanisms by coupling slip, twinning and transformation

would have a limited capacity in describing the microscopic evolution due to the lack of

efficient and available experimental techniques.

From the theoretical point of view, most models intend to reveal the effect of different

microscopic mechanisms on the macroscopically plastic deformation of high symmetrical

FCC crystal essentially. To explore the mechanism of twinning induced plasticity, many

researchers attempted to establish different kinds of models. Among these models which

emphasize the analysis of strain hardening and texture evolution of deformation twinning at

the grain scale, they are mathematically based models (Kalidindi, 1998; Staroselsky and

Anand, 2003) or physically based ones for the strain hardening and texture evolution

(Bouaziz and Guelton, 2001; Perlade et al., 2003; Allain et al.,2004; Bouaziz et al., 2008;

Shiekhelsouk et al., 2009; Barbier et al., 2012; Bouaziz, 2012; Gao and Zhang, 2012;

Knezevic, M. et al., 2014). Particularly, the research done by Knezevic et al. (2013a) is

focused on the establishment of a polycrystalline plasticity model of the hexagonal metals,

but it is also useful for investigation of the strain hardening of FCC type metals. In this

research, a previously developed strain rate- and temperature-sensitive hardening law is

extended, which explicitly accounts for the evolution of dislocation densities by including the

effects of reverse dislocation motion and de-twinning and applied to any metal deformation

by slip and twinning. In the previous work of the authors, based on the evolution of
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dislocation density and the twin volume fraction, a physically based constitutive model of

Fe-22Mn-0.6C TWIP steel was developed by taking into account the influence of slip inside

the twin on plastic deformation and the difference of the average Taylor factors between the

twinned regions and matrix regions (Sun et al. 2014). The physical models based on

dislocation density evolution describe the relationship between twinning and dislocation

density and the contribution to twinning on macroscopic plasticity. Recently, a number of

models have been proposed (Brown et al., 2012, Capolungo et al., 2009, Oppedal et al., 2012)

considering slip and twinning interactions that allow the hardening by different slip and

twinning modes to have their own evolution for HCP type metals. These physical models

show their unique characteristics in representing the evolution of slip and twinning systems,

also in articulating the influence of deformation twins on slip evolution. To articulate the

effect of the transformation on the material mechanical properties, many researchers (Levitas,

2002; Suiker and Turteltaub, 2005; Turteltaub and Suiker, 2005; Tjahjanto et al., 2008a;

Tjahjanto et al., 2008b) have established thermodynamic models based on a large

deformation to reveal the thermal condition for the onset of transformation and the evolution

of transformation volume fraction. Particularly, Turteltaub et al. (2005) established the

martensitic phase transformation microscopic mechanical model based on the crystal

plasticity formulation suitable for TRIP steel by analyzing the martensitic phase

transformation from cubic lattice to square lattice. However, it is also difficult for the models

mentioned above to represent the influence of transformation on slip and twinning.

Recently, based on the crystal plasticity (CP) approach, a series of plastic deformation

constitutive models of TWIP steel coupling slip and twinning were developed and the

twinning volume fraction and its saturated value were introduced to consider the effect of

twinning on hardening and slip, respectively (Kalidindi, 1998; Salem et al., 2005; Staroselsky

and Anand, 2003). Meanwhile, many researches (Manchiraju and Anderson, 2010; Tjahjanto
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et al., 2008a, b; Turteltaub and Suiker; 2005; Levitas, 2002) proposed to consider the

transformation in the constitutive model using the same principle. These models can

represent the texture evolution well, however, in specific conditions, the change of martensite

can be observed during the plastic deformation of TWIP steel, which indicates that

transformation would make contribution to the plastic deformation at macro level. Therefore,

the combined model considering slip, twinning and transformation will be more

comprehensive and efficient in reflecting the macroscopic deformation of TWIP materials.

However, the challenge is critical in describing the onset of different mechanisms in

introducing the transformation into the model considering slip and twinning, and modeling

the evolution of slip, twinning and transformation, respectively. To address this issue, a

micromechanics model representing slip, twinning and transformation induced plasticity for

TWIP steel based on crystal plasticity is established in this paper.

In this paper, the micromechanics explanation based on the three deformation mechanisms

(slip, twinning, transformation) are represented and the dynamic and kinematic description of

the proposed model is discussed with respect to continuum mechanics. The improvement of

crystal plasticity framework is highlighted according to the previous models (Kalidindi, 1998;

Salem et al., 2005; Staroselsky and Anand, 2003), while the constitutive relationship of TWIP

steel single crystal is represented in the elasto-plastic domain. The updates of state variables

are particularly described and a user material subroutine (UMAT) is developed for realizing

the presented constitutive relationship of TWIP crystals in ABAQUS/Standard. Finally, the

parameters are calibrated based on the prior researches (Salem et al., 2005; Kalidindi, 1998;

Suiker and Turteltaub, 2005). Furthermore, case study examples are provided to verify the

efficiency of the developed model in terms of reflecting the deformation mechanisms of

single crystal.
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2. Constitutive model considering slip, twinning and transformation mechanisms

2.1 Micro-deformation mechanisms of TWIP steel

Plastic slip occurs when one part of the crystal slides over another takes advantage of the

periodic nature of crystals. Since the resistance to this sliding is very high, slip happens

through the motion of dislocations. Typically slip is restricted to a few (symmetry-related)

slip systems consisting of a slip plane and a slip direction, and slip generally occurs when the

local stress projected to the plane exceeds a critical value, as shown in Fig.1 (a). The basic

deformation schematic of twinning is illustrated in Fig. 1 (b). In order to verify the reliability

of the twinning promoted by partial dislocation, Godet et al. (2006) demonstrated that the

Schmid factor could be used to estimate the onset of twin systems. Most models depend on a

simple deterministic critical resolved shear stress (CRSS) based law for describing nucleation

and subsequent propagation of twins (Salem et al., 2005; Abdolvand et al., 2011).

A more detailed explanation of twin deformation mechanisms, including twin nucleation,

twin growth, twin shrinkage and re-twinning, is proposed by Wang et al. (2013) via

establishing a new crystal plasticity model, considering the twinning and de-twinning of the

HCP style materials. Moreover, the twin nucleation and twin growth are associated with

deformation twinning, and twin shrinkage and re-twinning are associated with de-twinning.

In addition to the internal dislocation mechanism, another critical factor of twin deformation

mechanism is the determination of Schmid factor. Abdolvand, H. et al (2011) gave an explicit

description of the twin and child twin, using the different Schmid factor, respectively,

meanwhile, the twin volume fraction with respect to the twinning deformation mechanisms is

also distinguished according to the different regions. Recently, a stochastic model for the

nucleation of deformation twins in HCP polycrystals was presented by Niezgoda et al. (2014).

Twin nucleation is modeled through its dependence on the smaller length scale material and

mechanical details, which enables this new approach to be able to model twin nucleation
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except the critical resolved shear stress (CRSS). In this research, the CRSS value for

determination of the twin nucleation is also used since one of the focuses of this research is

on the combination of slip, twinning and transformation, instead of the twin nucleation. But it

is necessary to introduce more suitable approaches in determination of the twin nucleation in

future study.

Being considered as a shear deformation mechanism, martensitic transformation is driven by

shearing and causes an embossed effect on the surfaces of steels, which is indicated in Fig.

1(c). In terms of crystalline structure, martensite has a body-centered tetragonal (BCT) lattice

(-martensite) and a hexagonal close packed (HCP) lattice (-martensite). Koyama et al.

(2011) concluded that -martensite is a dominant type when martensite transformation occurs

in Fe–17Mn–0.6C TWIP steel, which significantly affects the orientation change in

austenite-martensite transformation during the tensile deformation. It is thus necessary to

model the-martensite transformation. It is well known that -martensite and -martensite

are stress-assisted and strain-induced martensitic transformations, respectively. In this paper,

the transformation model presented by Turteltaub (2005) is introduced into the framework

considering slip, twinning and transformation using crystal plasticity approach since it is

intended for stress-assisted martensitic transformation. Furthermore, according to the

crystallography and dynamics of martensitic transformation, the driving force derived from

the Helmholtz free energy per unit is introduced into the proposed model as the criterion to

estimate the activation of transformation (Manchiraju and Anderson, 2010). The details of the

-martensite transformation model are described in Section 2.2.

