
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{O}\mathrm{P}\mathrm{T}\mathrm{I}\mathrm{M}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 33, \mathrm{N}\mathrm{o}. 3, \mathrm{p}\mathrm{p}. 1734--1766

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD
FOR FINDING A SECOND-ORDER STATIONARY POINT OF

NONCONVEX EQUALITY CONSTRAINED OPTIMIZATION WITH
COMPLEXITY GUARANTEES*

CHUAN HE\dagger , ZHAOSONG LU\dagger , AND TING KEI PONG\ddagger

Abstract. In this paper we consider finding a second-order stationary point (SOSP) of noncon-
vex equality constrained optimization when a nearly feasible point is known. In particular, we first
propose a new Newton-conjugate gradient (Newton-CG) method for finding an approximate SOSP
of unconstrained optimization and show that it enjoys a substantially better complexity than the
Newton-CG method in [C. W. Royer, M. O'Neill, and S. J. Wright, Math. Program., 180 (2020),
pp. 451--488]. We then propose a Newton-CG based augmented Lagrangian (AL) method for find-
ing an approximate SOSP of nonconvex equality constrained optimization, in which the proposed
Newton-CG method is used as a subproblem solver. We show that under a generalized linear indepen-
dence constraint qualification (GLICQ), our AL method enjoys a total inner iteration complexity of\widetilde \scrO (\epsilon - 7/2) and an operation complexity of \widetilde \scrO (\epsilon - 7/2min\{ n, \epsilon - 3/4\}) for finding an (\epsilon ,

\surd
\epsilon)-SOSP of non-

convex equality constrained optimization with high probability, which are significantly better than
the ones achieved by the proximal AL method in [Y. Xie and S. J. Wright, J. Sci. Comput., 86 (2021),
pp. 1--30]. In addition, we show that it has a total inner iteration complexity of \widetilde \scrO (\epsilon - 11/2) and an
operation complexity of \widetilde \scrO (\epsilon - 11/2min\{ n, \epsilon - 5/4\}) when the GLICQ does not hold. To the best of our
knowledge, all the complexity results obtained in this paper are new for finding an approximate SOSP
of nonconvex equality constrained optimization with high probability. Preliminary numerical results
also demonstrate the superiority of our proposed methods over the other competing algorithms.

Key words. nonconvex equality constrained optimization, second-order stationary point, aug-
mented Lagrangian method, Newton conjugate gradient method, iteration complexity, operation
complexity

MSC codes. 49M15, 68Q25, 90C06, 90C26, 90C30, 90C60

DOI. 10.1137/22M1489824

1. Introduction. In this paper we consider the nonconvex equality constrained
optimization problem

(1.1) min
x\in \BbbR n

f(x) s.t. c(x) = 0,

where f : \BbbR n\rightarrow \BbbR and c : \BbbR n\rightarrow \BbbR m are twice continuously differentiable, and we as-
sume that problem (1.1) has at least one optimal solution. Since (1.1) is a nonconvex
optimization problem, it may have many local but nonglobal minimizers, and finding
its global minimizer is generally NP-hard. A first-order stationary point (FOSP) of
it is usually found in practice instead. Nevertheless, a mere FOSP may sometimes
not suit our needs and a second-order stationary point (SOSP) needs to be sought.

*Received by the editors April 11, 2022; accepted for publication (in revised form) January 8,
2023; published electronically August 2, 2023.

https://doi.org/10.1137/22M1489824
Funding: The work of the second author was partially supported by NSF award IIS-2211491.

The work of the third author was partially supported by a Research Scheme of the Research Grants
Council of Hong Kong SAR, China (project T22-504/21R).

\dagger
Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN

55455 USA (he000233@umn.edu, zhaosong@umn.edu).
\ddagger
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong,

People's Republic of China (tk.pong@polyu.edu.hk).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1734

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/22M1489824
mailto:he000233@umn.edu
mailto:zhaosong@umn.edu
mailto:tk.pong@polyu.edu.hk

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1735

For example, in the context of linear semidefinite programming (SDP), a powerful
approach to solving it is by solving an equivalent nonconvex equality constrained
optimization problem [17, 18]. It was shown in [18, 15] that under some mild condi-
tions an SOSP of the latter problem can yield an optimal solution of the linear SDP,
while a mere FOSP generally cannot. It is therefore important to find an SOSP of
problem (1.1).

In recent years, numerous methods with complexity guarantees have been devel-
oped for finding an approximate SOSP of several types of nonconvex optimization.
For example, cubic regularized Newton methods [52, 25, 1, 22], accelerated gradi-
ent methods [23, 24], trust-region methods [34, 35, 50], the quadratic regularization
method [12], the second-order line-search method [57], and the Newton-conjugate
gradient (Newton-CG) method [56] were developed for nonconvex unconstrained op-
timization. In addition, the interior-point method [8] and the log-barrier method [54]
were proposed for nonconvex optimization with sign constraints. The interior-point
method [8] was also generalized in [38] to solve nonconvex optimization with sign con-
straints and additional linear equality constraints. Furthermore, a projected gradient
descent method with random perturbations was proposed in [47] for nonconvex opti-
mization with linear inequality constraints. Iteration complexity was established for
these methods for finding an approximate SOSP. In addition, operation complexity
measured by the number of fundamental operations such as gradient evaluations and
matrix-vector products was also studied in [1, 23, 34, 41, 24, 57, 22, 56].

Several methods, including trust-region methods [21, 33], the sequential qua-
dratic programming method [14], the two-phase method [9, 30, 32], and augmented
Lagrangian (AL) type methods [4, 10, 58, 60], were proposed for finding an SOSP
of problem (1.1). However, only a few of them have complexity guarantees for find-
ing an approximate SOSP of (1.1). In particular, the inexact AL method [58] has a
worst-case complexity in terms of the number of calls to a second-order oracle. Yet
its operation complexity, measured by the number of fundamental operations such
as gradient evaluations and Hessian-vector products, is unknown. To the best of our
knowledge, the proximal AL method in [60] appears to be the only existing method
that enjoys a worst-case complexity for finding an approximate SOSP of (1.1) in
terms of fundamental operations. In this method, given an iterate xk and a multi-
plier estimate \lambda k at the kth iteration, the next iterate xk+1 is obtained by finding an
approximate stochastic SOSP of the proximal AL subproblem:

min
x\in \BbbR n

\scrL (x,\lambda k;\rho) + \beta \| x - xk\| 2/2

for some suitable positive \rho and \beta using a Newton-CG method proposed in [56], where
\scrL is the AL function of (1.1) defined as

\scrL (x,\lambda ;\rho) := f(x) + \lambda T c(x) + \rho \| c(x)\| 2/2.

Then the multiplier estimate is updated using the classical scheme, i.e., \lambda k+1 = \lambda k +
\rho c(xk+1) (e.g., see [39, 55]). The authors of [60] studied the worst-case complexity
of their proximal AL method including (i) total inner iteration complexity , which
measures the total number of iterations of the Newton-CG method [56] performed in
their method; (ii) operation complexity , which measures the total number of gradient
evaluations and matrix-vector products involving the Hessian of the AL function that
are evaluated in their method. Under some suitable assumptions, including that a
generalized linear independence constraint qualification (GLICQ) holds at all iterates,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1736 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

it was established in [60] that their proximal AL method enjoys a total inner iteration
complexity of \widetilde \scrO (\epsilon - 11/2) and an operation complexity of \widetilde \scrO (\epsilon - 11/2min\{ n, \epsilon - 3/4\}) for
finding an (\epsilon ,

\surd
\epsilon)-SOSP of problem (1.1) with high probability.1 Yet, there is a big

gap between these complexities and the iteration complexity of \widetilde \scrO (\epsilon - 3/2) and the
operation complexity of \widetilde \scrO (\epsilon - 3/2min\{ n, \epsilon - 1/4\}) that are achieved by the methods in
[1, 24, 57, 56] for finding an (\epsilon ,

\surd
\epsilon)-SOSP of nonconvex unconstrained optimization

with high probability, which is a special case of (1.1) with c\equiv 0. Also, there is a lack
of complexity guarantees for this proximal AL method when the GLICQ does not
hold. It shall be mentioned that Newton-CG based AL methods were also developed
for efficiently solving various convex optimization problems (e.g., see [61, 62]), though
their complexities remain unknown.

In this paper we propose a Newton-CG based AL method for finding an ap-
proximate SOSP of problem (1.1) with high probability, and study its worst-case
complexity with and without the assumption of a GLICQ. In particular, we show
that this method enjoys a total inner iteration complexity of \widetilde \scrO (\epsilon - 7/2) and an oper-
ation complexity of \widetilde \scrO (\epsilon - 7/2min\{ n, \epsilon - 3/4\}) for finding a stochastic (\epsilon ,

\surd
\epsilon)-SOSP of

(1.1) under the GLICQ, which are significantly better than the aforementioned ones
achieved by the proximal AL method in [60]. Besides, when the GLICQ does not hold,
we show that it has a total inner iteration complexity of \widetilde \scrO (\epsilon - 11/2) and an operation
complexity of \widetilde \scrO (\epsilon - 11/2min\{ n, \epsilon - 5/4\}) for finding a stochastic (\epsilon ,

\surd
\epsilon)-SOSP of (1.1),

which fills the research gap in this topic. Specifically, our AL method (Algorithm 4.1)
proceeds in the following manner. Instead of directly solving problem (1.1), it solves a
perturbed problem of (1.1) with c replaced by its perturbed counterpart \~c constructed
by using a nearly feasible point of (1.1) (see (4.4) for details). At the kth iteration, an
approximate stochastic SOSP xk+1 of the AL subproblem of this perturbed problem
is found by our newly proposed Newton-CG method (Algorithm 3.1) for a penalty
parameter \rho k and a truncated Lagrangian multiplier \lambda k, which results from projecting
onto a Euclidean ball the standard multiplier estimate \~\lambda k obtained by the classical
scheme \~\lambda k = \lambda k - 1 + \rho k\~c(x

k).2 The penalty parameter \rho k+1 is then updated by the
following practical scheme (e.g., see [7, section 4.2]):

\rho k+1 =

\biggl\{
r\rho k if \| \~c(xk+1)\| >\alpha \| \~c(xk)\| ,
\rho k otherwise

for some r > 1 and \alpha \in (0,1). It shall be mentioned that in contrast with the classical
AL method, our method has two distinct features: (i) the values of the AL function
along the iterates are bounded from above; (ii) the multiplier estimates associated
with the AL subproblems are bounded. In addition, to solve the AL subproblems
with better complexity guarantees, we propose a variant of the Newton-CG method
in [56] for finding an approximate stochastic SOSP of unconstrained optimization,
whose complexity has significantly less dependence on the Lipschitz constant of the
Hessian of the objective than that of the Newton-CG method in [56], while improving
or retaining the same order of dependence on tolerance parameter. Given that such

1In fact, a total inner iteration complexity of \widetilde \scrO (\epsilon - 7) and an operation complexity of\widetilde \scrO (\epsilon - 7min\{ n, \epsilon - 1\}) were established in [60] for finding an (\epsilon , \epsilon)-SOSP of problem (1.1) with high
probability; see [60, Theorem 4(ii), Corollary 3(ii), and Theorem 5]. Nonetheless, they can be
modified to obtain the aforementioned complexity for finding an (\epsilon ,

\surd
\epsilon)-SOSP of (1.1) with high

probability.
2The \lambda k obtained by projecting \~\lambda k onto a compact set is also called a safeguarded Lagrangian

multiplier in the relevant literature [11, 42, 13], which has been shown to enjoy many practical and
theoretical advantages (see [11] for discussions).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1737

a Lipschitz constant is typically large for the AL subproblems, from a theoretical
complexity perspective, our Newton-CG method (Algorithm 3.1) is a much more
favorable subproblem solver than the Newton-CG method in [56] that is used in the
proximal AL method in [60].

The main contributions of this paper are summarized as follows:
\bullet We propose a new Newton-CG method for finding an approximate SOSP of

unconstrained optimization and show that it enjoys an iteration and operation
complexity with a quadratic dependence on the Lipschitz constant of the
Hessian of the objective that improves the cubic dependence achieved by the
Newton-CG method in [56], while improving or retaining the same order of
dependence on tolerance parameter. In addition, our complexity results are
established under the assumption that the Hessian of the objective is Lipschitz
continuous in a convex neighborhood of a level set of the objective. This
assumption is weaker than the one commonly imposed for the Newton-CG
method in [56] and some other methods (e.g., [12, 35]) that the Hessian of the
objective is Lipschitz continuous in a convex set containing this neighborhood
and also all the trial points arising in the line- search or trust-region steps of
the methods (see section 3 for more detailed discussion).

