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Abstract. Error bounds are a requisite for trusting or distrusting solutions in an informed way.
Until recently, provable error bounds in the absence of constraint qualifications were unattainable
for many classes of cones that do not admit projections with known succinct expressions. We build
such error bounds for the generalized power cones, using the recently developed framework of one-
step facial residual functions. We also show that our error bounds are tight in the sense of that
framework. Besides their utility for understanding solution reliability, the error bounds we discover
have additional applications to the algebraic structure of the underlying cone, which we describe. In
particular we use the error bounds to compute the automorphisms of the generalized power cones,
and to identify a set of generalized power cones that are self-dual, irreducible, nonhomogeneous, and
perfect.
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1. Introduction. In a Euclidean space \scrE , consider the conic feasibility problem:

find \bfitx \in (\scrL + \bfita )\cap \scrK ,(Feas)

where \scrL is a subspace, \bfita \in \scrE , and \scrK is a closed convex cone. We desire an upper bound
on the distance from an arbitrary \bfitx to the feasible region (\scrL + \bfita ) \cap \scrK . The upper
bound we seek should depend on the two distances between \bfitx and \scrK , and between \bfitx 
and \scrL +\bfita , respectively. Such a guarantee is a kind of error bound; error bounds are a
fundamental topic in the optimization literature [13, 18, 26, 33, 46] and widely used
in the convergence analysis of algorithms. Typically, (Feas) is almost never solved
exactly; instead algorithms and solvers often return an approximate solution. Then,
error bounds can be used to evaluate the trustworthiness of approximate solutions
because they tell us how close they are to the true set of feasible solutions.

In this paper, we consider the case when \scrK =\scrP \bfitalpha 

m,n is the generalized power cone

\scrP 
\bfitalpha 

m,n =

\Biggl\{ 
\bfitx = (\bfitx , \widetilde \bfitx )\in \BbbR m+n

\bigm| \bigm| \bigm| \bigm| \| \bfitx \| \leq n\prod 
i=1

\widetilde x\alpha i
i , \bfitx \in \BbbR m, \widetilde \bfitx \in \BbbR n

+

\Biggr\} 
,
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POWER CONE ERROR BOUNDS 1317

where m\geq 1, n\geq 2, \bfitalpha = (\alpha 1, . . . , \alpha n)\in (0,1)n with
\sum n

i=1\alpha i = 1, and \| \bfitx \| denotes the
Euclidean norm of \bfitx . In the specific case when m\geq 1, n= 2, and \bfitalpha = (1/2,1/2), \scrP \bfitalpha 

m,n

is isomorphic to a second-order cone, whose worst-case error bound is known to be
H\"olderian with exponent 1/2, thanks to the work of Luo and Sturm [25]. The remain-
ing cases, while not as well known as the second-order cone case, admit more direct
modeling of certain problems and have found applications in geometric programs,
generalized location problems, and portfolio optimization [5, 28]. More broadly, the
inclusion of the power cone1 (and the exponential cone) makes all the convex in-
stances from the MINLPLib2 benchmark library conic representable [24, 27]. This
broad utility has motivated the development of self-concordant barriers [5, 43, 36]
and the ongoing development of specialized interior point methods [30, 37]. Opti-
mization with the generalized power cones is implemented in commercial and open
source solvers like MOSEK, Alfonso, DDS, and Hypatia [6, 15, 34, 28].

One of this paper's main contributions---Theorem 3.10---is a complete error bound
analysis for the generalized power cone problem (Feas). The generalized power cone
cases pose two significant obstructions to error bound analysis that are not present in
the second-order cone case. First, known forms for projections onto generalized power
cones do not admit simple representations [12]; second, their facial structure is more
complicated. We obviate the first obstruction via the framework of one-step facial
residual functions (1-FRFs), which was established in [19, 20]. The second challenge,
facial complexity, we tackle directly. In particular, we build 1-FRFs for all faces of
\scrP \bfitalpha 

m,n. All these 1-FRFs are tight in the natural sense of [20]. Consequently, all of the
error bounds in Theorem 3.10 are tight in this sense.

While error bounds are typically used in convergence analysis and to evaluate
the quality of approximate solutions, our approach via 1-FRFs admits a surprising
additional application to the algebraic structure of the underlying cone. In order to
explain our next results, we recall a few concepts. The automorphism group of a cone
\scrK is the set of the bijective linear operators \bfitA satisfying \bfitA \scrK =\scrK . A cone is said to
be homogeneous if its automorphism group acts transitively on its relative interior.
We say that a cone is irreducible if it is not the direct sum of two nontrivial cones
whose spans only intersect at the origin.

Because automorphisms of cones must preserve optimal FRFs (up to positively
rescaled shifts), we can use our results to establish the automorphism group for \scrP \bfitalpha 

m,n

in Theorem 4.1 and compute its dimension in Theorem 4.2.
This is useful because the automorphism group of a closed convex cone \scrK has

important implications for complementarity problems over \scrK ; see [9]. In particular,
denoting the dual cone of \scrK by \scrK \ast , a complementarity condition of the form ``\bfitx \in 
\scrK ,\bfity \in \scrK \ast , \langle \bfitx ,\bfity \rangle = 0"" can be split into a square system of equations if and only if the
dimension of the automorphism group of \scrK is at least dim\scrK ; see [32, Theorem 1]. In
this case, \scrK is said to be a perfect cone.

Many of the concrete examples of irreducible perfect cones in the literature corre-
spond to homogeneous cones. In this paper we will show that the generalized power
cone is irreducible, perfect (when m\geq 3), and, except when it reduces to the second-
order cone case, always nonhomogeneous. This gives an interesting example of an
irreducible cone with good complementarity properties that is not a homogeneous
cone. To summarize, our main contributions are as follows:

1. We completely determine the tightest possible error bounds for the general-
ized power cone; see Theorem 3.10.

1This refers to \scrP \bfitalpha 

1,2.
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1318 LIN, LINDSTROM, LOUREN\c CO, AND PONG

2. Using our error bounds, we completely determine the automorphism group
of \scrP \bfitalpha 

m,n and discuss some theoretical questions related to homogeneity and
perfectness (in the sense of [10, 9]); see section 4.

Although we do not discuss the details, we mention in passing that determining the
error bound associated to conic linear systems makes it possible to compute the KL-
exponent of certain functions, as done, for example, in [20, section 5.1] using results
from [45]. See more on the connection between error bounds, KL-exponents, and
convergence rates in [3].

This paper is organized as follows. In section 2, we recall notation and prelimi-
naries. In section 3, we furnish the eponymous error bounds. In section 4, we provide
the further application to the algebraic structure of the generalized power cones.

2. Notation and preliminaries. We will use italic letters to represent real
scalars, bold lowercase letters to denote vectors, bold uppercase letters to stand for
matrices,2 and calligraphic capital letters for (sub)spaces and sets. Let \scrE be a finite-
dimensional Euclidean space, and let \BbbR + and \BbbR  - be the set of nonnegative and non-
positive real numbers, respectively. The inner product of \scrE is denoted by \langle \cdot , \cdot \rangle and the
induced norm by \| \cdot \| . With that, for \bfitx \in \scrE and a closed convex set \scrC \subseteq \scrE , we denote the
projection of \bfitx onto \scrC by P\scrC (\bfitx ) so that P\scrC (\bfitx ) = argmin\bfity \in \scrC \| \bfitx  - \bfity \| and the distance
between \bfitx and \scrC by dist(\bfitx ,\scrC ) = inf\bfity \in \scrC \| \bfitx  - \bfity \| = \| \bfitx  - P\scrC (\bfitx )\| . For any \bfitx \in \scrE and \eta \geq 0,
we denote the ball centered at \bfitx with radius \eta by \scrB (\bfitx ;\eta ) := \{ \bfity \in \scrE | \| \bfity  - \bfitx \| \leq \eta \} ; we
write \scrB (\eta ) for the ball centered at 0 with radius \eta for simplicity. A diagonal matrix
with diagonal vector being \bfitx is denoted by Diag(\bfitx ). Meanwhile, we use \scrC \bot to denote
the orthogonal complement of \scrC and \bfitI n to represent the n\times n identity matrix.

We now recall the definition of Lipschitzian and H\"olderian error bounds. Let
\scrC 1,\scrC 2 \subseteq \scrE be closed convex sets with \scrC 1 \cap \scrC 2 \not = \emptyset . We say that \scrC 1,\scrC 2 satisfy a uniform
H\"olderian error bound with exponent \gamma \in (0,1] if for every bounded set \scrB \subseteq \scrE there
exists a constant \kappa \scrB such that dist(\bfitx ,\scrC 1 \cap \scrC 2)\leq \kappa \scrB max\{ dist(\bfitx ,\scrC 1),dist(\bfitx ,\scrC 2)\} \gamma for
all \bfitx \in \scrB . If \gamma = 1, then the error bound is said to be Lipschitzian.

Let \scrK \subseteq \scrE be a closed convex cone and \scrK \ast its dual cone. We will use int\scrK , ri\scrK ,
\partial \scrK , span\scrK , dim\scrK to denote the interior, relative interior, boundary, linear span, and
dimension of \scrK , respectively. If \scrK \cap  - \scrK = \{ 0\} , we say that \scrK is pointed.

A face of \scrK is a closed convex cone \scrF satisfying \scrF \subseteq \scrK and the property that if
\bfitx ,\bfity \in \scrK and \bfitx +\bfity \in \scrF , then \bfitx ,\bfity \in \scrF .3 We write \scrF �\scrK if \scrF is a face of \scrK and \scrF \lneq \vartriangleleft \scrK 
if \scrF is a proper face of \scrK , i.e., \scrF \not =\scrK . A face \scrF is said to be nontrivial if \scrF is proper
and \scrF \not =\scrK \cap  - \scrK . If \scrF =\scrK \cap \{ \bfitz \} \bot for some \bfitz \in \scrK \ast , \scrF is called an exposed face of \scrK .

The facial structure of the closed convex cone \scrK is important for deducing error
bounds for (Feas); see the seminal work of Sturm [38]. Recently, a new framework
based on the facial reduction algorithm [4, 35, 44] and one-step facial residual func-
tions (1-FRFs) [19, Definition 3.4] was proposed for establishing error bounds for
(Feas) without requiring any constraint qualifications; see [22, 19, 20]. Next, we pres-
ent a very brief overview of the framework; for more detailed explanations and the
underlying intuition behind the techniques, see [19, 20]. First, we recall the definition
of one-step facial residual functions.

Definition 2.1 (one-step facial residual function [19, Definition 3.4]). Let \scrK be
a closed convex cone and \bfitz \in \scrK \ast . Suppose that \psi \scrK ,\bfitz : \BbbR + \times \BbbR + \rightarrow \BbbR + satisfies the
following:

2With an abuse of notation, we use 0 to denote a zero vector/matrix, whose dimension should
be clear from the context.

3By convention, we discard the empty face.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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POWER CONE ERROR BOUNDS 1319

(i) \psi \scrK ,\bfitz is nonnegative, nondecreasing in each argument, and for every t \in \BbbR +,
\psi \scrK ,\bfitz (0, t) = 0.

(ii) The following implication holds for any \bfitx \in span\scrK and \epsilon \geq 0:

dist(\bfitx ,\scrK )\leq \epsilon , \langle \bfitx ,\bfitz \rangle \leq \epsilon =\Rightarrow dist(\bfitx ,\scrK \cap \{ \bfitz \} \bot )\leq \psi \scrK ,\bfitz (\epsilon ,\| \bfitx \| ).

Then, \psi \scrK ,\bfitz is said to be a one-step facial residual function (1-FRF) for \scrK and \bfitz .

The basic idea of the aforementioned framework is as follows. Suppose that in
each step of the facial reduction algorithm we can find a suitable 1-FRF for the
``current"" face and ``next"" exposing vector until we reach a face \scrF such that \scrF and
\scrL +\bfita satisfy the partial polyhedral Slater's (PPS) condition [22, Definition 3].4 Then,
we can construct an error bound for \scrK and \scrL +\bfita by composing these residual functions
in a specific manner. In this regard, if (Feas) is feasible, we define the distance to the
PPS condition of (Feas), denoted by dPPS(\scrK ,\scrL + \bfita ), as the length minus one of the
shortest chain of faces (among those chains constructed as in [22, Proposition 5]) such
that the PPS condition holds for the final face in the chain and \scrL + \bfita .

We end this section with the following lemma, which is useful in the analysis of
one-dimensional faces. It will be used repeatedly in our subsequent discussions.

Lemma 2.2 ([20, Lemma 2.5]). Let \scrK be a pointed closed convex cone, and let
\bfitz \in \partial \scrK \ast \setminus \{ 0\} be such that \scrF := \{ \bfitz \} \bot \cap \scrK is a one-dimensional proper face of \scrK . Let
\bfitf \in \scrK \setminus \{ 0\} be such that \scrF = \{ t\bfitf | t \geq 0\} . Let \eta > 0 and \bfitv \in \partial \scrK \cap B(\eta ) \setminus \scrF , and let
\bfitw = P\{ \bfitz \} \bot (\bfitv ) and \bfitu = P\scrF (\bfitw ) with \bfitu \not =\bfitw . Then it holds that \langle \bfitf ,\bfitz \rangle = 0 and we have

\| \bfitv  - \bfitw \| = | \langle \bfitz ,\bfitv \rangle | 
\| \bfitz \| 

, \| \bfitu  - \bfitw \| =

\left\{   
\bigm\| \bigm\| \bigm\| \bfitv  - \langle \bfitz ,\bfitv \rangle 

\| \bfitz \| 2 \bfitz  - \langle \bfitf ,\bfitv \rangle 
\| \bfitf \| 2 \bfitf 

\bigm\| \bigm\| \bigm\| if \langle \bfitf ,\bfitv \rangle \geq 0,\bigm\| \bigm\| \bigm\| \bfitv  - \langle \bfitz ,\bfitv \rangle 
\| \bfitz \| 2 \bfitz 

\bigm\| \bigm\| \bigm\| otherwise .

Moreover, when \langle \bfitf ,\bfitv \rangle \geq 0 (or, equivalently, \langle \bfitf ,\bfitw \rangle \geq 0), we have \bfitu = Pspan\scrF (\bfitw ). On
the other hand, if \langle \bfitf ,\bfitv \rangle < 0, we have \bfitu = 0.