There are two aspects of effects to be considered in crystal plasticity theory. One is the plastic

deformation mechanism; the other is the rigid rotation of lattice (Li et al, 2008). The

schematic of rotation during the tensile test is illustrated in Fig. 1(d), in which the tension

process of an idealized single crystal with one active slip system is presented to show the
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nature of lattice rotation.

(a) (b)

(c) (d)

Fig.1. Schematic of different micro-deformation mechanisms. (a) Production of slip

deformation by a homogeneous shear. Atoms move along the slip plane under the shear

stress  and N stands for the normal to the slip plane. (b) Schematic of twin shear

deformation. T denotes the twinning shear and the dashed line indicates the average shear

of the material volume. (c) The parent phase (red dashed line) translates to martensite

(black solid line) under the effect of shear deformation; the m and n indicate the

transformation direction and the normal to habit plane, respectively. (d) Crystal rotation

during the process of uniaxial tensile; the and  denote the amount of shear with respect

to the status before rotation and after rotation, respectively.

2.2 Improvement of crystal plasticity framework

The main physical mechanism of crystal plastic deformation at ambient temperatures is
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considered as the flow of dislocations along crystal slip systems. In crystal plasticity theory,

massive dislocations on slip systems are represented in a continuum sense as a plastic shear

strain . So, crystal plasticity is considered to be a physically based theory (Li et al., 2008).

Following the work of Kalidindi et al. (1992), the decomposition of the deformation gradient

tensor,F , as shown in Fig.2., is formulated as

e p F F F (1)

where eF is the “elastic” deformation and the deformation component due to the reversible

response of the lattice to external load and displacement, as well as rigid-body rotation,

while pF is the “plastic” deformation and an irreversible permanent deformation that

persists when all the external forces and displacements that produce the deformation are

removed.

Fig.2. The schematic representation of the classic decomposition of deformation gradient F,

which is divided into the elastic and plastic parts.

In addition, it is necessary to describe the rate dependent deformation gradient for explaining

the evolution of finite deformation kinematics. The velocity of each material point of a body
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in motion forms a vector field measured in the current configuration. The spatial gradient of

the total velocity is obtained as:

1 1 11 e e e p p e e p           L F F F F F F F F L L    (2)

where eL is the velocity gradient in the current configuration relative to the plastic

configuration, and pL is the spatial velocity gradient in plastic configuration relative to the

reference configuration.

For metallic materials, the elastic stretch of single crystal is small. Hence, the constitutive

equation for stress could be linear with the following format:

:e eT E (3)

where  is a fourth-order anisotropic elasticity tensor; eE and eT are Green elastic

strain measure and the symmetric second Piola-Kirchoff stress measure relative to the relaxed

configuration, respectively. These measures are defined in the following equations. The

elastic strain measure is defined as:

T1 ( )
2

e e e  E F F I (4)

where C is the elastic right Cauchy-Green tensor, defined as:

T( )e e C F F (5)

On the other hand, the stress measure, eT , which is the work conjugate to the employed strain

measure, is designated as:

 1 T

det( )e e e e 

   T F F σ F (6)

For the deformation due to simple dislocation slip, the plastic velocity gradient is the sum of

the shearing rate on each active slip system, and thus

p
1

n
  






 L m n (7)

where  is the scalar shearing rate associated with the  slip system, m is a unit
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vector in the direction of the slip, and n is the unit normal to the plane of the slip, and n

is the number of slip systems. In addition, m and n are defined in the reference

configuration, and  m n = 0, so that the slip is a simple shear.

The resolved shear stress  associated with the  slip system is defined as follows:

= :  σ S (8)

The slip system will be active when the value of  is greater than the critical value c .

Although strain-induced twinning has been investigated for years (Christian and Mahajan,

1995), most of its governing physical mechanisms still remain unclear. Numerous studies

have aimed at identifying the influence of the deformation conditions and material properties

on deformation twinning, focusing on temperature, grain size and stacking fault energy and

their respective influence on twin nucleation and growth. Some references are listed in Table

1 corresponding to various kinds of factors on deformation twinning. Except for the factors

given, chemical component, strain conditions and precipitate have an impact on twinning.

Table 1. References for different factors on deformation twinning.

Main factors Reference

Temperature, strain rate

Galindo-Nava et al.(2014), Knezevic et al. (2013a),

Knezevic et al. (2013b), Hokka et al.(2006), Piao et al.

(2012), Brown et al. (2012), Li et al. (2010), Oberson and

Ankem (2009)

Grain size Gutierrez-Urrutia, et al.(2012b), Duhamel et al. (2010)

Stacking fault energy Shiekhelsouk et al (2009), Beyerlein et al (2011)

Doquet (1993) brought the phenomenological description of twinning into the framework of

crystal plasticity finite element analysis in the early years, then the corresponding
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implementation into a FE scheme was proposed by Kalidindi (1998, 2001) and further

developed in Kalidindi (2004). A mechanical twin formally corresponds to a sheared volume

for which the lattice orientation is transformed into its mirror image across a so-called twin

plane. A vector of the initial lattice is moved into its new position in the twin through a

rotation matrix Q. Note that Lmt and Ltw can be related to each other by a coordinate

transformation law as

, 2tw mt
ij    L L Q Q n n (9)

where n is the twin plane unit normal and ij is Kronecker’s symbol.

Kalidindi (1998) proposed that the Cauchy stress in the crystal ( σ ) is assumed to be given by

the volume average of the stresses in the matrix and the twinned regions as

(1.0 ) mt twf f  

 

   σ σ σ (10)

where f  denotes the volume fraction of the grain that has been twinned to the -twin

system, and twσ is the Cauchy stress in the -twinned region.

The description of transformation model could be divided into two scales: 1) macroscopic

and 2) mesoscopic. The phenomenological approach is used for both of them. In this paper,

the focus is on the mesoscopic description of -transformation. For the non-thermal elastic

martensitic transformation, many researchers (Turteltaub et al., 2005; Cherkaoui et al., 2000;

Fischer et al., 2005; Levitas et al, 2009) have attempted to establish a thermomechanical

description at mesoscopic scale. Particularly, Turteltaub et al. (2005) have made a further step

that the thermomechanical model of transformation was formulated in the CP framework.

Turteltaub et al. (2005) proposed that the deformation gradient associated with the

transformation dynamics is denoted as:

e tr F F F (11)
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( )

1

M
tr i i i

i




  F I b d (12)

where vectors ib and id are, respectively, the transformation shape strain vector and the

normal to the habit plane of the transformation system i (measured in the reference

configuration), I is the second-order identity tensor and ( )i is the martensitic volume

fraction of ith system.

The stress power P F is obtained by time derivative of Eqs. (11) and (12):

( ) ( )

1
( )

M
T e
tr m

 



 


    P F P F F   (13)

where ( ) is the rate of change of the martensitic volume fraction of transformation system

 and ( )
m
 is the corresponding resolved stress for transformation, given by

   T( ) ( ) ( )e
m
      F P b d (14)

The driving force for the phase transformation, denoted as if , can be written as:

i i i i i
m th d sf f f f f    (15)

where i
mf , i

thf , i
df and i

sf represent the mechanical, thermal, defect and surface energy

contributions to the transformation driving force, respectively.

The transformation rate is viewed as sufficiently fast to ensure that the energetic driving

force tf , which forms the plate type t, is always bounded by a critical value cf ,

 , ,c t t cf f f   σ (16)

Thus, if the Cauchy stress σ or temperature are incremented so as to make | tf | > cf , the

volume fraction t instantly changes via the forward or reverse austenite martensite

transformation to ensure the consistency condition | tf | = cf . When tf is within the bounds,

t does not change.
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The energetic driving force to increase volume fraction t is

 
1

( )
TN

Trans e e Trans T
t t t T tu u

uT

f h
  

 

        b F σ F σ m (17)

where Trans
tb and Trans

tm stand for the normal vector and the direction vector of

transformation, respectively. The first term at the right side is the transformation shear stress

Trans . In addition, T and T act as the latent heat of transformation per unit volume and

the equilibrium transformation temperature, respectively. Furthermore, the hardening

modulus tuh between different transformation systems is considered as a non-effect item due

to its difficulty in describing the hardening law.