\bullet We propose a Newton-CG based AL method for finding an approximate SOSP
of nonconvex equality constrained optimization (1.1) with high probability,
and study its worst-case complexity with and without the assumption of a
GLICQ. Prior to our work, there was no complexity study on finding an ap-
proximate SOSP of problem (1.1) without imposing a GLICQ. Besides, under
the GLICQ and some other suitable assumptions, we show that our method
enjoys a total inner iteration complexity of \widetilde \scrO (\epsilon - 7/2) and an operation com-
plexity of \widetilde \scrO (\epsilon - 7/2min\{ n, \epsilon - 3/4\}) for finding an (\epsilon ,

\surd
\epsilon)-SOSP of (1.1) with

high probability, which are significantly better than the respective complex-
ity of \widetilde \scrO (\epsilon - 11/2) and \widetilde \scrO (\epsilon - 11/2min\{ n, \epsilon - 3/4\}) achieved by the proximal AL
method in [60]. To the best of our knowledge, all the complexity results ob-
tained in this paper are new for finding an approximate SOSP of nonconvex
equality constrained optimization with high probability.

For ease of comparison, we summarize in Table 1 the total inner iteration and
operation complexity of our AL method and the proximal AL method in [60] for
finding a stochastic (\epsilon ,

\surd
\epsilon)-SOSP of problem (1.1) with or without assuming GLICQ.

It should be mentioned that there are many works other than [60] studying com-
plexity of AL methods for nonconvex constrained optimization. However, they aim
to find an approximate FOSP rather than SOSP of the problem (e.g., see [40, 37, 13,
51, 45]). Since our main focus is on the complexity of finding an approximate SOSP
by AL methods, we do not include them in Table 1 for comparison.

The rest of this paper is organized as follows. In section 2, we introduce some
notation and optimality conditions. In section 3, we propose a Newton-CG method

Table 1
Total inner iteration and operation complexity of finding a stochastic (\epsilon ,

\surd
\epsilon)-SOSP of (1.1).

Method GLICQ Total inner iteration complexity Operation complexity

Proximal AL method [60] 3 \widetilde \scrO (\epsilon - 11/2) \widetilde \scrO (\epsilon - 11/2min\{ n, \epsilon - 3/4\})
Proximal AL method [60] 8 unknown unknown

Our AL method 3 \widetilde \scrO (\epsilon - 7/2) \widetilde \scrO (\epsilon - 7/2min\{ n, \epsilon - 3/4\})
Our AL method 8 \widetilde \scrO (\epsilon - 11/2) \widetilde \scrO (\epsilon - 11/2min\{ n, \epsilon - 5/4\})

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1738 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

for unconstrained optimization and study its worst-case complexity. In section 4, we
propose a Newton-CG based AL method for (1.1) and study its worst-case complexity.
We present numerical results and the proof of the main results in sections 5 and 6,
respectively. In section 7, we discuss some future research directions.

2. Notation and preliminaries. Throughout this paper, we let \BbbR n denote the
n-dimensional Euclidean space. We use \| \cdot \| to denote the Euclidean norm of a vector
or the spectral norm of a matrix. For a real symmetric matrix H, we use \lambda min(H)
to denote its minimum eigenvalue. The Euclidean ball centered at the origin with
radius R \geq 0 is denoted by \scrB R := \{ x : \| x\| \leq R\} , and we use \Pi \scrB R

(v) to denote the
Euclidean projection of a vector v onto \scrB R. For a given finite set \scrA , we let | \scrA | denote
its cardinality. For any s \in \BbbR , we let sgn(s) be 1 if s\geq 0 and let it be - 1 otherwise.
In addition, \widetilde \scrO (\cdot) represents \scrO (\cdot) with logarithmic terms omitted.

Suppose that x\ast is a local minimizer of problem (1.1) and the linear independence
constraint qualification holds at x\ast , i.e., \nabla c(x\ast) := [\nabla c1(x\ast) \nabla c2(x\ast) \cdot \cdot \cdot \nabla cm(x\ast)]
has full column rank. Then there exists a Lagrangian multiplier \lambda \ast \in \BbbR m such that

\nabla f(x\ast) +\nabla c(x\ast)\lambda \ast = 0,(2.1)

dT

\Biggl(
\nabla 2f(x\ast) +

m\sum
i=1

\lambda \ast i\nabla 2ci(x
\ast)

\Biggr)
d\geq 0 \forall d\in \scrC (x\ast),(2.2)

where \scrC (\cdot) is defined as

(2.3) \scrC (x) := \{ d\in \BbbR n :\nabla c(x)T d= 0\} .

The relations (2.1) and (2.2) are respectively known as the first- and second-order
optimality conditions for (1.1) in the literature (e.g., see [53]). Note that it is in
general impossible to find a point that exactly satisfies (2.1) and (2.2). Thus, we
are instead interested in finding a point that satisfies their approximate counterparts.
In particular, we introduce the following definitions of an approximate first-order
stationary point (FOSP) and second-order stationary point (SOSP), which are similar
to those considered in [4, 10, 60]. The rationality of them can be justified by the study
of the sequential optimality conditions for constrained optimization [3, 4].

Definition 2.1 (\epsilon 1-first-order stationary point). Let \epsilon 1 > 0. We say that x\in \BbbR n

is an \epsilon 1-first-order stationary point (\epsilon 1-FOSP) of problem (1.1) if it, together with
some \lambda \in \BbbR m, satisfies

(2.4) \| \nabla f(x) +\nabla c(x)\lambda \| \leq \epsilon 1, \| c(x)\| \leq \epsilon 1.

Definition 2.2 ((\epsilon 1, \epsilon 2)-second-order stationary point). Let \epsilon 1, \epsilon 2 > 0. We say
that x \in \BbbR n is an (\epsilon 1, \epsilon 2)-second-order stationary point ((\epsilon 1, \epsilon 2)-SOSP) of problem
(1.1) if it, together with some \lambda \in \BbbR m, satisfies (2.4) and additionally

(2.5) dT

\Biggl(
\nabla 2f(x) +

m\sum
i=1

\lambda i\nabla 2ci(x)

\Biggr)
d\geq - \epsilon 2\| d\| 2 \forall d\in \scrC (x),

where \scrC (\cdot) is defined as in (2.3).

3. A Newton-CG method for unconstrained optimization. In this section
we propose a variant of the Newton-CG method [56, Algorithm 3] for finding an
approximate SOSP of a class of unconstrained optimization problems, which will be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1739

used as a subproblem solver for the AL method proposed in the next section. In
particular, we consider an unconstrained optimization problem

(3.1) min
x\in \BbbR n

F (x),

where the function F satisfies the following assumptions.

Assumption 3.1.
(a) The level set LF (u

0) := \{ x : F (x)\leq F (u0)\} is compact for some u0 \in \BbbR n.
(b) The function F is twice Lipschitz continuously differentiable in a convex open

neighborhood, denoted by \Omega , of LF (u
0), that is, there exists LF

H > 0 such
that

(3.2) \| \nabla 2F (x) - \nabla 2F (y)\| \leq LF
H\| x - y\| \forall x, y \in \Omega .

By Assumption 3.1, there exist Flow \in \BbbR , UF
g > 0, and UF

H > 0 such that

(3.3) F (x)\geq Flow, \| \nabla F (x)\| \leq UF
g , \| \nabla 2F (x)\| \leq UF

H \forall x\in LF (u
0).

Recently, a Newton-CG method [56, Algorithm 3] was developed to find an ap-
proximate stochastic SOSP of problem (3.1), which is not only easy to implement
but also enjoys a nice feature that the main computation consists only of gradi-
ent evaluations and Hessian-vector products associated with the function F . Under
the assumption that \nabla 2F is Lipschitz continuous in a convex open set containing
LF (u

0) and also all the trial points arising in the line-search steps of this method (see
[56, Assumption 2]), it was established in [56, Theorem 4 and Corollary 2] that the
iteration and operation complexity of this method for finding a stochastic (\epsilon g, \epsilon H)-
SOSP of (3.1) (namely, a point x satisfying \| \nabla F (x)\| \leq \epsilon g deterministically and
\lambda min(\nabla 2F (x))\geq - \epsilon H with high probability) are

(3.4) \scrO ((LF
H)3max\{ \epsilon - 3

g \epsilon 3H , \epsilon
 - 3
H \}) and \widetilde \scrO ((LF

H)3max\{ \epsilon - 3
g \epsilon 3H , \epsilon

 - 3
H \} min\{ n, (UF

H/\epsilon H)1/2\}),

respectively, where \epsilon g, \epsilon H \in (0,1) are prescribed tolerances. Yet, this assumption can
be hard to check because these trial points are unknown before the method terminates
and, moreover, the distance between the origin and these points depends on the
tolerance \epsilon H in \scrO (\epsilon - 1

H) (see [56, Lemma 3]). In addition, as seen from (3.4), iteration
and operation complexity of the Newton-CG method in [56] depend cubically on
LF
H . Notice that LF

H can sometimes be very large. For example, the AL subproblems
arising in Algorithm 4.1 have LF

H =\scrO (\epsilon - 2
1) or \scrO (\epsilon - 1

1), where \epsilon 1 \in (0,1) is a prescribed
tolerance for problem (1.1) (see section 4). The cubic dependence on LF

H makes such
a Newton-CG method not appealing as an AL subproblem solver from a theoretical
complexity perspective.

In the rest of this section, we propose a variant of the Newton-CG method [56,
Algorithm 3] and show that under Assumption 3.1, it enjoys an iteration and an
operation complexity of

(3.5) \scrO ((LF
H)2max\{ \epsilon - 2

g \epsilon H , \epsilon
 - 3
H \}) and \widetilde \scrO ((LF

H)2max\{ \epsilon - 2
g \epsilon H , \epsilon

 - 3
H \} min\{ n,(UF

H/\epsilon H)1/2\}),

respectively, for finding a stochastic (\epsilon g, \epsilon H)-SOSP of problem (3.1). These complex-
ities are substantially superior to those in (3.4) achieved by the Newton-CG method
in [56]. Indeed, the complexities in (3.5) depend quadratically on LF

H , while those in
(3.4) depend cubically on LF

H . In addition, it can be verified that they improve or
retain the order of dependence on \epsilon g and \epsilon H given in (3.4).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1740 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

3.1. Main components of a Newton-CG method. In this subsection we
briefly discuss two main components of the Newton-CG method in [56], which will be
used to propose a variant of this method for finding an approximate stochastic SOSP
of problem (3.1) in the next subsection.

The first main component of the Newton-CG method in [56] is a capped CG
method [56, Algorithm 1], which is a modified CG method, for solving a possibly
indefinite linear system

(3.6) (H + 2\varepsilon I)d= - g,

where 0 \not = g \in \BbbR n, \varepsilon > 0, and H \in \BbbR n\times n is a symmetric matrix. This capped
CG method terminates within a finite number of iterations. It outputs either an
approximate solution d to (3.6) such that \| (H + 2\varepsilon I)d + g\| \leq \widehat \zeta \| g\| and dTHd \geq
 - \varepsilon \| d\| 2 for some \widehat \zeta \in (0,1) or a sufficiently negative curvature direction d of H with
dTHd < - \varepsilon \| d\| 2. The second main component of the Newton-CG method in [56] is
a minimum eigenvalue oracle that either produces a sufficiently negative curvature
direction v of H with \| v\| = 1 and vTHv \leq - \varepsilon /2 or certifies that \lambda min(H) \geq - \varepsilon
holds with high probability. For ease of reference, we present these two components
in Algorithms A.1 and B.1 in Appendices A and B, respectively.

3.2. A Newton-CG method for problem (3.1). In this subsection we pro-
pose a Newton-CG method in Algorithm 3.1, which is a variant of the Newton-CG
method [56, Algorithm 3], for finding an approximate stochastic SOSP of problem
(3.1).

Our Newton-CG method (Algorithm 3.1) follows the same framework as [56,
Algorithm 3]. In particular, at each iteration, if the gradient of F at the current
iterate is not desirably small, then the capped CG method (Algorithm A.1) is called
to solve a damped Newton system for obtaining a descent direction and a subsequent
line search along this direction results in a sufficient reduction on F . Otherwise, the
current iterate is already an approximate FOSP of (3.1), and the minimum eigenvalue
oracle (Algorithm B.1) is then called, which either produces a sufficiently negative
curvature direction for F and a subsequent line search along this direction results in a
sufficient reduction on F , or certifies that the current iterate is an approximate SOSP
of (3.1) with high probability and terminates the algorithm. More details about this
framework can be found in [56].

Despite sharing the same framework, our Newton-CG method and [56,
Algorithm 3] use different line-search criteria. Indeed, our Newton-CG method uses a
hybrid line-search criterion adopted from [59], which is a combination of the quadratic
descent criterion (3.10) and the cubic descent criterion (3.11). Specifically, it uses the
quadratic descent criterion (3.10) when the search direction is of type ``SOL."" On the
other hand, it uses the cubic descent criterion (3.11) when the search direction is of
type ``NC.""3 In contrast, the Newton-CG method in [56] always uses a cubic descent
criterion regardless of the type of search directions. As observed from Theorem 3.2,
our Newton-CG method achieves an iteration and an operation complexity given in
(3.5), which are superior to those in (3.4) achieved by [56, Algorithm 3] in terms of the
order dependence on LF

H , while improving or retaining the order of dependence on \epsilon g
and \epsilon H as given in (3.4). Consequently, from a theoretical complexity perspective, our
Newton-CG method is more appealing than [56, Algorithm 3] as an AL subproblem
solver for the AL method proposed in section 4.

