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Abstract:

With the advantages of high-formability, low-cost and unique physical properties,

polymers have been widely used in microforming of polymeric components for a large scale

of applications in many fields including micro-optics, microfluidic and sensors, etc. In

micro-scale, the deformation behaviors of polymers are observed to be size-dependent.

Conventional constitutive models of polymers, however, cannot predict and represent those

size-dependent behaviors well. To address this issue, a constitutive model with consideration

of size effect for amorphous polymers in the micro-scale was developed in this research.

Firstly, on the basis of the couple stress theory, the impact of rotational gradients was taken

into consideration and a strain gradient elasto-viscoplastic constitutive model was proposed

to quantitatively describe the size-dependent behaviors of amorphous polymers in

micro-scale. After that, four-point micro-bending experiments were implemented on poly

(methyl methacrylate) (PMMA) plates with thickness varying from the millimeter scale to
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micrometer scale. The size effect of PMMA in micro-scale was further illustrated and the

proposed strain gradient elasto-viscoplastic model was lastly validated and verified for the

capability of modeling of the size effect of amorphous polymers in micro deformations. This

research thus advances the understanding of the size effect and the strain gradient based

mechanical behaviors of amorphous polymers and facilitates its applications in industries.
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1. Introduction

Product miniaturization and multi-functional integration significantly increase the

demand for micro-scaled parts and components. With the advantages of high-formability,

low-cost and unique physical properties, polymeric materials have been widely used in

forming of micro-scaled components including micro-optics, microfluidic, sensors, etc. To

efficiently and accurately fabricate those micro-scaled polymeric parts, the mechanical

behavior in micro-scaled deformation is one of the most significant issues to be explored and

in-depth understanding of those behaviors is of great necessity to be established.

In micro-scale deformation, however, the mechanical responses of polymers have been

observed to be size-dependent, which are different from those behaviors in macro-scale

(Alisafaei et al., 2013; Alisafaei et al., 2014; Díez-Pascual et al., 2015; Han et al., 2016;

Shirazi et al., 2016; Tjernlund et al., 2004; Wrucke et al., 2013). To name a few, Briscoe et al.

(1998) observed that both the hardness and Young’s modulus of poly(styrene) (PS),

poly(methylmethacrylate) (PMMA) and poly(carbonate) (PC) tended to increase when the
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depth decreased to 1 m. Similarly, Chong et al. (1999) reported that both thermosetting

epoxy and PC had the constant hardness at large indentation depth but exhibited hardening

when the depth was smaller than 1.5 m. After that, Tatiraju et al. (2008) demonstrated an

increase of 70% in hardness of polyamide/imide (PAI) when the penetrating depth of

nanoindentation decreased from 30 to 1 m. He et al. (2008) performed diametric

compression experiments on micron-sized spheres of polystyrene-divenylbenzene (PS-DVB)

and observed that the stress at 4% strain increases by almost 50% as the diameter of the

spheres decrease from 25 to 2.5 µm. Recently, Wang et al. (2012) reported significant

increase in yield and fracture strength with decrease in diameter of epoxy pillars from about 5

µm to sub-micron ranges. Moreover, the size effect of polymers has also been observed in

micro-bending experiments. Initially, Lam et al. (2003) demonstrated that the elastic bending

rigidity of epoxy cantilever beams increased by about 2.4 times when the beam thickness

reduced from 115 to 20 m. Later, McFarland and Colton (2005) found that the measured

stiffness of polypropylene (PP) beams with the thickness of about 15 m was at least four

times higher than the predicted stiffness by classical continuum theory. Additionally, Lam et

al. (2010) further illustrated that the creep deflection behavior of epoxy beams followed the

conventional Kelvin-Voigt viscoelastic behavior when the beams were thick and that

higher-order size dependences were present in both the time-independent elastic and

time-dependent creep deflection when the beams were thin.

Actually, the size effect has been observed in the micro forming of metallic materials

(Fu and Chan, 2011; Meng and Fu, 2015; Peng et al., 2009; Ran et al., 2013; Xu et al., 2015).

Notably for metallic materials, the size effect on the elastic deformation is usually ignored
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and the studies on the size effect are mainly concentrated on the size-dependent plastic

deformation behaviors in micro-scale. For polymeric materials, however, the elastic strain

takes up a significant proportion and plays a big role in deformation, which is thus needed to

be considered in the classical constitutive models such as viscoelasticity (e.g., Deng et al.,

2015, Wang et al., 2015), viscoelastic-plasticity (e.g., Drozdov, 2010; Menčík et al., 2011),

elasto-viscoplasticity (e.g., Anand et al., 2012, Lebensohn et al., 2012, Poulain et al., 2014,

Zaïri et al., 2008, Zhang and To, 2016) and viscoelastic-viscoplasticity (e.g., Abdul-Hameed

et al., 2014, Haouala and Doghri, 2015, Yoon and Huang, 2011) based models. In this way,

when the feature size of forming decreases into micro-scale, the size-dependent elasticity of

amorphous polymers should be considered at the same time. In the past few decades, prior

efforts have been made to represent the size effect of polymers separately from the aspect of

size-dependent elasticity and size-dependent plasticity, on the basis of the strain gradient

theory.

On the one hand, from the aspect of the size-dependent elasticity, Lam et al. (2003)

initially developed a new set of higher-order metrics to characterize strain gradient elasticity

and found that the higher-order bending solutions have a good agreement with the measured

size-dependent stiffness of epoxy beams. After that, McFarland and Colton (2005) proposed a

model based upon a micropolar elasticity constitutive model to represent the increasing

bending stiffness with the decrease of the cantilever thickness and Park and Gao (2006)

developed a bending model for the Bernoulli-Euler beam based on a modified couple stress

theory to describe the size effect of epoxy beam. Different from the phenomenon

higher-order elastic model, Nikolov et al. (2007) related the energy contribution from

rotational gradient to an effective Frank elastic constant to describe the size dependent

elasticity of amorphous polymers. Moreover, Lam et al. (2010) further developed a higher
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order viscoelasticity framework to describe the size effect of Maxwell and Kelvin-Voigt

polymers. Ghosh et al. (2013) presented a molecular dynamics approach to model non-local

elastic behaviors of epoxy using an atomistically-informed kernel. Recently, Alisafaei et al.

(2016) expanded the above strain gradient elastic model (Nikolov et al., 2007) to represent

the size effect in glassy polymer with elasto-plastic deformation and claimed that size effects

in polymer were mainly of elastic nature even when glassy polymers deformed

elasto-plastically.