3. Error bounds for the generalized power cone. We consider the gener-
alized power cone and its dual. Let m \geq 1, n \geq 2, and \bfitalpha = (\alpha 1, . . . , \alpha n) \in (0,1)n

with
\sum n

i=1\alpha i = 1; the generalized power cone \scrP \bfitalpha 

m,n and its dual (\scrP \bfitalpha 

m,n)
\ast are given,

respectively, by

\scrP 
\bfitalpha 

m,n =

\Biggl\{ 
\bfitx = (\bfitx , \widetilde \bfitx )\in \BbbR m+n

\bigm| \bigm| \bigm| \bigm| \| \bfitx \| \leq n\prod 
i=1

\widetilde x\alpha i
i , \bfitx \in \BbbR m, \widetilde \bfitx \in \BbbR n

+

\Biggr\} 
,

(\scrP 
\bfitalpha 

m,n)
\ast =

\Biggl\{ 
\bfitz = (\bfitz ,\widetilde \bfitz )\in \BbbR m+n

\bigm| \bigm| \bigm| \bigm| \| \bfitz \| \leq n\prod 
i=1

\biggl( \widetilde zi
\alpha i

\biggr) \alpha i

, \bfitz \in \BbbR m, \widetilde \bfitz \in \BbbR n
+

\Biggr\} 
.

(3.1)

Here, given a vector \bfitx \in \BbbR m+n, we let \bfitx \in \BbbR m be the vector corresponding to its first
m entries and let \widetilde \bfitx \in \BbbR n be the vector corresponding to its last n entries.

In this section, we will prove the main result of our paper: a complete analysis
of the error bounds of \scrP \bfitalpha 

m,n. This will require an analysis of the facial structure of

\scrP \bfitalpha 

m,n, which we will do shortly after the following lemmas.

4We note that this implies a Lipschitzian error bound holds for \scrF and \scrL + \bfita ; see [2, Corollary
3] and the discussion preceding [19, Proposition 2.3].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1320 LIN, LINDSTROM, LOUREN\c CO, AND PONG

Lemma 3.1. Let n \geq 2 and \bfitalpha = (\alpha 1, . . . , \alpha n) \in (0,1)n with
\sum n

i=1\alpha i = 1. Let

\bfitzeta \in int\BbbR n
 - satisfy

\prod n
i=1( - \zeta i/\alpha i)

\alpha i = 1. Define \widetilde \bfitzeta := - \bfitalpha \circ \bfitzeta  - 1, where \circ is the Hadamard
product and the inverse is taken componentwise. Then there exist C > 0 and \epsilon > 0 so
that

 - 1 - \langle \bfitzeta ,\bfitomega \rangle \geq C\| \bfitomega  - \widetilde \bfitzeta \| 2 whenever \bfitomega \in int\BbbR n
+, \| \bfitomega  - \widetilde \bfitzeta \| \leq \epsilon and

n\prod 
i=1

\omega \alpha i
i = 1.(3.2)

Moreover, for any \bfitomega \in int\BbbR n
+ satisfying

\prod n
i=1 \omega 

\alpha i
i = 1, it holds that \langle \bfitzeta ,\bfitomega \rangle \leq  - 1;

furthermore, we have \langle \bfitzeta ,\bfitomega \rangle = - 1 if and only if \bfitomega = \widetilde \bfitzeta .
Proof. For each i, we see from the Taylor series of ln(\cdot ) at \widetilde \zeta i > 0 that

ln(\omega i) = ln(\widetilde \zeta i) + \widetilde \zeta  - 1
i (\omega i  - \widetilde \zeta i) - \widetilde \zeta  - 2

i (\omega i  - \widetilde \zeta i)2 +O(| \omega i  - \widetilde \zeta i| 3) as \omega i \rightarrow \widetilde \zeta i, \omega i > 0.

Thus, there exist \epsilon i > 0 and ci > 0 so that

ln(\widetilde \zeta i)\geq ln(\omega i) - \widetilde \zeta  - 1
i (\omega i  - \widetilde \zeta i) + ci(\omega i  - \widetilde \zeta i)2 whenever | \omega i  - \widetilde \zeta i| \leq \epsilon i and\omega i > 0.

Let \epsilon := min1\leq i\leq n \epsilon i > 0. Multiplying both sides of the above inequality by \alpha i and
summing the resulting inequalities from i= 1 to n, we see that whenever \bfitomega \in int\BbbR n

+

satisfies \| \bfitomega  - \widetilde \bfitzeta \| \leq \epsilon and
\prod n

i=1 \omega 
\alpha i
i = 1, we have

0
(a)
=

n\sum 
i=1

\alpha i ln(\widetilde \zeta i)\geq n\sum 
i=1

\alpha i ln(\omega i) - 
n\sum 

i=1

\alpha i
\widetilde \zeta  - 1
i (\omega i  - \widetilde \zeta i) + n\sum 

i=1

\alpha ici(\omega i  - \widetilde \zeta i)2
(b)
=  - 

n\sum 
i=1

\alpha i
\widetilde \zeta  - 1
i (\omega i  - \widetilde \zeta i) + n\sum 

i=1

\alpha ici(\omega i  - \widetilde \zeta i)2 (c)
=  - 

n\sum 
i=1

\alpha i
\widetilde \zeta  - 1
i \omega i+1+

n\sum 
i=1

\alpha ici(\omega i  - \widetilde \zeta i)2
=

n\sum 
i=1

\zeta i\omega i + 1+

n\sum 
i=1

\alpha ici(\omega i  - \widetilde \zeta i)2,
where (a) and (b) hold because

\prod n
i=1
\widetilde \zeta \alpha i
i =

\prod n
i=1 \omega 

\alpha i
i = 1, (c) uses the fact that\sum n

i=1\alpha i = 1, and the last equality follows from the definition of \widetilde \bfitzeta . Rearranging the
above inequality, we conclude that (3.2) holds with C =min1\leq i\leq n\alpha ici > 0.

Next, let \bfitomega \in int\BbbR n
+ satisfy

\prod n
i=1 \omega 

\alpha i
i = 1. Then ( - 1,\bfitomega ) \in \scrP \bfitalpha 

1,n. Recall from the

assumption that (1, - \bfitzeta )\in (\scrP \bfitalpha 

1,n)
\ast . From these we deduce \langle \bfitzeta ,\bfitomega \rangle \leq  - 1. If \langle \bfitzeta ,\bfitomega \rangle = - 1,

then

n\sum 
i=1

\alpha i

\biggl( 
 - \zeta i
\alpha i

\biggr) 
\omega i =

n\sum 
i=1

( - \zeta i)\omega i = 1=

n\prod 
i=1

\omega \alpha i
i =

n\prod 
i=1

\biggl( 
 - \zeta i
\alpha i

\biggr) \alpha i n\prod 
i=1

\omega \alpha i
i .

Taking ln on both sides of the above equality, we see that

ln

\Biggl[ 
n\sum 

i=1

\alpha i

\biggl( 
 - \zeta i
\alpha i

\biggr) 
\omega i

\Biggr] 
=

n\sum 
i=1

\alpha i ln

\biggl[ \biggl( 
 - \zeta i
\alpha i

\biggr) 
\omega i

\biggr] 
.

Since ln is strictly concave and \alpha i \in (0,1) for all i, we conclude that there exists c > 0
so that \omega i \cdot ( - \zeta i/\alpha i) = c for all i. This, together with the facts that

\prod n
i=1 \omega 

\alpha i
i =\prod n

i=1( - \zeta i/\alpha i)
\alpha i = 1 and

\sum n
i=1\alpha i = 1, gives c = 1. It thus follows that \bfitomega = \widetilde \bfitzeta .

Conversely, it is routine to check that if \bfitomega = \widetilde \bfitzeta , then \prod n
i=1 \omega 

\alpha i
i = 1 and \langle \bfitzeta ,\bfitomega \rangle = - 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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POWER CONE ERROR BOUNDS 1321

The next lemma is obtained by applying [20, Lemma 4.1] with p= q= 2.

Lemma 3.2. Let \bfitzeta \in \BbbR m (m \geq 1) satisfy \| \bfitzeta \| = 1. Define \bfitzeta :=  - \bfitzeta . Then there
exist C > 0 and \epsilon > 0 so that

1 + \langle \bfitzeta ,\bfitw \rangle \geq C
\sum 
i\in I

| wi  - \zeta i| 2 +
1

2

\sum 
i/\in I

| wi| 2 whenever \| \bfitw  - \bfitzeta \| \leq \epsilon and \| \bfitw \| = 1,

(3.3)

where I = \{ i | \zeta i \not = 0\} . Furthermore, for any \bfitw satisfying \| \bfitw \| \leq 1, it holds that
\langle \bfitzeta ,\bfitw \rangle \geq  - 1, with the equality holding if and only if \bfitw = \bfitzeta .

3.1. The facial structure of \bfscrP \bfitalpha 

\bfitm ,\bfitn . In this subsection, we discuss the faces

of \scrP \bfitalpha 

m,n. We first characterize the proper nontrivial exposed faces of \scrP \bfitalpha 

m,n in the
following proposition.

Proposition 3.3 (proper nontrivial exposed faces of \scrP \bfitalpha 

m,n). Let \bfitz = (\bfitz ,\widetilde \bfitz ) \in 
\partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} .

(i) If \bfitz \not = 0, then \bfitz exposes the following one-dimensional face:

\scrF r := \{ \bfitz \} \bot \cap \scrP 
\bfitalpha 

m,n = \{ t\bfitf \in \BbbR m+n | t\geq 0\} with\bfitf = ( - \bfitz /\| \bfitz \| 2,\bfitalpha \circ \widetilde \bfitz  - 1),

(3.4)

where the inverse is taken componentwise.
(ii) If \bfitz = 0, then \bfitz exposes the following face of dimension n - | \scrI | :

\scrF \bfitz := \{ \bfitz \} \bot \cap \scrP 
\bfitalpha 

m,n = \{ \bfitx = (\bfitx , \widetilde \bfitx )\in \BbbR m+n
+ | \bfitx = 0, \widetilde xi = 0 \forall i\in \scrI \} ,(3.5)

where \scrI := \{ i | \widetilde zi > 0\} \not = \emptyset and | \scrI | denotes the cardinality of \scrI .
Proof. (i) Notice that \bfitx = (\bfitx , \widetilde \bfitx ) \in \{ \bfitz \} \bot \cap \scrP \bfitalpha 

m,n\setminus \{ 0\} if and only if \bfitx \in \partial \scrP \bfitalpha 

m,n,
\bfitx \not = 0, and

\langle \bfitz ,\bfitx \rangle + \langle \widetilde \bfitz , \widetilde \bfitx \rangle = 0.(3.6)

The above relation yields

n\sum 
i=1

\widetilde zi\widetilde xi = - \langle \bfitz ,\bfitx \rangle \leq \| \bfitz \| \| \bfitx \| \leq 
n\prod 

i=1

\biggl( \widetilde xi\widetilde zi
\alpha i

\biggr) \alpha i

,(3.7)

where the last inequality follows from the definition of \scrP \bfitalpha 

m,n in (3.1).

Note that \widetilde xi cannot be all zero, for otherwise \bfitx will also be zero since \bfitx \in \partial \scrP \bfitalpha 

m,n,
which contradicts \bfitx \not = 0. In addition, we must have \widetilde zi > 0 for all i because \bfitz \not = 0 and
\bfitz \in \partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} . Using these observations, we have

\sum n
i=1 \widetilde zi\widetilde xi > 0. Combining this

with (3.7), we deduce that \widetilde xi\widetilde zi > 0 for all i. Now we can take ln on both sides of
(3.7) to obtain

ln

\Biggl[ 
n\sum 

i=1

\alpha i

\biggl( \widetilde xi\widetilde zi
\alpha i

\biggr) \Biggr] 
\leq \alpha 1 ln

\biggl( \widetilde x1\widetilde z1
\alpha 1

\biggr) 
+ \cdot \cdot \cdot + \alpha n ln

\biggl( \widetilde xn\widetilde zn
\alpha n

\biggr) 
.(3.8)

Using this together with the fact that ln(\cdot ) is strictly concave, we deduce that (3.8)
holds as an equality. Hence, there exists a constant c > 0 so that

\widetilde xi = c\alpha i\widetilde z - 1
i \forall i= 1,2, . . . , n.(3.9)
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1322 LIN, LINDSTROM, LOUREN\c CO, AND PONG

Plugging (3.9) into (3.6), we obtain

\langle \bfitz ,\bfitx \rangle = - \langle \widetilde \bfitz , \widetilde \bfitx \rangle = - c
n\sum 

i=1

\alpha i = - c.(3.10)

Moreover, using (3.9) and the last relation in (3.7), we see that

\| \bfitz \| \| \bfitx \| \leq 
n\prod 

i=1

\biggl( \widetilde xi\widetilde zi
\alpha i

\biggr) \alpha i

= c.

The two displayed lines above show that \| \bfitz \| \| \bfitx \| = - \langle \bfitz ,\bfitx \rangle , which together with \bfitz \not = 0
implies that there exists \kappa > 0 so that

\bfitx = - \kappa \bfitz .(3.11)

Plugging (3.11) into (3.10), we obtain that \kappa = c/\| \bfitz \| 2. Using this together with (3.9)
and (3.11), we can now conclude that

\scrF r := \{ \bfitz \} \bot \cap \scrP 
\bfitalpha 

m,n = \{ t\bfitf \in \BbbR m+n | t\geq 0\} with\bfitf = ( - \bfitz /\| \bfitz \| 2,\bfitalpha \circ \widetilde \bfitz  - 1),

where the inverse is taken componentwise.
(ii) In this case, \bfitz = 0. Then \scrI := \{ i | \widetilde zi > 0\} is nonempty because \bfitz \not = 0. Hence,

\bfitx = (\bfitx , \widetilde \bfitx )\in \{ \bfitz \} \bot \cap \scrP \bfitalpha 

m,n\setminus \{ 0\} if and only if \bfitx \in \partial \scrP \bfitalpha 

m,n\setminus \{ 0\} and satisfies\sum 
i\in \scrI 
\widetilde zi\widetilde xi = 0.