The following theorem states the iteration and operation complexity of Algo-
rithm 3.1; the proof is deferred to section 6.1.

3SOL and NC stand for ``approximate solution"" and ``negative curvature,"" respectively.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1741

Algorithm 3.1 A Newton-CG method for problem (3.1).

Input : Tolerances εg , εH ∈ (0, 1), backtracking ratio θ ∈ (0, 1), starting point u0, CG-accuracy
parameter ζ ∈ (0, 1), line-search parameter η ∈ (0, 1), probability parameter δ ∈ (0, 1).
Set x0 = u0;
for t = 0, 1, 2, . . . do

if ‖∇F (xt)‖ > εg then
Call Algorithm A.1 with H = ∇2F (xt), ε = εH , g = ∇F (xt), accuracy parameter ζ, and
U = 0 to obtain outputs d, d type;
if d type=NC then

(3.7) dt ← − sgn(dT∇F (xt))
|dT∇2F (xt)d|

‖d‖3 d;

else {d type=SOL}
(3.8) dt ← d;

end if
Go to Line Search;

else
Call Algorithm B.1 with H = ∇2F (xt), ε = εH , and probability parameter δ;
if Algorithm B.1 certifies that λmin(∇2F (xt)) ≥ −εH then

Output xt and terminate;
else {Sufficiently negative curvature direction v returned by Algorithm B.1}

Set d type=NC and

(3.9) dt ← − sgn(vT∇F (xt))|vT∇2F (xt)v|v;
Go to Line Search;

end if
end if
Line Search:
if d type=SOL then

Find αt = θjt , where jt is the smallest nonnegative integer j such that

(3.10) F (xt + θjdt) < F (xt)− ηεHθ2j‖dt‖2;
else {d type=NC}

Find αt = θjt , where jt is the smallest nonnegative integer j such that

(3.11) F (xt + θjdt) < F (xt)− ηθ2j‖dt‖3/2;
end if
xt+1 = xt + αtdt;

end for

Theorem 3.2. Suppose that Assumption 3.1 holds. Let
(3.12)

T1 :=

\biggl\lceil
Fhi - Flow

min\{ csol, cnc\}
max\{ \epsilon - 2

g \epsilon H , \epsilon
 - 3
H \}
\biggr\rceil
+

\biggl\lceil
Fhi - Flow

cnc
\epsilon - 3
H

\biggr\rceil
+1, T2:=

\biggl\lceil
Fhi - Flow

cnc
\epsilon - 3
H

\biggr\rceil
+1,

where Fhi = F (u0), Flow is given in (3.3), and

csol := \eta min

\left\{
\left[4

4 + \zeta +
\sqrt{}
(4 + \zeta)2 + 8LF

H

\right] 2

,

\biggl[
min\{ 6(1 - \eta),2\} \theta

LF
H

\biggr] 2\right\} ,(3.13)

cnc :=
\eta

16
min

\Biggl\{
1,

\biggl[
min\{ 3(1 - \eta),1\} \theta

LF
H

\biggr] 2\Biggr\}
.(3.14)

Then the following statements hold:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1742 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

(i) The total number of calls of Algorithm B.1 in Algorithm 3.1 is at most T2.
(ii) The total number of calls of Algorithm A.1 in Algorithm 3.1 is at most T1.
(iii) (iteration complexity) Algorithm 3.1 terminates in at most T1+T2 iterations

with

(3.15) T1 + T2 =\scrO ((Fhi - Flow)(L
F
H)2max\{ \epsilon - 2

g \epsilon H , \epsilon
 - 3
H \}).

Also, its output xt satisfies \| \nabla F (xt)\| \leq \epsilon g deterministically and \lambda min(\nabla 2F (xt))
\geq - \epsilon H with probability at least 1 - \delta for some 0\leq t\leq T1 + T2.

(iv) (operation complexity) Algorithm 3.1 requires at most

\widetilde \scrO ((Fhi - Flow)(L
F
H)2max\{ \epsilon - 2

g \epsilon H , \epsilon
 - 3
H \} min\{ n, (UF

H/\epsilon H)1/2\})

matrix-vector products, where UF
H is given in (3.3).

4. A Newton-CG based AL method for problem (1.1). In this section
we propose a Newton-CG based AL method for finding a stochastic (\epsilon 1, \epsilon 2)-SOSP of
problem (1.1) for any prescribed tolerances \epsilon 1, \epsilon 2 \in (0,1). Before proceeding, we make
some additional assumptions on problem (1.1).

Assumption 4.1.
(a) An \epsilon 1/2-approximately feasible point z\epsilon 1 of problem (1.1), namely satisfying
\| c(z\epsilon 1)\| \leq \epsilon 1/2, is known.

(b) There exist constants fhi, flow and \gamma > 0, independent of \epsilon 1 and \epsilon 2, such that

f(z\epsilon 1)\leq fhi,(4.1)

f(x) + \gamma \| c(x)\| 2/2\geq flow \forall x\in \BbbR n,(4.2)

where z\epsilon 1 is given in (a).
(c) There exist some \delta f , \delta c > 0 such that the set

(4.3) \scrS (\delta f , \delta c) := \{ x : f(x)\leq fhi + \delta f , \| c(x)\| \leq 1 + \delta c\}

is compact with fhi given above. Also, \nabla 2f and \nabla 2ci, i = 1,2, . . . ,m, are
Lipschitz continuous in a convex open neighborhood, denoted by \Omega (\delta f , \delta c), of
\scrS (\delta f , \delta c).

We now make some remarks about Assumption 4.1.

Remark 4.2.
(i) An assumption very similar to Assumption 4.1(a) was considered in [31, 37,

49, 60]. By imposing Assumption 4.1(a), we restrict our study on prob-
lem (1.1) for which an \epsilon 1/2-approximately feasible point z\epsilon 1 can be found
by an inexpensive procedure. One example of such problem instances arises
when there exists v0 such that \{ x : \| c(x)\| \leq \| c(v0)\| \} is compact, \nabla 2ci,
1\leq i\leq m, is Lipschitz continuous on a convex neighborhood of this set, and
the LICQ holds on this set. Indeed, for this instance, a point z\epsilon 1 satisfying
\| c(z\epsilon 1)\| \leq \epsilon 1/2 can be computed by applying our Newton-CG method (Al-
gorithm 3.1) to the problem minx\in \BbbR n \| c(x)\| 2. As seen from Theorem 3.2,
the resulting iteration and operation complexity of Algorithm 3.1 for find-
ing such z\epsilon 1 are, respectively, \scrO (\epsilon - 3/2

1) and \widetilde \scrO (\epsilon - 3/2
1 min\{ n, \epsilon - 1/4

1 \}), which
are negligible compared with those of our AL method (see Theorems 4.10
and 4.14 below). As another example, when the standard error bound

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1743

condition \| c(x)\| 2 =\scrO (\| \nabla (\| c(x)\| 2)\| \nu) holds on a level set of \| c(x)\| for some
\nu > 0, one can find the above z\epsilon 1 by applying a gradient method to the prob-
lem minx\in \BbbR n \| c(x)\| 2 (e.g., see [46, 58]). In addition, the Newton-CG based
AL method (Algorithm 4.1) proposed below is a second-order method with
the aim to find an SOSP. It is more expensive than a first-order method in
general. To make best use of such an AL method in practice, it is natural to
run a first-order method in advance to obtain an \epsilon 1/2-FOSP z\epsilon 1 and then run
the AL method using z\epsilon 1 as an \epsilon 1/2-approximately feasible point. Therefore,
Assumption 4.1(a) is met in practice, provided that an \epsilon 1/2-FOSP of (1.1)
can be found by a first-order method.

(ii) Assumption 4.1(b) is mild. In particular, the assumption in (4.1) holds if
f(x)\leq fhi holds for all x with \| c(x)\| \leq 1, which is imposed in [60, Assumption
3]. It also holds if problem (1.1) has a known feasible point, which is often
imposed for designing AL methods for nonconvex constrained optimization
(e.g., see [49, 31, 48, 37]). In addition, the assumption in (4.2) implies that
the quadratic penalty function is bounded below when the associated penalty
parameter is sufficiently large, which is typically used in the study of quadratic
penalty and AL methods for solving problem (1.1) (e.g., see [40, 37, 60, 43]).
Clearly, when infx\in \BbbR n f(x)> - \infty , one can see that (4.2) holds for any \gamma > 0.
In general, one possible approach to identifying \gamma is to apply the techniques on
infeasibility detection developed in the literature (e.g., [20, 19, 6]) to check the
infeasibility of the level set \{ x : f(x)+\gamma \| c(x)\| 2/2\leq \~flow\} for some sufficiently
small \~flow. Note that this level set being infeasible for some \~flow implies that
(4.2) holds for the given \gamma and flow = \~flow.

(iii) Assumption 4.1(c) is not too restrictive. Indeed, the set \scrS (\delta f , \delta c) is compact
if f or f(\cdot) + \gamma \| c(\cdot)\| 2/2 is level-bounded. The latter level-boundedness as-
sumption is commonly imposed for studying AL methods (e.g., see [37, 60]),
which is stronger than our assumption.

We next propose a Newton-CG based AL method in Algorithm 4.1 for finding a
stochastic (\epsilon 1, \epsilon 2)-SOSP of problem (1.1) under Assumption 4.1. Instead of solving
(1.1) directly, this method solves the perturbed problem

(4.4) min
x\in \BbbR n

f(x) s.t. \~c(x) := c(x) - c(z\epsilon 1) = 0,

where z\epsilon 1 is given in Assumption 4.1(a). Specifically, at the kth iteration, this method
applies the Newton-CG method (Algorithm 3.1) to find an approximate stochastic
SOSP xk+1 of the AL subproblem associated with (4.4):

(4.5) min
x\in \BbbR n

\bigl\{ \widetilde \scrL (x,\lambda k, \rho k) := f(x) + (\lambda k)T \~c(x) + \rho k\| \~c(x)\| 2/2
\bigr\}

such that \widetilde \scrL (xk+1, \lambda k;\rho k) is below a threshold (see (4.6) and (4.7)), where \lambda k is a
truncated Lagrangian multiplier, i.e., the one that results from projecting the standard
multiplier estimate \~\lambda k onto a Euclidean ball (see step 6 of Algorithm 4.1). The
standard multiplier estimate \~\lambda k+1 is then updated by the classical scheme described
in step 4 of Algorithm 4.1. Finally, the penalty parameter \rho k+1 is adaptively updated
based on the improvement on constraint violation (see step 7 of Algorithm 4.1). Such
a practical update scheme is often adopted in the literature (e.g., see [7, 2, 31]).

We would like to point out that the truncated Lagrangian multiplier sequence
\{ \lambda k\} is used in the AL subproblems of Algorithm 4.1 and is bounded, while the stan-
dard Lagrangian multiplier sequence \{ \~\lambda k\} is used in those of the classical AL methods

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1744 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

Algorithm 4.1 A Newton-CG based AL method for problem (1.1).

and can be unbounded. Therefore, Algorithm 4.1 can be viewed as a safeguarded AL
method. Truncated Lagrangian multipliers have been used in the literature for de-
signing some AL methods [2, 11, 42, 13], and will play a crucial role in the subsequent
complexity analysis of Algorithm 4.1.

Remark 4.3.
(i) Notice that the starting point x0init of Algorithm 4.1 can be different from z\epsilon 1

and it may be rather infeasible, though z\epsilon 1 is a nearly feasible point of (1.1).
Besides, z\epsilon 1 is used to ensure convergence of Algorithm 4.1. Specifically,
if the algorithm runs into a ``poorly infeasible point"" xk, namely satisfying\widetilde \scrL (xk, \lambda k;\rho k)> f(z\epsilon 1), it will be superseded by z\epsilon 1 (see (4.8)), which prevents
the iterates \{ xk\} from converging to an infeasible point. However, xk may be
rather infeasible when k is not large. Thus, Algorithm 4.1 substantially differs
from a funneling or two-phase type algorithm, in which a nearly feasible point
is found in Phase 1, and then approximate stationarity is sought, while near
feasibility is maintained throughout Phase 2 (e.g., see [9, 16, 26, 27, 28, 29,
30, 36]).

(ii) The choice of \rho 0 in Algorithm 4.1 is mainly for the simplicity of complexity
analysis. However, it may be overly large and lead to highly ill-conditioned
AL subproblems in practice. To make Algorithm 4.1 practically more efficient,
one can possibly modify it by choosing a relatively small initial penalty pa-
rameter, then solving the subsequent AL subproblems by a first-order method
until an \epsilon 1-FOSP \^x of (1.1) along with a Lagrangian multiplier \^\lambda is found,
and finally performing the steps described in Algorithm 4.1 but with x0 = \^x
and \lambda 0 =\Pi \scrB \Lambda

(\^\lambda).

