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Abstract 

The scratching test has been a key method to characterize the basic mechanics of material in vast 

scenarios. Although attentions have been paid to this field for decades, a comprehensive analytical 

framework, which includes material flow, fracture initiation and crack propagation, is still missing. 

The wide application of scratching test and the accurate description of material behaviors in 

friction is thus limited. To address the problem, an analytical frame model was established in this 

study. The strain distribution and pileup ratio in the symmetry section of the front ridge was 

calculated. Furthermore, the ductile fracture law was also included to predict the mechanism and 

the initiation location of fracture in the scratching process. The predictive results were further 

validated by SEM observations of the scratched grooves. The effects of cone angle and material 

properties on the damage mechanisms of material in the scratching process were studied. It was 

revealed that the damage mechanism changes from shear failure to tensile failure, and further to 

plastic deformation with the increase of cone angle and the ratio of yielding stress to Young’s 

modulus. Finally, a map of the damage mechanism of material in the scratching process was 

obtained by utilizing the developed model. The presented works are meaningful to the 
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understanding of material behavior in ploughing, and helpful in predicting and controlling the 

surface quality of those parts subject to different machining and forming processes. 

Keywords: Scratching process, damage mechanism, ductile fracture, contact mechanics. 
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1  Introduction  

Traditionally, the scratching test has been regarded as a mechanics-of-materials test for property 

characterization [1]. However, it is also an effective approach to investigate the behaviors of 

materials during ploughing and help us to understand the tool-workpiece interfacial friction 

behavior [2], surface hardness [3], fracture [4] and material removal mechanisms [5]. An accurate 

description of the ploughing effect is thus critical in various machining processes such as milling, 

drilling and grinding. In addition, micro scratching is also a key factor affecting the friction and 

wear in various forming processes. As the fabrication accuracy and surface quality requirements 

increase with the development of modern industries,  the importance of a thorough understanding 

of the ploughing effect is self-evident. 

 

The scratching or ploughing process can be described as a hard indenter or asperity moving across 

a softer surface to produce a groove. During the process, severe plastic deformation, cracks and 

even material detachment can be induced by the movement of indenter. By identifying whether a 

crack or fracture occurs in the soft or ductile material, the process can be distinguished into two 

different types, termed mild scratching and severe scratching processes. In the mild scratching, 

deformation is governed by the bulk constitutive properties, typically plastic for metallic materials 

or non-linearly viscoelastic for polymers, without chipping, spalling or delaminating. While the 

severe scratching occurs if the material toughness is sufficiently low and the formation of cracks 

takes place [6].  In some prior works, the scratching process is also divided into three types, namely 

rubbing, wear, and cutting. Rubbing can be regarded as the mild scratching. The wear scratching 

means fracture and material removal take place. If the removed material is able to form continuous 

chips, the scratching was treated as the cutting process [7].  
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The mechanism of scratching process for ductile materials can transform from deformation to 

fracture due to the geometry of scratching tools, the indented depth and the properties of base 

materials. Many prior experimental arts have revealed that the complicated behavior of materials 

during the scratching process is significantly affected by the process parameters such as attack 

angle, penetration depth, and mechanical properties of material. Among them, the experimental 

works conducted by Sedriks and Mulhearn [8] on the scratching of pure metals with pyramidal 

tools showed the attack angle of the indenter, which is the angle between the leading edge or face 

and the direction of sliding, must exceed a critical value until material detachment takes place. 

Similar conclusions were obtained by scratching ductile materials with rigid asperities of different 

shapes [9, 10]. Besides the attack angle, the scratching mechanism is also revealed to change from 

ploughing to wedge-forming, and then to the cutting mode as the degree of penetration increases 

with the help of in-situ scanning electron microscope (SEM) [11]. Moreover, the critical 

penetration degree for the transition from the ploughing mode to the wedge-forming mode was 

independent of the hardness. While the critical penetration degree for the transition from wedge-

forming to cutting decreases with the increasing hardness. Recently, it was reported that the mode 

of failure (fracture vs. plastic yielding) is influenced by the material properties as well as the 

geometry of scratching tools [4, 12] .   

 

To determine the mechanism of scratching, attentions were paid to the theoretical modelling of the 

process. Williams [13] made two principal assumptions for the elementary model of the scratching 

or ploughing process: The resistance to penetration of the material is a material constant which is 

independent of the loading directions. The effect of adhesive friction is independent of the 
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involving deformation. Untill now, this approach is still widely used due to its simple formation 

[14]. However, the evolution of free surface as well as the fracture of material is not able to be 

considered in those analyses. To overcome the problem, the slip-line field method is employed to 

model the scratching process. Challen and Oxley [15] established the slip-line field of a wedge-

shaped tool scratching a deformable flat in plane strain condition. Three different models were 

established based on that to describe the rubbing, wear and cutting modes respectively. In addition 

to Challen and Oxley’s work, a new slip-line field approach was established by introducing the 

built-up edge on the front side of the indenter by Yin and Komvopoulos [16]. It should be noticed 

that the slip-line field method is only available in two-dimensional scenarios.  In addition, the 

method demands the indenter to climb upwards to the exact level of the free surface. Otherwise 

the scratched material must be removed. Obviously, the method could only partially reflect the 

material behaviors in scratching tests. 

 

Another traditional way is the upper bound method, which assumes rigid-perfectly plastic material 

accommodates the movement of indenter by moving around as a series of rigid blocks, creating 

discontinuities in the tangential components of velocities at the interfaces. Both the cutting and 

ploughing modes of  scratching processes [9] with different shaped tools, such as pyramid [17], 

cone [18] and generalized asperity [19, 20] were modeled. By considering the stagnant zone 

formed ahead of tool, the mixed-mode ductile material removal with a conical tool was 

investigated by Wang and Subhash [21] and the stagnant zone in the model plays a negative role 

in the removal of material. The application of upper boundary method requires the surface 

configuration of the plastic zone is known as initio. However, the assumption could not hold in the 

scratching process since the material is bounded by a stress-free surface whose shape is not 



                                                                                                  6 

controlled by the tool. Moreover, the mode of deformation, plasticity or fracture, must be assumed 

as known factors. Hence how the scratching behaviors vary under different conditions could not 

be predicted.  