To reveal the onset and evolution of transformation, there is a need to look into the nucleation

of martensite, which is determined by the critical internal energy that is the threshold energy

the austenite martensite transformation needs. The critical internal energy contains the

contribution to nucleation of new interface, the remaining contributions, which are not

explicitly quantified, are collectively represented as a critical threshold value i
crf for the

driving force. Therefore, the critical condition of the onset of martensite transformation can

be expressed as:

i i
crf f (18)

From the standpoint of crystallography, martensite phase transformation is irreversible

during the unloading process for TWIP steel. As a consequence, it is necessary to take the

irreversibility into account in modelling of the martensite evolution of TWIP steel. Turteltaub

(2005) presented an ideal and easy-to-implement method is to introduce the following

phenomenological kinetic relation for the evolution of the transformation:

max
1tanh( ), if

0,                                otherwise

t c
t t c

t

f fv f f
fv 
   




 (19)



17

where cf stands for the critical value of the transformation driving force. The parameter

maxtv (maximum transformation rate) and  viscosity-like parameter) determine the rate

dependence of the transformation kinetic law.

In this paper, a modified framework is proposed based on the prior arts mentioned above,

which reflect the micro deformation mechanism of TWIP steel during the crystal deformation

process. This modified model is developed within a multi-scale framework and uses the

results from the crystallographic theory of martensitic transformation (Ball and James, 1987,

Turteltaub and Suiker, 2005) and deformation twinning (Kalidindi, 1998). The martensitic

transformation and twinning are coupled to a single-crystal plasticity model for FCC metals

in order to account for plastic deformation in detail. The coupling among slip, twinning and

martensitic transformation is derived using a thermodynamically consistent framework.

Fig.3 illustrates the decomposition of the global deformation gradient F when a twin system

and martensitic transformation system work. The intermediate configuration is divided into

four stages according to different mechanisms acting on the crystal: transformation, slip,

twinning and twin rotation, successively. And the deformation quantities of transformation,

slip and twinning are t ,  and  , respectively. The reference configuration is

then transformed into the current configuration through the four stages.
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Fig.3. The improvement of classic intermediate configuration into five configurations is

illustrated and the corresponding decomposition of deformation gradient F into the elastic,

plastic and transformation parts is described.

Therefore, the evolution of the plastic deformation gradient pF , represented by the plastic

velocity gradient pL , is described by the following in the rate form:

1

p
1 1

slip twinN N
p p Slip Twin

s t
 

 

 


 

    L F F S S   (20)

where slipN is the number of slip systems, twinN the number of twin systems and  ( =

1 to slipN ) the rate of slip shear from each possible slip system,  ( = 1 to twinN ) the rate

of twin shear. Meanwhile, Slip
s

  S n m is the Schmid tensor produced by a unit slip on

system s, and Twin
tS is the Schmid tensor produced by a unit twin on system t.

In carbon steels, the martensitic phase is relatively brittle with low dislocation activity,

presumably due to the high level of interstitial carbon that prevents plastic slip. Consequently,

it is assumed that plastic deformation only happens in the austenitic phase and not in the

martensitic phase (Furnémont et al., 2002; Tjahjanto et al., 2008a, b). In addition, twinning

cannot occur in twin region and martensite phase. Particularly, the martensite phase could

only have elastic deformation due to this reason. Actually, the plastic deformation of

thin-plate martensite phase cannot frequently occur due to its high carbon concentration.

Furthermore, the model of transformation proposed by Turteltaub et al. (2005) is more

focused on the thin-plate martensite phase. Consequently, there is less deviation in between

the modeling and experiment.

Based on the framework mentioned above and considering the similarity in describing the

velocity gradient of slip, twinning and transformation, the velocity gradient pL is extended

based on the contributions from the characteristic twin shear and martensitic transformation
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for FCC crystal structures and formulated in the following:

1

p A
1 1 1

slip twin transN N N
p p Slip Twin Trans

s t t t
t

v v 

 

 


  

 
      

 
  L F F S S S    (21)

where Ntrans is the number of transformation systems. The fundamental material parameters in

Eq. (21) are the volume fraction Av ( A M1v v  ; M
1

transN

t
t

v v


  ) of austenite, the volume

fraction tv of each possible type (t = 1 to Ntrans) of martensite plate, which are summed to

the total martensite volume fraction Mv . Trans Trans Trans
t t t S b m is the Schmid tensor

produced by the transformation of austenite to a type t martensite plate, where Trans
tb is the

average transformation direction and Trans
tm is the habit plane normal.

In this paper, the modified deformation gradient is considered as a geometric quantity related

to deformation which contains the crystallographic information of slip, twinning and

transformation so that the phenomenological approach in describing the transformation could

be associated with CP approach. And the change of the velocity gradient would influence the

mesoscopic constitutive model in order to make a contribution to the macroscopic response.

Therefore, it is necessary to make a further step in describing the constitutive model at

mesoscopic scale. Although the phenomenological method in introducing the transformation

model is well established, it really gives a quantitative analysis of the state variables such as

transformation volume fraction and driving force, etc. at mesoscopic scale based on

thermomechanics. In addition, the phenomenological description of transformation model is

given in the framework of CP approach in order to make an intuitive understanding.

2.3 Establishment of constitutive relation

In this paper, the constitutive relation is established using rate-dependent approach. The

rate-dependent theory arises from the regularization of the rate-independent theory. This is
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useful from an algorithmic point of view as solving a problem with multiple yield surfaces is

complex. In the rate-dependent formulation, the Kuhn-Tucker-type loading conditions used in

the rate-insensitive approach are replaced by a constitutive evolution equation for plastic slips

on slip systems (Asaro and Needleman, 1985). Actually, the evolution equations of plastic

flow rule contain yield condition, loading/unloading criterion and consistency condition.

Therefore, in the rate-sensitive model, there is no yield condition and no loading/unloading

criterion applied. But it is necessary to articulate the yield condition for rate-dependent model

of FCC crystals. In this research, the random one among the 12 slip systems will be activated

as long as the resolved shear stress exceeds its critical value, i.e. onset of plastic deformation,

according to the TWIP crystal structure. In the similar way, the twin growth and martensite

nucleation will occur with the twinning volume fraction and transformation driving force

achieving the critical value, respectively. To fully represent the constitutive relation, the

plastic flow rule and hardening law are given in the following.

2.3.1 Flow rule

In the rate-dependent crystal plasticity, the shear rate of slip systems can be obtained directly

by the decomposition of shear stress such that the uncertainty caused by the activation of slip

systems can be avoided. The evolution equation for each micro shear rate can be typically

specified as follows: (Pierce et al. 1982)

 
1

0= sign
m

s


 



    (22)

where  is the resolved shear stress on the slip system  . s is the slip resistance for

the slip system . m is the strain rate sensitivity factor. 0 is a reference shear rate which

is taken to be the same for all the slip systems and equals to 0.001 s-1 (Kalidindi, 2001; Li et
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al., 2008 ), unless otherwise stated.

The same power law is adopted to describe the evolution of the deformation twin volume

fraction (Kalidindi, 2004) as:

tw

1

0= , if 0;    0, if 0
m

s


   



    
 

    
 

   (23)

where  and
tw
s represent the resolved shear stress on a twin system and the twin

resistance of that twin system, respectively. The constraints on Eq. (23) indicate that the

twinning deformation is directional and the twin volume fraction is always positive. The sum

of the twinned volumes cannot exceed the grain volume, and the twinned regions are not

allowed to untwin.

The evolution of the martensite fraction during transformation follows the rate-dependent

kinetic formulation, as Eq. (19) shows (Turteltaub and Suiker, 2005).

2.3.2 Hardening law

Description of the evolution of the slip and twin resistances in plastic deformation has been a

very difficult problem in the development of robust crystal plasticity models for FCC metals

such as TWIP steel. The slip-twin interaction is fairly complex, and there is thus far only a

limited amount of quantitatively experimental data available. Some of the most successful

phenomenological descriptions have been the saturation-type hardening laws that can be

generically expressed as: (Salem et al., 2005)

1

1
slipN

s
s

ss h
s


  







 
  

 
  (24)

where sh
 and ss

 represent the hardening rate and the saturated value associated with the

slip system  , respectively.