This means that \widetilde xi = 0 whenever i\in \scrI and hence \bfitx = 0. Thus,

\scrF \bfitz := \{ \bfitz \} \bot \cap \scrP 
\bfitalpha 

m,n = \{ \bfitx = (\bfitx , \widetilde \bfitx )\in \BbbR m+n
+ | \bfitx = 0, \widetilde xi = 0 \forall i\in \scrI \} .

Having characterized the proper exposed faces of \scrP \bfitalpha 

m,n, we will show that \scrP \bfitalpha 

m,n

is projectionally exposed [4, 39], which means that for every face \scrF of \scrP \bfitalpha 

m,n there is a

linear operator \bfitP satisfying \bfitP (\scrP \bfitalpha 

m,n) = \scrF and \bfitP 2 = \bfitP . In particular, \bfitP , which de-
pends on \scrF , is a projection that is not necessarily orthogonal. Projectionally exposed
cones are both facially exposed [39, Corollary 4.4] and amenable [22, Proposition 9];
see also [23].

Proposition 3.4 (generalized power cones are projectionally exposed). \scrP \bfitalpha 

m,n is
projectionally exposed, in particular, all its faces are exposed.

Proof. Sung and Tam proved in [39, Corollary 4.5] that a sufficient condition
for a cone to be projectionally exposed is that all its exposed faces are projectionally
exposed. With this in mind, let \scrF be an exposed face of \scrP \bfitalpha 

m,n. If \scrF = \{ 0\} or \scrF =\scrP \bfitalpha 

m,n,

then the zero map and the identity map are, respectively, projections mapping \scrP \bfitalpha 

m,n

to \scrF . Otherwise, \scrF is a nonzero proper face of \scrP \bfitalpha 

m,n and is of the form \{ \bfitz \} \bot \cap \scrP \bfitalpha 

m,n

for some \bfitz = (\bfitz ,\widetilde \bfitz )\in \partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} . By the analysis in cases (i), (ii), we only need to

consider two cases.
First, suppose that \scrF is a one-dimensional face as in (3.4) and let \bfitu \in (\scrP \bfitalpha 

m,n)
\ast 

be such that \langle \bfitf ,\bfitu \rangle = 1. At least one such \bfitu exists, since otherwise we would have
\bfitf \in ((\scrP \bfitalpha 

m,n)
\ast )\bot = \{ 0\} . Then, \bfitP = \bfitf \bfitu \top satisfies \bfitP 2 = \bfitP and \bfitP (\scrP \bfitalpha 

m,n) = \scrF , as
required.

Next, suppose that \scrF is as in (3.5). Then, we let \bfitP be the linear map that maps
(\bfitx , \widetilde \bfitx ) to (0, \widetilde \bfity ) where \widetilde yi = 0 if i\in \scrI and \widetilde yi = \widetilde xi if i \not \in \scrI . With that, \bfitP is a projection
mapping \scrP \bfitalpha 

m,n to \scrF .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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POWER CONE ERROR BOUNDS 1323

3.2. Deducing error bounds and one-step facial residual functions for
\bfscrP \bfitalpha 

\bfitm ,\bfitn . We start with the faces \scrF r that correspond to a \bfitz \in \partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} with \bfitz \not = 0.

We have the following result.

Theorem 3.5. Let \bfitz = (\bfitz ,\widetilde \bfitz ) \in \partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} with \bfitz \not = 0 and let \scrF r := \{ \bfitz \} \bot \cap 

\scrP \bfitalpha 

m,n. Let \eta > 0 and define

\gamma \bfitz ,\eta :=inf
\bfitv 

\Biggl\{ 
\| \bfitv  - \bfitw \| 1

2

\| \bfitu  - \bfitw \| 

\bigm| \bigm| \bigm| \bigm| \bfitv \in \partial \scrP \bfitalpha 

m,n \cap \scrB (\eta )\setminus \scrF r, \bfitw = P\{ \bfitz \} \bot (\bfitv ),
\bfitu = P\scrF r(\bfitw ), \bfitu \not =\bfitw 

\Biggr\} 
.(3.12)

Then it holds that \gamma \bfitz ,\eta \in (0,\infty ] and that

dist(\bfitq ,\scrF r)\leq max\{ 2\surd \eta ,2\gamma  - 1
\bfitz ,\eta \} \cdot dist(\bfitq ,\scrP 

\bfitalpha 

m,n)
1
2 whenever \bfitq \in \{ \bfitz \} \bot \cap \scrB (\eta ).

Proof. Suppose for contradiction that \gamma \bfitz ,\eta = 0. Then, in view of [19, Lemma
3.12], there exist \widehat \bfitv \in \scrF r and a sequence \{ \bfitv k\} \subset \partial \scrP \bfitalpha 

m,n \cap \scrB (\eta )\setminus \scrF r such that

lim
k\rightarrow \infty 

\bfitv k = lim
k\rightarrow \infty 

\bfitw k = \widehat \bfitv and lim
k\rightarrow \infty 

\| \bfitw k  - \bfitv k\| 1
2

\| \bfitw k  - \bfitu k\| 
= 0,(3.13)

where \bfitw k = P\{ \bfitz \} \bot (\bfitv k), \bfitu k = P\scrF \mathrm{r}
(\bfitw k), and \bfitu k \not =\bfitw k.

Define, for notational simplicity, z0 := \| \bfitz \| and vk0 := \| \bfitv k\| . Then, since \{ \bfitv k\} \subset 
\partial \scrP \bfitalpha 

m,n and \bfitz \in \partial (\scrP \bfitalpha 

m,n)
\ast with \bfitz \not = 0, we have

z0 = \| \bfitz \| =
n\prod 

i=1

\biggl( \widetilde zi
\alpha i

\biggr) \alpha i

> 0 and vk0 = \| \bfitv k\| =
n\prod 

i=1

(\widetilde vki )\alpha i \forall k.(3.14)

If it holds that vk0 = 0 infinitely often, by passing to a further subsequence, we
may assume that vk0 = 0 for all k. Then we have in view of Lemma 2.2 that

\| \bfitv k  - \bfitw k\| = 1

\| \bfitz \| 
| \langle \widetilde \bfitz ,\widetilde \bfitv k\rangle | (a)= 1

\| \bfitz \| 

n\sum 
i=1

\widetilde zi\widetilde vki \geq mini \widetilde zi
\| \bfitz \| 

\| \widetilde \bfitv k\| 1\geq 
mini \widetilde zi
\| \bfitz \| 

\| \widetilde \bfitv k\| (b)= mini \widetilde zi
\| \bfitz \| 

\| \bfitv k\| ,

where (a) holds because \widetilde vki \geq 0 and \widetilde zi > 0 for all i (see (3.14)), and (b) holds
since \| \bfitv k\| = 0. Since \| \bfitw k  - \bfitu k\| = dist(\bfitw k,\scrF r) \leq \| \bfitw k\| \leq \| \bfitv k\| as a consequence
of the properties of projections, we conclude from this and the above display that
\| \bfitv k  - \bfitw k\| \geq mini \widetilde zi

\| \bfitz \| \| \bfitw k  - \bfitu k\| , contradicting (3.13).
Thus, by considering a further subsequence if necessary, from now on, we assume

vk0 = \| \bfitv k\| =
n\prod 

i=1

(\widetilde vki )\alpha i > 0 \forall k.(3.15)

Using Lemma 2.2, we see that

\| \bfitv k  - \bfitw k\| = 1

\| \bfitz \| 
| \langle \bfitz ,\bfitv k\rangle | = 1

\| \bfitz \| 

\bigm| \bigm| \bigm| \bigm| \bigm| 
m\sum 
i=1

ziv
k
i +

n\sum 
i=1

\widetilde zi\widetilde vki
\bigm| \bigm| \bigm| \bigm| \bigm| 

=
1

\| \bfitz \| 

\bigm| \bigm| \bigm| \bigm| \bigm| z0vk0 +

m\sum 
i=1

ziv
k
i  - 

n\sum 
i=1

( - \widetilde zi)\widetilde vki  - z0v
k
0

\bigm| \bigm| \bigm| \bigm| \bigm| 
=
z0v

k
0

\| \bfitz \| 

\bigm| \bigm| \bigm| 1 + \langle z - 1
0 \bfitz , (vk0 )

 - 1\bfitv k\rangle  - \langle z - 1
0 ( - \widetilde \bfitz ), (vk0 ) - 1\widetilde \bfitv k\rangle  - 1

\bigm| \bigm| \bigm| 
=

z0
\| \bfitz \| 

\Bigl( 
1 + \langle z - 1

0 \bfitz , (vk0 )
 - 1\bfitv k\rangle  - \langle z - 1

0 ( - \widetilde \bfitz ), (vk0 ) - 1\widetilde \bfitv k\rangle  - 1
\Bigr) 
vk0 ,

(3.16)
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1324 LIN, LINDSTROM, LOUREN\c CO, AND PONG

where the last equality holds as \| z - 1
0 \bfitz \| = 1, \| (vk0 ) - 1\bfitv k\| = 1 and \langle z - 1

0 \widetilde \bfitz , (vk0 ) - 1\widetilde \bfitv k\rangle \geq 1,
thanks to (3.14), (3.15), and Lemma 3.1 applied with \bfitzeta = - z - 1

0 \widetilde \bfitz .
Let \bfitf be defined as in (3.4). We consider two cases:
(I) \langle \bfitf ,\bfitv k\rangle \geq 0 for all sufficiently large k.
(II) \langle \bfitf ,\bfitv k\rangle < 0 infinitely often.
(I) By passing to a further subsequence, we may assume that \langle \bfitf ,\bfitv k\rangle \geq 0 for all

k. In this case, if we define

\bfitQ = \bfitI m+n  - \bfitz \bfitz \top 

\| \bfitz \| 2
 - \bfitf \bfitf \top 

\| \bfitf \| 2
,

where \bfitf is as in (3.4), then we see from Lemma 2.2 and (3.14) that

\| \bfitu k  - \bfitw k\| = \| \bfitQ \bfitv k\| = vk0

\bigm\| \bigm\| \bigm\| \bigm\| \bfitQ \biggl[ (vk0 ) - 1\bfitv k

(vk0 )
 - 1\widetilde \bfitv k

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
(a)
= vk0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfitQ 
\biggl[ 
(vk0 )

 - 1\bfitv k

(vk0 )
 - 1\widetilde \bfitv k

\biggr] 
 - \bfitQ 

\biggl[ 
 - z - 1

0 \bfitz 

\bfitalpha \circ (z0\widetilde \bfitz  - 1)

\biggr] 
\underbrace{}  \underbrace{}  

z0\bfitf 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq vk0

\Bigl[ 
\| (vk0 ) - 1\bfitv k + z - 1

0 \bfitz \| + \| (vk0 ) - 1\widetilde \bfitv k  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| 
\Bigr] 
,

(3.17)

where (a) holds because \bfitQ \bfitf = 0 (an identity which is clear from the definitions).
Next, in view of (3.14), we can apply Lemma 3.2 to obtain C1 > 0 and \epsilon 1 \in (0,1)

so that (3.3) holds with \bfitzeta = - z - 1
0 \bfitz , i.e.,

1 + \langle z - 1
0 \bfitz ,\bfitomega \rangle \geq C1\| \bfitomega + z - 1

0 \bfitz \| 2

whenever \| \bfitomega + z - 1
0 \bfitz \| \leq \epsilon 1 and \| \bfitomega \| = 1. On the other hand, in view of the positivity

of 1 + \langle z - 1
0 \bfitz ,\bfitomega \rangle when \| \bfitomega \| = 1 and \bfitomega \not = - z - 1

0 \bfitz (see Lemma 3.2), we know that

C2 := inf
\| \bfitomega \| =1

\{ 1 + \langle z - 1
0 \bfitz ,\bfitomega \rangle | \| \bfitomega + z - 1

0 \bfitz \| \geq \epsilon 1\} \in (0,\infty ).

This together with the fact \| z - 1
0 \bfitz \| = 1 (see (3.14)) implies that

1 + \langle z - 1
0 \bfitz ,\bfitomega \rangle \geq C2 \geq 0.25C2\| \bfitomega + z - 1

0 \bfitz \| 2

whenever \| \bfitomega + z - 1
0 \bfitz \| \geq \epsilon 1 and \| \bfitomega \| = 1. We thus have (with C3 :=min\{ C1,C2/4\} )

1 + \langle z - 1
0 \bfitz ,\bfitomega \rangle \geq C3\| \bfitomega + z - 1

0 \bfitz \| 2 whenever \| \bfitomega \| = 1.(3.18)

In addition, noting (3.14) again, we can apply Lemma 3.1 with \bfitzeta =  - z - 1
0 \widetilde \bfitz \in 

int\BbbR n
 - to obtain C4 > 0 and \epsilon > 0 so that (3.2) holds with \widetilde \bfitzeta =\bfitalpha \circ (z0\widetilde \bfitz  - 1), i.e.,

 - 1 + \langle z - 1
0 \widetilde \bfitz ,\bfitomega \rangle \geq C4\| \bfitomega  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| 2(3.19)

whenever \| \bfitomega  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| \leq \epsilon , \bfitomega \in int\BbbR n
+ and

\prod n
i=1 \omega 

\alpha i
i = 1.

Furthermore, consider h :\BbbR n \rightarrow \BbbR \cup \{ \infty \} defined by

h(\bfitomega ) =

\left\{     
\langle z - 1

0 \widetilde \bfitz ,\bfitomega \rangle  - 1

\| \bfitomega  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| 
if\| \bfitomega  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| \geq \epsilon , \bfitomega \in \Upsilon ,

\infty otherwise,

(3.20)
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POWER CONE ERROR BOUNDS 1325

where \Upsilon = \{ \bfitomega \in \BbbR n
+ | 
\prod n

i=1 \omega 
\alpha i
i = 1\} . Then we have

lim inf
\| \bfitomega \| \rightarrow \infty 

h(\bfitomega ) = lim inf
\| \bfitomega \| \rightarrow \infty ,\bfitomega \in \Upsilon 

\langle z - 1
0 \widetilde \bfitz ,\bfitomega \rangle  - 1

\| \bfitomega  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| 

\geq lim inf
\| \bfitomega \| \rightarrow \infty ,\bfitomega \in \BbbR n

+

\langle z - 1
0 \widetilde \bfitz ,\bfitomega \rangle  - 1

\| \bfitomega  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| 

(a)

\geq inf
\| \bfitlambda \| =1,\bfitlambda \in \BbbR n

+

\langle z - 1
0 \widetilde \bfitz ,\bfitlambda \rangle 

(b)

\geq min
1\leq i\leq n

z - 1
0 \widetilde zi > 0.