Before analyzing the complexity of Algorithm 4.1, we first argue that it is well-
defined if \rho 0 is suitably chosen. Specifically, we will show that when \rho 0 is sufficiently

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1745

large, one can apply the Newton-CG method (Algorithm 3.1) to the AL subproblem
minx\in \BbbR n \widetilde \scrL (x,\lambda k;\rho k) with xkinit as the initial point to find an xk+1 satisfying (4.6) and
(4.7). To this end, we start by noting from (4.1), (4.4), (4.5), and (4.8) that

(4.9) \widetilde \scrL (xkinit, \lambda k;\rho k)\leq max\{ \widetilde \scrL (z\epsilon 1 , \lambda k;\rho k), f(z\epsilon 1)\} = f(z\epsilon 1)\leq fhi.

Based on the above observation, we show in the next lemma that when \rho 0 is sufficiently
large, \widetilde \scrL (\cdot , \lambda k;\rho k) is bounded below and its certain level set is bounded; the proof is
deferred to section 6.2.

Lemma 4.4. Suppose that Assumption 4.1 holds. Let (\lambda k, \rho k) be generated at the
kth iteration of Algorithm 4.1 for some k \geq 0, let \scrS (\delta f , \delta c) and xkinit be defined in
(4.3) and (4.8), respectively, and let fhi, flow, \delta f , and \delta c be given in Assumption 4.1.
Suppose that \rho 0 is sufficiently large such that \delta f,1 \leq \delta f and \delta c,1 \leq \delta c, where

(4.10) \delta f,1 := \Lambda 2/(2\rho 0) and \delta c,1 :=

\sqrt{}
2(fhi - flow + \gamma)

\rho 0 - 2\gamma
+

\Lambda 2

(\rho 0 - 2\gamma)2
+

\Lambda

\rho 0 - 2\gamma
.

Then the following statements hold.
(i) \{ x : \widetilde \scrL (x,\lambda k;\rho k)\leq \widetilde \scrL (xkinit, \lambda k;\rho k)\} \subseteq \scrS (\delta f , \delta c).
(ii) infx\in \BbbR n \widetilde \scrL (x,\lambda k;\rho k)\geq flow - \gamma - \Lambda \delta c.

Using Lemma 4.4, we can verify that the Newton-CG method (Algorithm 3.1),
starting with u0 = xkinit, is capable of finding an approximate solution xk+1 of the
AL subproblem minx\in \BbbR n \widetilde \scrL (x,\lambda k;\rho k) satisfying (4.6) and (4.7). Indeed, let F (\cdot) =\widetilde \scrL (\cdot , \lambda k;\rho k) and u0 = xkinit. By these and Lemma 4.4, one can see that \{ x : F (x) \leq
F (u0)\} \subseteq \scrS (\delta f , \delta c). It then follows from this and Assumption 4.1(c) that the level
set \{ x : F (x)\leq F (u0)\} is compact and \nabla 2F is Lipschitz continuous on a convex open
neighborhood of \{ x : F (x) \leq F (u0)\} . Thus, such F and u0 satisfy Assumption 3.1.
Based on this and the discussion in section 3, one can conclude that Algorithm 3.1,
starting with u0 = xkinit, is applicable to the AL subproblem minx\in \BbbR n \widetilde \scrL (x,\lambda k;\rho k).
Moreover, it follows from Theorem 3.2 that this Algorithm 3.1 with (\epsilon g, \epsilon H) = (\tau gk , \tau

H
k)

can produce a point xk+1 satisfying (4.7) and also the second relation in (4.6). In
addition, since this algorithm is descent and its starting point is xkinit, its output x

k+1

must satisfy \widetilde \scrL (xk+1, \lambda k;\rho k) \leq \widetilde \scrL (xkinit, \lambda k;\rho k), which along with (4.9) implies that\widetilde \scrL (xk+1, \lambda k;\rho k)\leq f(z\epsilon 1) and thus xk+1 also satisfies the first relation in (4.6).
This discussion leads to the following conclusion concerning the well-definedness

of Algorithm 4.1.

Theorem 4.5. Under the same settings as in Lemma 4.4, the Newton-CG method
(Algorithm 3.1) applied to the AL subproblem minx\in \BbbR n \widetilde \scrL (x,\lambda k;\rho k) with u0 = xkinit finds
a point xk+1 satisfying (4.6) and (4.7).

The following theorem characterizes the output of Algorithm 4.1. Its proof is
deferred to section 6.2.

Theorem 4.6. Suppose that Assumption 4.1 holds and that \rho 0 is sufficiently
large such that \delta f,1 \leq \delta f and \delta c,1 \leq \delta c, where \delta f,1 and \delta c,1 are defined as in (4.10). If
Algorithm 4.1 terminates at some iteration k, then xk+1 is a deterministic \epsilon 1-FOSP
of problem (1.1), and moreover, it is an (\epsilon 1, \epsilon 2)-SOSP of (1.1) with probability at least
1 - \delta .

Remark 4.7. As seen from this theorem, the output of Algorithm 4.1 is a stochastic
(\epsilon 1, \epsilon 2)-SOSP of problem (1.1). Nevertheless, one can easily modify Algorithm 4.1 to
seek some other approximate solutions. For example, if one is only interested in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1746 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

finding an \epsilon 1-FOSP of (1.1), one can remove the condition (4.7) from Algorithm 4.1.
In addition, if one aims to find a deterministic (\epsilon 1, \epsilon 2)-SOSP of (1.1), one can replace
the condition (4.7) and Algorithm 3.1 by \lambda min(\nabla 2

xx
\widetilde \scrL (xk+1, \lambda k;\rho k)) \geq - \tau Hk and a

deterministic counterpart, respectively. The purpose of imposing high probability in
the condition (4.7) is to enable us to derive operation complexity of Algorithm 4.1
measured by the number of matrix-vector products.

In the rest of this section, we study the worst-case complexity of Algorithm 4.1.
Since our method has two nested loops, in particular, outer loops executed by the
AL method and inner loops executed by the Newton-CG method for solving the AL
subproblems, we consider the following measures of complexity for Algorithm 4.1:

\bullet outer iteration complexity , which measures the number of outer iterations of
Algorithm 4.1;

\bullet total inner iteration complexity , which measures the total number of iterations
of the Newton-CG method that are performed in Algorithm 4.1;

\bullet operation complexity , which measures the total number of matrix-vector prod-
ucts involving the Hessian of the augmented Lagrangian function that are
evaluated in Algorithm 4.1.

4.1. Outer iteration complexity of Algorithm 4.1. In this subsection we
establish outer iteration complexity of Algorithm 4.1. For notational convenience, we
rewrite (\tau gk , \tau

H
k) arising in Algorithm 4.1 as

(4.11) (\tau gk , \tau
H
k)=(max\{ \epsilon 1, \omega k

1\} ,max\{ \epsilon 2, \omega k
2\}) with (\omega 1, \omega 2):=(rlog \epsilon 1/log 2, rlog \epsilon 2/log 2),

where \epsilon 1, \epsilon 2, and r are the input parameters of Algorithm 4.1. Since r > 1 and
\epsilon 1, \epsilon 2 \in (0,1), it is not hard to verify that \omega 1, \omega 2 \in (0,1). Also, we introduce the
following quantity that will be used frequently later:

(4.12) K\epsilon 1 :=
\bigl\lceil
min\{ k\geq 0 : \omega k

1 \leq \epsilon 1\}
\bigr\rceil
= \lceil log \epsilon 1/ log\omega 1\rceil .

In view of (4.11), (4.12), and the fact that

(4.13) log \epsilon 1/ log\omega 1 = log \epsilon 2/ log\omega 2 = log 2/ log r,

we see that (\tau gk , \tau
H
k) = (\epsilon 1, \epsilon 2) for all k\geq K\epsilon 1 . This along with the termination criterion

of Algorithm 4.1 implies that it runs for at least K\epsilon 1 iterations and terminates once
\| c(xk+1)\| \leq \epsilon 1 for some k \geq K\epsilon 1 . As a result, to establish outer iteration complexity
of Algorithm 4.1, it suffices to bound such k. The resulting outer iteration complexity
of Algorithm 4.1 is presented below; the proof is deferred to section 6.2.

Theorem 4.8. Suppose that Assumption 4.1 holds and that \rho 0 is sufficiently large
such that \delta f,1 \leq \delta f and \delta c,1 \leq \delta c, where \delta f,1 and \delta c,1 are defined in (4.10). Let

\rho \epsilon 1 :=max
\bigl\{
8(fhi - flow + \gamma)\epsilon - 2

1 + 4\Lambda \epsilon - 1
1 + 2\gamma ,2\rho 0

\bigr\}
,(4.14)

K\epsilon 1 := inf\{ k\geq K\epsilon 1 : \| c(xk+1)\| \leq \epsilon 1\} ,(4.15)

where K\epsilon 1 is defined in (4.12), and \gamma , fhi, and flow are given in Assumption 4.1.
Then K\epsilon 1 is finite, and Algorithm 4.1 terminates at iteration K\epsilon 1 with

(4.16) K\epsilon 1 \leq
\biggl(
log(\rho \epsilon 1\rho

 - 1
0)

log r
+ 1

\biggr) \biggl(\bigm| \bigm| \bigm| \bigm| log(\epsilon 1(2\delta c,1) - 1)

log\alpha

\bigm| \bigm| \bigm| \bigm| + 2

\biggr)
+ 1.

Moreover, \rho k \leq r\rho \epsilon 1 holds for 0\leq k\leq K\epsilon 1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1747

Remark 4.9 (upper bounds for K\epsilon 1 and \{ \rho k\}). As observed from Theorem 4.8,
the number of outer iterations of Algorithm 4.1 for finding a stochastic (\epsilon 1, \epsilon 2)-SOSP
of problem (1.1) is K\epsilon 1 + 1, which is at most \scrO (| log \epsilon 1| 2). In addition, the penalty
parameters \{ \rho k\} generated in this algorithm are at most \scrO (\epsilon - 2

1).

4.2. Total inner iteration and operation complexity of Algorithm 4.1.
We present the total inner iteration and operation complexity of Algorithm 4.1 for
finding a stochastic (\epsilon 1, \epsilon 2)-SOSP of (1.1); the proof is deferred to section 6.2.

Theorem 4.10. Suppose that Assumption 4.1 holds and that \rho 0 is sufficiently
large such that \delta f,1 \leq \delta f and \delta c,1 \leq \delta c, where \delta f,1 and \delta c,1 are defined in (4.10). Then
the following statements hold:

(i) The total number of iterations of Algorithm 3.1 performed in Algorithm 4.1
is at most \widetilde \scrO (\epsilon - 4

1 max\{ \epsilon - 2
1 \epsilon 2, \epsilon

 - 3
2 \}). If c is further assumed to be affine, then

it is at most \widetilde \scrO (max\{ \epsilon - 2
1 \epsilon 2, \epsilon

 - 3
2 \}).

(ii) The total number of matrix-vector products performed by Algorithm 3.1

in Algorithm 4.1 is at most \widetilde \scrO (\epsilon - 4
1 max\{ \epsilon - 2

1 \epsilon 2, \epsilon
 - 3
2 \} min\{ n, \epsilon - 1

1 \epsilon
 - 1/2
2 \}). If

c is further assumed to be affine, then it is at most \widetilde \scrO (max\{ \epsilon - 2
1 \epsilon 2, \epsilon

 - 3
2 \}

min\{ n, \epsilon - 1
1 \epsilon

 - 1/2
2 \}).

Remark 4.11.
(i) Note that the above complexity results of Algorithm 4.1 are established with-

out assuming any constraint qualification (CQ). In contrast, similar complex-
ity results are obtained in [60] for a proximal AL method under a generalized
LICQ condition. To the best of our knowledge, our work provides the first
study on complexity for finding a stochastic SOSP of (1.1) without CQ.

(ii) Letting (\epsilon 1, \epsilon 2) = (\epsilon ,
\surd
\epsilon) for some \epsilon \in (0,1), we see that Algorithm 4.1 achieves

a total inner iteration complexity of \widetilde \scrO (\epsilon - 11/2) and an operation complexity
of \widetilde \scrO (\epsilon - 11/2min\{ n, \epsilon - 5/4\}) for finding a stochastic (\epsilon ,

\surd
\epsilon)-SOSP of problem

(1.1) without CQ.

4.3. Enhanced complexity of Algorithm 4.1 under constraint qualifica-
tion. In this subsection we study complexity of Algorithm 4.1 under one additional
assumption that a generalized linear independence constraint qualification (GLICQ)
holds for problem (1.1), which is introduced below. In particular, under GLICQ
we will obtain an enhanced total inner iteration and operation complexity for Algo-
rithm 4.1, which are significantly better than the ones in Theorem 4.10 when problem
(1.1) has nonlinear constraints. Moreover, when (\epsilon 1, \epsilon 2) = (\epsilon ,

\surd
\epsilon) for some \epsilon \in (0,1),

our enhanced complexity bounds are also better than those obtained in [60] for a
proximal AL method. We now introduce the GLICQ assumption for problem (1.1).

Assumption 4.12 (GLICQ). \nabla c(x) has full column rank for all x \in \scrS (\delta f , \delta c),
where \scrS (\delta f , \delta c) is as in (4.3).

Remark 4.13. A related yet different GLICQ is imposed in [60, Assumption 2(ii)]
for problem (1.1), which assumes that \nabla c(x) has full column rank for all x in a level
set of f(\cdot) + \gamma \| c(\cdot)\| 2/2. It is not hard to verify that this assumption is generally
stronger than the above GLICQ assumption.