 

A number of simulation studies based on finite element (FE) method, molecular dynamic (MD), 

etc. have recently been conducted to examine the effect of flow stress and tip geometry on the 

scratch response. Base on the FE simulations, one-cone scratching process on elastic perfectly 

plastic materials, and compared plastic strains of different materials during the scratching process 

was studied by Bucaille and Felder [22]. They found the elastic recovery on the rear side of the 

indenter reduces the scratching resistance of the materials with a rheological factor smaller than 

100. Single-pass scratch tests on bilinear elastic–plastic materials with a conical indenter were 

simulated to study the influence of interfacial friction coefficient and the apical angle of the 

indenter on the induced tangential and normal forces by Subhash and Zhang [23]. Similarly, the 

effect of flow strength and strain hardening on the response to steady-state frictional sliding with 

a conical indenter was investigated by Bellemare et al. [24]. Single grit scratching simulations 

were performed by Zhang et al. to study the relationship between the cutting energy and the 

material removal rate [25]. Following that, A 3D multi-scratch FE model was established based 

on Abaqus using the Johnson-Cook criteria by Elwasli et al. [26]. Crystal plasticity FE method 

was adopted to investigate the nanoscratching of copper by Wang et al. [27]. The coupling effects 

of crystallographic orientation and probe geometry were revealed to affect the load-displacement 

curve and pile-up topography. MD has also been employed to investigate the nano-indentation and 

scratch process at even smaller length scales [28-30]. New simulation methods including smooth 

particle hydrodynamics [12] and material point method [10] are also attracting a lot of attention. 
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However, the severe deformation during scratching has presented an evident difficulty for the 

different simulation researches. The accuracy is hindered by the different simulation problems 

such as mesh distortion, strong strain gradient effects, computation explosion, etc. Hence the 

fracture mechanism in the scratch process is still not clear. 

 

According to the literature review, an appropriate analytical framework, which includes material 

flow, fracture initiation and crack propagation, is an urgency for the wide application of scratching 

test and for the accurate description of material behaviors in friction [10, 24]. Recently, a series of 

work were done by Akono and Ulm [1, 4] , they derived general scratch force scaling relations for 

axisymmetric scratch probes defined by single variable monomial functions and used the relations 

to define fracture criteria with and without consideration of the development of shear stresses at 

the probe–material interface. In their models, the fracture propagates when the released energy 

extended the critical fracture energy. And the final fracture criterion is related to the geometry of 

indenter, the toughness of material and the indented depth. However, limitations of the criterion 

are concluded by the authors that the effect of large (eventually inelastic) deformation on the 

hardening behavior ahead of the scratch probe cannot be captured since a linear elastic behavior 

of solid is assumed. The approach is thus restricted to elastic-brittle materials. Moreover, the model 

assumed the scratch probe is surrounded by a crack plane. Hence the criterion is considered to be 

more accurate to predict the propagation of fracture than to describe the initiation of fracture.  

 

The present study deals with a more essential problem, i.e., whether and how the fracture is 

generated by the movement of rigid cone in the scratching processes with different cone angles, 

penetration depth and material properties. It is important to find an appropriate theory or method 
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to study the scratching process. In order to address the problem, the material in front of the rigid 

cone is simplified into a series of line elements, and the increment of strain as a function of cone 

angle was deduced according to the elongation of the line elements and contact mechanics. With 

the help of iteration calculation, the strain distribution as a function of sliding distance, cone angle 

and mechanical property was obtained based on the strain field increment. By making the strain 

equal to the fracture strain, the critical cone angle for the transition from deformation to fracture 

as well as the influence of material properties on the angle was finally determined. The results are 

meaningful to the understanding of material deformation and fracture behaviors in ploughing. The 

model established in this work could be applied in different cutting and forming processes to 

predict the surface conditions, the generation of surficial micro cracks, the wear behaviors etc. 

under different tool asperities conditions. The model could also be easily incorporated in the 

mechanism-based machine learning systems of different manufacturing processes for the process 

design and optimization. 

 

2  Analytical approach 

Previous studies have defined two scratch modes namely cutting and ploughing based on the 

material flow direction. A cutting mode scratch is accomplished with the chip being formed where 

the particle usually flow upwards along the tool surface so as to detach from the surface of the 

workpiece, while a ploughing mode scratch is formed with the material being displaced by the 

particles usually moving either downwards or sideways along the tool surface without the chip 

generated [21]. Obviously, in cutting mode, fracture is the main mechanism of damage, and in 

ploughing mode, the mechanism of damage is depending on the process parameters. Thus the 

analysis mainly focuses on the ploughing mode in this study. 
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2.1 Theoretical background 

The physical explanation of fracture mechanism in scratching process is still not clear due to the 

complex stress condition caused by the sliding of the tool. The existing explanations in the 

traditional analysis are always phenomenon based. For example, in upper bound analysis, the 

fracture is usually assumed to be formed on the front side or the lateral side of the tool according 

to De Vathaire et al.  [31]. In slip-line field analysis, fracture is considered to happen when the 

attack angle is larger than the friction angle. In this study, the initiation of fracture is defined as 

the transformation of material from continuous to discontinuous. Thus, the material is firstly 

assumed to be a continuum.  

 

In the ploughing process, the plastic flow of a particle on the interface of indenter and material can 

be divided into two components according to the contact interface, namely the normal component, 

dn, and the tangential component, dt, given by Eq. (1). 

 

( )

sin '

cos '

' ,

n s

t s

d d

d d

f m





 

 =


=


=

  (1) 

Here, α is the semi-angle of the indenter, and m is friction factor on the interface.  

 

With the sliding of indenter begins, both the components of dn and dt increase. If dt is greater than 

the distance for the particle to pass the widest section of the indenter, the particle can climb over 

the indenter. Meanwhile, the increase of dn also leads to the increasing strain of the particle. Thus 

a criterion of fracture can be interpreted as if the strain of the particle is greater than the fracture 

strain before it climbs over the indenter, fracture can take place in the scratch process. Particularly, 
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as the deformation of material is extremely nonlinear, the strain field could be obtained by iterating 

the strain increment under small movement increment.  

 
Fig. 1 Fracture criterion in ploughing. 

 

2.2 Strain increment induced by a small increment of scratching 

2.2.1 Basic assumptions 

 

Fig. 2 Schematic of the scratch morphology and relevant global and local coordinate systems 

during the scratching process. 