On the other hand, from the plastic deformation perspective, Lam and Chong (1999)

claimed that the statistically random kink pairs of glassy polymers were formed along with

the geometrically necessary kink pairs when the material was subject to yield condition and

the strain gradient. By introducing the strain gradient into the yielding model, they

established a model to represent the hardness and indentation depth response of polymers and

proposed a strain gradient plasticity modulus with temperature and molecular dependence.

Later, Swaddiwudhipong et al. (2005) incorporated the effects of strain gradient plasticity

developed by Lam and Chong (1999) to model size effect of glassy polymers in indentation

using finite elements. Recently, Voyiadjis et al. (2014) developed a rate dependent plasticity

theory with the strain gradient effect to represent the microscale mechanical response of

semicrystalline polymers. It was concluded that the material length scale has a correlation

with the microstructure of the polymer network as well as the course of deformation.

Existing theories for size effect of polymeric materials, while capable of predicting

size-dependent elasticity and size-dependent plasticity separately, do not focus on the

size-dependent plasticity at large deformation on the one hand and do not provide a complete

constitutive model describing the size effect on both elasticity and plasticity simultaneously
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on the other. Actually, in micro forming process, polymers usually experience a rather large

strain before the microstructure is fabricated and the size effect on both the elasticity and

plasticity happens at the same time. For this problem, the present research is focused on the

development of a constitutive model for amorphous polymers which can handle both

size-dependent elasticity and plasticity in micro-scale. The goal of this research is to provide

an in-depth and panoramic understanding of the size-dependent deformation of amorphous

polymers in such a way to provide systematic knowledge to support product design and

quality control in micro-scaled polymeric components development.

2. Research procedure

The research procedure is summarized in Fig. 1. On the basis of the couple stress theory,

the strain gradient elasto-viscoplastic constitutive model was firstly developed with the

consideration of the impacts of the rotational gradient, for the purpose of quantitative

prediction and description of the size effect of amorphous polymers in micro-scale. After that,

four-point micro-bending experiments were designed and conducted on PMMA plates with

thickness varying from the millimeter scale to micrometer scale. Based on the micro-bending

results, the size effect of PMMA in micro-scale was further demonstrated and the intrinsic

material lengths were calibrated for PMMA. Lastly, the strain gradient elasto-viscoplastic

model was validated and verified for the ability of representation of the size-dependent

behaviors of amorphous polymers in micron scale.
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Fig. 1. Research procedure.

3. Strain gradient elasto-viscoplastic constitutive model of amorphous polymers

3.1 Elastic-viscoplastic behaviors

For the majority of amorphous polymers, with the increase of strain, the stress-strain

response under a constant strain rate and a constant temperature below the glass transition

temperature generally exhibits a linear elastic deformation and then strain softening after

yield due to the near adiabatic heating at higher strain rate, and finally a steep hardening for

the alignment and locking of molecular chains. In order to represent the mechanical behaviors

of amorphous polymers in macro-scale, a quantitative description is proposed with a linear

elastic part and a viscoplastic part connected in series, as shown in Fig. 2. By definition, the

linear elastic part consists of a spring to model the linear elastic deformation of amorphous
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polymers while the viscoplastic part combines a dashpot with the viscoplastic behavior and a

spring with the nonlinear elastic behavior in parallel connection. Due to the parallel

connection in the viscoplastic part, the dashpot and the spring have the same strain but

different stresses. Hence, the total strain of this part mainly depends on the dashpot with

viscoplastic and unrecoverable deformation and the contribution of the nonlinear spring is the

increase of the stress especially for the case of large deformations for amorphous polymers.

Fig. 2. Schematic of the elasto-viscoplastic behavior of amorphous polymers.

By definition, the overall strain is ij and the overall stress is ij . The strain is

decomposed into the deviator strain ije and the volume strain m in the following:

,ij ij m ije     (1)

where the volume strain
1
3

 m ii . The deviator strain ije is further decomposed into the

elastic part e
ije related to the linear spring, and the viscoplastic part p

ije concerned with the

combination of the viscoplastic dashpot and the non-linear spring.

Similarly, the stress is decomposed into the deviator stress ijS and the hydrostatic

pressure m as:

,ij ij m ijS     (2)
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where the hydrostatic pressure
1
3m ii  . On the basis of the assumption that the material

volume is incompressible in plastic deformation, the hydrostatic pressure m is related to

the volume strain m with the linear elastic behaviors as follows,

,
1 2m m
E 





(3)

where E is the Young’s modulus,  is the Poisson’s ratio. Because the linear elastic and

the viscoplastic part have the same stress components, the deviator stress ijS can be

obtained from the elastic strain of the Hookean spring e
ije through the following relation,

.
1

e
ij ij

ES e





(4)

For the plastic deformation of amorphous polymers, Ree and Eyring (1995) claimed that

yielding of amorphous polymers is achieved by surmounting the activation energy barrier for

sliding of segments of macromolecular chain over others. Based on this rationale, they

developed the famous model to describe the variation of yield stress with temperature and

rate for amorphous polymers. In this work, the dashpot among the viscoplastic part is

represented by the Eyring model to describe the rate-dependent plastic deformation of

polymers. Based on the Eyring model, the effective plastic strain rate pe is formulated as,

1/

0 exp sinh
2

m

p

B B

H Ve
k k


 

    
      

    
  (5)

where the effective plastic strain rate 2
3

p p p
ij ije e e   , and the effective shear stress  is

defined as
def

flow s   , flow is the flow stress in Eyring dashpot, s is the internal

variable (to be defined later),  is the temperature, 0 is a factor with unit of 1/time, H

is the activation energy, Bk is the Boltzman’s constant, V is the shear activation volume,
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and m is the strain rate sensitivity parameter.

For the nonlinear spring, in order to describe the strain hardening of polymers, the

mechanical response of this spring is represented by the Langevin rubber model of which the

stress of this spring increase non-linearly and rapidly when the strain get close to the limited

elastic extensibility. Based on the langevin model by Treloar (1975) and Spathis and Kontou

(2004), the stress in the nonlinear spring is giving by

 
 

3/21 1
1/2

1 11 ,
3 1

p
p

back R p

n eC L e L
n e n

  
              

 


(6)

where the function 1L is the inverse function of Langevin function,     1cothL x x
x

  ,

 1/2 1n  corresponds to the limiting network strain, RC is the rubber modulus, and

2
3

p p p
ij ije e e is the effective plastic strain.