The following theorem shows that under Assumption 4.12, the total inner itera-
tion and operation complexity results presented in Theorem 4.10 can be significantly
improved; the proof is deferred to section 6.2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1748 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

Theorem 4.14. Suppose that Assumptions 4.1 and 4.12 hold and that \rho 0 is suf-
ficiently large such that \delta f,1 \leq \delta f and \delta c,1 \leq \delta c, where \delta f,1 and \delta c,1 are defined in
(4.10). Then the following statements hold:

(i) The total number of iterations of Algorithm 3.1 performed in Algorithm 4.1
is at most \widetilde \scrO (\epsilon - 2

1 max\{ \epsilon - 2
1 \epsilon 2, \epsilon

 - 3
2 \}). If c is further assumed to be affine, then

it is at most \widetilde \scrO (max\{ \epsilon - 2
1 \epsilon 2, \epsilon

 - 3
2 \}).

(ii) The total number of matrix-vector products performed by Algorithm 3.1

in Algorithm 4.1 is at most \widetilde \scrO (\epsilon - 2
1 max\{ \epsilon - 2

1 \epsilon 2, \epsilon
 - 3
2 \} min\{ n, \epsilon - 1/2

1 \epsilon
 - 1/2
2 \}). If

c is further assumed to be affine, then it is at most \widetilde \scrO (max\{ \epsilon - 2
1 \epsilon 2, \epsilon

 - 3
2 \}

min\{ n, \epsilon - 1/2
1 \epsilon

 - 1/2
2 \}).

Remark 4.15.
(i) As seen from Theorem 4.14, when problem (1.1) has nonlinear constraints,

under GLICQ and some other suitable assumptions, Algorithm 4.1 achieves
significantly better complexity bounds than the ones in Theorem 4.10 without
constraint qualification.

(ii) Letting (\epsilon 1, \epsilon 2) = (\epsilon ,
\surd
\epsilon) for some \epsilon \in (0,1), we see that when problem (1.1)

has nonlinear constraints, under GLICQ and some other suitable assumptions,
Algorithm 4.1 achieves a total inner iteration complexity of \widetilde \scrO (\epsilon - 7/2) and an
operation complexity of \widetilde \scrO (\epsilon - 7/2min\{ n, \epsilon - 3/4\}). They are vastly better than
the total inner iteration complexity of \widetilde \scrO (\epsilon - 11/2) and the operation complexity
of \widetilde \scrO (\epsilon - 11/2min\{ n, \epsilon - 3/4\}) that are achieved by a proximal AL method in [60]
for finding a stochastic (\epsilon ,

\surd
\epsilon)-SOSP of (1.1) yet under a generally stronger

GLICQ.

5. Numerical results. We conduct some preliminary experiments to test the
performance of our proposed methods (Algorithms 3.1 and 4.1) and compare them
with the Newton-CG method in [56] and the proximal AL method in [60], respectively.
All the algorithms are coded in MATLAB, and all the computations are performed
on a desktop with a 3.79GHz AMD 3900XT 12-Core processor and 32GB of RAM.

5.1. Regularized robust regression. In this subsection we consider the reg-
ularized robust regression problem

(5.1) min
x\in \BbbR n

m\sum
i=1

\phi (aTi x - bi) + \mu \| x\| 44,

where \phi (t) = t2/(1 + t2), \| x\| p = (
\sum n

i=1 | xi| p)1/p for any p\geq 1, and \mu > 0.
For each triple (n,m,\mu), we randomly generate 10 instances of problem (5.1). In

particular, we first randomly generate ai, 1 \leq i \leq m, with all the entries indepen-
dently chosen from the standard normal distribution. We then randomly generate \=bi
according to the standard normal distribution and set bi = 2m\=bi for i= 1, . . . ,m.

Our aim is to find a (10 - 5,10 - 5/2)-SOSP of (5.1) for the above instances by
Algorithm 3.1 and the Newton-CG method in [56] and compare their performance.
For a fair comparison, we use a minimum eigenvalue oracle that returns a determin-
istic output for them so that they both certainly output an approximate second-
order stationary point. Specifically, we use the MATLAB subroutine [v,\lambda] =
eigs(H,1,'smallestreal') as the minimum eigenvalue oracle to find the minimum
eigenvalue \lambda and its associated unit eigenvector v of a real symmetric matrix H. Also,
for both methods, we choose the all-ones vector as the initial point, and set \theta = 0.8,
\zeta = 0.5, and \eta = 0.2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1749

Table 2
Numerical results for problem (5.1).

Objective value Iterations CPU time (seconds)
n m \mu Alg. 3.1 Newton-CG Alg. 3.1 Newton-CG Alg. 3.1 Newton-CG

100 10 1 5.9 5.9 85.7 116.3 1.4 1.6

100 50 1 45.9 45.9 82.6 158.2 1.0 2.7
100 90 1 84.8 84.8 102.2 224.7 2.0 4.2

500 50 5 42.2 42.5 173.1 344.7 44.2 72.2

500 250 5 243.0 242.9 145.5 362.4 41.9 95.0
500 450 5 442.2 442.2 163.7 425.2 47.6 138.3

1000 100 10 90.1 90.4 162.5 361.0 110.8 259.0

1000 500 10 491.1 491.2 158.3 475.4 129.1 558.4
1000 900 10 891.1 891.1 193.5 300.7 187.0 298.5

The computational results of Algorithm 3.1 and the Newton-CG method in [56]
for the instances randomly generated above are presented in Table 2. In detail, the
values of n, m, and \mu are listed in the first three columns, respectively. For each triple
(n,m,\mu), the average CPU time (in seconds), the average number of iterations, and
the average final objective value over 10 random instances are given in the remaining
the columns. One can observe that both methods output an approximate solution
with a similar objective value, while our Algorithm 3.1 substantially outperforms
the Newton-CG method in [56] in terms of CPU time. This is consistent with our
theoretical finding that Algorithm 3.1 achieves a better iteration complexity than the
Newton-CG method in [56] in terms of dependence on the Lipschitz constant of the
Hessian for finding an approximate SOSP.

5.2. Spherically constrained regularized robust regression. In this sub-
section we consider the spherically constrained regularized robust regression problem

(5.2) min
x\in \BbbR n

m\sum
i=1

\phi (aTi x - bi) + \mu \| x\| 44 s.t. \| x\| 22 = 1,

where \phi (t) = t2/(1 + t2), \| x\| p = (
\sum n

i=1 | xi| p)1/p for any p \geq 1, and \mu > 0 is a tuning
parameter. For each triple (n,m,\mu), we randomly generate 10 instances of problem
(5.2) in the same manner as described in subsection 5.1.

Our aim is to find a (10 - 4,10 - 2)-SOSP of (5.2) for the above instances by Algo-
rithm 4.1 and the proximal AL method [60, Algorithm 3] and compare their perfor-
mance. For a fair comparison, we use a minimum eigenvalue oracle that returns a de-
terministic output for them so that they both certainly output an approximate SOSP.
Specifically, we use the MATLAB subroutine [v,\lambda] = eigs(H,1,'smallestreal')
as the minimum eigenvalue oracle to find the minimum eigenvalue \lambda and its associated
unit eigenvector v of a real symmetric matrix H. In addition, for both methods, we
choose the initial point as z0 = (1/

\surd
n, . . . ,1/

\surd
n)T , the initial Lagrangian multiplier

as \lambda 0 = 0, and the other parameters as
\bullet \Lambda = 100, \rho 0 = 10, \alpha = 0.25, and r= 10 for Algorithm 4.1;
\bullet \eta = 1, q= 10, and T0 = 2 for the proximal AL method [60].

The computational results of Algorithm 4.1 and the proximal AL method in
[60] (abbreviated as Prox-AL) for solving problem (5.2) for the instances randomly
generated above are presented in Table 3. In detail, the values of n, m, and \mu are
listed in the first three columns, respectively. For each triple (n,m,\mu), the average
CPU time (in seconds), the average total number of inner iterations, the average final

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1750 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

Table 3
Numerical results for problem (5.2).

Objective value Feasibility
violation (\times 10 - 4)

Total inner
iterations

CPU time
(seconds)

n m \mu Alg. 4.1 Prox-AL Alg. 4.1 Prox-AL Alg. 4.1 Prox-AL Alg. 4.1 Prox-AL

100 10 1 7.1 7.1 0.18 0.27 40.9 97.3 0.73 2.2
100 50 1 46.6 46.6 0.21 0.30 37.0 86.3 0.78 1.7

100 90 1 87.0 87.0 0.12 0.40 39.5 68.6 1.1 1.9

500 50 5 44.4 44.4 0.40 0.68 59.0 343.4 11.4 134.9
500 250 5 244.3 244.3 0.37 0.47 59.0 543.3 11.7 178.2

500 450 5 444.0 444.0 0.27 0.53 66.7 634.1 17.1 158.2

1000 100 10 92.8 92.8 0.28 0.42 95.0 2054.6 46.3 1516.8
1000 500 10 491.9 491.9 0.22 0.72 68.3 756.2 39.5 558.6

1000 900 10 893.4 893.4 0.19 0.37 81.8 1281.4 57.7 1099.6

objective value, and the average final feasibility violation over 10 random instances
are given in the remaining columns. One can observe that both methods output
an approximate solution of similar quality in terms of objective value and feasibility
violation, while our Algorithm 4.1 vastly outperforms the proximal AL method in [60]
in terms of CPU time. This corroborates our theoretical finding that Algorithm 4.1
achieves a significantly better operation complexity than the proximal AL method in
[60] for finding an approximate SOSP.

6. Proof of the main results. We provide proofs of our main results in sec-
tions 3 and 4, including Theorem 3.2, Lemma 4.4, and Theorems 4.6, 4.8, 4.10,
and 4.14.

6.1. Proof of the main results in section 3. In this subsection we first es-
tablish several technical lemmas and then use them to prove Theorem 3.2.

One can observe from Assumption 3.1(b) that for all x and y \in \Omega ,

\| \nabla F (y) - \nabla F (x) - \nabla 2F (x)(y - x)\| \leq LF
H\| y - x\| 2/2,

(6.1)

F (y)\leq F (x) +\nabla F (x)T (y - x) + (y - x)T\nabla 2F (x)(y - x)/2 +LF
H\| y - x\| 3/6.

(6.2)

The next lemma provides useful properties of the output of Algorithm A.1; the
proof is similar to the ones in [56, Lemma 3] and [54, Lemma 7] and is thus omitted
here.

Lemma 6.1. Suppose that Assumption 3.1 holds and the direction dt results from
the output d of Algorithm A.1 with a type specified in d type at some iteration t of
Algorithm 3.1. Then the following statements hold:

(i) If d type=SOL, then dt satisfies

\epsilon H\| dt\| 2 \leq (dt)T
\bigl(
\nabla 2F (xt) + 2\epsilon HI

\bigr)
dt,(6.3)

\| dt\| \leq 1.1\epsilon - 1
H \| \nabla F (x

t)\| ,(6.4)

(dt)T\nabla F (xt) = - (dt)T
\bigl(
\nabla 2F (xt) + 2\epsilon HI

\bigr)
dt,(6.5)

\| (\nabla 2F (xt) + 2\epsilon HI)d
t +\nabla F (xt)\| \leq \epsilon H\zeta \| dt\| /2.(6.6)

(ii) If d type=NC, then dt satisfies (dt)T\nabla F (xt)\leq 0 and

(6.7) (dt)T\nabla 2F (xt)dt/\| dt\| 2 = - \| dt\| \leq - \epsilon H .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1751

The next lemma shows that when the search direction dt in Algorithm 3.1 is of
type ``SOL,"" the line-search step results in a sufficient reduction on F .

Lemma 6.2. Suppose that Assumption 3.1 holds and the direction dt results from
the output d of Algorithm A.1 with d type=SOL at some iteration t of Algorithm 3.1.
Let UF

g and csol be given in (3.3) and (3.13), respectively. Then the following state-
ments hold:

(i) The step length \alpha t is well-defined, and moreover,

(6.8) \alpha t \geq min

\Biggl\{
1,

\sqrt{}
min\{ 6(1 - \eta),2\}

1.1LF
HU

F
g

\theta \epsilon H

\Biggr\}
.

(ii) The next iterate xt+1 = xt + \alpha td
t satisfies

(6.9) F (xt) - F (xt+1)\geq csolmin\{ \| \nabla F (xt+1)\| 2\epsilon - 1
H , \epsilon 3H\} .

Proof. One can observe that F is descent along the iterates (whenever well-
defined) generated by Algorithm 3.1, which together with x0 = u0 implies that
F (xt) \leq F (u0) and hence \| \nabla F (xt)\| \leq UF

g due to (3.3). In addition, since dt results
from the output d of Algorithm A.1 with d type=SOL, one can see that \| \nabla F (xt)\| > \epsilon g
and (6.3)--(6.6) hold for dt. Moreover, by \| \nabla F (xt)\| > \epsilon g and (6.6), one can conclude
that dt \not = 0.