 



                                                                                                  11 

Consider a rigid cone scratching a ductile flat, the interaction between the tool and the deformed 

material is shown in Fig. 2. The indented depth is hp, and the rigid cone slides parallel to the surface 

of the material with a velocity of V. The global coordinates of XcYcZc can be established as shown 

in Fig. 2.  

 

The transition matrix of the coordinates is given as follow: 

 

cos 0 sin

0 1 0

sin 0 cos

P

 

 

− 
 

=
 
  

  (2) 

The small movement U of cone in the direction of Xc can be divided into a component Uc in X 

direction and a component Us in Y direction, respectively. Particularly, Uc can cause the 

compression deformation, while Us is the relative slip of the contacting surface. If the contacting 

surface is well lubricated and the friction is eliminated, the deformation of the scratching material 

is mainly caused by the compression component, Uc.  

 

For an infinite plane, only the adjacent material is strained by the displacement of cone, and the 

strain far away from the cone is considered to be 0. Assuming the strain in the deformed region is 

pure plastic, according to contact mechanics, the shape of plastic deformation region caused by 

the indentation of a rigid cone into a plastic material can be regarded as a semisphere with the 

radius [32]: 

 

1

3tan 2(1 2 )
tan

6(1 ) 3(1 )
p

E
C h

Y

 


 

 −
= + 

− − 
  (3) 

Here, E, Y and ν are the Young’s modulus, yielding stress and Possion’s ratio of material, 

respectively. α is the semi angle of the cone, and ℎ𝑝 is the indented depth.   
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Thus the boundary of the plastic region in XcYcZc coordinates can be obtained as follow: 

 ( )
2

2 2 2
c c p cx y h z C+ − + =   (4) 

In XYZ system, the boundary is expressed as 

 ( ) ( )
2 2

2 2sin cosp px h y h z C + + − + =   (5) 

In the plane z=0, boundary in X direction is obtained as  

 ( )
2

2

0 0 cos sinp pC C y h h = − − −   (6) 

As shown in Fig. 3, line ACB is a random line element of material in front of rigid cone. According 

to the assumption of continuity, line ACB should be continuous during the scratch, hence the 

location and shape of line ACB can be illustrated as Fig. 3. During the process, line ACB is 

elongated by the compression component Uc, while the sliding component Us makes the line move 

downward, and finally be passed over by the cone. If no fracture is allowed during the process, the 

strain on the line should not exceed the fracture strain of the material before it is passed over by 

the cone.  
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Fig. 3 Evolution of the intersection line ACB. 

 



                                                                                                  14 

In tandem with the analysis above, the deformation region can be simplified into a series of line 

elements, as shown in Fig. 4 (a), based on the shape of cone. Firstly, the deformation region is 

divided into numerous of sections, which are parallel to the XOZ plane. Then, on each section, a 

series of curves, which are similar to the intersection line of the rigid cone, are drawn, as shown in 

Fig. 4 (b). As the intersection lines on different sections are similar to each other, the deformation 

region can be represented by a series of similar line elements.  

 

Fig. 4 Schematic illustrations of (a) the Line element simplification, (b) XZ plane for a given 

y=y0. 

 

In the XYZ coordinates, the intersection line can be expressed as z=f(x). M is a random point in the 

deformation region with the coordinate values of (𝑥0, 𝑦0, 𝑧0) which is in the line DFE. According 

to the similarity, line DFE can be represented by the coordinate values of M.  

 

Considering a cross section as illustrated in Fig. 4 (b) with an arbitrary y0, an extremely small 

displacement is applied to the rigid cone. The base material is deformed and line DFE is elongated 

to line D’F’E’. Ignoring the effect of adhesion on the contacting surfaces, and taking the advantage 
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of the extremely small displacement, the following simplifications are made to obtain the strain 

field: 

(1) Lines DFE and D’F’E’ are on the same plane. 

(2) Points D and E are coincident with D’ and E’.  

(3) The elongation of Line DFE is uniform. 

Thus the elongation of line DFE can be expressed as follows: 

 

( )

( )

2

1

2

1

2

'1 0

2
0

1 '
1

1 '

x

x

x

x

g x dxl l
l

l f x dx


+−
= = −

+




  (7) 

Here, z=f(x) and z=g(x) are the geometric analytical expressions of line DFE and D’F’E’, 

respectively.  

 

In XYZ system, the coordinate values of the points are represented as F(x1,0), F’(x1’,0), D (-x2,-z2), 

E (-x2,z2). And the following equation is obtained: 

 1 1 0' cx x u− =
  (8) 

uc0 is the displacement of point F, which is a function of x coordinate, and smaller than uc due to 

the deformation of material. As the strain at the edge of the deformation region is 0, the distribution 

of the displacement along x axis ux-axis should satisfy the following boundary conditions: 

 

( )

( )

( )
0

0

0

0

' 0

x axis c

x axis

x axis

u u

u C

u C

−

−

−

 =


=
 =

  (9) 

Assuming the strain along x axis is linearly distributed: 

 ( )'x axisu x Ax B− = +   (10) 

Substituting Eq. (10) into Eq. (9), the following expression of displacement can be obtained: 
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 ( ) 2

2

0 0

2c c
x axis c

u u
u x x x u

C C
− = − +   (11) 

 
2

0 1 12

0 0

2c c
c c

u u
u x x u

C C
= − +   (12) 

The displacement of a point in the line can be divided into two components, namely the rigid 

movement in x direction and the elongation along the tangential of the line. The direction vector 

of the elongation component is given as follows: 

 

( )( ) ( )( )

( )( ) ( )( )
2 2

,

T

T

f x z f x z

z x

f x z f x z

z x

  −  −
− 

   =

    −  −
+   

       

  (13) 

Therefore, the displacement u of an arbitrary point M in the line can be expressed as 

 ( )0T ,0
T

M cu l l u=   +   (14) 

Here, 𝑙𝑀 is the arc length from M to F. Based on the displacement, the strain of M can be calculated 

according to the following equations: 

 0x x cM
x M x x M

u T ull
l T l T l l

x x x x x


  

  
= =   +   +   +
    

  (15) 

 z M z
z M z z M

u l Tl
l T l T l l

z z z z


  