Therefore, for the whole viscoplastic part, the effective stress S is the sum of the

dashpot stress flow and the non-linear spring stress back , as

,flow backS    (7)

where the effective stress is determined by
3
2 ij ijS S S .

Moreover, in order to describe the strain softening phenomenon after yielding, the

internal variable s is introduced into viscoplastic part of the elasto-viscoplastic model.

Referring to the definition of the internal variables by Anand et al. (2009), the internal

variable s has the dimension of stress and represents an isotropic resistance to plastic flow

and is coupled with a dimensionless parameter  representing the local free-volume of

polymeric glass, as
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   
   

 

*

*

* *

, 0 0

, 0 0 ,

p
i

p
i

i

g e

s p s s e s s

s s q

    

 

     
     


  

 

  (8)

where the temperature and rate-dependence of p and q are described as the following

particular functions,

 
4

1 2

2
1 2 3

,q
p

ref

p p p

eq q q q



 


 


 
        




(9)

and  1 2 1 2 3 4, , , , ,    p p q q q q are material parameters and ref is a reference strain-rate.

Up to this point, the elasto-viscoplastic behaviors of amorphous polymers in macro-scale

including linear elastic deformation, yielding, strain softening and strain hardening can all be

described quantitatively by the integration of Eqs. (1) to (9).

In addition, uniaxial compression tests were conducted in this research to calibrate

material parameters of the amorphous polymers. PMMA materials with excellent formability

and wide applications in industry, were selected as an example to study the elasto-viscoplastic

behaviors of the amorphous polymers. Commercial basic PMMA granules (Evonik

Corporation Plexiglas 7N PMMA) were used for compression molding of plates and PMMA

plates were then machined into cylindrical samples with the diameter of 6 mm and the height

of 9 mm. Lastly, compression samples were annealed more than 12 h to minimize the residual

stress. A servo-hydraulic Insrton testing machine with the load cell capacity of 10 kN was

utilized. The true stress-strain curves of PMMA under different strain rates (0.0003, 0.0005,

0.001, 0.005, 0.01 and 0.05 s-1) are shown in Fig. 3 by symbols.



12

Fig. 3. True strain-stress curves of PMMA at the strain rate of (a) 0.0003 s-1, (b) 0.0005 s-1,

(c) 0.001 s-1, (d) 0.005 s-1, (e) 0.01 s-1 and (f) 0.05 s-1.

For the good description of the stress-strain response of amorphous polymers, the elastic

moduli are determined as rate-dependent parameters, referring to the constitutive model of

amorphous polymers proposed by Ames et al. (2009) and Srivastava et al. (2010). Particularly,

Ames et al. (2009) specified the empirical function to fit the experimentally-observed

temperature dependence of the elastic moduli of polymers and Srivastava et al. (2010) also
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determined a temperature variation of the moduli to fit experimental trend of polymers

instead of those dictated by statistical mechanic theories of entropic elasticity since the Gent

free-energy function was also phenomenological. In the present work, the elastic moduli is

also specified with empirical function to fit the experimentally-observed rate dependence, on

the basis of the time-temperature equivalence principle of polymers.

According to the experimentally observed trends from the true stress-strain data of the

PMMA, the elastic and rubbery moduli are assumed to be linearly dependent on the strain

rate in this research. The change of the elastic modulus in Eq. (3) with the strain rate is given

by

,ref
EE E X    (10)

where refE is the reference Young’s modulus and EX describes the variation of the

modulus with the strain rate. The modulus of the non-linear spring of viscoplastic part in Eq.

(6) is designated as

,ref
R R CC C X    (11)

where ref
RC is the reference rubber modulus, and CX is the parameter representing the

slope of strain rate variation. In this way, the elasto-viscoplastic model of amorphous

polymers at room temperature may be summarized as follows:

1）The relationships for the linear elastic part are

,
1

,
1 2

.

e
ij ij

m m

ref
E

ES e

E

E E X



 




  
 


  




(12)

2）The relationships for the viscoplastic part are
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 
 

1/

0

3/21 1
1/2

+ ,

exp sinh ,
2

,

1 11 ,
3 1

.

flow back

m

p
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flow

p
p

back R p

ref
R R C

S

H Ve
k k

s

n eC L e L
n e n

C C X

 


 

 





 





     

      
    

  


                 
  



 

 




(13)

3）Internal variables are

   
   

 
2

* p

*

* *

1

, 0 0,

, 0 0,

,

.

i

p
i

i

q
p

ref

g e

s p s s e s s

s s q

eq q

    

 



     

     


  

  

     

 

 




(14)

To complete this model (Eqs. (12) to (14)) of a particular amorphous polymer, the

material parameters to be determined include

 0 1 2, , , , , , , , , , , , , .ref
ref E R C refE X H m V C X n g q q p   

With the help of commercial software MATLAB code, material parameters for PMMA

were determined, as displayed in Table 1. Correspondingly, the predicted stress-strain data

are also shown in Fig. 3 by solid lines. It is observed that the elasto-viscoplastic behaviors of

PMMA materials in macro-scale are represented well.

Table 1

Material parameters of elasto-viscoplastic model for PMMAmaterials

Parameters Value

refE (MPa) 2901
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EX (MPa·s) 1.79×104

H (kJ mol-1) 109

m 0.548

0 (s-1) 1.51×1010

V (mm3) 9×10-19

ref
RC (MPa) 44.81

CX (MPa·s) 492.34

n 5.57

g 11.8

1q (MPa) 3.6×104

2q 0.0555

ref (s-1) 3.0×10-4

p (s) 78

 0.35

3.2 Strain gradient elasto-viscoplastic modeling

Previous works by Nikolov et al. (2007) and Wei and Lam (2010) illustrated that the

effect of the rotational gradient as one of the strain gradients plays an important role in the

mechanical behaviors of polymers in micro-scale. In this section, the impacts of the rotational

gradient are introduced into the proposed elasto-viscoplastic model on the basis of the couple

stress theory, to model the size effect of amorphous polymers in micro-scale.