Here (a) may be verified by multiplying both numerator and denominator of the left
side by 1/\| \bfitomega \| ; (b) holds because z - 1

0 \widetilde zi > 0 for all i (see (3.14)). Since h in (3.20) is
also lower semicontinuous on any compact set and is always positive,5 it must then
hold that C5 := inf h> 0. In particular, this means that

 - 1 + \langle z - 1
0 \widetilde \bfitz ,\bfitomega \rangle \geq C5\| \bfitomega  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| (3.21)

whenever \| \bfitomega  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| \geq \epsilon , \bfitomega \in int\BbbR n
+ and

\prod n
i=1 \omega 

\alpha i
i = 1.

By passing to suitable subsequences, we will end up with one of the following two
cases:
Case 1: \| (vk0 ) - 1\widetilde \bfitv k  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| \leq \epsilon for all k. Then we have from (3.18) (with

\bfitomega = (vk0 )
 - 1\bfitv k) and (3.19) (with \bfitomega = (vk0 )

 - 1\widetilde \bfitv k) that for these k

1 + \langle z - 1
0 \bfitz , (vk0 )

 - 1\bfitv k\rangle  - \langle z - 1
0 ( - \widetilde \bfitz ), (vk0 ) - 1\widetilde \bfitv k\rangle  - 1

\geq min\{ C3,C4\} (\| (vk0 ) - 1\bfitv k + z - 1
0 \bfitz \| 2 + \| (vk0 ) - 1\widetilde \bfitv k  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| 2).

Combining this with (3.16) and (3.17), we see further that

\| \bfitv k  - \bfitw k\| 

\geq z0
\| \bfitz \| 

min\{ C3,C4\} (\| (vk0 ) - 1\bfitv k + z - 1
0 \bfitz \| 2 + \| (vk0 ) - 1\widetilde \bfitv k  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| 2)vk0

\geq z0
2\| \bfitz \| 

min\{ C3,C4\} (\| (vk0 ) - 1\bfitv k + z - 1
0 \bfitz \| + \| (vk0 ) - 1\widetilde \bfitv k  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| )2vk0

\geq z0min\{ C3,C4\} 
2\| \bfitz \| vk0

\| \bfitu k  - \bfitw k\| 2 \geq z0min\{ C3,C4\} 
2\| \bfitz \| \eta 

\| \bfitu k  - \bfitw k\| 2,

where the last inequality holds because \bfitv k \in \scrB (\eta ). The above display contra-
dicts (3.13), and hence Case 1 cannot happen.

Case 2: \| (vk0 ) - 1\widetilde \bfitv k  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| \geq \epsilon for all k. Then we have from (3.18) and (3.21)
that for these k

1 + \langle z - 1
0 \bfitz , (vk0 )

 - 1\bfitv k\rangle  - \langle z - 1
0 ( - \widetilde \bfitz ), (vk0 ) - 1\widetilde \bfitv k\rangle  - 1

\geq min\{ C3,C5\} (\| (vk0 ) - 1\bfitv k + z - 1
0 \bfitz \| 2 + \| (vk0 ) - 1\widetilde \bfitv k  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| ).

Using this together with (3.16), we deduce that for all large k,

\| \bfitv k  - \bfitw k\| 

\geq z0min\{ C3,C5\} 
\| \bfitz \| 

(\| (vk0 ) - 1\bfitv k + z - 1
0 \bfitz \| 2 + \| (vk0 ) - 1\widetilde \bfitv k  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| )vk0 .

5The positivity can be seen by applying Lemma 3.1 with \bfitzeta = - z - 1
0 \widetilde \bfitz .
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1326 LIN, LINDSTROM, LOUREN\c CO, AND PONG

This implies that

\| (vk0 ) - 1\bfitv k + z - 1
0 \bfitz \| \leq M1

\sqrt{} 
(vk0 )

 - 1\| \bfitv k  - \bfitw k\| ,

\| (vk0 ) - 1\widetilde \bfitv k  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| \leq M1(v
k
0 )

 - 1\| \bfitv k  - \bfitw k\| ,
(3.22)

whereM1 :=max\{ ( z0
\| \bfitz \| min\{ C3,C5\} ) - 1, ( z0

\| \bfitz \| min\{ C3,C5\} ) - 1/2\} . Using (3.22)

together with (3.17), we obtain that

\| \bfitu k  - \bfitw k\| \leq M1v
k
0

\biggl[ \sqrt{} 
(vk0 )

 - 1\| \bfitv k  - \bfitw k\| + (vk0 )
 - 1\| \bfitv k  - \bfitw k\| 

\biggr] 
(a)

\leq M1
\surd 
\eta 
\sqrt{} 
\| \bfitv k  - \bfitw k\| +M1\| \bfitv k  - \bfitw k\| 

(b)

\leq 3M1
\surd 
\eta 
\sqrt{} 
\| \bfitv k  - \bfitw k\| ,

(3.23)

where (a) holds since \bfitv k \in \scrB (\eta ) wherefore vk0 \leq \eta , and (b) holds because
\| \bfitw k\| \leq \| \bfitv k\| \leq \eta (because the projection onto \scrK is nonexpansive and 0\in \scrK ),
wherefore

\| \bfitw k  - \bfitv k\| =
\sqrt{} 
\| \bfitw k  - \bfitv k\| 

\sqrt{} 
\| \bfitw k  - \bfitv k\| \leq 2

\surd 
\eta 
\sqrt{} 

\| \bfitw k  - \bfitv k\| .

Altogether, (3.23) contradicts (3.13), and hence Case 2 cannot happen.
Summarizing the above discussions, we see that Case (I) cannot happen.

(II) By passing to a further subsequence, we may assume that \langle \bfitf ,\bfitv k\rangle < 0 for all
k. This together with the definition of \bfitf gives

vk0
z0

[\langle  - z - 1
0 \bfitz , (vk0 )

 - 1\bfitv k\rangle + \langle \bfitalpha \circ (z0\widetilde \bfitz  - 1), (vk0 )
 - 1\widetilde \bfitv k\rangle ]< 0.

Since
vk
0

z0
> 0, we deduce that \langle  - z - 1

0 \bfitz , (vk0 )
 - 1\bfitv k\rangle + \langle \bfitalpha \circ (z0\widetilde \bfitz  - 1), (vk0 )

 - 1\widetilde \bfitv k\rangle < 0 for all
k. Then it must hold that

lim
k\rightarrow \infty 

\| (vk0 ) - 1\bfitv k + z - 1
0 \bfitz \| + \| (vk0 ) - 1\widetilde \bfitv k  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| \not = 0;

otherwise, we have (vk0 )
 - 1\bfitv k \rightarrow  - z - 1

0 \bfitz and (vk0 )
 - 1\widetilde \bfitv k \rightarrow \bfitalpha \circ (z0\widetilde \bfitz  - 1), which further

gives \langle  - z - 1
0 \bfitz , (vk0 )

 - 1\bfitv k\rangle + \langle \bfitalpha \circ (z0\widetilde \bfitz  - 1), (vk0 )
 - 1\widetilde \bfitv k\rangle \rightarrow \| z - 1

0 \bfitz \| 2 + \| \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| 2 =
\| z0\bfitf \| 2 > 0, a contradiction.

Consequently, there exists \epsilon > 0 such that for all sufficiently large k,

\| (vk0 ) - 1\bfitv k + z - 1
0 \bfitz \| + \| (vk0 ) - 1\widetilde \bfitv k  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| \geq \epsilon .(3.24)

Consider the function G :\BbbR m+n \rightarrow \BbbR \cup \{ \infty \} defined by

G(\bfitxi ,\bfitomega ) :=

\left\{     
| \langle z - 1

0 \bfitz ,\bfitxi \rangle + \langle z - 1
0 \widetilde \bfitz ,\bfitomega \rangle | \sqrt{} 

1 + \| \bfitomega \| 2
if (\bfitxi ,\bfitomega )\in \Xi , \| \bfitxi \| = 1, and\bfitomega \in \Upsilon ,

\infty otherwise,

where \Upsilon = \{ \bfitomega \in \BbbR n
+ | 
\prod n

i=1 \omega 
\alpha i
i = 1\} and \Xi = \{ (\bfitxi ,\bfitomega ) | \| \bfitxi +z - 1

0 \bfitz \| +\| \bfitomega  - \bfitalpha \circ (z0\widetilde \bfitz  - 1)\| \geq 
\epsilon \} . Since \langle z - 1

0 \bfitz ,\bfitxi \rangle + \langle z - 1
0 \widetilde \bfitz ,\bfitomega \rangle = 1+ \langle z - 1

0 \bfitz ,\bfitxi \rangle  - \langle z - 1
0 ( - \widetilde \bfitz ),\bfitomega \rangle  - 1, we see from (3.14),
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POWER CONE ERROR BOUNDS 1327

(3.24), and Lemmas 3.2 and 3.1 that G is never zero. Moreover, it is clearly lower
semicontinuous on any compact set, and

lim inf
\| (\bfitxi ,\bfitomega )\| \rightarrow \infty 

G(\bfitxi ,\bfitomega ) = lim inf
\| \bfitomega \| \rightarrow \infty ,\bfitomega \in \Upsilon 

| \langle z - 1
0 \widetilde \bfitz ,\bfitomega \rangle | \sqrt{} 
1 + \| \bfitomega \| 2

(a)

\geq inf
\| \bfitlambda \| =1,\bfitlambda \in \BbbR n

+

| \langle z - 1
0 \widetilde \bfitz ,\bfitlambda \rangle | (b)\geq min

i
| z - 1

0 \widetilde zi| > 0,

where (a) may be verified by multiplying numerator and denominator by 1/\| \bfitomega \| and
(b) holds since z - 1

0 \widetilde zi > 0 for all i. Thus, C6 := infG> 0, and we have for all large k,

\| \bfitv k  - \bfitw k\| 
\| \bfitu k  - \bfitw k\| 

(a)
=

\| \bfitv k  - \bfitw k\| 
\| \bfitw k\| 

(b)

\geq \| \bfitv k  - \bfitw k\| 
\| \bfitv k\| 

(c)
=

z0
\| \bfitz \| 

| \langle z - 1
0 \bfitz , (vk0 )

 - 1\bfitv k\rangle + \langle z - 1
0 \widetilde \bfitz , (vk0 ) - 1\widetilde \bfitv k\rangle | vk0\sqrt{} 

(vk0 )
2 + \| \widetilde \bfitv k\| 2

=
z0
\| \bfitz \| 

| \langle z - 1
0 \bfitz , (vk0 )

 - 1\bfitv k\rangle + \langle z - 1
0 \widetilde \bfitz , (vk0 ) - 1\widetilde \bfitv k\rangle | \sqrt{} 

1 + \| (vk0 ) - 1\widetilde \bfitv k\| 2

(d)

\geq C6z0
\| \bfitz \| 

,

where (a) follows from Lemma 2.2, which states that \bfitu k = 0 in Case (II), (b) holds
because the projection onto the cone is nonexpansive and 0 is in the cone, (c) follows
from (3.16), and (d) follows from (3.24), (3.15), and the definitions of G and C6. The
above display contradicts (3.13). Thus, Case (II) also cannot happen.

Summarizing the above, we conclude that (3.13) cannot happen. Thus, in view
of [19, Lemma 3.12], we must indeed have \gamma \bfitz ,\eta \in (0,\infty ] and that the desired error
bound follows from [19, Theorem 3.10].

Remark 3.6 (optimality of the error bound in Theorem 3.5). Let \bfitz \in \partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} 

with \bfitz \not = 0 and let \scrF r := \{ \bfitz \} \bot \cap \scrP \bfitalpha 

m,n. Then necessarily \widetilde zi > 0 for all i. Moreover,
we also know from the definition that \alpha i > 0 for all i. Now, consider the continuous
function \bfitq : (0, \alpha 1)\rightarrow \{ \bfitz \} \bot defined by \epsilon \mapsto \rightarrow \bfitq \epsilon := (\=\bfitq \epsilon ,\widetilde \bfitq \epsilon ) where

\=\bfitq \epsilon = - \bfitz /\| \bfitz \| 2, (\widetilde \bfitq \epsilon )1 = (\alpha 1  - \epsilon )\widetilde z - 1
1 , (\widetilde \bfitq \epsilon )2 = (\alpha 2 + \epsilon )\widetilde z - 1

2 , and(\widetilde \bfitq \epsilon )i = \alpha i\widetilde z - 1
i \forall i\geq 3.