  
= =   +   +  
   

  (16) 

 
0

1

2

1

2

x z
xz zx

x cM M z
x z M x z M

u u

z x

T ul l Tl l
T T l l T T l l

z x z x z x z

 

 
 

  
= = + 

  

          
=  +   +   +  +   + +     

            

  (17) 

According to assumption (1) and the volume constancy, the other strain components are obtained 

as follows: 
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( )

0

y x z x z M

x cM M z
x z M

l l
T T l

x z

T ul l T
l T T l l

x z x z x

 
  

 

  
= − + = −  +   − 

  

     
  +  −   + −   

       

  (18) 

 

0

1

2

1

2

yx
xy yx

x cM
x M x M

uu

y x

T ull
T l l T l l

y y y y

 


 

 
= = + = 

  

  
  +   +   + 

    

  (19) 

 

1

2

1

2

yz
zy yz

M z
z M z M

uu

y z

l Tl
T l l T l l

y y y

 


 

 
= = + = 

  

  
  +   +   
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  (20) 

In the xcyczc system, the strain field is given as: 

 ε P εT

xyz=    (21) 

The displacement field is deduced in the following section. 

2.2.2 α<45˚ elliptical section 

As shown in Fig. 5, when α<45˚, the section of the cone is an ellipse. Thus the equation of the line 

across M(x0,y0,z0) is expressed as 

 

Fig. 5 XZ section across an arbitrary point M  with the semi cone angle α<45˚. 
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2 2

0

0 0

1cx a z

a b

   +
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   
  (22) 

Here, a0 and b0 are the semi-major and semi-minor axes of the arbitrary ellipse. ac0 is the semi-

major axis of the cone section ellipse. According to the geometric similarity, the following relation 

is obtained: 

 ( )0 0

1
tan 2

2
ca y =   (23) 

 ( )
2

2 0
0 0 0c

z
a x a

k

 
= + +  

 
  (24) 

 
20

0

1 tan
b

k
a

= = −   (25) 

After deformation, F is compressed to F’, and the coordinate values of E, F and F’ are 

( )( )22

0 0 0 0tan , tancy k a a y − − − , ( )0 ,0a  and ( )0 0 ,0ca u+ respectively. After deformation, 

curve DF’E is still a part of ellipse which can be expressed as: 

 

2 2

0 1cx a z

a b

+   
+ =  
  

  (26) 

Here, a and b are the semi-major axis and semi-minor axes of the ellipse. Substituting points E and 

F’ into Eq. (26), the following equation can be obtained: 

 
( )

( )

( ) ( )

0 0

22

0 0 0

0 0 2 2

0 0 0 0

tan

tan

c

c

c

c c

a a u

a a y
b k a u

a u a y





= +


− −
= +

+ − −

  (27) 

Here, uc0 is the displacement of F. According to Eq. (12), it can be deduced as: 
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The elongation ratio of curve DFE is expressed as follows: 
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Here, E represents elliptic integral of the second kind. 𝜃𝑐0 and 𝜃𝑐 are the argument of point E in 

the integral before and after deformation, and are expressed as: 
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integral of the second and first kind, respectively. 

The arc length from F to M is expressed as 
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The moving direction of M is as follow 
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  (42) 

2.2.3 α=45˚，parabolic section 

As shown in Fig. 6, when α=45˚, the section of the cone is a parabolic curve.  Thus the equation 

of the line across M(x0,y0,z0) is expressed as 
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Fig. 6 XZ section across an arbitrary point M with the cone angle α=45˚. 
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Due to the geometry assumption, ac0 can be expressed as: 
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According to the geometric similarity, the equation of line ACB can be expressed as: 
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Substituting the coordinate value of C (0, 0) and B (−𝑦0 tan 𝛼 , 𝑦0 tan 𝛼 / cos 𝛼) into Eq. (45), the 

following equation can be obtained: 
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Substituting Eq. (46) into Eq. (43) and considering point M, the following equation is derived: 

 
2 2

0
0 0 0

0

cos
tan

tan

z
a x y

y





= + +   (47) 

After deformation, curve passes point F’ (𝑎0 − 𝑎𝑐0 + 𝑢𝑐0, 0) and E (−𝑎𝑐0, √−
𝑎0

𝐴0
), thus: 
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The elongation of the curve after deformation is: 
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Here, the parameters are given as: 
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The arc length from F to M can be expressed as:
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The moving direction of M is as follow: 
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2.2.4 α>45˚ hyperbolic section 

As shown in Fig. 7, when α>45˚, the section of the cone is a hyperbolic curve.  Thus the equation 

of the line across M(x0,y0,z0) is expressed as: 

 

Fig. 7 XZ section across an arbitrary point M with the semi cone angle α>45˚. 
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The equation of ACB is expressed as 
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Due to the geometry, ac0 is expressed as 
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 0
0

tan 2

2
c

y
a


= −   (61) 

As curve ACB passes point B (−𝑦0 tan 𝛼 ,
𝑦0 tan 𝛼

cos 𝛼
), bc0 is thus obtained based on Eq. (61). 
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As curve DFE is similar to ACB, the following equation is obtained: 
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By substituting Eqs. (61)~(63) and point M into Eq. (59), the following equation is obtained: 
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The arc length from F to M is expressed as: 
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Considering that both compress and sliding don’t change the value of k, the equation of DF’E is 

assumed as 
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Substituting point F’ (𝑥𝑐0 − 𝑎𝑐0 + 𝑢𝑐0, 0) and E ( )( )2 2

0 0 0 0tan , tan c cy k y x a − + −  into Eq. 

(68), the following equation is obtained: 
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The elongation of the curve is deduced as 

 
( )

( )

2

22 20

2

0

22 20
0

1
1

1
1

1

e

e

z

z

a
dz

k z ka
l

a
dz

k z ka



+ −
+

= −

+ −
+





  (70) 

By making
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+
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following equations can be obtained according to the partial derivation of compound functions: 
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Based on the law of mixed partial derivation, 
𝜕𝐻

𝜕𝑎
 is obtained as follows: 
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The gradient of elongation is expressed as: 
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The traveling direction of M can be expressed as follows: 
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2.3 Strain increment considering the bulge effect 

According to the volume constancy, the compression of material leads to the bulging on the free 

surface. Hence the evident pile-up of materials in front of the indenter can be observed in the 

scratching process. To model the bulging effect, the pile-up is regarded as the increase of Y 

coordinate value of the mass points in the XYZ coordinate system, which is an extension load to 

the line element as shown in Fig. 8. The line element is assumed to be concentric elliptical with 

the cone surface. 
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Fig. 8 Strain increment caused by the bulging effect. 