According to the couple stress theory (Yang et al., 2002), the displacement gradient tensor

,i ju is decomposed into the symmetric tensor ij and the antisymmetric tensor ij and
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designated as:

, ,i j ij iju    (15)

 , ,
1 ,
2ij i j j iu u   (16)

 , ,
1 ,
2ij i j j iu u   (17)

The rotation vector i is determined as

1
2i ijk jke   ， (18)

where ijke is the permutation symbol. An second-order tensor ij was defined as the

gradient of the rotation vector i and was named as rotational gradient which can be written

as

, .ij i j   χ θ ， (19)

An higher-order stress ijm is work-conjugated with the rotational gradient ij and is

named as the couple stress. With the presence of the couple stress ijm , Cauchy stress ijt is

not a symmetric tensor. Similar to the displacement gradient tensor ,i ju , the Cauchy stress

can also be designated as the sum of the symmetric part ij and the antisymmetric part ij ,

,ij ij ijt    (20)

 1 ,
2ij ij jit t   (21)

 1 .
2ij ij jit t   (22)

Assuming that there is no volume force and volume moment, the equilibrium equations

for the force and moment are

, 0,ji jt  (23)

, .pi p ist stm e  (24)

Multiplying Eq. (24) by ijke , the equilibrium of moments becomes:
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, .ijk pi p kj jke m t t  (25)

Then, combining with Eq. (22), the equilibrium equation of moments becomes:

,
1 .
2 ijk pi p jke m   (26)

By substituting Eq. (26) and Eq. (20) into the equilibrium equation of the force in Eq.

(23), a new equilibrium equation which covers the equilibrium of both the force and the

moment is obtained as

, ,
1 0.
2ji j ijk pk pje m   (27)

For the strain gradient theory, the principle of virtual work is

    ,ij ij ji ij i i i i
V S

m dV T u M dS       
 

(28)

where the surface force and surface moment are

,i ji j i ji jT n M m n   (29)

respectively, and jn is the unit normal vector.

In this research, the overall stress and strain are represented by the hydrostatic part

 ,m m  and the deviator part  ,Σ Ω , where the generalized strain  ,lΩ e χ and the

generalized stress  1, Tl Σ S m are introduced, and l is the material intrinsic length.

Similar to the Von Mises definition, the effective rotational gradient  and the effective

couple stress m are defined as follows respectively:

2 3 .
3 2ij ij ij ijm m m      (30)

Furthermore, the effective generalized strain  and the effective generalized stress 

are determined as:

2 2 2 2 2 22 3: , : ,
3 2

e l S l m         Ω Ω Σ Σ    (31)
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where the effective deviator strain is
2
3 ij ije e e and the effective deviator stress is

3
2

 ij ijS S S . With consideration of the rotational gradient, the work rate w per unit

volume contains the contribution of both the strain and the rotational gradient, as giving

 , m ij ij ji ij ij ij ji ij m mw m S e m                  (32)

where x stands for the rate of x .

Similar to the strain which is the sum of elastic and plastic strain, the rotational gradient

ij is decomposed into the elastic rotational gradient e
ij and the plastic one p

ij . For the

elastoplastic deformation, the work rate is then partitioned into an elastic energy density and

a plastic energy density. The elastic generalized strain  ,e ele χ is assumed to be related to

the generalized stress  -1, lS m via the elastic strain energy ew , giving

1, ,
e e

ji ji
ij ij

w we l m
s l 

 
 
 

(33)

where

 
2 2 .

2 1 1 2
e e e e e

m ij ij el ij ij
Ew e e l   
 

      
(34)

The elastic length scale ell has no physical significance and is introduced in order to

partition the gradient tensor into its elastic part and the plastic part (Fleck and Hutchinson,

1993). Substituting Eq. (33) into Eq. (34), the constitutive relationship is then determined as:

1, .e e e e
ij ijkl kl ji ijkl klS D e l m M l  (35)

where

   

2

, .
1 1

e e el
ijkl ik jl ijkl ik jl

lE ED M
l

   
 

       
(36)

A prescription is now given for the viscoplastic part in the presence of the rotational



19

gradient and the couple stress. With consideration of the couple stress, the yield function

generalizes to

   1, , 0,TY l Y    Σ S m (37)

where Y is the current flow stress. The difference between Eq. 30 and classical yield

function is that the effective stress e is replaced by the generalized effective stress  in

the couple stress version of theory.

Based on the elasto-viscoplastic model, the constitutive relationship for the viscoplastic

part is concluded from Eqs. (5) to (9), as giving,

 
 

1/

0

3/21 1
1/2

exp sinh
2

,

1 11
3 1

flow back

m

p

B B
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p
p

back R p

S

H Ve
k k

s

n eC L e L
n e n

 


 

 

  

  

     

      
     
  

                  



 

 


(38)

and the current flow stress Y is obtained from this equation.

Similar to the classical continuum theory, the plastic flow rule for the associated

plasticity may be described as

, ,p p
ij ij

ij ji

e
S m

   
 

 
  (39)

where  is the flow factor,
ijS


 and

jim

 are the directions of plastic flow. According to

the effective stress definition Eq. (31) and the yield function Eq. (37), the flow directions are

derived as:

2

3 3
.

2 2
ij ij

ij ij

S m
S m l
 

  
     (40)
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According to yield function Eq. (37), the plastic consistency condition is:

0.ij ij
ij ij

S m Y
S m Y
  

    
  

   (41)

On the substitution of Eq. (35) and Eq. (39) into Eq. (41), the following is given:

21 + ,p e e
ijkl kl ijkl kl

ij ij

D M l
A S m

 
  

      

   (42)

where the effective plastic generalized stain is defined as

2 2
22 2 ,

3 3
p p p p p

ij ij ij ije e l          
   

    (43)

the parameter A is determined by

2 ,e e
ijkl ijkl

ij kl ij kl

A D M l H
S S m m
   

  
   

(44)

and H is the tangent modulus and is obtained by p

YH 



.

Taking Eq. (36) and Eq. (40) into Eq. (44), it is obtained that

23 33 ,
2 2

ij ij ij ijelS S m mlA H G
l l l

            
    (45)

where the shear modulus G is determined as
 2 1
EG





.