We first prove statement (i). If (3.10) holds for j = 0, then \alpha t = 1, which clearly
implies that (6.8) holds. We now suppose that (3.10) fails for j = 0. Claim that for
all j \geq 0 that violate (3.10), it holds that

(6.10) \theta 2j \geq min\{ 6(1 - \eta),2\} \epsilon H(LF
H) - 1\| dt\| - 1.

Indeed, suppose that (3.10) is violated by some j \geq 0. We now show that (6.10) holds
for such j by considering two separate cases below.

Case 1. F (xt + \theta jdt)>F (xt). Let \phi (\alpha) = F (xt +\alpha dt). Then \phi (\theta j)>\phi (0). Also,
since dt \not = 0, by (6.3) and (6.5), one has \phi \prime (0) = \nabla F (xt)T dt = - (dt)T (\nabla 2F (xt) +
2\epsilon HI)d

t \leq - \epsilon H\| dt\| 2 < 0. Using these, we can observe that there exists a local
minimizer \alpha \ast \in (0, \theta j) of \phi such that \phi \prime (\alpha \ast) =\nabla F (xt+\alpha \ast dt)T dt = 0 and \phi (\alpha \ast)<\phi (0),
which implies that F (xt + \alpha \ast dt)< F (xt)\leq F (u0). Hence, (6.1) holds for x= xt and
y= xt + \alpha \ast dt. Using this, 0<\alpha \ast < \theta j \leq 1, and \nabla F (xt + \alpha \ast dt)T dt = 0, we obtain

(\alpha \ast)2LF
H

2 \| dt\| 3
(6.1)

\geq \| dt\| \| \nabla F (xt + \alpha \ast dt) - \nabla F (xt) - \alpha \ast \nabla 2F (xt)dt\|
\geq (dt)T (\nabla F (xt + \alpha \ast dt) - \nabla F (xt) - \alpha \ast \nabla 2F (xt)dt)

= - (dt)T\nabla F (xt) - \alpha \ast (dt)T\nabla 2F (xt)dt

(6.5)
= (1 - \alpha \ast)(dt)T (\nabla 2F (xt) + 2\epsilon HI)d

t + 2\alpha \ast \epsilon H\| dt\| 2
(6.3)

\geq (1 + \alpha \ast)\epsilon H\| dt\| 2 \geq \epsilon H\| dt\| 2,

which along with dt \not = 0 implies that (\alpha \ast)2 \geq 2\epsilon H(LF
H) - 1\| dt\| - 1. Using this and

\theta j >\alpha \ast , we conclude that (6.10) holds in this case.
Case 2. F (xt + \theta jdt) \leq F (xt). This together with F (xt) \leq F (u0) implies that

(6.2) holds for x= xt and y= xt + \theta jdt. Then, because j violates (3.10), we obtain

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1752 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

 - \eta \epsilon H\theta 2j\| dt\| 2 \leq F (xt + \theta jdt) - F (xt)
(6.2)

\leq \theta j\nabla F (xt)T dt + \theta 2j

2
(dt)T\nabla 2F (xt)dt +

LF
H

6
\theta 3j\| dt\| 3

(6.5)
= - \theta j(dt)T (\nabla 2F (xt) + 2\epsilon HI)d

t +
\theta 2j

2
(dt)T\nabla 2F (xt)dt +

LF
H

6
\theta 3j\| dt\| 3

= - \theta j
\biggl(
1 - \theta j

2

\biggr)
(dt)T (\nabla 2F (xt) + 2\epsilon HI)d

t - \theta 2j\epsilon H\| dt\| 2 +
LF
H

6
\theta 3j\| dt\| 3

(6.3)

\leq - \theta j
\biggl(
1 - \theta j

2

\biggr)
\epsilon H\| dt\| 2 - \theta 2j\epsilon H\| dt\| 2 +

LF
H

6
\theta 3j\| dt\| 3

\leq - \theta j\epsilon H\| dt\| 2 +
LF
H

6
\theta 3j\| dt\| 3.(6.11)

Recall that dt \not = 0. Dividing both sides of (6.11) by LF
H\theta

j\| dt\| 3/6 and using \eta , \theta \in (0,1),
we obtain that \theta 2j \geq 6(1 - \theta j\eta)\epsilon H(LF

H) - 1\| dt\| - 1 \geq 6(1 - \eta)\epsilon H(LF
H) - 1\| dt\| - 1. Hence,

(6.10) also holds in this case.
Combining the above two cases, we conclude that (6.10) holds for any j \geq 0 that

violates (3.10). By this and \theta \in (0,1), one can see that all j \geq 0 that violate (3.10)
must be bounded above. It then follows that the step length \alpha t associated with (3.10)
is well-defined. We next prove (6.8). Observe from the definition of jt in Algorithm 3.1
that j = jt - 1 violates (3.10) and hence (6.10) holds for j = jt - 1. Then, by (6.10)
with j = jt - 1 and \alpha t = \theta jt , one has

(6.12) \alpha t = \theta jt \geq
\sqrt{}

min\{ 6(1 - \eta),2\} \epsilon H(LF
H) - 1 \theta \| dt\| - 1/2,

which, along with (6.4) and \| \nabla F (xt)\| \leq UF
g , implies (6.8). This proves statement (i).

We next prove statement (ii) by considering two separate cases.
Case 1. \alpha t = 1. By this assertion, one knows that (3.10) holds for j = 0. It then

follows that F (xt+dt)\leq F (xt)\leq F (u0), which implies that (6.1) holds for x= xt and
y= xt + dt. By this and (6.6), one has

\| \nabla F (xt+1)\| = \| \nabla F (xt + dt)\| \leq \| \nabla F (xt + dt) - \nabla F (xt) - \nabla 2F (xt)dt\|
+\| (\nabla 2F (xt) + 2\epsilon HI)d

t +\nabla F (xt)\| + 2\epsilon H\| dt\|

\leq LF
H

2 \| d
t\| 2 + 4+\zeta

2 \epsilon H\| dt\| ,

where the last inequality follows from (6.1) and (6.6). Solving the above inequality
for \| dt\| and using the fact that \| dt\| > 0, we obtain that

\| dt\| \geq - (4+\zeta)\epsilon H+
\surd

(4+\zeta)2\epsilon 2H+8LF
H\| \nabla F (xt+1)\|

2LF
H

\geq - (4+\zeta)\epsilon H+
\surd

(4+\zeta)2\epsilon 2H+8LF
H\epsilon 2H

2LF
H

min\{ \| \nabla F (xt+1)\| /\epsilon 2H ,1\}

= 4

4+\zeta +
\surd

(4+\zeta)2+8LF
H

min\{ \| \nabla F (xt+1)\| /\epsilon H , \epsilon H\} ,

where the second inequality follows from the inequality - a +
\surd
a2 + bs \geq (- a +\surd

a2 + b)min\{ s,1\} for all a, b, s \geq 0, which can be verified by performing a rational-
ization to the terms - a+

\surd
a2 + b and - a+

\surd
a2 + bs, respectively. By this, \alpha t = 1,

(3.10), and (3.13), one can see that (6.9) holds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1753

Case 2. \alpha t < 1. It then follows that j = 0 violates (3.10) and hence (6.10) holds
for j = 0. Now, letting j = 0 in (6.10), we obtain that \| dt\| \geq min\{ 6(1 - \eta),2\} \epsilon H/LF

H ,
which together with (3.10) and (6.12) implies that

F(xt) - F (xt+1)\geq \eta \epsilon H\theta 2jt\| dt\| 2 \geq \eta
min\{ 6(1 - \eta),2\} \epsilon 2H

LF
H

\theta 2\| dt\| \geq \eta
\biggl[
min\{ 6(1 - \eta),2\} \theta

LF
H

\biggr] 2
\epsilon 3H .

By this and (3.13), one can see that (6.9) also holds in this case.

The following lemma shows that when the search direction dt in Algorithm 3.1 is
of type ``NC,"" the line-search step results in a sufficient reduction on F as well.

Lemma 6.3. Suppose that Assumption 3.1 holds and the direction dt results from
either the output d of Algorithm A.1 with d type=NC or the output v of Algorithm B.1
at some iteration t of Algorithm 3.1. Let cnc be defined as in (3.14). Then the following
statements hold:

(i) The step length \alpha t is well-defined, and \alpha t \geq min\{ 1, \theta /LF
H ,3(1 - \eta)\theta /LF

H\} .
(ii) The next iterate xt+1 = xt + \alpha td

t satisfies F (xt) - F (xt+1)\geq cnc\epsilon 3H .

Proof. Observe that F is descent along the iterates (whenever well-defined) gen-
erated by Algorithm 3.1. Using this and x0 = u0, we have F (xt) \leq F (u0). By the
assumption on dt, one can see from Algorithm 3.1 that dt is a negative curvature
direction given in (3.7) or (3.9). Also, notice that the vector v returned from Algo-
rithm B.1 satisfies \| v\| = 1. By these results, Lemma 6.1(ii), (3.7), and (3.9), one can
observe that

(6.13) \nabla F (xt)T dt \leq 0, (dt)T\nabla 2F (xt)dt = - \| dt\| 3 < 0.

We first prove statement (i). If (3.11) holds for j = 0, then \alpha t = 1, which clearly
implies that \alpha t \geq min\{ 1, \theta /LF

H ,3(1 - \eta)\theta /LF
H\} . We now suppose that (3.11) fails for

j = 0. Claim that for all j \geq 0 that violate (3.11), it holds that

(6.14) \theta j \geq min\{ 1/LF
H ,3(1 - \eta)/LF

H\} .

Indeed, suppose that (3.11) is violated by some j \geq 0. We now show that (6.14) holds
for such j by considering two separate cases.

Case 1. F (xt + \theta jdt)>F (xt). Let \phi (\alpha) = F (xt +\alpha dt). Then \phi (\theta j)>\phi (0). Also,
by (6.13), one has \phi \prime (0) = \nabla F (xt)T dt \leq 0 and \phi \prime \prime (0) = (dt)T\nabla 2F (xt)dt < 0. Using
these, we can observe that there exists a local minimizer \alpha \ast \in (0, \theta j) of \phi such that
\phi (\alpha \ast)<\phi (0), namely, F (xt+\alpha \ast dt)<F (xt). By the second-order optimality condition
of \phi at \alpha \ast , one has \phi \prime \prime (\alpha \ast) = (dt)T\nabla 2F (xt+\alpha \ast dt)dt \geq 0. Since F (xt+\alpha \ast dt)<F (xt)\leq
F (u0), it follows that (3.2) holds for x= xt and y= xt +\alpha \ast dt. Using this, the second
relation in (6.13), and (dt)T\nabla 2F (xt + \alpha \ast dt)dt \geq 0, we obtain that

LF
H\alpha

\ast \| dt\| 3
(3.2)

\geq \| dt\| 2\| \nabla 2F (xt + \alpha \ast dt) - \nabla 2F (xt)\|
\geq (dt)T (\nabla 2F (xt + \alpha \ast dt) - \nabla 2F (xt))dt \geq - (dt)T\nabla 2F (xt)dt = \| dt\| 3.(6.15)

Recall from (6.13) that dt \not = 0. It then follows from (6.15) that \alpha \ast \geq 1/LF
H , which

along with \theta j >\alpha \ast implies that \theta j > 1/LF
H . Hence, (6.14) holds in this case.

Case 2. F (xt + \theta jdt) \leq F (xt). It follows from this assertion and F (xt) \leq F (u0)
that (6.2) holds for x= xt and y= xt+\theta jdt. By this result and the fact that j violates
(3.11), one has

 - \eta
2\theta

2j\| dt\| 3 \leq F (xt + \theta jdt) - F (xt)
(6.2)

\leq \theta j\nabla F (xt)T dt+ \theta 2j

2 (dt)T\nabla 2F (xt)dt+
LF

H

6 \theta 3j\| dt\| 3
(6.13)

\leq - \theta 2j

2 \| d
t\| 3 + LF

H

6 \theta 3j\| dt\| 3,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1754 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

which together with dt \not = 0 implies that \theta j \geq 3(1 - \eta)/LF
H . Hence, (6.14) also holds in

this case.
Combining the above two cases, we conclude that (6.14) holds for any j \geq 0 that

violates (3.11). By this and \theta \in (0,1), one can see that all j \geq 0 that violate (3.11)
must be bounded above. It then follows that the step length \alpha t associated with (3.11)
is well-defined. We next derive a lower bound for \alpha t. Notice from the definition of jt in
Algorithm 3.1 that j = jt - 1 violates (3.11) and hence (6.14) holds for j = jt - 1. Then,
by (6.14) with j = jt - 1 and \alpha t = \theta jt , one has \alpha t = \theta jt \geq min\{ \theta /LF

H ,3(1 - \eta)\theta /LF
H\} ,

which immediately yields \alpha t \geq min\{ 1, \theta /LF
H ,3(1 - \eta)\theta /LF

H\} as desired.
We next prove statement (ii) by considering two separate cases.
Case 1. dt results from the output d of Algorithm A.1 with d type=NC. It then

follows from (6.7) that \| dt\| \geq \epsilon H . This together with (3.11) and statement (i) implies
that statement (ii) holds.