Notice that \bfitq \epsilon only differs from the \bfitf in (3.4) in two entries. One can check that
\langle \bfitz ,\bfitq \epsilon \rangle = 0 and \bfitq \epsilon \rightarrow \bfitf \in \scrF r\setminus \{ 0\} as \epsilon \downarrow 0. Moreover, we have

n\prod 
i=1

(\widetilde \bfitq \epsilon )
\alpha i
i = (\alpha 1  - \epsilon )\alpha 1(\alpha 2 + \epsilon )\alpha 2\widetilde z - \alpha 1

1 \widetilde z - \alpha 2
2

n\prod 
i=3

\biggl( 
\alpha i\widetilde zi
\biggr) \alpha i

=

\biggl( 
1 - \epsilon 

\alpha 1

\biggr) \alpha 1
\biggl( 
1 +

\epsilon 

\alpha 2

\biggr) \alpha 2 n\prod 
i=1

\biggl( 
\alpha i\widetilde zi
\biggr) \alpha i

(a)
=

\biggl( 
1 - \epsilon 

\alpha 1

\biggr) \alpha 1
\biggl( 
1 +

\epsilon 

\alpha 2

\biggr) \alpha 2

\| \bfitz \|  - 1

=

\biggl( 
1 - \epsilon 

\alpha 1

\biggr) \alpha 1
\biggl( 
1 +

\epsilon 

\alpha 2

\biggr) \alpha 2

\| \=\bfitq \epsilon \| ,

where (a) holds because \bfitz \in \partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} with \bfitz \not = 0. In view of this, if we define a

continuous function \bfitp : (0, \alpha 1)\rightarrow \scrP \bfitalpha 

m,n by \epsilon \mapsto \rightarrow \bfitp \epsilon := (\=\bfitp \epsilon ,\widetilde \bfitp \epsilon ) where

\=\bfitp \epsilon := - 
\biggl( 
1 - \epsilon 

\alpha 1

\biggr) \alpha 1
\biggl( 
1 +

\epsilon 

\alpha 2

\biggr) \alpha 2 \bfitz 

\| \bfitz \| 2
and \widetilde \bfitp \epsilon := \widetilde \bfitq \epsilon ,
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1328 LIN, LINDSTROM, LOUREN\c CO, AND PONG

then it is clear that \bfitp \epsilon \in \scrP \bfitalpha 

m,n, and we can compute that

dist(\bfitq \epsilon ,\scrP 
\bfitalpha 

m,n)\leq \| \bfitq \epsilon  - \bfitp \epsilon \| =
1

\| \bfitz \| 

\bigm| \bigm| \bigm| \bigm| \biggl( 1 - \epsilon 

\alpha 1

\biggr) \alpha 1
\biggl( 
1 +

\epsilon 

\alpha 2

\biggr) \alpha 2

 - 1

\bigm| \bigm| \bigm| \bigm| 
=

1

\| \bfitz \| 
\bigm| \bigm| (1 - \epsilon +O(\epsilon 2))(1 + \epsilon +O(\epsilon 2)) - 1

\bigm| \bigm| =O(\epsilon 2).

(3.25)

Next, we estimate dist(\bfitq \epsilon ,\scrF r). Notice that \langle \bfitq \epsilon ,\bfitf \rangle > 0 for all sufficiently small \epsilon 
because \bfitq \epsilon \rightarrow \bfitf . Hence, using the definition of \scrF r and Lemma 2.2, we see that

dist(\bfitq \epsilon ,\scrF r)
2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bfitq \epsilon  - 
\langle \bfitq \epsilon ,\bfitf \rangle 
\| \bfitf \| 2

\bfitf 

\bigm\| \bigm\| \bigm\| \bigm\| 2 = \| \bfitq \epsilon \| 2  - 
(\langle \bfitq \epsilon ,\bfitf \rangle )2

\| \bfitf \| 2
.

A direct computation then shows that

\| \bfitq \epsilon \| 2 =
1

\| \bfitz \| 2
+ (\alpha 1  - \epsilon )2\widetilde z - 2

1 + (\alpha 2 + \epsilon )2\widetilde z - 2
2 +

n\sum 
i=3

\alpha 2
i \widetilde z - 2

i

=
1

\| \bfitz \| 2
+

n\sum 
i=1

\alpha 2
i \widetilde z - 2

i + 2\epsilon (\alpha 2\widetilde z - 2
2  - \alpha 1\widetilde z - 2

1 ) + \epsilon 2(\widetilde z - 2
1 + \widetilde z - 2

2 )

= \| \bfitf \| 2 + 2\epsilon (\alpha 2\widetilde z - 2
2  - \alpha 1\widetilde z - 2

1 ) + \epsilon 2(\widetilde z - 2
1 + \widetilde z - 2

2 ),

where the last equality follows from the definition of \bfitf in (3.4). Furthermore,

(\langle \bfitq \epsilon ,\bfitf \rangle )2 =

\Biggl( 
1

\| \bfitz \| 2
+ \alpha 1(\alpha 1  - \epsilon )\widetilde z - 2

1 + \alpha 2(\alpha 2 + \epsilon )\widetilde z - 2
2 +

n\sum 
i=3

\alpha 2
i \widetilde z - 2

i

\Biggr) 2

=
\bigl[ 
\| \bfitf \| 2 + \epsilon (\alpha 2\widetilde z - 2

2  - \alpha 1\widetilde z - 2
1 )
\bigr] 2

= \| \bfitf \| 4 + 2\epsilon \| \bfitf \| 2(\alpha 2\widetilde z - 2
2  - \alpha 1\widetilde z - 2

1 ) + \epsilon 2(\alpha 2\widetilde z - 2
2  - \alpha 1\widetilde z - 2

1 )2.

Combining the above three identities, we deduce further that

dist(\bfitq \epsilon ,\scrF r)
2 = \epsilon 2

\biggl( \widetilde z - 2
1 + \widetilde z - 2

2  - (\alpha 2\widetilde z - 2
2  - \alpha 1\widetilde z - 2

1 )2

\| \bfitf \| 2

\biggr) 
\geq \epsilon 2

\biggl( \widetilde z - 2
1 + \widetilde z - 2

2  - (\alpha 2\widetilde z - 2
2  - \alpha 1\widetilde z - 2

1 )2

\alpha 2
2\widetilde z - 2

2 + \alpha 2
1\widetilde z - 2

1

\biggr) 
,(3.26)

where the inequality follows from the definition of \bfitf . Now, notice that in (3.26), the
scalar term is strictly greater than zero, because

(\alpha 2\widetilde z - 2
2  - \alpha 1\widetilde z - 2

1 )2 < (\alpha 2\widetilde z - 2
2 + \alpha 1\widetilde z - 2

1 )2 \leq (\widetilde z - 2
1 + \widetilde z - 2

2 )(\alpha 2
2\widetilde z - 2

2 + \alpha 2
1\widetilde z - 2

1 ),

where the strict inequality holds because \alpha i\widetilde z - 2
i > 0 for i= 1, 2, and the last inequality

follows from the Cauchy--Schwarz inequality. This together with (3.26) shows that

dist(\bfitq \epsilon ,\scrF r) = \Omega (\epsilon ). Combining this with (3.25), we obtain limsup\epsilon \downarrow 0
dist(\bfitq \epsilon ,\scrP 

\bfitalpha 

m,n)
1
2

dist(\bfitq \epsilon ,\scrF \mathrm{r})
<

\infty . Thus | \cdot | 12 satisfies the asymptotic optimality criterion (cf. [20, Definition 3.1])
for \scrP \bfitalpha 

m,n and \bfitz , which implies that the error bound is optimal in the sense of [20,
Theorem 3.2(b)].

We now look at the faces that are exposed by \bfitz \in \partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} with \bfitz = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



POWER CONE ERROR BOUNDS 1329

Theorem 3.7. Let \bfitz \in \partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} with \bfitz = 0 and let \scrF \bfitz := \{ \bfitz \} \bot \cap \scrP \bfitalpha 

m,n. Let
\scrI := \{ i | \widetilde zi > 0\} ,6 \eta > 0 and define \beta :=

\sum 
i\in \scrI \alpha i and

\gamma \bfitz ,\eta :=inf
\bfitv 

\biggl\{ 
\| \bfitv  - \bfitw \| \beta 

\| \bfitu  - \bfitw \| 

\bigm| \bigm| \bigm| \bigm| \bfitv \in \partial \scrP \bfitalpha 

m,n \cap \scrB (\eta )\setminus \scrF \bfitz , \bfitw = P\{ \bfitz \} \bot (\bfitv ),
\bfitu = P\scrF \bfitz (\bfitw ), \bfitu \not =\bfitw 

\biggr\} 
.(3.27)

Then it holds that \gamma \bfitz ,\eta \in (0,\infty ] and that

dist(\bfitq ,\scrF \bfitz )\leq max\{ 2\eta 1 - \beta ,2\gamma  - 1
\bfitz ,\eta \} \cdot dist(\bfitq ,\scrP 

\bfitalpha 

m,n)
\beta whenever \bfitq \in \{ \bfitz \} \bot \cap \scrB (\eta ).

Proof. In view of [19, Theorem 3.10], we need only show that \gamma \bfitz ,\eta > 0. To that
end, let \bfitv \in \partial \scrP \bfitalpha 

m,n \cap \scrB (\eta )\setminus \scrF \bfitz , \bfitw = P\{ \bfitz \} \bot (\bfitv ), \bfitu = P\scrF \bfitz (\bfitw ), and \bfitu \not =\bfitw . Then a direct
computation shows that

\| \bfitw  - \bfitv \| = 1

\| \bfitz \| 
| \langle \bfitz ,\bfitv \rangle | (a)= 1

\| \bfitz \| 
\sum 
i\in \scrI 
\widetilde zi\widetilde vi (b)

\geq mini\in \scrI \widetilde zi
\| \bfitz \| 

\sum 
i\in \scrI 
\widetilde vi (c)

\geq mini\in \scrI \widetilde zi
\| \bfitz \| 

\| \widetilde \bfitv \scrI \| ,(3.28)

where (a), (b), and (c) hold because \widetilde vi \geq 0 and \widetilde zi > 0 for all i \in \scrI , with \| \widetilde \bfitv \scrI \| :=\sqrt{} \sum 
i\in \scrI \widetilde v2i (note that \scrI \not = \emptyset , thanks to \bfitz = 0 and \bfitz \not = 0). Next, notice that \bfitw =

\bfitv  - \langle \bfitz ,\bfitv \rangle 
\| \bfitz \| 2 \bfitz . Using this and the definitions of \bfitz and \scrI , we deduce that

\bfitw = \bfitv , \widetilde wi = \widetilde vi  - \widetilde zi
\| \bfitz \| 2

\left(  \sum 
j\in \scrI 

\widetilde zj\widetilde vj
\right)  \forall i\in \scrI and \widetilde wi = \widetilde vi \geq 0 \forall i /\in \scrI .(3.29)

In view of this and the definition of \scrF \bfitz in (3.5), we see that \widetilde ui = \widetilde wi whenever i /\in \scrI ,
and hence

\| \bfitw  - \bfitu \| =
\sqrt{} 

\| \bfitw \| 2 +
\sum 
i\in \scrI 

\widetilde w2
i \leq 

\sqrt{} 
\| \bfitv \| 2 + n(1 +

\surd 
n)2\| \widetilde \bfitv \scrI \| 2,(3.30)

where the inequality follows from (3.29) and the fact that for each i\in \scrI ,

| \widetilde wi| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widetilde vi  - \widetilde zi
\| \bfitz \| 2

\left(  \sum 
j\in \scrI 

\widetilde zj\widetilde vj
\right)  \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 

\left(  1 +
| \widetilde zi| 
\| \bfitz \| 2

\sum 
j\in \scrI 

| \widetilde zj | 
\right)  \| \widetilde \bfitv \scrI \| 

\leq 
\biggl( 
1 +

\surd 
n| \widetilde zi| 
\| \bfitz \| 

\biggr) 
\| \widetilde \bfitv \scrI \| \leq (1 +

\surd 
n)\| \widetilde \bfitv \scrI \| .

Next, note that we have

\| \bfitv \| =
n\prod 

i=1

(\widetilde vi)\alpha i =
\prod 
i/\in \scrI 

\widetilde v\alpha i
i \cdot 

\prod 
i\in \scrI 
\widetilde v\alpha i
i \leq 

\prod 
i/\in \scrI 

\eta \alpha i \cdot 
\prod 
i\in \scrI 

\| \widetilde \bfitv \scrI \| \alpha i = \eta 1 - \beta \| \widetilde \bfitv \scrI \| \beta ,(3.31)

where the inequality holds because \bfitv \in \scrB (\eta ). Combining (3.28), (3.30), and (3.31),
we deduce

\| \bfitw  - \bfitu \| \leq 
\sqrt{} 
\| \bfitv \| 2 + n(1 +

\surd 
n)2\| \widetilde \bfitv \scrI \| 2 \leq \| \bfitv \| + (n+

\surd 
n)\| \widetilde \bfitv \scrI \| 

\leq \eta 1 - \beta \| \widetilde \bfitv \scrI \| \beta + (n+
\surd 
n)\| \widetilde \bfitv \scrI \| = (\eta 1 - \beta + (n+

\surd 
n)\| \widetilde \bfitv \scrI \| 1 - \beta )\| \widetilde \bfitv \scrI \| \beta 

(a)

\leq \eta 1 - \beta (n+ 1+
\surd 
n)\| \widetilde \bfitv \scrI \| \beta 

(b)

\leq \eta 1 - \beta (n+ 1+
\surd 
n)\| \bfitz \| \beta 

(mini\in \scrI \widetilde zi)\beta \| \bfitw  - \bfitv \| \beta .

6Since \bfitz = 0 and \bfitz \in \partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} , we must have \emptyset \not = \scrI \subsetneq \{ 1,2, . . . , n\} .
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1330 LIN, LINDSTROM, LOUREN\c CO, AND PONG

Here (a) holds since \bfitv \in \scrB (\eta ) and \beta \in (0,1); (b) is true because of (3.28). Thus,

\gamma \bfitz ,\eta \geq (mini\in \scrI \widetilde zi)\beta 
\eta 1 - \beta (n+1+

\surd 
n)\| \bfitz \| \beta > 0, and the desired error bound follows from [19, Theorem

3.10].

Remark 3.8 (optimality of the error bound in Theorem 3.7). Let \bfitz \in \partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} 

with \bfitz = 0 and let \scrF \bfitz := \{ \bfitz \} \bot \cap \scrP \bfitalpha 

m,n. Let \scrI := \{ i | \widetilde zi > 0\} \not = \emptyset and define

\beta :=
\sum 
i\in \scrI 

\alpha i \in (0,1).

Fix any \bfitu \in \BbbR m with \| \bfitu \| = 1 and define the continuous function \bfitq : (0,1)\rightarrow \{ \bfitz \} \bot by
\epsilon \mapsto \rightarrow \bfitq \epsilon := (\=\bfitq \epsilon ,\widetilde \bfitq \epsilon ), where

\=\bfitq \epsilon = \epsilon \beta \bfitu , (\widetilde \bfitq \epsilon )i = 0 \forall i\in \scrI , and(\widetilde \bfitq \epsilon )i = 1\forall i /\in \scrI .

It is clear that for all \epsilon , \langle \bfitz ,\bfitq \epsilon \rangle = 0 and dist(\bfitq \epsilon ,\scrF \bfitz ) \rightarrow 0 as \epsilon \downarrow 0. Now, define the
function \bfitp : (0,1)\rightarrow \scrP \bfitalpha 

m,n by \epsilon \mapsto \rightarrow \bfitp \epsilon := (\=\bfitp \epsilon ,\widetilde \bfitp \epsilon ), where

\=\bfitp \epsilon = \epsilon \beta \bfitu , (\widetilde \bfitp \epsilon )i = \epsilon \forall i\in \scrI , and(\widetilde \bfitp \epsilon )i = 1\forall i /\in \scrI .