According to Eq. (35), the deviator stress rate ijS and the couple stress rate ijm are

   1, .e p e p
ij ijkl kl kl ji ijkl kl klS D e e l m M l      (46)

On the substitution of Eq. (39) and the effective plastic strain Eq. (43) into the above

equation, the constitutive model with presence of size effect is obtained,

  ,e p c
ij ijkl ijkl kl ijkl klS D D D l      (47)

 1 ,e p c
ij ijkl ijkl kl ijkl kll m M M l M      (48)

where:
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1 ,p e e
ijkl ijst mnkl

st mn

D D D
A S S

 


 
(49)

1 ,c e e
ijkl ijst mnkl

st mn

D D M l
A S m

 


 
(50)

1 ,p e e
ijkl ijst mnkl

st mn

M M l M l
A m m

 


 
(51)

1 .c e e
ijkl ijst mnkl

st mn

M M l D
A m S

 


 
(52)

Substituting Eq. (36) and Eq. (40) into Eqs. (49) to (52) and presenting the strain

gradient elasto-viscoplastic model in matrix, it is obtained that

  : : ,e p c l  S D D ε D χ   (53)

 1 : : ,e p cl l   m M M χ M ε   (54)

Where:

 

2

2

9
,

3
ij klp

ijkl
m

G S S
D

H G

  (55)

 

2 2

2

9
,

3
ij klc e

ijkl
m

G S mlD
l l H G

        (56)

 

4 2

2 2

9
,

3
ij klp e

ijkl
m

G m mlM
l l H G

        (57)

 

2 2

2

9
,

3
ij klc e

ijkl
m

G m SlM
l l H G

        (58)

and

2

2 2 2

3 3
.

2 2
ij ij ij ije

m

S S m mlG G
l l

         
  (59)

If el l , mG is then converged into the shear modulus G . In addition, the volume

component is also assumed to remain in the linear elastic relationship as:
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3 .
1 2m m
E 





(60)

It should be pointed out that the intrinsic material lengths are defined to meet the demand

for dimensional consistency in the present research so that the proposed strain gradient

elasto-viscoplastic model is a phenomenon model to represent the size effect of amorphous

polymers in micro-scale. When the feature scale is in the order of the intrinsic material length,

the impact of rotational gradient becomes so significant that should not be ignored. When the

feature scale is far greater than the intrinsic material length, the developed strain gradient

elasto-viscoplastic model is converged to the elasto-viscoplastic model.

4. Experiments

4.1 Sample preparations

Before micro-bending experiments, PMMA plates with different thicknesses were

prepared in lab for micro-bending experiments. First of all, commercial PMMA granules

were dried and molded into PMMA plates, at the temperature of 175 oC and the compression

pressure of 20 MPa for 30 mins. Then, PMMA plates were cooled to room temperature under

the pressure of 5 MPa before demolding. After that, annealing process was performed on the

processed PMMA plates in a vacuum furnace which maintained at the temperature of 115 oC

for 2 h and then gradually cooled down to room temperature in another 10 h, in order to

eliminate the residual stress and minimize the original difference between PMMA plates with

different thicknesses. After that, PMMA plates with six different thicknesses were prepared

and both the average thickness and the standard deviation of the plates are displayed in Table

2.

Table 2
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Average and standard deviation of thicknesses of PMMA plates

Sample No. 1 2 3 4 5 6

Average thickness (mm) 0.268 0.376 0.473 0.665 1.014 1.979

Standard deviation (mm) 0.017 0.018 0.011 0.016 0.032 0.024

In order to understand the original differences between these PMMA plates, both the

surface and the interior mechanical behaviors of PMMA plates were measured by the

nanoindenter (Hysitron TriboIndenter, USA). All nanoindentations were made by a diamond

Berkovich tip under the room temperature with the maximum load of 5 mN, loading time of 1

s, holding time of 1 s and unloading time of 1 s. Three repeated tests were performed for each

set of measurements and the resulting data were averaged. Firstly, the reduced modulus and

the hardness at the surface of both as-processed and annealed PMMA plates were measured,

as shown in Fig. 4. The standard errors of both the reduced modulus and the hardness of the

annealed PMMA plates get smaller than that of the as-processed plates. Moreover, both the

reduced modulus and the hardness fluctuate less with the thickness when the PMMA plates

are annealed. It illustrates that the appropriate annealing process efficiently reduces the

original differences among PMMAplates.
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Fig. 4. Surface reduced modulus (a) and surface hardness (b) of as-processed and annealed

PMMAplates.

In addition, internal mechanical behaviors of annealed PMMA materials were testes via

nanoindentations on the thickness sections. The tested samples included six plate samples

prepared for micro-bending experiments and compression samples with thickness of 9 mm

used for the study of elasto-viscoplastic behaviors of polymers in Section 3.1. For each

sample, six indentations were made with evenly space from the top surface to the bottom

surface along the thickness direction. However, because the PMMA samples were mosaiced
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for measurements on sections, the results of the first and sixth indentations cannot represent

the true behaviors of PMMA samples and only information of the middle four indentations

was applied for discussions. Fig. 5 shows the internal reduced modulus and internal hardness

against the normalized position at the thickness section of annealed PMMA samples. For each

sample, both the internal reduced modulus and the internal hardness fluctuate little over the

normalized position at its thickness section. Particularly, the differences between its internal

reduced moduli through the thickness direction are below 6.3% and those between its internal

hardnesses through the thickness direction are less than 4.3%. It can be concluded that the

mechanical behaviors in the PMMA samples get uniform after annealing process.
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Fig. 5. (a) Internal reduced modulus against the normalized position and (b) internal hardness

against the normalized position of annealed PMMA samples.

Furthermore, the internal reduced moduli and internal hardnesses are averaged for each

annealed sample and the results are shown in Fig. 6. For both the internal reduced moduli and

internal hardnesses, the average values fluctuate in a narrow range over the thicknesses: the

averages of internal reduced moduli vary from 4.17 to 4.89 GPa and those data of internal
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hardnesses change from 0.23 to 0.27 GPa. Additionally, the average behaviors of the

annealed PMMA samples fluctuate randomly with the thicknesses and do not show any

regular variation. In this case, the annealed PMMA plates can be used for the experimental

study of the size effect behaviors of amorphous polymers and the possibility of size effect of

amorphous polymers caused by the original differences between samples is efficiently

eliminated by the annealing process.

Fig. 6. (a) Average of internal reduced modulus and (b) average of internal hardness of

annealed PMMA samples.

Lastly, the annealed PMMA plates were cut into micro-bending beams with various
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thicknesses and each section of the beams was further polished to minimize the cracks. The

ratio of the width to the thickness was larger than 30 to realize the plane-strain deformation of

the beams.