 

Given a small increment δy in the Y direction of one point C, the cone intersection line 

corresponding to the point changes from the solid line to the dashed line as shown in Fig. 8 (b). 

Similarly, the line element that crosses M changes from DFE to D’F’E’. According to the 

assumption of uniform elongation, the elongation ratio of M can be expressed as follow: 
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According to Eqs. (61) and (66), 𝑙𝐷𝐹𝐸 and 𝑙𝐷′𝐹′𝐸′ can be calculated as: 
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Here, x0,y0,z0 are the coordinate values of M.  

 

Assuming the increase of height do not affect the strain in Y direction, the strain caused by the 

increase of height in the symmetry section can be obtained 
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As 𝛿𝑦 is caused by the compression barreling, it can be calculated based on the following equation: 

 ( )
0

1
r

y

y
y

y dy = +   (84) 

Here, 𝑦𝑟 is the Y coordinate value of cone tip, and 𝜀𝑦 is the strain in Y direction.  

 

2.4 Calculation procedure and numerical results 

2.4.1 Matlab procedure 

An iteration approach was developed with the help of MATLAB to calculate the strain field of the 

symmetry section (with z=0) at the front edge of rigid cone. The flow chart of the solution is shown 

in Fig. 9. During the calculation, the displacement of rigid tool is discretized into incremental steps. 

The strain increment caused by the scratching and bulging effects are then calculated using Eqs. 
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(15)-(21) for each local calculation node. Depending on the cone angle level, the moving direction 

and length for each node can also be calculated according to Eqs. (40-42), (55-57) and (67,78, 79). 

The strain and coordinates of each point are updated upon each increment. Once the mass point 

flows over the rigid tool, its strain is no longer recorded, and the new points that flow into the 

deformation region are further computed. The strain field calculation for the scratching process is 

determined by 6 parameters, namely the semi-angle of the cone α, the Young’s modulus E, yielding 

stress Y and Poisson’s modulus ν of the material, the indented depth hp and the scratch distance 

uc. However, the adhesion on the tool-workpiece interface and the strain hardening of material is 

ignored in this research. 
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Fig. 9 The calculation procedure.  

 

2.4.2 Strain field in scratching process 

To verify the calculation procedure, a comparison was made between the numerical results 

obtained based on the developed model and the FE simulation.  The input parameters are listed in 

Table 1: 
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Table 1 The specified values of parameters values in the verification FE and analytical 

models. 

Parameters Values (FE/Analytical model) 

Young’s modulus E 100 GPa 

Poisson ratio ν 0.495 

Cone angle α 120° 

Yield stress Y 400MPa 

Indented depth ℎ𝑝 0.1 mm 

Scratch distance 𝑢𝑐 0.5 mm 

 

Furthermore, the three-dimensional FE models were constructed in ABAQUS/Standard 

environment. The scratch direction was along x axis. Only half of the system was used to do 

simulation and a symmetric plane was defined to minimize the computation scale, as shown in 

Fig.10. 

 

Fig. 10  The scratching simulation model. 
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Fig. 11 Strain distribution results obtained based on FE simulation and the presented analytical 

model. 

 

Fig. 11 presents the comparison of the evolutions of equivalent strain in symmetry section of the 

leading ridge with the increase of scratch distance predicted by the FE simulations and the 

developed analytical model. A satisfactory agreement of strain field distribution is observed 

between the simulation and analytical results. In addition, both methods reveal that the equivalent 

strain at different positions is increased with the decrease of the cone angle. The maximum 

equivalent strain appears at the cone tip and decreases with the increase of height. The predicted 

height-strain curves based on the analytical model, however, are higher than the FE results with 

the small cone angle of 110°. This is because the existence of element distortion is observed in the 

simulations with the cone angle of 110°, leading to the underestimation of strain level. On the other 

hand, the distortion did not exist in the FE simulations with the larger cone angles (120° and above) 

since the strain condition is less severe. In comparison, the element distortion problem does not 

exist in the analytical model. Deviation is thus expected between FE and analytical results. Further 

research addressing the element distortion problem in FE models need to be conducted in future 
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to verify the model in the cases with smaller cone angles. In this work, an experimental validation 

with the cone angle of 45° is presented in Section 3. 

 

The FE results also indicate a proper analytical description of the fracture mechanisms in the 

scratching process could be more applicable than simulations in engineering problems. In addition 

to the calculation efficiency, the analytical model could also be easily incorporated into machine 

learning frameworks for different engineering applications. The idea has been attracting a lot of 

attentions with the fast development of computation and artificial intelligent technologies. 

Application examples have been reported on small fatigue cracks in polycrystalline materials [33], 

fracture of DP steel under elevated temperatures [34], dynamic fracture growth in brittle materials 

[35], Strain rate and temperature dependent fracture [36], etc. Therefore, the analytical method 

developed in this work is useful to handle the ploughing effects in various machining and forming 

processes by combining with machine learning in future study. 

 

2.4.3 Pile up ratio in the stable state of scratching process 

The pile up ratio of leading edge in stable state is defined as the ratio of the pile up height to the 

indented depth, which is an important parameter affecting the total scratching resistance. It can 

also be predicted based on the calculated strain field. As the adhesive effect on the deformation of 

material is ignored, the maximum pile up ratio occurs at the interface of the contact, where the 

maximum y-strain is generated. According to the definition, the pile up ratio of leading edge is 

expressed as follows: 
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Here, 𝑟𝑝𝑖𝑙𝑒𝑢𝑝 and ℎ𝑝𝑖𝑙𝑒𝑢𝑝 are the pile up ratio and height of leading edge, respectively. And ℎ𝑖𝑛𝑑𝑒𝑛𝑡 

represents the initial indented depth. 𝑦ℎ is the y coordinate value of the leading edge in XYZ system, 

and r is the ratio that the tip radius takes in the total indented depth. Notably, the tip radius is not 

considered in the model. Hence the strain in the tip radius part is not included in the calculation. 