Clearly \bfitp \epsilon lies in \scrP \bfitalpha 

m,n, and we have that dist(\bfitq \epsilon ,\scrP 
\bfitalpha 

m,n) \leq \| \bfitq \epsilon  - \bfitp \epsilon \| \leq | \scrI | \cdot \epsilon .
On the other hand, we have in view of (3.5) that dist(\bfitq \epsilon ,\scrF \bfitz ) = \epsilon \beta > 0. Hence,

limsup\epsilon \downarrow 0
dist(\bfitq \epsilon ,\scrP 

\bfitalpha 

m,n)
\beta 

dist(\bfitq \epsilon ,\scrF \bfitz )
\leq | \scrI | \beta < \infty . Thus | \cdot | \beta satisfies the asymptotic optimality

criterion (cf. [20, Definition 3.1]) for \scrP \bfitalpha 

m,n and \bfitz , which implies that the error bound
is optimal in the sense of [20, Theorem 3.2(b)].

Using Theorems 3.5 and 3.7 together with [19, Lemma 3.9], we have the following
result concerning 1-FRFs.

Corollary 3.9. Consider \scrP \bfitalpha 

m,n and its dual cone (\scrP \bfitalpha 

m,n)
\ast .

(i) Let \bfitz \in \partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} with \bfitz \not = 0 and let \scrF r := \{ \bfitz \} \bot \cap \scrP \bfitalpha 

m,n. Let \gamma \bfitz ,t be
defined as in (3.12). Then the function \psi \scrP \bfitalpha 

m,n,\bfitz 
:\BbbR + \times \BbbR + \rightarrow \BbbR + given by

\psi \scrP \bfitalpha 
m,n,\bfitz 

(\epsilon , t):=max\{ \epsilon , \epsilon /\| \bfitz \| \} +max\{ 2
\surd 
t,2\gamma  - 1

\bfitz ,t\} (\epsilon +max\{ \epsilon , \epsilon /\| \bfitz \| \} ) 1
2

(3.32)

is a one-step facial residual function for \scrP \bfitalpha 

m,n and \bfitz .

(ii) Let \bfitz \in \partial (\scrP \bfitalpha 

m,n)
\ast \setminus \{ 0\} with \bfitz = 0 and let \scrF \bfitz := \{ \bfitz \} \bot \cap \scrP \bfitalpha 

m,n. Let \gamma \bfitz ,t be
defined as in (3.27), where \beta :=

\sum 
i:\widetilde zi>0\alpha i. Then the function \psi \scrP \bfitalpha 

m,n,\bfitz 
:

\BbbR + \times \BbbR + \rightarrow \BbbR + given by

\psi \scrP \bfitalpha 
m,n,\bfitz 

(\epsilon , t):=max\{ \epsilon , \epsilon /\| \bfitz \| \} +max\{ 2t1 - \beta ,2\gamma  - 1
\bfitz ,t\} (\epsilon +max\{ \epsilon , \epsilon /\| \bfitz \| \} )\beta 

(3.33)

is a one-step facial residual function for \scrP \bfitalpha 

m,n and \bfitz .

We now collect these results to show the tight error bounds for \scrP \bfitalpha 

m,n.

Theorem 3.10 (error bounds for the generalized power cone and their optimal-
ity). Consider \scrP \bfitalpha 

m,n and its dual cone (\scrP \bfitalpha 

m,n)
\ast . Let \scrL \subseteq \BbbR m+n be a subspace and

\bfita \in \BbbR m+n be given. Suppose that (\scrL + \bfita )\cap \scrP \bfitalpha 

m,n \not = \emptyset . Then the following items hold:
(i) dPPS(\scrP 

\bfitalpha 

m,n,\scrL + \bfita )\leq 1.

(ii) If dPPS(\scrP 
\bfitalpha 

m,n,\scrL + \bfita ) = 0, then a Lipschitzian error bound holds.
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POWER CONE ERROR BOUNDS 1331

(iii) If dPPS(\scrP 
\bfitalpha 

m,n,\scrL + \bfita ) = 1, consider the chain of faces \scrF \subsetneq \scrP \bfitalpha 

m,n with length
being 2.
(a) If \scrF =\scrF r, then a H\"olderian error bound with exponent 1/2 holds.
(b) If \scrF = \scrF \bfitz with \bfitz \in (\scrP \bfitalpha 

m,n)
\ast \cap \scrL \bot \cap \{ \bfita \} \bot , then a H\"olderian error bound

with exponent \beta :=
\sum 

i:\widetilde zi>0\alpha i holds.
(c) If \scrF = \{ 0\} , then a Lipschitzian error bound holds.

(iv) All these error bounds are the best in the sense stated in [20, Theorem 3.2(b)].

Proof. As is shown in section 3.1, all the proper exposed faces of the generalized
power cone are polyhedral. Then the process of facial reduction needs at most one
step to reach the PPS condition. Hence, dPPS(\scrP 

\bfitalpha 

m,n,\scrL +\bfita )\leq 1. This shows item (i).

If dPPS(\scrP 
\bfitalpha 

m,n,\scrL + \bfita ) = 0, i.e., (Feas) satisfies the PPS condition, then by [2,
Corollary 3], a Lipschitzian error bound holds. This shows item (ii).

Next, let dPPS(\scrP 
\bfitalpha 

m,n,\scrL +\bfita ) = 1; i.e., we need one step to reach the PPS condition.
In this case, the error bound depends on the exposed face \scrF that contains the feasible
region. If \scrF =\scrF r, then by Corollary 3.9 (i), we conclude that a H\"olderian error bound
with exponent 1/2 holds. Remark 3.6 implies that g = | \cdot | 12 satisfies the asymptotic
optimality criterion for \scrP \bfitalpha 

m,n and \bfitz with \bfitz \not = 0. Hence, by [20, Theorem 3.2], the
obtained H\"olderian error bound with exponent 1/2 is the best error bound.

If \scrF =\scrF \bfitz with \bfitz \in (\scrP \bfitalpha 

m,n)
\ast \cap \scrL \bot \cap \{ \bfita \} \bot , then using Corollary 3.9(ii), we conclude

that a H\"olderian error bound with exponent \beta :=
\sum 

i\in \scrI \alpha i holds, where \scrI = \{ i | \widetilde zi > 0\} .
The optimality of this error bound comes from Remark 3.8 and [20, Theorem 3.2].
If \scrF = \{ 0\} , which means the feasible region is \{ 0\} , then a Lipschitzian error bound
holds automatically and it is naturally tight; see [22, Proposition 27].

4. Application: Self-duality, homogeneity, irreducibility, and perfect-
ness of \bfscrP \bfitalpha 

\bfitm ,\bfitn . In this section, we consider the self-duality, homogeneity, irreducibil-

ity, and perfectness of \scrP \bfitalpha 

m,n. We first briefly explain the importance of those questions.
In what follows, we need the following concepts. We will denote by Aut (\scrK ) the

group of automorphisms of \scrK which are the linear bijections \bfitM : \scrE \rightarrow \scrE such that
\bfitM \scrK = \scrK . Then, the Lie algebra of Aut (\scrK ) denoted by LieAut (\scrK ) corresponds to
the linear maps \bfitL for which et\bfitL \in Aut (\scrK ) for all t\in \BbbR or, equivalently, is the tangent
space at the identity element when Aut (\scrK ) is seen as a Lie group.

Recall that a cone \scrK is called self-dual if there exists a positive definite matrix \bfitQ 
such that \bfitQ \scrK =\scrK \ast . This is equivalent to the existence of some inner product under
which \scrK becomes self-dual, e.g., [14, Proposition 1]. A cone is homogeneous if for
every \bfitx ,\bfity \in ri\scrK there is a matrix \bfitA \in Aut (\scrK ) such that \bfitA \bfitx = \bfity . A homogeneous
and self-dual cone is called symmetric [7].

If a closed convex cone \scrK can be expressed as a direct sum of two nonempty
and nontrivial sets \scrK 1,\scrK 2 \subset \scrK , i.e., \scrK = \scrK 1 + \scrK 2 with \scrK 1 \not = \{ 0\} ,\scrK 2 \not = \{ 0\} and
span (\scrK 1)\cap span (\scrK 2) = \{ 0\} , then \scrK is said to be reducible; it might not be immediately
obvious, but this forces \scrK 1 and \scrK 2 to be convex cones; see, e.g., [21, Lemma 3.2].
Otherwise, \scrK is said to be irreducible or indecomposable; see, e.g., [21, 1, 10].

4.1. Some theoretical context. It is relatively recent that the power cone
has been a subject of research in optimization. However, the power cone was first
considered in the 1950s by Max Koecher in the context of the so-called domains of
positivity; see [16]. More precisely, Koecher proposed a family of 3D cones in [16,
section 11,d)] which corresponds to \scrP \bfitalpha 

1,2, with \alpha \in (0,1). After that, the power cone
languished in relative obscurity inside the optimization community, although it was
discussed briefly in [42] and in [41] under the name Koecher cone. As indicated in
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1332 LIN, LINDSTROM, LOUREN\c CO, AND PONG

the introduction, several works helped to revitalize the interest in power cones by
showcasing modeling applications, algorithms, and software [5, 28, 37, 15, 34, 6].

When the power cone is bundled together in the class of ``nonsymmetric cones,"" it
might be interesting to take a step back and understand two points: (a) how exactly
the power cone fails to be symmetric, and (b) why one should care about this.

Starting from the latter, what is special about symmetric cones is that they
are supported by a powerful theory of Jordan algebras [7]. Being a symmetric cone
is a very favorable property that was heavily exploited to develop efficient primal-
dual interior point algorithms; see, e.g., [8]. However, being a symmetric cone is
also restrictive for it is known that, up to linear isomorphism, each symmetric cone
is a direct product of only five types of cones. The most remarkable examples of
symmetric cones are the \BbbR n

+, the real symmetric positive semidefinite matrices \scrS n
+,

the second-order cone, and the direct products of these three.
As for item (a), examining (3.1), we immediately see that the dual of \scrP \bfitalpha 

m,n under

the Euclidean inner product is just\bfitD \scrP \bfitalpha 

m,n, where\bfitD is a diagonal matrix with positive

entries, so \scrP \bfitalpha 

m,n is indeed self-dual in the sense above. Thus the only gap between

\scrP \bfitalpha 

m,n and the class of symmetric cones is the homogeneity.
Given that being symmetric is very advantageous, one may reasonably wonder if

the family of cones \scrP \bfitalpha 

m,n parametrized by \bfitalpha and m and n are indeed nonhomogeneous
in general. To the best of our knowledge, although it is well known (e.g., see comments
in [42, section 4]) that \scrP \bfitalpha 

1,2 is nonhomogeneous except when \bfitalpha = (1/2,1/2), there is
no result on the generalized power cone regarding which combination of the param-
eters m, n, and \bfitalpha leads to homogeneity or not. We fill this gap with Theorem 4.2
and Corollary 4.4, which tells us precisely which of the generalized power cones are
homogeneous or not.

We also completely determine the automorphism group of \scrP \bfitalpha 

m,n. While this may
seem an esoteric question, the automorphism group of a cone \scrK is intimately connected
to complementarity questions over \scrK . For example, it is known that \bfitL belongs to the
Lie algebra of Aut (\scrK ) if and only if the following implication holds:

\bfitx \in \scrK ,\bfity \in \scrK \ast , \langle \bfitx ,\bfity \rangle = 0\Rightarrow \langle \bfitL \bfitx ,\bfity \rangle = 0;

see [9]. If a cone has ``enough"" automorphisms, then a complementarity problem can
be rewritten as a square system using the matrices from the Lie algebra of Aut (\scrK ).
In particular, when the dimension of Aut (\scrK ) is at least dim\scrK , then the cone is said
to be perfect; see [9, page 5] and [32, Theorem 1]. An example of this phenomenon is
how the conditions \bfitx ,\bfity \in \BbbR n

+, \langle \bfitx ,\bfity \rangle = 0 imply n equations xiyi = 0, which is useful
in several contexts.

The quantity dimAut\scrK is called the Lyapunov rank of \scrK [9, 10] and is additive
with respect to direct sums [9, Proposition 1]. Since any cone can be written as a
direct sum of irreducible cones, it becomes important to identify which irreducible
cones are perfect.

It is interesting to note that many of the examples of irreducible perfect cones
in the literature (e.g., [9, 10, 32]) seem to be homogeneous. In addition, every ho-
mogeneous cone is perfect, which follows by known results about Lie groups; e.g.,
see [17, Theorem 21.20] or section 2 in [31], which summarizes useful results. The
final observation we will make in this paper is that, surprisingly, for some choices of
parameters, \scrP \bfitalpha 

m,n is perfect but nonhomogeneous; see Corollary 4.4. We note that
in [40], Sznajder showed that there are choices of parameters for which the so-called
extended second-order cone is irreducible and perfect. This corresponds to a family

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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POWER CONE ERROR BOUNDS 1333

of cones proposed by N\'emeth and Zhang that contains the second-order cones [29].
However, as far as we know, the homogeneity of those cones (or the lack thereof) was
not discussed in general.

4.2. Automorphisms of the generalized power cone. In this subsection,
we will prove our main results regarding Aut (\scrP \bfitalpha 

m,n). The basic strategy is simple: if

\bfitA \in Aut (\scrP \bfitalpha 

m,n), then \bfitA must map a face \scrF 1 of \scrP \bfitalpha 

m,n to another face \scrF 2 of \scrP \bfitalpha 

m,n with
the same properties such as the dimension. More than that, the optimal exponents
associated to FRFs of \scrF 1 and \scrF 2 must be the same. These conditions impose enough
restrictions on \bfitA that we are able to completely determine its shape. Note that
when n = 2 and \bfitalpha = (1/2,1/2), \scrP \bfitalpha 

m,n is isomorphic to the second-order cone, whose
automorphism group is well known. Below, we focus on the complementary cases.