4.2 Four-point micro-bending experiments

A four-point micro-bending setup was established as shown in Fig. 7. This setup includes

a micro-bending tool, a material testing machine and a digital camera, as can be seen in Fig. 7

(a). A MTS testing machine equipped with a force sensor with the maximum load of 1 kN

was used to record the bending force, and a digital camera (MV-3000 UC, three megapixels’

resolution) with a variable magnification (from × 0.7 to × 4.5) was used to take photos from

the beam continuously during the bending process. Additionally, Fig. 7 (b) shows the

four-point micro-bending tool with details. In the micro-bending tool, there were a pair of

upper fixtures supporting two round bars and a pair of lower fixtures supporting another two

round bars. PMMA beams were supported and bended by the upper round bars and the lower

round bars which acted as the four points during micro-bending tests. In addition, four pairs

of linear bearing were used as guide columns.
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Fig. 7. (a) Micro-bending platform and (b) four-point micro-bending tool for four-point

micro-bending experiments.

Among micro-bending process of PMMA plates, the digital camera took photos of the

beam every three seconds. Then, the curvature of the middle of the beam could be

conveniently obtained by image processing of the photos of bended beams because the

middle of the beam had the same curvature during four-point micro-bending. After the

curvature was known, more information on the strain was available for the bending solution.

From this point of view, four-point micro-bending is more convenient for the size effect study

of materials, compared with three-point micro-bending (Stölken and Evans, 1998) as well as

the cantilever micro-bending (Li et al., 2011). Additionally, the changed load and the changed

curvature over time were recorded. For each condition, the micro-bending experiments were
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repeated at least three times to achieve the average value and the standard error of the

experimental data.

5. Results and discussions

5.1 Pure bending based on strain gradient theory

In the present research, the thickness of the polymeric sample is defined to be much

smaller than its length and width. Therefore, it is acceptable to assume that four-point

micro-bending of polymeric film is plane-strain pure bending problem. Fig. 8 shows the

schematic of pure bending in plane-strain state. The mid-plane of the thin plane-strain beam

(an infinitely wide plate) is set as the x–y plane in a Cartesian coordinate system and z-axis is

set along the width direction. In plane-strain state, the beam deformation is independent of

the width coordinate z and no shear strain happens in the pure bending beam. For

simplification, the body force in the beam is also ignored and the neutral surface, which is

neither compressed nor extended, is assumed to be located at the mid-plane of the beam

during the bending process.

Fig. 8. Schematic diagram of the pure bending in plane-strain state.

The pure bending problem without considering the size effect was analyzed firstly, on the
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basis of the elasto-viscoplastic model of amorphous polymers in macro-scale and the material

parameters of PMMA materials in Table 1 were used here for analysis. Fig. 9 (a) shows the

surface strain of the beam with the y coordination of h/2, / 2h , against bending time. With

the increase of bending time, the total surface strain increases linearly. Particularly, when the

total strain is smaller than 0.02, the elastic strain increases linearly and the plastic part

maintains at nearly zero. While the total strain is larger than 0.02, the plastic strain in the

surface layer of the beam increases beyond zero and then yielding gradually extends from the

surface layer to the area near the neutral layer of the beam. Additionally, Fig. 9 (b) shows the

normalized bending moment, 24 /norM M bh , against the surface strain. When the surface

strain is smaller than 0.02, the bending moments predicted by the linear elastic model overlap

those by elasto-viscoplastic model. Hence, for PMMA materials, pure bending without

consideration of the size effect is elastic as the surface strain is less than 0.02 and exhibits

elastoplastic behaviors when the surface strain is larger than 0.02. In this way, the following

experiments and analysis of micro-bending with presence of size effect are correspondingly

implemented from the aspect of elastic micro-bending and elastoplastic micro-bending for the

size effect study of amorphous polymers in micro-scale.
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Fig. 9. (a) Surface strain against bending time and (b) the normalized bending moment

against surface strain obtained from pure bending solution for the PMMAwithout

consideration of the size effect.

On the one hand, for elastic micro-bending problem with considering size effect, the

non-zero components of the strain and stress can be represented as:

, ,
1xx yyy y   


   


(61)

and 2 2, .
1 1xx zz
E Ey y   
 

  
 

(62)
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According to the definition of the rotational gradient in Eq. (19), the non-zero component

of rotational gradient ij for this case is xz as giving

,xz   (63)

Based on the constitutive relationship Eq. (36), the non-zero component of couple stress

ijm is

.
1zx el
Em l 


 


(64)

Considering the impact of the rotational gradient, the moment M of the beam is

produced by stress xx and the couple stress xzm in the following:

 /2 /2

0 0
2 ,

h h

xx xzM b ydy m dy   (65)

where b is the width of the beam and h is its thickness.

Substituting the stress in Eq. (62) and the couple stress in Eq. (64) into Eq. (65), the

moment for elastic micro-bending is obtained as:

   
23

2
1 12 1 .

12 1
ellh bM E
h

 


          
(66)

Making 0ell  , the moment M is reduced to the classical expression of the elastic

micro-bending in the following:

 2 ,
1
EM I





(67)

where the classical moment of inertia is
3

12
bhI  .

On the other hand, for elastoplastic micro-bending problem with size effect, the solution

procedure is more complicated because the normal strain in y-direction yy becomes

unknown. Here, an iteration approach was programmed with the help of MATLAB to solve
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the elastoplastic micro-bending problem with size effect and the flow chart of the solution is

presented in Fig. 10. In this iteration program, elastoplastic micro-bending problem was

solved layer by layer in the beam because different layers of the beam have different strain

rates. Then, the bending moment of the whole beam was determined using the method of the

trapezoidal integral as

 
1

1
1

0
2

2 ,
2 i i

n
i i

xx xz i i
y yi h

y yM b m y y





 

    
 
 

 (68)

where the beam was divided into 2n layers along the direction of the thickness and the y

coordination was
2i
iy h
n

 . Actually, the larger n makes the bending moment closer to the

exact solution. When n is larger than 4, the difference between the trapezoidal integral

solution and the exact solution becomes less than 1%. Hence, each beam was divided into 8

layers for the following solutions in the present research.
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Fig. 10. Flow chart of the solution for the elastoplastic micro-bending.

For the solution in each layer of the beam, the curvature  and the curvature rate 

obtained from micro-bending experiments are taken as input parameters. Then, the normal

strain rate in x-direction xx of this layer is determined by

,xx y   (69)

where y is the y-coordination of the layer. Based on these input parameters, each layer was

solved with the combination of the proposed strain gradient elasto-viscoplastic model and the

iterations. For the compressible material, the volume strain increment was set as the iteration

variable and the equation 0yy  was defined as the objective function. When the iteration

converges, both the stress and couple stress of the layer became available. Lastly, according
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to Eq. (68), the bending moment in this case was solved.