Case 2. dt results from the output v of Algorithm B.1. Notice from Algorithm B.1
that \| v\| = 1 and vT\nabla 2F (xt)v \leq - \epsilon H/2, which along with (3.9) yields \| dt\| \geq \epsilon H/2.
By this, (3.11), and statement (i), one can see that statement (ii) again holds.

Proof of Theorem 3.2. For notational convenience, we let \{ xt\} t\in \BbbT denote all the
iterates generated by Algorithm 3.1, where \BbbT is a set of consecutive nonnegative
integers starting from 0. Notice that F is descent along the iterates generated by
Algorithm 3.1, which together with x0 = u0 implies that xt \in \{ x : F (x) \leq F (u0)\} . It
then follows from (3.3) that \| \nabla 2F (xt)\| \leq UF

H holds for all t\in \BbbT .
(i) Suppose for contradiction that the total number of calls of Algorithm B.1

in Algorithm 3.1 is more than T2. Notice from Algorithm 3.1 and Lemma 6.3(ii)
that each of these calls, except the last one, returns a sufficiently negative curvature
direction, and each of them results in a reduction on F of at least cnc\epsilon

3
H . Hence,

T2cnc\epsilon
3
H \leq

\sum
t\in \BbbT [F (x

t) - F (xt+1)]\leq F (x0) - Flow = Fhi - Flow, which contradicts the
definition of T2 given in (3.12). Hence, statement (i) of Theorem 3.2 holds.

(ii) Suppose for contradiction that the total number of calls of Algorithm A.1
in Algorithm 3.1 is more than T1. Observe that if Algorithm A.1 is called at some
iteration t and generates the next iterate xt+1 satisfying \| \nabla F (xt+1)\| \leq \epsilon g, then
Algorithm B.1 must be called at the next iteration t+1. In view of this and statement
(i) of Theorem 3.2, we see that the total number of such iterations t is at most T2.
Hence, the total number of iterations t of Algorithm 3.1 at which Algorithm A.1
is called and generates the next iterate xt+1 satisfying \| \nabla F (xt+1)\| > \epsilon g is at least
T1 - T2 + 1. Moreover, for each of such iterations t, we observe from Lemmas 6.2(ii)
and 6.3(ii) that F (xt) - F (xt+1)\geq min\{ csol, cnc\} min\{ \epsilon 2g\epsilon - 1

H , \epsilon 3H\} . It then follows that

(T1 - T2 + 1)min\{ csol, cnc\} min\{ \epsilon 2g\epsilon - 1
H , \epsilon 3H\} \leq

\sum
t\in \BbbT [F (x

t) - F (xt+1)] \leq Fhi - Flow,
which contradicts the definition of T1 and T2 given in (3.12). Hence, statement (ii) of
Theorem 3.2 holds.

(iii) Notice that either Algorithm A.1 or B.1 is called at each iteration of Algo-
rithm 3.1. It follows from this and statements (i) and (ii) of Theorem 3.2 that the
total number of iterations of Algorithm 3.1 is at most T1+T2. In addition, the relation
(3.15) follows from (3.13), (3.14), and (3.12). One can also observe that the output xt

of Algorithm 3.1 satisfies \| \nabla F (xt)\| \leq \epsilon g deterministically and \lambda min(\nabla 2F (xt))\geq - \epsilon H
with probability at least 1 - \delta for some 0\leq t\leq T1 + T2, where the latter part is due
to Algorithm B.1. This completes the proof of statement (ii) of Theorem 3.2.

(iv) By Theorem A.1 with (H,\varepsilon) = (\nabla 2F (xt), \epsilon H) and the fact that \| \nabla 2F (xt)\| \leq
UF
H , one can observe that the number of Hessian-vector products required by each

call of Algorithm A.1 with input U = 0 is at most \widetilde \scrO (min\{ n, (UF
H/\epsilon H)1/2\}). In

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1755

addition, by Theorem B.1 with (H,\varepsilon) = (\nabla 2F (xt), \epsilon H), \| \nabla 2F (xt)\| \leq UF
H , and the

fact that each iteration of the Lanczos method requires only one matrix-vector prod-
uct, one can observe that the number of Hessian-vector products required by each call
of Algorithm B.1 is also at most \widetilde \scrO (min\{ n, (UF

H/\epsilon H)1/2\}). Based on these observa-
tions and statement (iii) of Theorem 3.2, we see that statement (iv) of this theorem
holds.

6.2. Proof of the main results in section 4. Recall from Assumption 4.1(a)
that \| c(z\epsilon 1)\| \leq \epsilon 1/2< 1. By virtue of this, (4.2), and the definition of \~c in (4.4), we
obtain that

(6.16) f(x) + \gamma \| \~c(x)\| 2 \geq f(x) + \gamma \| c(x)\| 2/2 - \gamma \| c(z\epsilon 1)\| 2 \geq flow - \gamma \forall x\in \BbbR n.

We now prove the following auxiliary lemma that will be used frequently later.

Lemma 6.4. Suppose that Assumption 4.1 holds. Let \gamma , fhi, and flow be given in
Assumption 4.1. Assume that \rho > 2\gamma , \lambda \in \BbbR m, and x\in \BbbR n satisfy

(6.17) \widetilde \scrL (x,\lambda ;\rho)\leq fhi,
where \widetilde \scrL is defined as in (4.5). Then the following statements hold:

(i) f(x)\leq fhi + \| \lambda \| 2/(2\rho).
(ii) \| \~c(x)\| \leq

\sqrt{}
2(fhi - flow + \gamma)/(\rho - 2\gamma) + \| \lambda \| 2/(\rho - 2\gamma)2 + \| \lambda \| /(\rho - 2\gamma).

(iii) If \rho \geq \| \lambda \| 2/(2\~\delta f) for some \~\delta f > 0, then f(x)\leq fhi + \~\delta f .
(iv) If

(6.18) \rho \geq 2(fhi - flow + \gamma)\~\delta - 2
c + 2\| \lambda \| \~\delta - 1

c + 2\gamma

for some \~\delta c > 0, then \| \~c(x)\| \leq \~\delta c.

Proof. (i) It follows from (6.17) and the definition of \widetilde \scrL in (4.5) that

fhi \geq f(x) + \lambda T \~c(x) +
\rho

2
\| \~c(x)\| 2 = f(x) +

\rho

2

\bigm\| \bigm\| \bigm\| \bigm\| \~c(x) + \lambda

\rho

\bigm\| \bigm\| \bigm\| \bigm\| 2 - \| \lambda \| 22\rho
\geq f(x) - \| \lambda \|

2

2\rho
.

Hence, statement (i) holds.
(ii) In view of (6.16) and (6.17), one has

fhi
(6.17)

\geq f(x)+\lambda T \~c(x)+ \rho
2\| \~c(x)\|

2=f(x)+\gamma \| \~c(x)\| 2+ \rho - 2\gamma
2

\bigm\| \bigm\| \bigm\| \~c(x) + \lambda
\rho - 2\gamma

\bigm\| \bigm\| \bigm\| 2 - \| \lambda \| 2

2(\rho - 2\gamma)

(6.16)

\geq flow - \gamma + \rho - 2\gamma
2

\bigm\| \bigm\| \bigm\| \~c(x) + \lambda
\rho - 2\gamma

\bigm\| \bigm\| \bigm\| 2 - \| \lambda \| 2

2(\rho - 2\gamma) .

It then follows that
\bigm\| \bigm\| \bigm\| \~c(x) + \lambda

\rho - 2\gamma

\bigm\| \bigm\| \bigm\| \leq \sqrt{} 2(f\mathrm{h}\mathrm{i} - f\mathrm{l}\mathrm{o}\mathrm{w}+\gamma)
\rho - 2\gamma + \| \lambda \| 2

(\rho - 2\gamma)2 , which implies that

statement (ii) holds.
(iii) Statement (iii) immediately follows from statement (i) and \rho \geq \| \lambda \| 2/(2\~\delta f).
(iv) Suppose that (6.18) holds. Multiplying both sides of (6.18) by \~\delta 2c and rear-

ranging the terms, we have (\rho - 2\gamma)\~\delta 2c - 2\| \lambda \| \~\delta c - 2(fhi - flow + \gamma) \geq 0. Recall that
\rho > 2\gamma and \~\delta c > 0. Solving this inequality for \~\delta c yields

\~\delta c \geq
\sqrt{}
2(fhi - flow + \gamma)/(\rho - 2\gamma) + \| \lambda \| 2/(\rho - 2\gamma)2 + \| \lambda \| /(\rho - 2\gamma),

which along with statement (ii) implies that \| \~c(x)\| \leq \~\delta c. Hence, statement (iv)
holds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1756 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

Proof of Lemma 4.4. (i) Let x be any point such that \widetilde \scrL (x,\lambda k;\rho k)\leq \widetilde \scrL (xkinit, \lambda k;\rho k).
It then follows from (4.9) that \widetilde \scrL (x,\lambda k;\rho k) \leq fhi. By this, \| \lambda k\| \leq \Lambda , \rho k \geq \rho 0 > 2\gamma ,
\delta f,1 \leq \delta f , \delta c,1 \leq \delta c, and Lemma 6.4 with (\lambda ,\rho) = (\lambda k, \rho k), one has f(x) \leq fhi +
\| \lambda k\| 2/(2\rho k)\leq fhi +\Lambda 2/(2\rho 0) = fhi + \delta f,1 \leq fhi + \delta f and

(6.19)

\| \~c(x)\| \leq

\sqrt{}
2(fhi - flow + \gamma)

\rho k - 2\gamma
+

\| \lambda k\| 2
(\rho k - 2\gamma)2

+
\| \lambda k\|
\rho k - 2\gamma

\leq

\sqrt{}
2(fhi - flow + \gamma)

\rho 0 - 2\gamma
+

\Lambda 2

(\rho 0 - 2\gamma)2
+

\Lambda

\rho 0 - 2\gamma
= \delta c,1 \leq \delta c.

Also, recall from the definition of \~c in (4.4) and \| c(z\epsilon 1)\| \leq 1 that \| c(x)\| \leq 1+\| \~c(x)\| .
This together with the above inequalities and (4.3) implies x \in \scrS (\delta f , \delta c). Hence,
statement (i) of Lemma 4.4 holds.

(ii) Note that inf
x\in \BbbR n

\widetilde \scrL (x,\lambda k;\rho k)= inf
x\in \BbbR n
\{ \widetilde \scrL (x,\lambda k;\rho k) : \widetilde \scrL (x,\lambda k;\rho k)\leq \widetilde \scrL (xkinit, \lambda k;\rho k)\} .

Consequently, to prove statement (ii) of Lemma 4.4, it suffices to show that

(6.20) inf
x\in \BbbR n
\{ \widetilde \scrL (x,\lambda k;\rho k) : \widetilde \scrL (x,\lambda k;\rho k)\leq \widetilde \scrL (xkinit, \lambda k;\rho k)\} \geq flow - \gamma - \Lambda \delta c.

To this end, let x be any point satisfying \widetilde \scrL (x,\lambda k;\rho k)\leq \widetilde \scrL (xkinit, \lambda k;\rho k). We then know
from (6.19) that \| \~c(x)\| \leq \delta c. By this, \| \lambda k\| \leq \Lambda , \rho k > 2\gamma , and (6.16), one has

\widetilde \scrL (x,\lambda k;\rho k) = f(x) + \gamma \| \~c(x)\| 2 + (\lambda k)T \~c(x) + \rho k - 2\gamma
2 \| \~c(x)\| 2

\geq f(x) + \gamma \| \~c(x)\| 2 - \Lambda \| \~c(x)\| \geq flow - \gamma - \Lambda \delta c,

and hence (6.20) holds as desired.

Proof of Theorem 4.6. Suppose that Algorithm 4.1 terminates at some iteration
k, that is, \tau gk \leq \epsilon 1, \tau

H
k \leq \epsilon 2, and \| c(xk+1)\| \leq \epsilon 1 hold. Then, by \tau gk \leq \epsilon 1, \~\lambda k+1 =

\lambda k + \rho k\~c(x
k+1), \nabla \~c = \nabla c, and the second relation in (4.6), one has \| \nabla f(xk+1) +

\nabla c(xk+1)\~\lambda k+1\| = \| \nabla f(xk+1) +\nabla \~c(xk+1)(\lambda k + \rho k\~c(x
k+1))\| = \| \nabla x

\widetilde \scrL (xk+1, \lambda k;\rho k)\| \leq
\tau gk \leq \epsilon 1. Hence, (xk+1, \~\lambda k+1) satisfies the first relation in (2.4). In addition, by (4.7)

and \tau Hk \leq \epsilon 2, one can show that \lambda min(\nabla 2
xx
\widetilde \scrL (xk+1, \lambda k;\rho k)) \geq - \epsilon 2 with probability

at least 1 - \delta , which leads to dT\nabla 2
xx
\widetilde \scrL (xk+1, \lambda k;\rho k)d \geq - \epsilon 2\| d\| 2 for all d \in \BbbR n with

probability at least 1 - \delta . Using this, \~\lambda k+1 = \lambda k+\rho k\~c(x
k+1), \nabla \~c=\nabla c, and\nabla 2\~ci =\nabla 2ci

for 1\leq i\leq m, we see that with probability at least 1 - \delta , it holds that dT (\nabla 2f(xk+1)+\sum m
i=1

\~\lambda k+1
i \nabla 2ci(x

k+1) + \rho k\nabla c(xk+1)\nabla c(xk+1)T)d \geq - \epsilon 2\| d\| 2 for all d \in \BbbR n, which
implies dT (\nabla 2f(xk+1)+

\sum m
i=1

\~\lambda k+1
i \nabla 2ci(x

k+1))d\geq - \epsilon 2\| d\| 2 for all d\in \scrC (xk+1), where
\scrC (\cdot) is defined in (2.3). Hence, (xk+1, \~\lambda k+1) satisfies (2.5) with probability at least
1 - \delta . Combining these with \| c(xk+1)\| \leq \epsilon 1, we conclude that xk+1 is a deterministic
\epsilon 1-FOSP of (1.1) and an (\epsilon 1, \epsilon 2)-SOSP of (1.1) with probability at least 1 - \delta . Hence,
Theorem 4.6 holds.