Theorem 4.1 (automorphisms of \scrP \bfitalpha 

m,n). For m \geq 1, n > 2, and any \bfitalpha \in (0,1)n

such that
\sum n

i=1\alpha i = 1, or for m\geq 1, n= 2, and any \bfitalpha \in (0,1)2 such that \alpha 1 \not = \alpha 2 and
\alpha 1 + \alpha 2 = 1, it holds that \bfitA \in Aut (\scrP \bfitalpha 

m,n) if and only if

\bfitA =

\biggl[ 
\bfitB 0
0 \bfitE 

\biggr] 
(4.1)

for some (invertible) generalized permutation matrix7 \bfitE \in \BbbR n\times n with positive nonzero
entries and invertible matrix \bfitB \in \BbbR m\times m satisfying \| \bfitB \bfitx \| =

\prod n
k=1(Ek,lk)

\alpha lk \| \bfitx \| for
all \bfitx \in \BbbR m, where Ek,lk is the nonzero element in the kth row of \bfitE and \alpha lk = \alpha k.

Proof. Suppose that there exists a matrix

\bfitA :=

\biggl[ 
\bfitB \bfitC 
\bfitD \bfitE 

\biggr] 
with \bfitB \in \BbbR m\times m, \bfitC \in \BbbR m\times n,\bfitD \in \BbbR n\times m, \bfitE \in \BbbR n\times n

such that \bfitA \scrP \bfitalpha 

m,n =\scrP \bfitalpha 

m,n.
First note that the entries of \bfitE must all be nonnegative, for if the (i, j)th entry

was negative, then we could pick a vector \bfitq := (0,\bfitc ) \in \scrP \bfitalpha 

m,n with cj = 1 and ck = 0

for k \not = j, wherefore \bfitA \bfitq \not \in \scrP \bfitalpha 

m,n, which is a contradiction.
Additionally, such a matrix \bfitA must be invertible, and if \psi is an FRF for a face

\scrF 1�\scrP \bfitalpha 

m,n, then \bfitA must map \scrF 1 onto a face \scrF 2�\scrP \bfitalpha 

m,n which has the same dimension
and admits an FRF that is a positively rescaled shift of \psi ; see [22, Proposition 17].

Observe from section 3.1 that the generalized power cone has two types of faces
defined in (3.4) and (3.5) (denoted by \scrF r and \scrF \bfitz respectively, with an abuse of
notation) with the corresponding (optimal) 1-FRFs in (3.32) and (3.33), respectively.
We also notice that the dimension of the faces of the first type is 1, while the dimension
of a face of the second type is n - | \scrI | . These lead to the following observations:

(I) Given an \scrI with \beta \scrI :=
\sum 

i\in \scrI \alpha i, if | \scrI | < n  - 1, i.e., the dimension of the
corresponding face is larger than 1, then \bfitA must map the face associated
with \scrI to a face associated with an \=\scrI where | \scrI | = | \=\scrI | and \beta \=\scrI = \beta \scrI .

(II) In the case when n = 2, since we assumed \alpha 1 \not = \alpha 2 and thus \alpha 1 \not = 1/2,
\bfitA cannot map a one-dimensional face of type \scrF \bfitz (whose FRF admits an
optimal exponent of \alpha 1 or \alpha 2) to one of type \scrF r (whose FRF admits an
optimal exponent of 1/2).

Thus, a face of type \scrF \bfitz with | \scrI | = 1 must be mapped to a face of the same
type. From now on, for each k \in \{ 1,2, . . . , n\} , we let ik and lk be such that \bfitA \scrF \{ k\} =

7A generalized permutation matrix is a matrix where in each column and each row there is
exactly one nonzero entry.
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1334 LIN, LINDSTROM, LOUREN\c CO, AND PONG

\scrF \{ ik\} and \bfitA \scrF \{ lk\} = \scrF \{ k\} , where \scrF \{ k\} denotes the face of type \scrF \bfitz associated with
\scrI = \{ k\} . We deduce immediately from the above discussions that \{ 1,2, . . . , n\} =
\{ i1, i2, . . . , in\} = \{ l1, l2, . . . , ln\} and \alpha k = \alpha ik = \alpha lk .

Now, fix any k \in \{ 1,2, . . . , n\} . Then for any \widetilde \bfitx \scrI := (c1, . . . , ck - 1,0, ck+1, . . . , cn)
with ci > 0 for all i \not = k, it must hold that \bfitA maps \bfitx \scrI := (0, \widetilde \bfitx \scrI ) to some \bfitx \^\scrI := (0, \widetilde \bfitx \^\scrI )

with \^\scrI = \{ ik\} , \alpha k = \alpha ik , and (\widetilde \bfitx \^\scrI )ik = 0. Thus,\biggl[ 
\bfitB \bfitC 
\bfitD \bfitE 

\biggr] \biggl[ 
0\widetilde \bfitx \scrI 

\biggr] 
=

\biggl[ 
0\widetilde \bfitx \^\scrI 

\biggr] 
.

Therefore, we have \bfitC \widetilde \bfitx \scrI = 0. This together with the arbitrariness of ci > 0 shows that
all except possibly the kth column of \bfitC are 0. Since k is arbitrary, then we conclude
that \bfitC = 0.

Next, notice that we also have\bfitE \widetilde \bfitx \scrI = \widetilde \bfitx \^\scrI . Since (\widetilde \bfitx \^\scrI )ik = 0, we see that Eik\widetilde \bfitx \scrI = 0,
where Eik is the ikth row of \bfitE . Using again the arbitrariness of ci > 0 in the definition
of \widetilde \bfitx \scrI , we conclude that all entries of Eik are 0 except possibly for the kth entry, i.e.,
Eik has only one possibly nonzero entry and that entry is nonnegative. From the
arbitrariness of k and the fact that \{ i1, i2, . . . , in\} = \{ 1,2, . . . , n\} , we immediately
obtain that every entry of the ikth row \bfitE has all of its entries equal to zero except
possibly for the kth, which is nonnegative.

Taking into account the fact that \bfitA is invertible and \bfitC = 0, we know that none
of the columns of \bfitE can be identically zero, and so we altogether have that each of
the rows and columns of \bfitE consists of one strictly positive entry, with all other entries
identically zero.8

We next claim that \bfitA must map faces of type \scrF r to a face of type \scrF r. Since
\bfitA must permute faces whose FRFs admit the same optimal exponent, we only need
to consider the extreme case that there exists a face of type \scrF \bfitz corresponding to an
\scrI := \{ 1,2, . . . , i - 1, i+ 1, . . . , n\} for some i (i.e., the dimension of the corresponding
face is 1) with \beta \scrI = 1/2, and argue that \bfitA cannot map \scrF r onto such \scrF \bfitz . Suppose
for contradiction that this happens; then there must exist \bfitx = (\bfitx , \widetilde \bfitx ) in some face of
type \scrF r with \bfitx \not = 0 and \widetilde xi > 0 for all i such that\biggl[ 

\bfitB 0
\bfitD \bfitE 

\biggr] \biggl[ 
\bfitx \widetilde \bfitx 
\biggr] 
=

\biggl[ 
0
\bfite i

\biggr] 
,

where \bfite i \in \BbbR n is the vector whose elements are all zero except for the ith element
being 1. However, this cannot happen because \bfitB \bfitx = 0 and the invertibility of \bfitB (a
consequence of invertibility of \bfitA ) implies \bfitx = 0, leading to a contradiction. Hence,
\bfitA must map faces of type \scrF r onto a face of type \scrF r.

Thus, for any \bfitx = (\bfitx , \widetilde \bfitx ) in one of the type \scrF r faces with \bfitx \not = 0, mini\{ \widetilde xi\} > 0,
and \| \bfitx \| =

\prod n
i=1 \widetilde x\alpha i

i , there must be \bfity = (\bfity , \widetilde \bfity ) in one of the type \scrF r faces with \bfity \not = 0,
mini\{ \widetilde yi\} > 0, and \| \bfity \| =

\prod n
i=1 \widetilde y\alpha i

i such that\biggl[ 
\bfitB 0
\bfitD \bfitE 

\biggr] \biggl[ 
\bfitx \widetilde \bfitx 
\biggr] 
=

\biggl[ 
\bfity \widetilde \bfity 
\biggr] 
.

Recall that there is exactly one nonzero element in each row of \bfitE , and this element
is positive. From the definition of lk, this nonzero element is Ek,lk ; see footnote 8.

8Then, we have shown that Es,r \not = 0 if and only if (s, r) = (ik, k) for some k \in \{ 1,2, . . . , n\} (or
equivalently (s, r) = (k, lk) for some k \in \{ 1,2, . . . , n\} ).
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POWER CONE ERROR BOUNDS 1335

Fix any j and k \in \{ 1, . . . , n\} . Pick any (\bfitx , \widetilde \bfitx ) \in \scrP \bfitalpha 

m,n such that \bfitx = \bfite j and\prod n
i=1 \widetilde x\alpha i

i = 1. For any t > 0, one can check that (t\alpha lk\bfitx , \widetilde x1, . . . , t\widetilde xlk , . . . , \widetilde xn) \in \scrP \bfitalpha 

m,n

belongs to a face of type \scrF r. Thus, there exists (\bfity , \widetilde \bfity ) such that

t\alpha lk\bfitB \bfite j = \bfity and t\alpha lkDk,j + tEk,lk\widetilde xlk = \widetilde yk > 0.

The second relation implies that Dk,j + t
1 - \alpha lkEk,lk\widetilde xlk > 0. Letting t \downarrow 0, we conclude

that Dk,j \geq 0. As the choices of j and k were arbitrary, we see that all entries of \bfitD 
are nonnegative. Considering \bfitx =  - \bfite j , a similar argument shows that all entries of
\bfitD are nonpositive. Hence, \bfitD = 0.

Now, for any \bfitx \in \BbbR m, pick any (\bfitx , \widetilde \bfitx ) \in \partial \scrP \bfitalpha 

m,n. Then there exists (\bfity , \widetilde \bfity ) \in \partial \scrP \bfitalpha 

m,n

so that9

\bfitB \bfitx = \bfity and Ek,lk\widetilde xlk = \widetilde yk for k= 1,2, . . . , n.

Thus,

\| \bfitB \bfitx \| = \| \bfity \| =
n\prod 

k=1

\widetilde y\alpha k

k =

n\prod 
k=1

(Ek,lk\widetilde xlk)\alpha k
(a)
=

n\prod 
k=1

(Ek,lk\widetilde xlk)\alpha lk

=

n\prod 
k=1

E
\alpha lk

k,lk

n\prod 
i=1

\widetilde x\alpha i
i =

n\prod 
k=1

E
\alpha lk

k,lk
\| \bfitx \| ,

where (a) holds as \alpha k = \alpha lk for all k. The above shows the necessity of the form in
(4.1).

Conversely, if \bfitA is a matrix of the form (4.1), then \bfitA must be invertible since \bfitB 
and \bfitE are invertible. For any \bfitx = (\bfitx , \widetilde \bfitx )\in \scrP \bfitalpha 

m,n, we have \bfitA \bfitx = (\bfitB \bfitx ,\bfitE \widetilde \bfitx ). Hence,

\| \bfitB \bfitx \| =
n\prod 

k=1

E
\alpha lk

k,lk
\| \bfitx \| \leq 

n\prod 
k=1

E
\alpha lk

k,lk

n\prod 
i=1

\widetilde x\alpha i
i =

n\prod 
k=1

(Ek,lk\widetilde xlk)\alpha lk ,

where the last equality holds as \{ 1, . . . , n\} = \{ l1, . . . , ln\} . This implies \bfitA \scrP \bfitalpha 

m,n \subseteq \scrP \bfitalpha 

m,n.
We claim

(i)
\bigl( 
\bfitE  - 1

\bigr) 
i,j

=

\Biggl\{ 
0, Ej,i = 0,
1

Ej,i
, Ej,i \not = 0;

(ii) \| \bfitB  - 1\bfitx \| =
n\prod 

k=1

E
 - \alpha lk

k,lk
\| \bfitx \| \forall \bfitx \in \BbbR m.(4.2)

Granting these, we have that for any \bfitx = (\bfitx , \widetilde \bfitx ) \in \scrP \bfitalpha 

m,n, \bfitA  - 1\bfitx = (\bfitB  - 1\bfitx ,E - 1\widetilde \bfitx )
satisfies

n\prod 
i=1

(\bfitE  - 1\widetilde \bfitx )\alpha i
i =

n\prod 
i=1

\left(  n\sum 
j=1

(\bfitE  - 1)i,j\widetilde xj
\right)  \alpha i

(a)
=

n\prod 
k=1

\bigl( 
(\bfitE  - 1)lk,k\widetilde xk\bigr) \alpha lk =

n\prod 
k=1

(E - 1
k,lk
\widetilde xk)\alpha lk

=

n\prod 
k=1

E
 - \alpha lk

k,lk

n\prod 
i=1

\widetilde x\alpha li
i

(b)
=

n\prod 
k=1

E
 - \alpha lk

k,lk

n\prod 
i=1

\widetilde x\alpha i
i \geq 

n\prod 
k=1

E
 - \alpha lk

k,lk
\| \bfitx \| (c)

= \| \bfitB  - 1\bfitx \| ,

where (a) is true thanks to the fact that in the sum there is only one nonzero term,
which comes from identity (i) and footnote 8; (b) holds because \alpha k = \alpha lk for all k;

9Such a \bfity exists because \bfitA is invertible and \bfitA \scrP \bfitalpha 

m,n = \scrP \bfitalpha 

m,n, which implies \bfitA ri\scrP \bfitalpha 

m,n = ri\scrP \bfitalpha 

m,n

and \bfitA \partial \scrP \bfitalpha 

m,n = \partial \scrP \bfitalpha 

m,n.
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1336 LIN, LINDSTROM, LOUREN\c CO, AND PONG

(c) comes from identity (ii). Hence, \bfitA  - 1\bfitx \in \scrP \bfitalpha 

m,n. This implies \bfitA \scrP \bfitalpha 

m,n \supseteq \scrP \bfitalpha 

m,n and

consequently \bfitA \scrP \bfitalpha 

m,n =\scrP \bfitalpha 

m,n.
Now, it remains to show (4.2). Since \bfitE is a generalized permutation matrix

with all nonzero elements being positive, then we immediately have (i) from \bfitE \bfitE  - 1 =
\bfitI n. Recall that, by assumption, \| \bfitB \bfitx \| =

\prod n
k=1E

\alpha lk

k,lk
\| \bfitx \| for any \bfitx \in \BbbR m and \bfitB is

invertible. Using these, we can deduce (ii) in (4.2) as follows: for any \bfitx \in \BbbR m,

\| \bfitx \| = \| \bfitB \bfitB  - 1\bfitx \| =
n\prod 

k=1

E
\alpha lk

k,lk
\| \bfitB  - 1\bfitx \| .