In this study, only considering the twinning resistance which is proportional to slip resistance,

the evolution of twinning resistance could be shown as: (Salem et al., 2005)
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1.2tws s  (25)

Recently, Salem et al. (2005) used the extended versions of the saturation-type hardening

functions to capture the complex interactions between slip and twinning in the following:

  1
b

s sh h C f    (26)

 0.5

0s s prs s s f    (27)

In this paper, the additional mechanism such as hardening of slip resistance by martensitic

transformation is not incorporated in the current framework although it indeed makes

contribution to hardening effect. The plastic flow in martensite block could be assumed to

take place by crystallographic slip on {110} <111> and {112} <111> slip systems for

low-carbon martensite steel, dual-phase steel and TRIP-assisted steel (Ghassemi-Armaki, et

al., 2013; Chen et al., 2014; Srivastava et al., 2015). However, for the TWIP steel with a

relative higher carbon content (0.6C and 0.8C, wt%), there is less martensite although slip

exists in product martensite (Koyama et al., 2011). In addition, it is noted that the

martensite phase in TWIP steel with high carbon content, similar to high-carbon steels, is

relatively brittle with low dislocation activity, probably due to the high level of interstitial

carbon that prevents plastic slip (Tjahjanto et al., 2008a, b). Consequently, in this research,

martensite is considered as a reinforced phase to cut the austenitic grains. The hardening

effect by martensite phase reflects in refining grains via considering martensite phase

as barriers The constitutive relations of TWIP steel based on the classic framework of

elasto-plastic theory are given in Box 1.
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Box 1. Constitutive model considering slip, twinning, transformation of TWIP steel.

 
  

 

1 -T

tw

1

0

1

0

1. Stress-strain relationship
:

1
2

det

2. Flow rule

Slip rate : = sign

= , if 0Shear rate of twining system:

0, if 0

   Evolution of mar

T

e e

e e e

e e e e

m

m

s

s


 




 



 

  

  

 



 

  

 

  
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 

 



  
 
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1

0.5

0

1tanh ,
tensite volume fraction
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3. Hardening law

1

    1.2

1

slip

t c
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t c

N

s
s

tw

b

s s

s s pr

f f if f f
f

ss h
s

s s

h h C f

s s s f


  




 

 

 


 




  
      




 
  

 


 

 












:

3. Numerical implementation

3.1 Update of state variables

Asaro and Needleman (1985) proposed the rate dependent numerical algorithm and promoted

by Kalidindi et al. (1992), Marin and Dawson (1998). In the typical “implicit” finite element

procedures that use nonlinear constitutive models, the discretized principle of virtual work,

which enforces the equilibrium and boundary conditions in a weak sense, generates an

estimated incremental displacement field which is used to calculate the values of integration
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point of the second PK stress T , the resistance to slip s and other field variables at the end

of a time increment. In this paper, the full-implicit algorithm was adopted since it has an

advantage in describing the multi-internal variables and multi-yield surfaces than that of

explicit algorithm. It is noted that the reorientations of the twinned grains need to be

determined by introducing the definition of the saturated value of twin volume fraction before

the update of state variables. The saturated value of twin volume fraction can be attributed to

the intense twin-twin and slip-twin interactions that increase the difficulty of producing new

twins in the matrix at high strain level. Therefore, the reorientations of these grains may

happen when the twin volume fraction reaches the saturated value. The threshold for the twin

volume fraction based on the experiments by Renard et al., (2012) to judge if the twins rotate

is introduced. Also, the contribution of the transformation is calculated whether the driving

force satisfies the critical value. The update of state variables and the numerical

implementation of the algorithms should be described in details since it is simplified in many

researches such as Manchiraju and Anderson (2010).

To perform the incremental update of the state variables, firstly, a set of primary variables are

identified: (a) Cauchy stress; (b) deformation gradient F ; (c) information of slip systems

( 0
m , 0

n ), twinning systems ( 0
m , 0

n ), transformation systems ( 0
tm , 0

tn ); (d) plastic

deformation gradient pF ；(e) initial slip resistance 0s
 , initial twinning resistance 0s

 and

transformation driving force tf .

Accordingly, it is assumed that: (i) the time-dependent slip systems ( 0
m , 0

n ), twinning

systems ( 0
m , 0

n ) and transformation systems ( 0
tm , 0

tn ) are known; (ii) the list of state

variables  ( ), ( ), ( ), ( ),p i
tt t t s t fF T F in each grain at time t are given; and (iii) an estimate of

deformation gradient ( )F at time is also given. With these given information, the

computational problems are considered to be a stable, accurate and efficient computation of:
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(a) the twin volume fraction ( )f   of various twinning systems at time  ; (b) rotation

matrix ( )tw R ; (c)  ( ), ( ), ( ), ( ),p i
ts f   F T F at time  ; (d) the computation of Jacobian

matrix to be used in Newton-type iterative method for revising the estimated displacements

such that the updated stresses better satisfy the principle of virtual work at the end of the

increment.

To start with, a fully-implicit time-integration of the evolution equation (21) for pF is used

to obtain:

1 1

1 ( 1)( )p p p
n n n t

 

    F F I L (28)

where the initial value of ( 1)
p
nL equals to zero since there is no deformation of crystals

originally, and ( 1)
p
nL evolves according to Eq. (21).

Substituting Eq. (28) into Eq.(1), the following is obtained:

1

1 1 1 1 ( 1)( )
tre p e p

n n n n n t


         F F F F I L (29)

where
1

1 1
e tr p
n n n



  F F F (30)

Therefore, the right Cauchy-Green tensor can be expressed as:

1 1 1 ( 1) 1 ( 1)

1 ( 1) 1 1 ( 1)

( ) ( )

      ( )

TT tr

tr T tr tr

e e e p e p
n n n n n n

e p e e p
n n n n n

t t

t

     

    

        

     

C F F I L F I L

C L C C L
(31)

where 1 1 1
e tr e trT e tr
n n n   C F F (32)

Substituting Eq.(31) into Eq. (4), the elastic strain is determined:

1 1 1 ( 1)( )
tr tre e e p

n n n nsym t      E E C L (33)

where 1 ( 1)( )
tre p

n nsym  C L is the symmetric part of 1 ( 1)

tre p
n n C L and 1

tre
nE is formulated

as:

1 1
1 ( )
2

tr tre e
n n  E C I (34)
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substituting Eq.(33) into Eq. (3):

1 1 1 ( 1): ( )
trtr e p

n n n nsym t      T T C L (35)

where 1 1:
trtr e

n n T E (36)

Finally, substituting Eq.(21) into Eq. (35), there is the following:

   

     

12

1 1 A 1 1 1 0
1

12 24

A 1 1 0 1 1
1 1

= , :

: ( ) :

tr e tr
n n n n n

e tr Trans e tr trans
n n t n n t

t

sym t

sym t sym t

   



  



 

  

    


   
 

        
                



 

T T τ s C S

τ C S τ C S



 
(37)

where

 
 
 

1 1 1 0

1 1 1 0

1 1 1 0

:

:

:

e
n n n

e
n n n

Trans e Trans
n n n

 

 

  

  

  

 

 

 

τ C T S

τ C T S

τ C T S

(38)

The use of an implicit method ensures stability, but it requires an iterative approach to solving

1nT and 1n

s .These equations are solved using a two-level iterative procedure. In the first

level of iteration, Eq. (37) is solved for 1nT , keeping 1n

s fixed at its best available

estimate. A Newton-Raphson scheme is deemed to be the most efficient method for the

incrementally non-linear problem. Eq. (37) is re designated in the form of residual:

   

     

12

1 1 1 A 1 1 1 0
1

12 24

A 1 1 0 1 1
1 1
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tr e tr
n n n n n n
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  
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  

     


   
 

         
                



 

R T T T τ s C S

τ C S τ C S



 

(

(39)

Assuming that after ith iteration, 1nT turns into
 

1

i

nT and its residual is  i
TR :

     1 0i i i
T T T
    R R R (40)
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where
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(41)

According to Eqs. (34), (36) and (38), the following is obtained:
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where    1
1 12 :i ie

n n


    C T (43)

The incremental state variables of slip systems, twinning systems and transformation

systems are expressed as, respectively:
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Finally, the ith corrected stress field is obtained as follows:

  1( ) ( )
1 :i i i
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where

 
        

      

    

1 1

1

1

12

A 1 0,
1

12

A 1 0
1

1

:

        :

        :

i k
n n

i
n

iTrans
n

i ie tr
n

ie tr
n

e tr transt
n tTrans

sym t

sym t

v
sym

 























 













               
              

    





τ s

τ

τ

B I C S A

C S A

C S





  
24

1

i
t

t

t


 
   

 A

(47)



28

I is the fourth order unit tensor. The convergence condition must be given as:

0ijT s  (48)

where 0s is the initial value of the slip system resistance and  is a numerical constant.