According to the developed analytical model, the distribution of strain in the front ridge is 

determined as follows: 
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Here, 𝛿𝛆 = δ𝛆𝑐 + δ𝛆𝑟 is the strain increment with a small tool displacement of 𝛿𝑢 given by Eqs. 

(15)-(19). Thus the above equation can be further derived. 𝜺𝑡 represents the initial strain of a new 

point that flow into the iteration, which is given by Eq. (83) with 𝛿𝑦 = 𝑟𝑦ℎ. At the stable state, the 

pile up height does not increase with the scratch distance. Therefore, r is independent of 𝛿𝑢. In 

addition, according to Eq. (85), the pileup ratio is affected by 𝜀𝑦. By substituting Eqs.(18) and (83) 

into Eq. (86), the following equation is deduced: 
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According to Eqs. (59) to (79) and (18), Eq.(85) can be rewritten as the following equation by 

making z=0: 
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By making the cone angle α, the ratio of tip radius to indented depth r, and the ratio of yielding 

stress to Young’s modulus Y/E as known parameters, the pile up ratios can be computed by solving 

Eq. (88) and the results are presented in Fig. 12. 

 

(a) 

 

(b) 
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(c) 

Fig. 12  The pile up ratio 𝑟𝑝𝑖𝑙𝑒𝑢𝑝 as a function of (a) the cone angle α, (b) the ratio of tip radius to 

indented depth hp, and (c) the ratio of yielding stress to young’s modulus Y/E. 

 

As shown in Fig. 12, the pile up height increases with the decrease of α and r and the increase of 

Y/E. It should be noted that the effect of Y/E on the pileup ratio seems not to be in accordance with 

the prior FE studies given by Bucaille et al. [22, 37]. They pointed out the pileup ratio increases 

with the rheological factor X=Ecotα/Y. This is attributed to the different application scenarios of 

the two studies. In the studies of Bucaille et al., the effect of elastic recovery is considered and the 

transformation of elastic deformation to plastic deformation is the major mechanism of the 

influence of rheological factor. On the other hand, the elastic deformation is neglected in the 

present work, which focuses on the plastic deformation of base material.   
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2.4.4 Fracture in the scratching process 

According to the Oyane ductile fracture criterion [38], the fracture of ductile material can be 

described as follows: 

 1
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Here, 𝜎𝑚 is the hydrostatic stress, 𝜎 is the equivalent stress, 𝜀𝑓̅ is the equivalent strain at fracture. 

𝐶 and 𝐶1 are material constants. As illustrated in Fig. 11, the dangerous area onset of fracture is 

the interface of the workpiece and the tool. For simplification, a small unit in the thin surface layer 

at the interface is taken as the concern of interest, assuming its deformation satisfies the plane 

stress condition and the Mises yield criterion, the following equation can be obtained: 
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where 𝜎1 and 𝜎2 are the major and minor principal stresses, respectively. Assuming that the load 

path in deformation is fixed and the elastic part can be neglected, the Levy-Mises flow rule can be 

given as 
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Here, 𝜀1̇ and 𝜀2̇ are the major and minor principal strain rates, respectively. The following equation 

can thus be obtained by substituting Eq. (91) into Eq. (90): 
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By substituting Eq. (92) into Eq. (89), the following equation is derived 
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In the deformed material, fracture occurs where the strain is greater than the fracture strain given 

by Eq. (93). Particularly, the fracture strain is not a material constant but is affected by the strain 

condition, which is represented by 𝑘 in Eq. (93). Based on the developed model, the distributions 

of k and fracture strain  𝜀𝑓̅ are calculated and presented in Fig. 13. Obviously, the value of k is 

higher in the upper region of the front ridge than in the bottom region. Thus the fracture strain in 

the bottom region is higher than in the upper region. Moreover, recalling Fig. 11, the strain in the 

front ridge is also close to the fracture strain.  It makes the occurrence of the fracture more 

interesting, since both the bottom and upper region in the front ridge are possible to fracture.  

 

Fig. 13  Distribution of the strain condition parameter k, and the fracture strain 𝜀𝑓̅. 
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Fig. 14  The initiation of fracture in the front ridge. 

 

Fig. 14 shows the initiation location of fracture (in yellow) in the front ridge of scratch trajectory 

with different semi-cone-angle α and different material property Y/E which was predicted by 

comparing the strain and the fracture strain calculated by utilizing the developed analytical model 

and Eq. (93) respectively. The fracture is revealed to be most likely to initiate at two locations, viz. 

the bottom and the middle regions of the leading edge. In the view of strain rate condition, the 

fractures behaviors at these two locations are different. For the fracture at the bottom of the ridge, 

the major and minor principal strain rate are 𝜀𝑥̇ and 𝜀𝑧̇, respectively. The value of k in Eq. (92) 

equals to 𝜀𝑥̇/𝜀𝑧̇. However, for the fracture at the middle region of the ridge, the major and minor 

principal strain rates are 𝜀𝑥̇ and 𝜀𝑦̇ respectively. In addition, k is close to 2 at the bottom region, 

indicating that the region is under three dimensional stress condition. While k is much greater than 

2 at the middle region which is under plane stress condition. Under three dimensional stress 

condition, the fracture is caused by the maximum shear stress [39, 40]. Thus it is believed the 

fracture initiates at the bottom of the ridge is mainly caused by the maximum shear stress, and the 
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crack may propagate upwards and lead to the detachment of materials. That mechanism has been 

well reported by many prior studies [21, 41, 42]. On the other hand, the fracture at the middle 

region of the ridge has not been widely reported yet. According to the stress condition, it can be 

attributed to the split flow of materials in front of the rigid cone, since in the upper boundary model 

of scratching, a velocity discontinuity is assumed in front of the indenter to simulate the split flow 

of materials.  

 

According to the calculated results, the initiation location of fracture changes from bottom to 

middle with the increase of cone angle and Y/E. If the cone angle and Y/E further increases, the 

generation of fracture gradually disappears during the scratching process. This trend could be the 

explanation for the different scratching types observed in the experiments. As mentioned in the 

literature review, three different types of scratching process, which are cutting, wear and rubbing, 

can be observed with the decrease of attack angle. If the fracture initiates at the bottom of the ridge, 

the crack propagates upwards leading to the detachment of chips. Hence cutting is observed during 

the scratching process. If the fracture initiates in the middle of contact surface, the base material 

near the fracture spot flows upward and downward respectively. Due to the continuous pressure 

loading, no detachment of material occurs leading to the wear mode in the scratching process. 