5.2 Size effect analyses

5.2.1 Size-dependent elasticity

According to the solution of the elastic bending without consideration of size effect in

Eq. (67), the normalized bending moment norM is related to the surface strain / 2h

linearly as

 2 2

4 2 ,
23 1nor

M E hM
bh




      
(70)

and the slope of elastic the normalized moment versus surface strain is defined as the elastic

bending stiffness. According to Eq. (70), the classical elastic bending stiffness cD without

size effect is then determined as

 2
2 .

3 1c
ED





(71)

It is noted that the elastic bending stiffness only depends on the elastic modulus and the

Poisson’s ratio according to the classical theory. That is to say that the classical elastic

bending stiffness should be a constant for a specified polymer even for different beam

thicknesses. Fig. 11 shows the normalized bending moment against surface strain of the

elastic micro-bending experiment for PMMA plate with thickness of 0.473 mm. The results

present that the normalized bending moment increases linearly with the surface strain of the

PMMA beam. After linear fitting the experimental data, the elastic bending stiffness of this

PMMA plate is determined as 3007 MPa.
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Fig. 11. The normalized bending moment against surface strain of elastic micro-bending on

the PMMAplate with the thickness of 0.473 mm.

More elastic micro-bending experiments were implemented on the PMMA plates with

different thicknesses and the corresponding results are displayed in Fig. 12. From these

experimental data in Fig. 12 (a), the relationships between the normalized bending moment

and the surface strain are close to linearity even for different PMMA plates. However, the

slopes of the normalized bending moment versus surface strain are different from each other

and exhibit an increase tendency with the decrease of the beam thickness from 1.979 to 0.268

mm. Referring to the works by Li et al. (2011), Stölken and Evans (1998) and Suzuki et al

(2009), the nondimensional bending moment was further defined to eliminate the impact of

the original differences between the PMMA plates on the micro-bending results. For elastic

micro-bending, the nondimenional bending moment of each sample was defined as the

normalized bending moment divided by its average of internal reduced modulus RE , namely

/non nor RM M E . Fig. 12 (b) presents the relationship between the nondimensional bending

moment and surface strain for different PMMA plates. The slopes of the nondimensional
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bending moment versus surface strain also increase with the decrease of the thickness of the

PMMAplate even when the original difference between samples is eliminated.

Fig. 12. (a) The normalized bending moment against surface strain and (b) the

nondimensional bending moment against surface strain from elastic micro-bending

experiments on PMMAplates with different thicknesses.
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Moreover, the slope of the nondimensional bending moment versus surface strain was

defined as the nondimensional bending stiffness. Correspondingly, Fig. 13 shows the elastic

bending stiffness and the nondimensional bending stiffness against the beam thickness of

PMMA. For PMMA plates with thickness of 1.979 and 1.014 mm, the elastic bending

stiffnesses are 2164 and 2480 MPa, respectively. However, when the beam thickness

decreases from 0.665 to 0.268 mm, the elastic bending stiffness increases from 2745 to 3160

MPa. After eliminating the original differences between the PMMA plates, the

nondimensional bending stiffness also exhibits an increase of about 33% with the decrease of

the PMMA thickness from 1.979 to 0.268 mm and shows a strong size-dependence which the

classical theory cannot represent well.
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Fig. 13. (a) Elastic bending stiffness and (b) the nondimensional bending stiffness of PMMA

plates.

In order to represent the size-dependent stiffness in the elastic micro bending, the impact

of the rotational gradient is considered in the present work. According to the moment

equation considering the rotational gradient in Eq. (66), the nondimensional bending stiffness

is dependent on the beam thickness h and is determined as,

   
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(72)
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It is noted that the elastic bending stiffness D in Eq. (72) can be converted into the

classical elastic bending stiffness cD in Eq. (71) when the beam thickness is far larger than

the elastic intrinsic length ell .

According to Eq. (72), the nondimensional bending stiffness obtained from experiments

was fitted via weighted regression where the elastic intrinsic length and elastic modulus were

set as the parameters to be fitted and the reciprocal of the standard error was set as the

weighting factor. As a consequence, the elastic intrinsic length ell was determined as 0.062

mm for PMMA materials. Additionally, elastic modulus was specified as 3441 MPa which

was larger than the modulus calibrated via compression experiments. This was maybe due to

the fact that the friction in guides might lead to a larger load and a harder stiffness during

micro-bending experiments. Lastly, theoretical stiffness considering the size effect is plotted

in both Fig. 12 (b) and Fig. 13 (b) with lines. After comparison analysis of those data, it is

found that the proposed model with the size effect is converged to the classical model when

the beam thickness is larger than 0.6 mm. In such condition, there is no big difference

between the predicted data by the classical model and those by the proposed model

considering the size effect. Moreover, the predicted results based on both models are tallied

well with the experimental results. When the thickness of the PMMA plate is less than 0.6

mm, however, the nondimensional bending moments from micro-bending experiments are

larger than the predicted moments based on the classical model. Although the elastic intrinsic

length of PMMA is 0.062 mm, the effect of the rotational gradient becomes non-ignorable

even when the thickness of PMMA is decreased into the order of 0.2 mm. Generally,

compared with the classical model, the proposed model with consideration of the size effect
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gives a much better prediction of the elastic behaviors of amorphous polymers in micro-scale.

5.2.2 Size dependent plasticity

Elastoplastic micro-bending experiments were then conducted and the corresponding

results are shown in Fig. 14. From the experimental data in Fig. 14 (a), the normalized

bending moment increases nonlinearly with the increase of the surface strain even for

different PMMA plates. More importantly, the normalized bending moments of the thinner

beams are larger than those of the thicker beams under the same surface strain. For

elastoplastic micro-bending of each sample, the nondimensional bending moment is defined

as the normalized bending moment divided by its average internal hardness H , namely

/non norM M H . After eliminating the original difference of PMMA plates, as can be seen in

Fig. 14 (b), the nondimensional bending moments also exhibit the mechanical strengthening

for the thinner beams. According to the classical theory without size effect, the relationship

between the nondimensional bending moment and surface strain in micro-bending should

maintain the same even for different beam thicknesses. Hence, the classical theory cannot

represent the observed the experimentally-observed strengthening plasticity of PMMA

materials in micro-scale and the size effect of PMMA is thus demonstrated in micro-scale.
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Fig. 14. (a) The normalized bending moment against surface strain and (b) the

nondimensional bending moment against surface strain obtained from elastoplastic

micro-bending experiments on different PMMA plates.