Based on the N-R iteration algorithm, the update of the second PK stress ( 1)
1
i
n

T is obtained in

the following:

( 1) ( ) ( )
1 1 1
i i i
n n n

    T T T (49)

In the second level of iterations, a fully implicit integration of the hardening law (24) for the

evolution of the slip system resistances yields:

( ) 12
( ) ( ) ( )
1 ( )

1
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i
i i i n
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 
ss s h

s
 (50)

By fixing the value of 1nT , the update of slip resistance 1n

s can be obtained using the

similar method articulated in the following:

(a) Eq. (24) is rewritten in the form of residual:

12

1 1
1

= 1 n
n n n s

s

t
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    
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 
sR s s s h

s
（ ） (51)

(b) Assuming after ith iteration, 1n

s turns into  

1
i

n

s and its residual is  

1
i

n

R s（ ）:

     1
1 0i i i

n s s
  
   R s R R（ ）= (52)

where      
1

i i i
s n n
  

  R s s (53)

The update of slip resistance  1
1
i

n
 
s is then obtained until the convergence condition is

satisfied.

A consistent tangent modulus or algorithmic tangent modulus should be provided to ensure

the quadratic convergence rate (Chung et al., 2005) in the implicit finite element scheme. In

the present work, numerical approximation of the tangent modulus is obtained by perturbing

the deformation gradient at a given time step. Using the perturbed deformation gradient, the
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perturbed Cauchy stress tensor ,( )( )per ijσ F is computed following the typical time integration

scheme and finally the algorithmic tangent modulus is approximated as (Sun et al. 2008, Lee

et al., 2010)

,( )
,( ) ( )per ij

consist ij





σ F σA (54)

where  is a perturbation parameter and is set to 10-5 in this research. In Eq. (54), ,( )per ijF

denotes the perturbed deformation gradient at the time step t + t and the index (i, j) reflects

the symmetry of tensor.

3.2 Numerical implementation algorithms into the implicit FEM

The complete time-integration procedure of the time dependent crystal plasticity model for

the present model is listed in Box 2. And, the detailed Newton-Rhapson procedure in the

algorithm can be further referred to the previous literature, especially by Kalidindi and

co-authors (1992, 1998). As shown in Box 2, plastic deformation gradient 1
p
nF and the

second PK stress n+1T are calculated in order to determine the Cauchy stress 1nσ and the

elastic right Cauchy-Green tensor 1
e
nC .Then the detailed task of determining the residual of

the second PK stress 1nT and slip resistance 1n

s are done with respect to the

Newton-Raphson method, which would be useful to obtain the increment of internal variables

and further update the state variables (slip increment, twinning increment, etc.). Particularly,

Fig.4 shows the specific flow diagram of the numerical algorithm into implicit finite element

method in terms of the order listed in Box 2.
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Box 2. Summary of the stress update algorithm for the rate-dependent constitutive model.
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Fig.4. The flow chart of numerical algorithm into implicit FEM.

4. Simulation and discussion

4.1 Verification of the model
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In terms of experimental investigation, Koyama et al. (2011) performed a tensile test on

carbon-containing twinning induced plasticity (TWIP) steels at different temperatures (173,

223, 273, 294, and 373 K). The ε-martensitic transformation, deformation twinning, and

dynamic strain aging were observed during tensile test. And also the characteristic

deformation mode that contributes to work hardening rate changed with deformation

temperature. For this work, the macroscopic responses with the experiment results of

Fe–17Mn–0.6C TWIP steel are carefully corroborated.

Actually, initial texture plays an important role in microstructure evolution and hardening

effect in tensile deformation. According to Koyama et al. (2011), from the treatment of

Fe-17Mn-0.6C TWIP steel, the steel may have various kinds of textures such as

recrystallization texture and transformation texture, etc.; the textures after hot rolling,

however, are really not very obvious comparing with cold rolling. So the initial orientations

of crystals are assumed to be stochastic in order to simplify the model, namely, the initial

textures are neglected as an assumption in this research. Consequently, it is assumed that the

orientations of all the crystals are given randomly before deformation. And in the simulation,

the FEM global coordinate system is defined along the crystallographic axes.

Table 2 summarizes the final values adopted for the material parameters of crystallographic

slip, twinning and transformation together with elastic tensors. With repeated trials via

comparing the simulations with experimental results, the final choices of parametric

combinations were obtained. The methods for determining the elastic tensors (C11, C12, C44)

of TWIP steel can be found according to the references by Pierce et al. (2013) and Gebhardt

et al. (2011). The saturated value of twin volume fraction is identified by recording the twin

volume fraction during the plastic deformation process (Renard et al., 2012), and the twins

realize reorientation when the saturated value of twin volume fraction reaches the threshold.

In this experiment, the evolution of twin volume fraction is shown to evolve following an
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S-shape, i.e., the saturated value of twin volume fraction is set to be~0.4. Therefore, the

saturated value of twin volume fraction is 0.4 to reflect the reorientation mechanism. The

transformation parameters ( maxtv ,  , cf , T , T ) are determined based on the material

parameters study by prior arts (Manchiraju and Anderson, 2010; Turteltaub and Suiker,

2005). The material parameters used in the phase transformation model are presented based

on the macroscopic properties of Fe-17Mn-0.6C TWIP steel (Koyama et al., 2011). Note that

these experiments by Koyama et al. (2011) are reported to deform by martensitic

transformation with negligible plastic deformation. Plasticity parameters ( sh , 0sS , prS , b, C,

0S
 , 0S

 ) are calibrated from the stress-strain response. In the absence of enough

experimental data to determine the plasticity parameters, a low strain rate sensitivity m =

0.02 and a reference strain rate 0& =0.001 s-1 are assumed (Kalidindi et al., 1992). The large

hardening in the experimental response dictates a large initial hardening rate ( sh = 800 MPa)

and a large saturation hardness ( 0sS =300MPa). The sensibility of plastic parameters has

been analyzed in details in the previous work by Sun et al. (2015). A general determination

of the value range and a sequencing analysis of these plastic parameters are given briefly

here. Firstly, it is necessary to provide a sequence for determination of plastic parameters.

The slip resistance 0S
 is obtained from the yield limit. The twinning hardening parameter

b is then determined by the hardening rate curve. In addition, the parameter prS

representing the effect of Hall-Petch mechanism is also obtained according to the strain

hardening rate curve. Based on the aforementioned process, an approximate value range of

the plastic parameters is listed:

1) The initial slip resistance 0S
 is linearly associated with the yield limit, and the value

of the initial slip resistance range is 80~160 MPa.

2) A weakening tendency of the twinning hardening stage would appear with the
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increasing twinning hardening parameter b, which ranges from 0 to 3.

3) The twinning resistance 0S
 is proportional to the slip resistance 0S

 , the ratio between

the two variables is 1 to 1.3.

These predictions are compared with the polycrystalline experiment of Fe-17Mn-0.6C TWIP

steel using the parameters for single crystals. In the present work, 3D polycrystalline

aggregates are simulated using 1920 elements and each grain is meshed using a single 3D

finite element (C3D8). In addition, each element has a different orientation to mimic a

polycrystalline response. Unlike the modeling of single crystal, the polycrystalline situation

is complicated by the fact that individual grain misorientations and deviations from ideal

(single crystal) texture become important. This directly reflects from the number of grain

orientations modeled in the numerical simulation and their efficiency in representing the real

texture. The limited number of grains and their orientations are expected to affect the result.