Furthermore, if no fracture initiates during the process, the material flows downwards and climbs 

over the indenter leading to the rubbing mode.  

 

3  Single cone scratch experiments 

In order to validate the developed model, the scratching tests with different cone angles were 

conducted by using the copper samples with different grain sizes. 
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3.1 Material preparation 

Copper pillars with three different grain sizes were prepared by the vacuum heat treatment to 

investigate the grain size effect on the friction behavior. The microstructures and grain sizes has 

been presented in the previous research [43, 44]. The surface hardness and elastic modulus were 

measured via micro-hardness and nano-indentation tests respectively. Electrochemical polishing 

was conducted to avoid surface hardening of the samples. The mechanical and surface properties 

of samples are listed in Table 2. The surface hardness is revealed to decrease with the increase of 

grain size. On the other hand, the elastic modulus and surface roughness are almost the same for 

the samples with different grain sizes.  

Table 2 Mechanical and surface properties of specimen 

Samples Grain size  Surface hardness  
Elastic 

modulus 

Surface 

roughness 

As-received - 1182.2MPa 118.2GPa 0.026±0.005 

Fine grain 4µm 745.1MPa 99.4GPa 0.027±0.007 

Medium grain 12µm 507.8MPa 99.8GPa 0.026±0.008 

Coarse grain 130µm 464.4MPa 99.8GPa 0.025±0.004 

 

3.2 Scratching apparatus and measurement 

The scratching apparatus is presented in Fig. 15. Both the rigid cone and the sample are positioned 

by using the designed holders. The rigid cone holder was connected to a load cell which was fixed 

on the beam of a tensile machine. Meanwhile the sample holder was fixed with the substrate of the 

machine. The test was divided into two steps, namely indentation and scratching. In the first step, 
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the holders of the rigid tool and the sample were clamped together by screw bolt so that the rigid 

tool can indent into the deformable surface. In the second step, the beam moved upwards to make 

the rigid tool scratch on the deformable surface, and the scratch force is recorded by the load cell. 

During the process the indent depth was kept constant. Three cone angle levels are employed in 

the experiments, which are 45°, 60° and 75°. The radius of the cone tip was 0.04 μm. During the 

scratching test, an indentation depth of 0.1 mm was first reached. After that the scratching force 

was applied by the load cell with a speed of 1 mm/min. Subsequently all the tested surfaces were 

scanned by utilizing a laser confocal scanning microscope. A typical 3D profile of the scratching 

trajectory is shown in Fig. 16. Two sections of A and B were employed to measure the pile-up 

height and projected contact area respectively.  

 

Fig. 15  Experimental apparatus of the scratching tests. 
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Fig. 16  3D profile measurement of the scratched surface. 

 

4  Validation and Discussion 

4.1 Validation of the proposed model 

A comparison of the experimental observations and the predicted results were made in this section. 
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4.1.1 Locations and mechanisms of fracture 

 

Fig. 17  SEM observation of the scratched surfaces. 

 

Fig. 17 shows the surface morphologies of the samples after scratching tests. For the case with the 

cone angle α=45°, two different modes of fracture can be observed at different locations of the 

front ridge. One occurs in the middle of ridge. Long cracks were observed near the symmetry 

section of trajectory. The shape and location of the cracks indicate that they are caused by the split 

flow of material in front of the cone, which is in accordance with the analysis based on the 

developed model as shown in Fig. 14. Those line elements which are not able to climb over the 

cone would be cut by the cone. Meanwhile, detached cracks can also be found at the bottom of 

ridge. The lamellar structures indicate that the fracture is caused by the shear stress, which is 

considered to be the major reason for the fracture behaviors in the scratching process by prior 
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studies [21, 45]. In these works, the cracks on the surface was considered to begin with the 

concentration of high compressive stress. Following that the shear fracture occurs. This fracture 

mode is also in agreement with the predicted results in Fig. 14.  

 

When the cone angle increases to 120° (α=60°), discontinuous flaws can be observed along the 

side ridges of the groove. More detailed image showed that the flaws comes from the small cracks 

near the bottom of the ridge. These cracks gradually propagates upwards leading to the 

discontinuous flaws as a result of the split flow of materials in front of the cone. Thus the fracture 

in the case with α=60° is mainly caused by the split flow of materials. Notably, lamellar structures 

can also be observed at the bottom of the ridge, indicating the shear fracture mode also exists in 

this case. However, the shear cracks are less evident than those observed in the experiments with 

α=45°. As the cone angle further increases to 150° (with α=75°), no significant discontinuity, crack 

or detachment can be found, suggesting that the scratching process is dominated by plastic 

deformation instead of fracture. In summary, it can be found that the dominating fracture 

mechanism changes from shear failure to tensile fracture with the increase of cone angle. 

Meanwhile the major initiation location of fracture also changes from the bottom to the middle 

region of the front ridge. With the further increase of cone angle, no fracture can be found and the 

scratching process is dominated by plastic deformation. The as-observed experimental scratching 

behaviors are in good agreement with the predicted results of the developed model as shown in 

Fig. 14. 
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4.1.2 Pile up height 

The experimental and analytical results of the pile up height after scratching are presented in Fig. 

18 for the conditions with the cone angle of 120° and 150°. The calculation was made based on 

Eq. (88) with the input parameters in Table 2. Both the results show that the pile up height 

decreases with the increase of the cone angle and grain size. Similar results were reported [24] and 

they analyzed the pile up ratio of nanocrystalline, ultra-fine crystalline and microcrystalline nickel 

subject to scratching. Eq. (85) indicates that the pile up height increases with the integrated strain 

of Y direction in the front ridge as shown in Fig. 2. According to Eq. (1), the increase of cone angle 

leads to the greater strain of material in Z direction and smaller strain in Y direction. Thus the pile 

up height decreases with cone angle. In addition, the decrease of pile up height with the increase 

of grain size could attribute to the variation of plastic hardening behaviors. According to Eq. (3) 

and Table 1, the ratio of E/Y increases with the grain size, which results in a greater deformation 

region and a smaller overall strain.  