The next theorem is about the dimension of Aut (\scrP \bfitalpha 

m,n).

Theorem 4.2. Let m\geq 1, n\geq 2, and \bfitalpha \in (0,1)n such that
\sum n

i=1\alpha i = 1; then we
have the following statements about dimAut (\scrP \bfitalpha 

m,n):
(i) If m\geq 1, n= 2, and \bfitalpha := (1/2,1/2), then dimAut (\scrP \bfitalpha 

m,n) = (m2+3m+4)/2.
(ii) If m\geq 1, n> 2, and

\sum n
i=1\alpha i = 1 or m\geq 1, n= 2, \alpha 1 \not = \alpha 2, and \alpha 1 + \alpha 2 = 1,

then

(4.3) LieAut (\scrP 
\bfitalpha 

m,n) =

\Biggl\{ \biggl[ 
\bfitG 0
0 Diag(\bfith )

\biggr] \bigm| \bigm| \bigm| \bigm| \bigm| \bfitG +\bfitG \top = 2\bfitalpha \top \bfith \bfitI m,

\bfitG \in \BbbR m\times m, \bfith \in \BbbR n

\Biggr\} 
.

Hence, dimAut (\scrP \bfitalpha 

m,n) = dimLieAut (\scrP \bfitalpha 

m,n) = n+m(m - 1)/2.

Proof. (i) If m \geq 1, n = 2, and \bfitalpha := (1/2,1/2), then \scrP \bfitalpha 

m,n is isomorphic to a
second-order cone; see [28, section 3.1.2]. Hence, we know from [9, page 12 (v)] that

dimAut (\scrP 
\bfitalpha 

m,n) =
(m+ 2)2  - m

2
=
m2 + 3m+ 4

2
.

(ii) By [11, Corollary 3.45], dimAut (\scrP \bfitalpha 

m,n) = dimLieAut (\scrP \bfitalpha 

m,n). This in addition
to [11, Corollary 3.46] shows that it suffices to calculate the dimension of the tangent
space at the identity of Aut (\scrP \bfitalpha 

m,n) to obtain dimAut (\scrP \bfitalpha 

m,n).

First, we compute LieAut (\scrP \bfitalpha 

m,n) and for that we consider an arbitrary contin-

uously differentiable curve \bfitF : ( - 1,1)\rightarrow Aut (\scrP \bfitalpha 

m,n) with \bfitF (0) = \bfitI m+n and \bfitF (t) \in 
Aut (\scrP \bfitalpha 

m,n) for any t\in ( - 1,1). We further denote

\bfitF (t) =

\biggl[ 
\bfitG t 0
0 \bfitH t

\biggr] 
and \.\bfitF (t) =

\biggl[ 
\.\bfitG t 0

0 \.\bfitH t

\biggr] 
,

where \bfitG t \in \BbbR m\times m and \bfitH t \in \BbbR n\times n are both invertible; \bfitG 0 = \bfitI m, \bfitH 0 = \bfitI n; \bfitH t

is a generalized permutation matrix with all nonzero elements being strictly positive
(which we assume, by suitably shrinking the neighborhood of definition of \bfitF and
reparameterizing, to be only nonzero along the diagonal); \.\bfitF (0) lies in the tangent
space of Aut (\scrP \bfitalpha 

m,n) at \bfitI , that is,

\.\bfitF (0) =

\biggl[ 
\.\bfitG 0 0

0 \.\bfitH 0

\biggr] 
\in LieAut (\scrP 

\bfitalpha 

m,n);(4.4)

and \.\bfitG t and \.\bfitH t refer to the componentwise derivative of \bfitG and \bfitH with respect to t,
respectively.

Since \bfitH t and \.\bfitH t are diagonal, we let \bfith t and \.\bfith t be the diagonal vectors of
\bfitH t and \.\bfitH t, respectively, i.e., \bfitH t = Diag(\bfith t) and \.\bfitH t = Diag( \.\bfith t). We also let hkt
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POWER CONE ERROR BOUNDS 1337

and \.hkt denote the kth element of the vectors \bfith t and \.\bfith t, respectively. Then, from
Theorem 4.1,

\| \bfitG t\bfitx \| 2 =
n\prod 

k=1

(hkt )
2\alpha k\| \bfitx \| 2 \forall \bfitx \in \BbbR m, \forall t\in ( - 1,1).(4.5)

Differentiating10 both sides of (4.5) with respect to t, we can obtain

2\bfitx \top \bfitG \top 
t
\.\bfitG t\bfitx =\bfitx \top \bfitx 

n\sum 
k=1

2\alpha k

\bigl( 
hkt
\bigr) 2\alpha k - 1 \.hkt

\prod 
j \not =k

\Bigl( 
hjt

\Bigr) 2\alpha j

=\bfitx \top \bfitx 

n\sum 
k=1

2
\alpha k

hkt
\.hkt

n\prod 
j=1

\Bigl( 
hjt

\Bigr) 2\alpha j

= 2

\left(  \bfitx \top \bfitx 

n\prod 
j=1

(hjt )
2\alpha j

\right)  n\sum 
k=1

\alpha k

hkt
\.hkt

(a)
= 2\bfitx \top \bfitG \top 

t \bfitG t\bfitx 
\bigl( 
\bfitalpha \circ (\bfith t)

 - 1
\bigr) \top \.\bfith t,

where the inverse is taken componentwise, and the rest of (a) comes from (4.5). Notice

that
\bigl( 
\bfitalpha \circ (\bfith t)

 - 1
\bigr) \top \.\bfith t is a scalar, and by rearranging terms, one has

\bfitx \top 
\Bigl[ 
\bfitG \top 

t
\.\bfitG t  - 

\bigl( 
\bfitalpha \circ (\bfith t)

 - 1
\bigr) \top \.\bfith t\bfitG 

\top 
t \bfitG t

\Bigr] 
\bfitx = 0 \forall \bfitx \in \BbbR m, \forall t\in ( - 1,1).

Letting t= 0 and recalling \bfitG 0 = \bfitI m,\bfitH 0 = \bfitI n, we have

\bfitx \top 
\Bigl( 
\.\bfitG 0  - \bfitalpha \top \.\bfith 0Im

\Bigr) 
\bfitx = 0 \forall \bfitx \in \BbbR m.(4.6)

Recall that 2\bfitx \top \.\bfitG 0\bfitx =\bfitx \top ( \.\bfitG 0 + \.\bfitG 
\top 
0 )\bfitx . We can thus rewrite (4.6) as

\bfitx \top 
\Bigl( 
\.\bfitG 0 + \.\bfitG 

\top 
0  - 2\bfitalpha \top \.\bfith 0Im

\Bigr) 
\bfitx = 0 \forall \bfitx \in \BbbR m.

Since the matrix in the parentheses is zero, the above display implies that

\.\bfitG 0 + \.\bfitG 
\top 
0 = 2\bfitalpha \top \.\bfith 0Im.

The above derivation and (4.4) show that any matrix in LieAut (\scrP \bfitalpha 

m,n) satisfies the
above display.

Conversely, suppose that \bfitG and Diag(\bfith ) are such that \bfitG +\bfitG \top = 2\bfitalpha \top \bfith Im and
\bfitU := [\bfitG 0

0 Diag(\bfith ) ]. We need to show that the matrix exponential et\bfitU belongs to

Aut (\scrP \bfitalpha 

m,n) for every t \in \BbbR . To this end, recalling that e\bfitX +\bfitY = e\bfitX e\bfitY if \bfitX \bfitY = \bfitY \bfitX ,
we have

et\bfitG = e2t\bfitalpha 
\top \bfith Im - t\bfitG \top 

= e2t\bfitalpha 
\top \bfith \bfitI me - t\bfitG \top 

= e2t\bfitalpha 
\top \bfith e - t\bfitG \top 

,

since 2t\bfitalpha \top \bfith \bfitI m and  - t\bfitG \top commute. This shows that (et\bfitG )\top et\bfitG = et\bfitG 
\top 
et\bfitG =

e2t\bfitalpha 
\top \bfith \bfitI m, i.e., et\bfitG is an orthogonal matrix multiplied by the scalar et\bfitalpha 

\top \bfith . Then

\| et\bfitG \bfitx \| = et\bfitalpha 
\top \bfith \| \bfitx \| = e

\sum n
i=1 thi\alpha i\| \bfitx \| =

n\prod 
i=1

(ethi)
\alpha i\| \bfitx \| \forall \bfitx \in \BbbR m.(4.7)

Since

et\bfitU =

\biggl[ 
et\bfitG 0
0 eDiag(t\bfith )

\biggr] 
=

\biggl[ 
et\bfitG 0
0 Diag(et\bfith )

\biggr] 
,

where et\bfith corresponds to the vector such that its ith component is ethi and hi is the
ith component of \bfith , we conclude from (4.7) and Theorem 4.1 that et\bfitU \in Aut (\scrP \bfitalpha 

m,n).
Finally, a direct computation shows that the dimension of the right-hand side of

(4.3) is n+m(m - 1)/2, which is just the claimed dimension.

10This calculation simply uses the chain rule to differentiate (hk
t )

2\alpha k for a given k, and then
applies the product rule for the product over all k.
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1338 LIN, LINDSTROM, LOUREN\c CO, AND PONG

4.3. Homogeneity, irreducibility, and perfectness of generalized power
cone. In this subsection, we will use Theorem 4.1 to prove the homogeneity, irre-
ducibility, and perfectness of \scrP \bfitalpha 

m,n. Before moving on, we recall the following lemma.

Lemma 4.3.
(i) If a closed convex pointed cone \scrK is reducible, i.e., \scrK is a direct sum of two

nonempty, nontrivial sets \scrK 1 and \scrK 2, then we have \scrK 1
\lneq \vartriangleleft \scrK , \scrK 2

\lneq \vartriangleleft \scrK , and
dim(\scrK ) = dim(\scrK 1) + dim(\scrK 2).

(ii) A proper cone \scrK \subseteq \BbbR p is perfect if and only if dimLieAut (\scrK )\geq p.

Proof.
(i) The fact that \scrK 1 and \scrK 2 are faces is well known; see [21, Lemma 3.2]. The

conclusion on dimensions follows directly from the definition of direct sum.
(ii) This fact comes from [32, Theorem 1] and the first display on [9, page 4].

Using Lemma 4.3 and Theorems 4.1 and 4.2, we have the following corollary.

Corollary 4.4. Let m \geq 1, n \geq 2, and \bfitalpha \in (0,1)n such that
\sum n

i=1\alpha i = 1; then
the following statements hold for the generalized power cone \scrP \bfitalpha 

m,n:
(i) \scrP \bfitalpha 

m,n is irreducible.

(ii) If m\geq 1, n= 2, and \bfitalpha := (1/2,1/2), then \scrP \bfitalpha 

m,n is homogeneous and perfect.
(iii) If m\geq 1, n> 2, and

\sum n
i=1\alpha i = 1 or m\geq 1, n= 2, \alpha 1 \not = \alpha 2, and \alpha 1 + \alpha 2 = 1,

then \scrP \bfitalpha 

m,n is nonhomogeneous. In addition, if 1 \leq m \leq 2, then \scrP \bfitalpha 

m,n is not

perfect; if m\geq 3, then \scrP \bfitalpha 

m,n is perfect.

Proof.
(i) Recall that the two types of faces of \scrP \bfitalpha 

m,n are defined as in (3.4) and (3.5),
with dimensions being 1 and n - | \scrI | , respectively. Since \scrI \not = \emptyset and so | \scrI | \geq 1,
for any possible pair of nontrivial faces \scrF 1 and \scrF 2 of \scrP 

\bfitalpha 

m,n, we have dim(\scrF 1)+

dim(\scrF 2)<m+n=dim(\scrP \bfitalpha 

m,n). This together with Lemma 4.3(i) shows that

\scrP \bfitalpha 

m,n is irreducible.

(ii) Ifm\geq 1, n= 2, and \bfitalpha := (1/2,1/2), \scrP \bfitalpha 

m,n is isomorphic to a second-order cone
and so is homogeneous; see, for example, [28, section 3.1.2]. The perfectness
holds by Theorem 4.2(i) and Lemma 4.3(ii).

(iii) Take any m \geq 1, n > 2 with any \bfitalpha \in (0,1)n such that
\sum n

i=1\alpha i = 1
or m \geq 1, n = 2 with any \bfitalpha \in (0,1)2 such that \alpha 1 \not = \alpha 2, and consider
\bfitx = (0, \widetilde \bfitx )\in ri\scrP \bfitalpha 

m,n and \bfity = (\bfity , \widetilde \bfity )\in ri\scrP \bfitalpha 

m,n, where mini\{ \widetilde xi\} > 0, mini\{ \widetilde y\} > 0

and \bfity \not = 0, \| \bfity \| <
\prod n

i=1 \widetilde y\alpha i
i . Using (4.1), for all \bfitA such that \bfitA \scrP \bfitalpha 

m,n =

\scrP \bfitalpha 

m,n, we have \bfitA \bfitx \not = \bfity because \bfitB 0 = 0 \not = \bfity for all possible \bfitB . Then by

definition \scrP \bfitalpha 

m,n with m \geq 1, n = 2, and
\sum n

i=1\alpha i = 1 or m \geq 1, n = 2,
\alpha 1 \not = \alpha 2, and \alpha 1 + \alpha 2 = 1 is nonhomogeneous. By Theorem 4.2(ii), we have

dimLieAut (\scrP \bfitalpha 

m,n) = n+m(m - 1)
2 \geq m+n if and only if m\geq 3. The conclusion

concerning perfectness now follows from this and Lemma 4.3(ii).

Acknowledgment. We thank the referees for their comments, which helped to
improve the paper.
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