The primary goal here is to show that the developed constitutive model captures the trend

adequately. The quantitative deviations may be ascribed to the limited information on the

grain orientations and deviations from the real textures. Actually, to study the stress-strain

behavior at grain level of polycrystalline materials, the particular attention is put on the

selection of the minimum number of grains in the microstructure that can be considered as

the representative volume element (RVE) of a sample subjected to plastic deformation

(Szyndler and Madej, 2015, Zeng et al.,2015). In their researches, the strength of aggregates

with more grain cells differs from the one with fewer cells and generally the stress-strain

response using more grain cells may be closer to the experimental results. Therefore, in this

research, the limited grain number may be a key factor that the predicted result deviates

from the experimental data. Different initial textures show a great effect on the formability

of AZ31 alloy sheets in deep drawing process (Zhang et al., 2014). This significant influence

leads to the change of hardening effect, which could be referred to the explanation of the
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deviation between the experimental data and simulated results during the plastic deformation

process for the polycrystalline material. Since the initial texture is neglected, the deviation is

assumed to be arising from this issue. Additional mechanisms such as hardening of slip by

martensitic transformation and evolution of twin nucleation are not incorporated in the

current framework.

Fig. 5 (a) compares the simulated macroscopic stress–strain responses for the polycrystal

model with the experimental data. Even with the limited number of initial grain orientations,

the general trends are well reproduced for all the curves. For the working temperature at

173K, a good agreement between the simulation and experiment could be observed before

the strain reaches 0.2 and the deviation is less than 5%. However, a deviation increases

gradually after the engineering strain of 0.2. In addition, for the temperature at 223K and

273K, a small deviation (~5%) from the experiments could be seen when the engineering

strain is 0.35 and 0.4 respectively. In order to analyze the deviation of the stress-strain

responses from experiment, the mechanisms should be considered during the tensile test.

According to the deformation characteristics of Fe-17Mn-0.6C TWIP steel (Koyama et al.,

2011), the -transformation could be observed at the temperature of 173, 223 and 273K. For

the case of temperature above 273K, however, -transformation did not appear. So the

macroscopic responses at the loading temperature of 173, 223 and 273K, including

-transformation, were selected as the experimental evidence to verify the model. In this

research, the hardening effect of plastic slip by transformation at microscopic level has not

been considered but the crystallographic information of transformation at macroscopic level

was introduced. It is reason for the deviation at the later period of deformation. Furthermore,

the modeling of initial texture was simplified, but indeed it contributes to the hardening

effect and microscopic evolution in tensile test. In fact, the serrated stress-strain curves are

typically observed in TWIP steels due to the dynamic strain aging (Koyama et al. 2011). The
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predicted curves do not capture the characteristics for the absence of dynamic strain aging

modeling and the averaging approach in analyzing the simulation data. Finally, the coarse

meshes (one element per grain) and the calibrated parameters should be mentioned as the

probable factors which could result in the different deviations for all the curves.

In order to take a further step into the capability and validity of the proposed model, the

comparison of strain-hardening curves is used as a measurement indicator. In Fig. 5 (b), it is

also seen that the trends of the predicted hardening rate curves for polycrystalline TWIP steel

agree reasonably with the experiments. An obvious increase of the strain hardening rate curve

could be observed at the true strain of 0.15 and 0.35 at the temperature of 173, 273K,

respectively. This issue would be explained by the introduction of transformation. However,

for the hardening rate of all these temperatures, the deviation is also found due to the absence

of strengthening of slip resistance by transformation.

With the material constants specified in the text, the following simulations are all based on

the material constants shown in Table 2. To validate and verify the models and algorithms for

modeling crystal deformation mechanisms, the mechanical behaviors of single crystal are

simulated.
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Fig.5. Comparison of (a) stress-strain responses and (b) work hardening rate from simulation

with the experiments performed at different temperatures (Koyama et al., 2011).
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Table 2. Material parameters in the constitutive relations calibrated for TWIP steel.

Initial hardening rate of slip system sh (MPa) 800

Saturated value of slip resistance without twinning 0sS (MPa) 300

Hardening index of twinning b 3

Hardening coefficient of twinning C 10

Effect of Hall-Petch mechanism prS (MPa) 400

Initial slip resistance 0S
 (MPa) 90

Initial twinning resistance 0S
 (MPa) 108

Elastic constant C11(GPa) 169

Elastic constant C12(GPa) 125

Elastic constant C44(GPa)

Rate sensitivity coefficient m

Reference shear rate 0& (s-1)

120

0.024

0.001

Maximum transformation rate maxtv (s-1) 0.003

Viscosity-like parameter  0.17

Critical energy barrier per unit volume for transformation cf (MPa) 26

Equilibrium transformation temperature T (K) 246

Latent heat of transformation per unit volume T (MPa) 546

4.2 Effect of twinning and transformation on hardening

To investigate the effect of twinning on hardening for polycrystals from the perspective of

deformation mechanism, a series of constitutive models to describe twin nucleation,

propagation, growth and de-twinning for polycrystals have beendeveloped recently (Wang et

al., 2013; Wu et al., 2015). Particularly, the deformation twinning and its hardening effect

of magnesium single crystal was studied by usingnano-indentation (Shin et al., 2013;

Zambaldi et al., 2015). For TWIP steel single crystal, it is necessary to articulate the twinning

and transformation effect on the hardening of macroscopic response. The presented model is

based on the slip-twinning model, so that it could reflect the mechanism of twinning on the
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hardening of TWIP steel single crystal naturally. In addition, transformation on the hardening

effect would be represented according to the developed model. Therefore, it is necessary to

explain the interaction between the twinning and transformation and their contributions to the

hardening of TWIP steel single crystals. In this research, Euler angles (10º, 0º, 35º) and (60º,

10º, 0º) are selected randomly in order to further study the hardening effect by using the

proposed model. It is noted that in the finite element model, a cube is regarded as a single

crystal and its side length is 10 mm. To achieve the engineering strain of 0.6 approximately,

the cube was stretched with 6 mm along Y axis. The loading time is 600 s (i.e. strain rate is

0.001s-1) to satisfy a quasi-static condition. The stress-strain response after deformation and

the hardening rate of Euler angle (10º, 0º, 35º) are shown in Fig. 6.
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Fig.6. The effects of different Euler angles (10º, 0º, 35º) and (60º, 10º, 0º) on hardening for

TWIP single crystal at the strain rate 0.001s-1 when the true strain reaches 0.4 and 0.48

respectively. And the strain hardening rate of Euler angle (10º, 0º, 35º) is given particularly.

It is obviously indicated in Fig.6 that both twinning and transformation have an effect on the

hardening regardless of crystal orientations. Furthermore, the hardenability of Euler angle

(10º, 0º, 35º) is apparently higher than that of Euler angle (60º, 10º, 0º). Particularly, an

obvious increase of the stress-strain response for Euler angle (10º, 0º, 35º) could be observed
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at the true strain of ~0.1, compared with that at the true strain of ~0.3 for Euler angle (60º, 10º,

0º). Meanwhile, this intensification of Cauchy stress can also be seen in the strain hardening

rate curve of Euler angle (10º, 0º, 35º). In addition, the deviation between Euler angle (10º, 0º,

35º) and Euler angle (60º, 10º, 0º) increases after the true strain of ~0.1. Since twinning and

transformation would have a significant influence on hardening of these two Euler angles, it

is thus necessary to study the evolution of twin volume fraction and martensite phase

transformation volume fraction to clarify their contributions to hardening. Therefore, the

twin and transformation volume fraction of TWIP steel single crystals are simulated only for

the Euler angle (10º, 0º, 35º).
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Fig.7. Sum of martensite and twin volume fractions versus strain for the TWIP steel single

crystal with the Euler angle (10º, 0º, 35º), including its evolution of twin volume fraction

against experimental results. (Pls pay attention: The text in the above figure overlaps with

the curve, pls revise it)

To study the stress rising in the macroscopic response of TWIP steel single crystal with the

Euler angle (10º, 0º, 35º), it is necessary to validate the reliability of the evolution of twin
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volume fraction and transformation volume fraction during the uniaxial tensile test of the