 

Although the predicted results based on the developed model are able to reflect the tendency of 

pile up height under different scratching conditions, an evident underestimation can be observed 

by comparing to the experimental results. It may be due to the effect of adhesion on the contacting 

interface, which is neglected in the model. Our previous studies have revealed that the adhesive 

force can increase the pile up height in the scratching process. Moreover, with the increase of cone 

angle, the adhesive effect become more significant [13]. That could be the reason for the closer 

estimation of pile up ratio with the cone angle of 120° than 150°.  
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Fig. 18  The pile-up height in front of the rigid cone. 

 

4.2 Critical angles for the transformation of damage mechanism in the scratching process 

It has been revealed that the damage mechanism in the scratching process transforms from cracking 

to plastic deformation with the increase of cone angle [46]. It means that there is a critical cone 

angle separating the two states. In addition, according to the discussion above, the critical angle is 

not a constant for different materials, but is affected by the mechanical properties of the tested 

material. In this section, the critical cone angles for the transformation from plastic deformation to 

the fracture with different Y/E is discussed based on the proposed model.  

 

Based on the calculations made according to the developed model, the damage mechanism is 

defined as cracking if fracture initiates during the process. The stable state strain distribution in 

the symmetry section of front ridge of the groove is employed to calculate the critical angle. The 
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initiation of fracture can be estimated when the equivalent strain is greater than the fracture strain 

(which can be presented as  𝜀̅ ≥ 𝜀𝑓̅). After that the critical angle is further calculated. 

 

Fig. 19  The map of damage mechanisms in the scratching process. 

 

Fig. 19 shows the map of damage mechanisms in scratching process with the cone angle ranging 

from 100° to 150°, and the ratio of Y/E ranging from 0 to 0.007. The black solid line represents 

the critical angle for the initiation of cracks in the middle region of the front ridge. If the cone 

angle is smaller than the critical one (indicated by the area on the left side of the black solid line), 

cracks could generate in the middle of the front ridge during the scratching process. On the other 

hand, the crack of material may not occur in that area on the other side of the line since the fracture 

criterion could not be satisfied. In addition, the critical angle is revealed to increase with Y/E, 

suggesting that cracks are more likely to occur in the middle region of the front ridge with the 

increase of Y/E for a given cone angle.  
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Furthermore, the red dashed line in Fig. 19 represents the critical angle for the initiation of cracks 

at the bottom of the front ridge. Obviously, this angle is not affected by Y/E, indicating that cracks 

at the bottom of ridge may occur if the cone angle is smaller than the critical one (as represented 

by the left hand side of the dashed line) regardless of the Y/E values of different materials. The 

predicted angle is around 125° with the given parameters (C=0.24, C1=-0.1, r=10%). It can 

explain the results in the prior studies [8], where the critical angle was revealed to be in the range 

from 121° to 125°. 

 

Therefore, the map can be divided into four regions by the two lines as shown in Fig. 19. In Region 

I, cracks are predicted to generate in both the bottom and middle regions of the front ridge during 

the scratching process. In Regions II and III, however, cracks are estimated to occur in the middle 

and the bottom areas respectively. Nevertheless, no cracks may initiate in Region IV during the 

scratching process, indicating that plastic deformation is the dominate behavior under that 

condition. Thus the prior models of scratching process can be distributed to different regions of 

the map based on its basic assumptions. Akono’s model[4] can be applied to the cases in Region I 

and III, since small cracks were assumed at the bottom of the front ridge. Wang’s model [21] can 

be applied in Region III, due to the assumption that the velocity discontinuity was located in the 

middle of the front ridge, where the plow mode transformed into cutting mode. Those slip line 

methods [16] and FE models [24, 47] which consider the material as a continuum during the 

process should be applied to Region IV, where no fracture generates. The upper boundary method 

can be applied to all the cases, but more detailed assumptions of velocity discontinuity should be 

proposed for different regions.  



                                                                                                  55 

 

It should be noted that the present study is still a preliminary discussion on the critical angle even 

though the overview of the transformation of damage mechanisms during the cone scratching 

process was captured based on the developed model. Many details such as the adhesive force, 

ductile fracture parameters of C, C1 and so on have not be well addressed. Further investigations 

are thus required to characterize these factors on the scratching behaviors. In addition, the surficial 

micro cracks have been revealed to affect the roughness, quality, fatigue resistance, etc. of 

workpiece in machining and forming processes. However, due to complex nature of interfacial 

micro asperities between the tool and the workpiece, a detailed analytical methodology is essential. 

The model developed in this work could be useful in the process design and optimization towards 

avoidance of any surficial damages. The model could be incorporated into the data-driven machine 

learning methods by providing a detailed description of the material flow and fracture behaviors 

under different scratching conditions. The method could be a valuable solution by avoiding the 

element distortion and the considerable calculation time in simulations. 

 

5  Conclusions 

An analytical frame work is developed in this study to study the damage mechanisms of material 

in single-cone scratching process. The following concluding remarks can be drawn accordingly.  

1) An analytical model was established based on the assumptions of volume constancy and 

adhesion-free contact. By taking the advantages of small displacement and iteration, the strain 

distribution and pileup ratio in the symmetry section of the front ridge with different cone 

angles and material properties of Y/E can be calculated based on the developed model.  
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2)  Considering the ductile fracture criterion, the mechanism and the initiation location of 

fracture in the scratching process can be predicted. And the prediction is validated by the 

SEM observations of the scratched grooves. Two fracture mechanisms are found in the 

scratching process. The bottom cracking initiates at the bottom of the front ridge, and is 

caused by the maximum shear stress. The middle cracking takes place in the middle of the 

front ridge, which is attribute to the split flow of materials.  

3) With increase of cone angle and Y/E, the initiation location of fracture changes from the 

bottom to the middle region of ridge. With the further increase of the cone angle and Y/E, no 

fracture is predicted to occur during the process. The predicted trend is in agreement with 

experimental observations.  

4) A map of damage mechanisms of material is obtained by applying the developed model. Four 

regions of different facture states are captured to present an overview of the damage 

mechanisms during the scratching process. The results are in agreement with the previous 

researches on the scratching behaviors which could be distributed in the four regions. 
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