Furthermore, a difference between the nondimensional bending moments was defined as

1.014non non non mmM M M    where 1.014non mmM  is the nondimensional bending moment of

the PMMA plates with the thickness of 1.014 mm. Fig. 14 shows the correspondingly
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difference between the nondimensional bending moments against the beam thickness when

the surface strain is 0.022, 0.027, 0.031 and 0.035, respectively. According to the classical

theory, the difference for beams with different thicknesses should be zero. However, from the

experimental results, the difference between the nondimensional bending moments increases

beyond the classical value with the decrease of the beam thickness. This further demonstrates

that the mechanical behavior of PMMA material in elastoplastic micro-bending is

size-dependent.
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Fig. 15. Difference between the nondimensional bending moments against the beam

thickness of PMMA at the surface strains of (a) 0.022, (b) 0.027, (c) 0.031 and (d) 0.035.

Based on the results of elastoplastic micro-bending, the plastic intrinsic material length

was obtained via minimizing the quadratic sum of the difference between the experimental

and the theoretical value of the proposed model with the size effect. It should be pointed out

that the elastic modulus applied here was 3441 MPa which was obtained from elastic

micro-bending experiments, for a better description of the elastoplastic micro-bending results.

As a consequence, the plastic intrinsic length is determined as 0.034 mm for PMMA

materials and the corresponding theoretical data are shown in both Fig. 14 (b) and Fig. 15 by

lines. When the beam thickness is less than 0.6 mm, the difference between the experiments

and the predicted ones based on the classical model gets increasingly large, while the

proposed model with the size effect agrees better with the experimental results. This suggests

that the size effect of PMMA can be represented well by the proposed strain gradient

elasto-viscoplastic constitutive model.

Through micro-bending experiments, the elastic and plastic intrinsic lengths in the

proposed strain gradient elasto-viscoplastic model were determined at 0.062 mm and 0.034

mm for PMMA materials, respectively. Previously, Lam et al. (2003) determined the elastic

intrinsic length of epoxy materials at 0.024 mm according to micro-bending experiments and

later Lam et al. (2010) specified the strain gradient length scale parameter associated with

rotation gradients at 0.034 mm for epoxy based on creep bending experiments. In comparison,

elastic and plastic intrinsic lengths of PMMA in the present study, are on the same order as

those for epoxy materials obtained by Lam et al (2003) and Lam et al. (2010). Additionally, it
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is also noted that the two intrinsic lengths are in the same order of the length. When the

feature size is decreased to the order of tens of microns, both the elastic and plastic behaviors

are strengthened and size-dependent. To control the dimensional accuracy and product quality,

size effects on elastic and plastic behaviors are equally important and should be considered

simultaneously.

6. Conclusions

Constitutive modeling under consideration of size effect for amorphous polymers in

micro-scaled deformations was implemented in the present research, on the basis of the

couple stress theory. The following concluding remarks are drawn:

1. In order to quantitatively predict and describe the size-dependent behaviors of

amorphous polymers in micron scale, a strain gradient elasto-viscoplastic constitutive model

was proposed via taking the impacts of the rotational gradient into considerations, on the

basis of the couple stress theory. In this model, the size effect on both elastic and plastic

behavior of amorphous polymers was represented simultaneously such that the size effect in

micro-scale deformation can be modeled and analyzed more accurately.

2. Four-point micro-bending experiments were designed and carried out on PMMA plates

for the purpose of experimental study on the size effect of amorphous polymers in micro

deformations. After eliminating the original differences between the PMMA plates, the

nondimensional bending stiffness increased to 1.33 times for elastic micro-bending and the

nondimensional bending moment also exhibited an obvious mechanical strengthening for

elastoplastic micro-bending when the beam thickness decreased from 1.979 to 0.268 mm.

The experimental results of micron-bending on PMMA showed a strong size-dependence
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which the classical theory cannot represent well.

3. Based on micro-bending results, the proposed strain gradient elasto-viscoplastic model

was validated for PMMA materials. The elastic and plastic intrinsic lengths were determined

as 0.062 and 0.034 mm, respectively. Two intrinsic lengths have the same order of length

scale, which means the size effect on elastic and plastic deformation behaviors are equally

important for amorphous polymers. Lastly, the strain gradient elasto-viscoplastic model was

verified for the capability for a good representation of the size effect of amorphous polymers

in micro deformation.
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Appendix

Nomenclature

w Deformation energy density ijt Cauchy stress

ij Symmetric stress tensor ij Antisymmetric stress tensor

iu Displacement ij Strain tensor

ij Curl tensor i Rotation vector

Σ Generalized stress Ω Generalized strain

 Effective generalized stress  Effective generalized strain

iT Surface force iM Surface moment
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 m Hydrostatic pressure ijS Deviator stress

S Effective deviator stress ijm Couple stress

m Effective couple stress  Effective strain rate

e Effective deviator strain m Volumetric strain

ije Deviator strain e
ije Elastic strain rate

e
ije Elastic deviator strain p

ije Plastic strain

p
ije Plastic strain rate pe Effective plastic strain

pe Effective plastic strain rate  Effective rotational gradient

ij Rotational gradient eij Elastic rotational gradient

 p
ij Plastic rotational gradient E Young’s modulus

ijklD Classical elastic stiffness EX The variation of the Young’s

modulus with strain rate

refE Reference Young’s modulus  Poisson’s ratio

 Temperature RC Rubber modulus

 back Back stress in Langevin model CX The variation of the rubber

modulus with strain rate

ref
RC Reference rubber modulus  flow Flow stress in Eyring model

1/2n Factor limiting network strain in

Langevin model

H Activation energy of Eyring model

0 A pre-exponential factor of Eyring

model

V Shear activation volume of Eyring

model

Bk Boltzmann’s constant  Free volume
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s Internal variable ew Elastic deformation energy density

ref Reference strain-rate l Intrinsic material length

e ll Elastic intrinsic material length G Shear modulus

RE Reduced modulus H hardness

 Bending curvature h Thickness of beam

b Width of beam M Bending moment

norM The normalized bending moment D Elastic bending stiffness

nonM Non-dimensional bending moment nonM Difference between

non-dimensional bending moments
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