TWIP steel including twinning and ε-martensite transformation mechanisms. The

experimental results obtained by prior researches (Ghasri-Khouzani and McDermid, 2015)

are provided to address this issue. In prior arts, both mechanical twins and ε-martensite were

observed during the deformation of Fe–22Mn–0.4C alloy. It is noted that in Fig. 7, the

predictions of the evolution of twin volume fraction and martensite + twin volume fraction

are similar to the ones of Fe–22Mn–0.4C steel in the experiments quantitatively and

qualitatively. There are deviation between simulation and experiment, which could be

attributed to some facts such as a slight difference of chemical composition, and experiment

and simulation error. It is noted that in the presented model, the evolution of twin volume

fraction and martensite + twin volume fraction are rising from zero, comparing with the

non-zero value in experiments. The initial values are neglected for simplification since they

are really small before plastic deformation. In addition, the trend of martensite + twin volume

fraction appears to be saturated after the strain of ~0.4, but the prediction deviates from the

experimental results. This issue could be caused by the dominating phase transformation on

the secondary hardening in macroscopic response after the strain of ~0.4. Moreover, the

increasing strain hardening rate of TWIP steel single crystal with the Euler angle (10º, 0º, 35º)

could be ascribed to the strengthening of hardening caused by martensite phase

transformation.

4.3 Stress drop for TWIP single crystals

For the single crystals dominated by the twinning-induced plasticity (TWIP) effect, the stress

drop in the stress-strain response is considered as an interesting and existing mechanism

caused by the twinning reorientation. However, it has not yet been fully explored. In the

previous study, it is noted that in some single crystal materials with TWIP effect such as



41

copper single crystal with a certain orientation [541], the stress drop in the macroscopic

response could be observed during the uniaxial tensile process and this could be attributed to

the twinning reorientation (Niewczas et al., 2001). In addition, in the uniaxial tensile test of

magnesium single crystal with the orientation of [0001], the initiation of  1012 twins

results in a sudden load drop and is accompanied by a 2−5% strain burst (Yu et al., 2012). It

is reasonable to conclude that for the single crystals with TWIP effect under particular

orientations during uniaxial tension, the reorientation of crystal due to twinning changes the

ability of dislocations to move, which can lead to softening (Yu et al., 2012). However, for

the compression tests of [0001] magnesium single crystal, it is noted that there is no obvious

stress drop in the macroscopic response due to the nucleation of a single  10 11 contraction

twin resulting strain softening instead of a sharp drop (Yu et al., 2012). Indeed, in the

compression test of TWIP steel micro pillars with the diameter of 705nm and 3.9um with the

approximate orientations of [001] and [136] respectively, it shows no distinct load drop in the

experiments (Wu et al., 2012). It could be concluded that the stress drop, a non-typical

phenomenon during uniaxial loading, is associated with crystal orientation andloading

condition. Therefore, a detailed explanation is focused on these factors in this research to

articulate how the stress drop is reproduced in mesoscale simulation.

4.3.1 Effect of crystal orientation and loading condition on stress drop

On the basis of the aforementioned experimental results for single crystals with TWIP effect,

the crystal orientation associated with loading condition play a significant role in the

evolution of macroscopic response, particularly in the stress drop. In addition, the crystal

orientation may lead to a prominent distinction in uniaxial tensile test. Fig. 8 illustrates

the evolution of macroscopic response for copper single crystals with certain orientations of

[001] and [541]. It is found that for the copper single crystal with the orientation of [541], the

mesoscale simulation reveals an obvious stress drop at the strain of ~0.65, compared with
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the experimental results obtained by Niewczas et al. (2001). Since there is no phase

transformation for the copper single crystal at the temperature of 4.2K (Niewczas et al., 2001),

the simulation was carried out by using the crystal plasticity model considering slip and

twinning. The stress drop was observed which could be attributed to the evolution of twin

volume fraction. In order to articulate how the stress drop occurs, the twin volume fraction

(dashed line) of the copper single crystal with the orientation of [541] is provided. Obviously,

the twin volume fraction comes to saturated value when the stress drop reproduces. The

reorientation of the crystal due to the saturated twin volume fraction leads to the activation of

several other slip systems. It is revealed that the activation stress of slip system is considered

to be smaller than that of twinning system. Consequently, a significant stress drop in the

macroscopic response would be reproduced mainly caused by the evolution of twin volume

fraction. Compared with the orientation of [541], a distinct macroscopic response and twin

volume fraction of copper single crystal with the orientation of [001] was observed during the

uniaxial tensile test. For this orientation, there is no stress drop in the stress strain response

since the twin volume fraction is almost zero in the tensile test process. Therefore, the crystal

orientation of single crystal with TWIP effect has a great influence on the macroscopic

response due to the evolution of twin volume fraction.
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Fig.8. Evolution of macroscopic response for copper single crystals with the orientations of

[001] and [541] and the twin volume fraction in uniaxial tensile test.

For the TWIP steel, the influence of loading condition on the evolution of macroscopic

response could not be ignored, particularly for single crystal with TWIP effect (Yu et al.,

2012, Wu et al., 2012). For the magnesium single crystal oriented at [0001], after twinning

initiation, there is a significant difference between the compression and tensile tests in terms

of both the twin structure and the corresponding mechanical data (Yu et al., 2012). In addition,

- the TWIP steel micro pillar oriented at [136] in compression test did not show any load drop

based on its load-displacement curve. Although there is no experimental evidence of TWIP

steel single crystal oriented at [136]-under uniaxial tensile test to date, it could be possible the

stress and strain response under uniaxial tensile could be different from that under

compression?????. In Fig. 9, for the TWIP steel single crystal oriented at [136]-under

uniaxial tensile and compression deformation, an apparent load drop in the load-displacement

curve of uniaxial tensile occurs compared with that of uniaxial compression. Similarly, the

evolution of twin volume fraction for these two loading conditions is given to articulate how

the load drop occurs. Based on the analysis of crystal orientation effect, the load drop could

be attributed to the saturated twin volume fraction. Consequently, the stress drop in

macroscopic response of TWIP single crystals may be reproduced under a certain crystal

orientation and loading condition. Therefore, this unique phenomenon cannot be ignored

and needs in-depth exploration in terms of the mechanisms of deformation twinning for

TWIP single crystals.
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Fig.9. Load-displacement curves for TWIP steel single crystal with the orientation of [136]

under uniaxial tensile and compression, and the corresponding evolution of twin volume

fraction in deformation.

4.3.2 Effect of twinning and transformation on stress drop for TWIP steel single

crystals

In this research, a stress drop, which is similar to the finding of Niewczas et al. (2001) and Yu

et al. (2012), is observed during the uniaxial tensile simulation of TWIP steel single crystal

with the Euler angle of (10º, 0º, 35º). However, since the presented model considers both the

twinning and martensite phase transformation, the capability of the model on representing the

stress drop of TWIP steel single crystal is presented and the reason why this phenomenon

occurs is given.

In Fig. 10, it is clearly shown that the stress-strain responses using the developed models in

this paper have an apparent increase compared with the curve determined by using the model

of slip coupling with twinning proposed in previous work (Salem et al., 2005), from which it

can be seen that the transformation volume fraction has a great influence on the hardening

effect. Furthermore, with the increase of strain increases, both the stress-strain responses
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caused by different kinds of models show a steep stress drop. In the presented model, the

saturated value of twin volume fraction is considered as a parameter and set to 0.4 based on

the experimental results obtained by Renard et al. (Renard et al., 2012). Moreover, the

evolution of twin volume fraction of the slip+ twinning+ transformation model does not reach

the saturated value when the stress drop appears. So it could be deduced that the stress drop is

not caused by the twin induced rotation. Additionally, the Cauchy stress would drop when the

transformation induced matrix rotation occurs. Based on the above analysis, the

transformation induced rotation would make a contribution to the stress drop for the

presented model. It is noted that the stress drop is associated with the decreased slip

resistance, which is attributed to the activation of other slip systems.
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volume fraction (blue) and twin volume fraction (red) when the Euler angle is (10º, 0º, 35º).

From the curve shown in Fig. 11, the twin volume fraction predicted based on the model of

slip coupling with twinning has the valve of 0.4, which means a new orientation occurs.

Therefore, the stress drop using the slip coupling with twinning model is caused by twin

rotation. In addition, the twinning systems are partly activated and induce plasticity. When

the strain reaches about 0.4, however, the twins rotate (the red shadow area) as the twin
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volume fraction is up to the saturated value (0.4), which means the twins do not make its

effort to intensify the slip resistance.

The model of slip, twinning coupling with transformation shows its ability to capture the

crystal deformation behavior, and give a better explanation of steep stress drop during the

single crystal plastic deformation process, which proves the reliability of the algorithm.

To provide more powerful evidence for the stress drop of TWIP steel single crystal, the

micromechanical behavior of TWIP steel single crystal under particular orientation and

proper loading condition needs further study at submicron scale, and the micro evolution of

hardening effect may be more helpful to explain the phenomenon of stress drop.
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Fig.11. Twin volume fraction with the Euler angle of (10º, 0º, 35º) using the model (slip

coupling with twinning). Twin rotation (red shadow) occurs when the twin volume fraction

reaches the saturated value of 0.4.

In order to reveal the capability of the model in modeling of the effect of the sequence of

twinning and transformation rotation quantitatively on stress-strain response in crystal

deformation, a loading process containing different strains of Euler angle (60º, 10º, 0º) at

0.01s-1 is simulated. It is observed in Fig. 12 (a), with the increase of strain (from 0 to ~0.7),

several sharp stress drops appear in the macroscopic response. It is thus proved that these
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stress drops are closely associated with the evolution of twin volume fraction and

transformation volume fraction. Therefore, it is necessary to determine the sequence of these

drops whether they are caused by twinning or transformation. Therefore, this issue could be

solved via analysis of the deformation mechanisms under different strains. As described in

Section 4.3.1, for the single crystal materials with TWIP effect, the stress drops caused by

crystal reorientation appear when the twin volume fraction or transformation volume fraction

reaches the saturated value. In Fig. 12 (a), there is no drop in the stress-strain response before

the strain of ~0.4. However, the first sharp drop appears when the true strain reaches 0.4. The

interpretation of this first stress drop may be referred to the transformation induced rotation

and the unsaturated twin volume fraction. Obviously, the two stages (A and B) are divided by

this first sharp drop. Since the twin volume fraction does not reach the saturated value at

Stages A and B, as shown in Fig. 12 (b), there is no twin induced rotation at both of two

stages. However, a secondary sharp stress drop appears when the strain is increased to ~0.5.

Corresponding to Fig. 12 (b), the twin volume fraction reaches the saturated value at the

strain of ~0.5, i.e., the crystal reorientation caused by the twin induced rotation may lead to

the secondary stress drop. Furthermore, when the TWIP single crystal is subjected to plastic

deformation to the strain of ~0.7, the sequential deformation mechanisms are determined by

different stages: from transformation induced rotation to twin induced rotation.
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(60º, 10º, 0º) (strain of ~0.7 at 0.01s-1); (b) twin volume fraction of Euler angle (60º, 10º, 0º).

The red line indicates the saturated value of twin volume fraction.

According to the analysis above, it can be deduced that transformation rotation is prior to the

twin rotation with respect to the increasing strain. Therefore, the developed model could

model and capture the deformation mechanisms of transformation and twin rotation so that it

can reveal the deformation history and process of TWIP single crystal.

5. Conclusions

A constitutive model for modeling of slip, twinning and transformation of TWIP steel crystal

based on crystal plasticity was developed in this research to describe the evolution of

different mechanisms and the interactions among these micro deformation mechanisms.

Based on the developed model and its application in TWIP steel deformation, the following

concluding remarks can be drawn:

 Transformation is introduced into the CP framework using the thermodynamic and

micromechanical approach, and the threshold of twin volume fraction needs to be given

to determine the twin rotation.

 The modified framework is also represented in the formulation of classic rate-dependent

constitutive relations so that it is intuitionistic to express the evolution of different

deformation mechanisms and their interactions from the point of view of

micromechanics.

A fully implicit time-integration scheme based on Newton-Raphson method has been

implemented into ABAQUS/Standard using the user material subroutine. The threshold for

the twin volume fraction based on the experiments to judge if the twins rotate is introduced.

Also, the contribution of the transformation is calculated whether the driving force satisfies

the critical value. The accuracy of the modeling has a good agreement with the experimental
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results by comparing the simulation results with experiments. In addition, the uniaxial

deformation processes of TWIP single crystal are simulated based on the developed model

and the algorithms. The following can be concluded:

 Via analysis of twin and martensite + twin volume fraction, the hardening effect of TWIP

steel single crystals caused by twinning and transformation could be represented

quantitatively and quantitatively by the developed model, which is helpful to predict the

trend of stress strain response.

 The stress drop of TWIP single crystal is identified through determination of the

saturated value of twin volume fraction, which has an agreement with the experiments in

reference. The twin volume fraction can be also used to analyze transformation rotation.

The reason why that the transformation causes the stress steep drop is given according to

the proposed model.

 The stress-strain response is discussed for determination of the sequence of

transformation and twinning rotation quantitatively. The fact that different deformation

mechanisms belong to different stages is described using the developed model.
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Figure captions

Fig.1. Schematic of different micro-deformation mechanisms. (a) Production of slip

deformation by a homogeneous shear. Atoms move along the slip plane under the shear stress

 and N stands for the normal to the slip plane. (b) Schematic of twin shear deformation. T

denotes the twinning shear and the dashed line indicates the average shear of the material

volume. (c) The parent phase (red dashed line) translates to martensite (black solid line)

under the effect of shear deformation; the m and n indicate the transformation direction and

the normal to habit plane, respectively. (d) Crystal rotation during the process of uniaxial

tensile; the and  denote the amount of shear with respect to the status before rotation and

after rotation, respectively.

Fig.2. The schematic representation of the classic decomposition of deformation gradient F,

which is divided into the elastic and plastic parts.

Fig.3. The improvement of classic intermediate configuration into five configurations is

illustrated and the corresponding decomposition of deformation gradient F into the elastic,

plastic and transformation parts is described.

Fig.4. The flow chart of numerical algorithm into implicit FEM.

Fig.5. Comparison of (a) stress-strain responses and (b) work hardening rate from simulation

with those from experiments performed at different temperatures (Koyama et al., 2011).

Fig.6. The effects of different Euler angles (10º, 0º, 35º) and (60º, 10º, 0º) on hardening for

TWIP single crystal at the strain rate 0.001s-1 when the true strain reaches 0.4 and 0.48

respectively. And the strain hardening rate of Euler angle (10º, 0º, 35º) is given particularly.

Fig.7. Sum of martensite and twin volume fractions versus strain for the TWIP steel single

crystal with the Euler angle (10º, 0º, 35º), including its evolution of twin volume fraction

against experimental results.

Fig.8. Evolution of macroscopic response for copper single crystals with [001] and [541]
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orientations under uniaxial tensile condition, including their twin volume fraction.

Fig.9. Load-displacement curves for TWIP steel single crystal with [136] orientation under

uniaxial tensile and compression, together with the corresponding evolution of twin volume

fraction.

Fig.10. Comparison of the stress-strain response using different models using transformation

volume fraction (blue) and twin volume fraction (red) when the Euler angle is (10º, 0º, 35º).

Fig.11. Twin volume fraction with the Euler angle of (10º, 0º, 35º) using the model (slip

coupling with twinning). Twin rotation (red shadow) occurs when the twin volume fraction

reaches the saturated value of 0.4.

Fig.12. (a) Stress-strain response in uniaxial tensile of TWIP single crystal with Euler angle

(60º, 10º, 0º) (strain of ~0.7 at 0.01s-1); (b) twin volume fraction of Euler angle (60º, 10º, 0º).

The red line indicates the saturated value of twin volume fraction.
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Table captions

Table 1. Reference for different factors on deformation twinning.

Table 2. Material parameters in the constitutive relations calibrated for TWIP steel.
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Box captions

Box 1. Constitutive model coupling slip-twinning-transformation of TWIP steel.

Box 2. Summary of the stress update algorithm for the rate-dependent constitutive model.