Proof of Theorem 4.8. It follows from (4.14) that \rho \epsilon 1 \geq 2\rho 0. By this, one has

(6.21) K\epsilon 1

(4.12)
= \lceil log \epsilon 1/ log\omega 1\rceil

(4.11)
= \lceil log 2/ log r\rceil \leq log(\rho \epsilon 1\rho

 - 1
0)/ log r+ 1.

Notice that \{ \rho k\} is either unchanged or increased by a ratio r as k increases. By this
fact and (6.21), we see that

(6.22) max
0\leq k\leq K\epsilon 1

\rho k \leq rK\epsilon 1\rho 0
(6.12)

\leq r
\mathrm{l}\mathrm{o}\mathrm{g}(\rho \epsilon 1

\rho
 - 1
0)

\mathrm{l}\mathrm{o}\mathrm{g} r +1\rho 0 = r\rho \epsilon 1 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1757

In addition, notice that \rho k > 2\gamma and \| \lambda k\| \leq \Lambda . Using these, (4.1), the first relation
in (4.6), and Lemma 6.4(ii) with (x,\lambda , \rho) = (xk+1, \lambda k, \rho k), we obtain that

\| \~c(xk+1)\| \leq

\sqrt{}
2(fhi - flow + \gamma)

\rho k - 2\gamma
+
\| \lambda k\| 2

(\rho k - 2\gamma)2
+
\| \lambda k\|
\rho k - 2\gamma

(6.23)

\leq

\sqrt{}
2(fhi - flow + \gamma)

\rho k - 2\gamma
+

\Lambda 2

(\rho k - 2\gamma)2
+

\Lambda

\rho k - 2\gamma
.

Also, we observe from \| c(z\epsilon 1)\| \leq \epsilon 1/2 and the definition of \~c in (4.4) that

(6.24) \| c(xk+1)\| \leq \| \~c(xk+1)\| + \| c(z\epsilon 1)\| \leq \| \~c(xk+1)\| + \epsilon 1/2.

We now prove that K\epsilon 1 is finite. Suppose for contradiction that K\epsilon 1 is infinite.
It then follows from this and (4.15) that \| c(xk+1)\| > \epsilon 1 for all k \geq K\epsilon 1 , which
along with (6.24) implies that \| \~c(xk+1)\| > \epsilon 1/2 for all k \geq K\epsilon 1 . It then follows that
\| \~c(xk+1)\| > \alpha \| \~c(xk)\| must hold for infinitely many k's. Using this fact and the
update scheme on \{ \rho k\} , we deduce that \rho k+1 = r\rho k holds for infinitely many k's,
which together with the monotonicity of \{ \rho k\} implies that \rho k\rightarrow \infty as k\rightarrow \infty . By this
assertion and (6.23), one can see that \| \~c(xk+1)\| \rightarrow 0 as k\rightarrow \infty , which contradicts the
fact that \| \~c(xk+1)\| > \epsilon 1/2 holds for all k \geq K\epsilon 1 . Hence, K\epsilon 1 is finite. In addition,
notice from (4.11), (4.12), and (4.13) that (\tau gk , \tau

H
k) = (\epsilon 1, \epsilon 2) for all k \geq K\epsilon 1 . This

along with the termination criterion of Algorithm 4.1 and the definition of K\epsilon 1 implies
that Algorithm 4.1 must terminate at iteration K\epsilon 1 .

We next show that (4.16) and \rho k \leq r\rho \epsilon 1 hold for 0\leq k \leq K\epsilon 1 by considering two
separate cases.

Case 1. \| c(xK\epsilon 1
+1)\| \leq \epsilon 1. By this and (4.15), one can see that K\epsilon 1 =K\epsilon 1 , which

together with (6.21) and (6.22) implies that (4.16) and \rho k \leq r\rho \epsilon 1 hold for 0\leq k\leq K\epsilon 1 .
Case 2. \| c(xK\epsilon 1

+1)\| > \epsilon 1. By this and (4.15), one can observe that K\epsilon 1 > K\epsilon 1

and also \| c(xk+1)\| > \epsilon 1 for all K\epsilon 1 \leq k\leq K\epsilon 1 - 1, which together with (6.24) implies

(6.25) \| \~c(xk+1)\| > \epsilon 1/2 \forall K\epsilon 1 \leq k\leq K\epsilon 1 - 1.

It then follows from \| \lambda k\| \leq \Lambda , (4.1), the first relation in (4.6), and Lemma 6.4(iv)
with (x,\lambda , \rho , \~\delta c) = (xk+1, \lambda k, \rho k, \epsilon 1/2) that

(6.26)
\rho k < 8(fhi - flow + \gamma)\epsilon - 2

1 + 4\| \lambda k\| \epsilon - 1
1 + 2\gamma

\leq 8(fhi - flow + \gamma)\epsilon - 2
1 + 4\Lambda \epsilon - 1

1 + 2\gamma
(4.14)

\leq \rho \epsilon 1 \forall K\epsilon 1 \leq k\leq K\epsilon 1 - 1.

Combining this relation, (6.22), and the fact \rho K\epsilon 1
\leq r\rho K\epsilon 1

 - 1, we conclude that \rho k \leq
r\rho \epsilon 1 holds for 0 \leq k \leq K\epsilon 1 . It remains to show that (4.16) holds. To this end, let
\BbbK = \{ k : \rho k+1 = r\rho k,K\epsilon 1 \leq k\leq K\epsilon 1 - 2\} . It follows from (6.26) and the update scheme
of \rho k that r| \BbbK | \rho K\epsilon 1

= maxK\epsilon 1
\leq k\leq K\epsilon 1

 - 1\{ \rho k\} \leq \rho \epsilon 1 , which together with \rho K\epsilon 1
\geq \rho 0

implies that

(6.27) | \BbbK | \leq log(\rho \epsilon 1\rho
 - 1
K\epsilon 1

)/ log r\leq log(\rho \epsilon 1\rho
 - 1
0)/ log r.

Let \{ k1, k2, . . . , k| \BbbK | \} denote all the elements of \BbbK arranged in ascending order, and
let k0 =K\epsilon 1 and k| \BbbK | +1 =K\epsilon 1 - 1. We next derive an upper bound for kj+1 - kj for
j = 0,1, . . . , | \BbbK | . By the definition of \BbbK , one can observe that \rho k = \rho k\prime for kj <k,k

\prime \leq
kj+1. Using this and the update scheme of \rho k, we deduce that

(6.28) \| \~c(xk+1)\| \leq \alpha \| \~c(xk)\| \forall kj <k < kj+1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1758 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

On the other hand, by (4.10), (6.23), and \rho k \geq \rho 0, one has \| \~c(xk+1)\| \leq \delta c,1 for
0\leq k\leq K\epsilon 1 . By this and (6.25), one can see that

(6.29) \epsilon 1/2< \| \~c(xk+1)\| \leq \delta c,1 \forall K\epsilon 1 \leq k\leq K\epsilon 1 - 1.

Now, note that either kj+1 - kj = 1 or kj+1 - kj > 1. In the latter case, we can apply
(6.28) with k= kj+1 - 1, . . . , kj + 1 together with (6.29) to deduce that

\epsilon 1/2< \| \~c(xkj+1)\| \leq \alpha \| \~c(xkj+1 - 1)\| \leq \cdot \cdot \cdot \leq \alpha kj+1 - kj - 1\| \~c(xkj+1)\| \leq \alpha kj+1 - kj - 1\delta c,1

for all j = 0,1, . . . , | \BbbK | . Combining these two cases, we have

(6.30) kj+1 - kj \leq | log(\epsilon 1(2\delta c,1) - 1)/ log\alpha | + 1 \forall j = 0,1, . . . , | \BbbK | .

Summing up these inequalities, and using (6.21), (6.27), k0 = K\epsilon 1 , and k| \BbbK | +1 =
K\epsilon 1 - 1, we have

K\epsilon 1= 1+ k| \BbbK | +1 = 1+ k0 +

| \BbbK | \sum
j=0

(kj+1 - kj)

(6.30)

\leq 1 +K\epsilon 1 + (| \BbbK | + 1)

\biggl(\bigm| \bigm| \bigm| \bigm| log(\epsilon 1(2\delta c,1) - 1)

log\alpha

\bigm| \bigm| \bigm| \bigm| + 1

\biggr)
\leq 2 +

log(\rho \epsilon 1\rho
 - 1
0)

log r
+

\biggl(
log(\rho \epsilon 1\rho

 - 1
0)

log r
+ 1

\biggr) \biggl(\bigm| \bigm| \bigm| \bigm| log(\epsilon 1(2\delta c,1) - 1)

log\alpha

\bigm| \bigm| \bigm| \bigm| + 1

\biggr)
(6.31)

= 1+

\biggl(
log(\rho \epsilon 1\rho

 - 1
0)

log r
+ 1

\biggr) \biggl(\bigm| \bigm| \bigm| \bigm| log(\epsilon 1(2\delta c,1) - 1)

log\alpha

\bigm| \bigm| \bigm| \bigm| + 2

\biggr)
,

where the second inequality is due to (6.21) and (6.27). Hence, (4.16) also holds in
this case.

We next prove Theorem 4.10. Before proceeding, we introduce some notation
that will be used shortly. Let Lk,H denote the Lipschitz constant of \nabla 2

xx
\widetilde \scrL (x,\lambda k;\rho k)

on the convex open neighborhood \Omega (\delta f , \delta c) of \scrS (\delta f , \delta c), where \scrS (\delta f , \delta c) is defined in

(4.3), and let Uk,H = supx\in \scrS (\delta f ,\delta c)
\| \nabla 2

xx
\widetilde \scrL (x,\lambda k;\rho k)\| . Notice from (4.4) and (4.5) that

\nabla 2
xx
\widetilde \scrL (x,\lambda k;\rho k)=\nabla 2f(x)+

m\sum
i=1

\lambda ki\nabla 2ci(x)+\rho k

\biggl(
\nabla c(x)\nabla c(x)T+

m\sum
i=1

\~ci(x)\nabla 2ci(x)

\biggr)
.

(6.32)

By this, \| \lambda k\| \leq \Lambda , the definition of \~c,, and the Lipschitz continuity of \nabla 2f and \nabla 2ci
(see Assumption 4.1(c)), one can observe that there exist some constants L1, L2, U1,
and U2, depending only on f , c, \Lambda , \delta f , and \delta c, such that

(6.33) Lk,H \leq L1 + \rho kL2, Uk,H \leq U1 + \rho kU2.

Proof of Theorem 4.10. Let Tk and Nk denote the number of iterations and
matrix-vector products, respectively, performed by Algorithm 3.1 at the outer itera-
tion k of Algorithm 4.1. It then follows from Theorem 4.8 that the total number of
iterations and matrix-vector products performed by Algorithm 3.1 in Algorithm 4.1

are
\sum K\epsilon 1

k=0 Tk and
\sum K\epsilon 1

k=0Nk, respectively. In addition, notice from (4.14) and Theo-
rem 4.8 that \rho \epsilon 1 =\scrO (\epsilon - 2

1) and \rho k \leq r\rho \epsilon 1 , which yield \rho k =\scrO (\epsilon - 2
1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1759

We first claim that (\tau gk)
2/\tau Hk \geq min\{ \epsilon 21/\epsilon 2, \epsilon 32\} holds for any k \geq 0. Indeed, let

\=t = log \epsilon 1/ log\omega 1 and \psi (t) = max\{ \epsilon 1, \omega t
1\} 2/max\{ \epsilon 2, \omega t

2\} for all t \in \BbbR . It then follows
from (4.13) that \omega \=t

1 = \epsilon 1 and \omega \=t
2 = \epsilon 2. By this and \omega 1, \omega 2 \in (0,1), one can observe

that \psi (t) = (\omega 2
1/\omega 2)

t if t \leq \=t and \psi (t) = \epsilon 21/\epsilon 2 otherwise. This along with \epsilon 2 \in
(0,1) implies that mint\in [0,\infty)\psi (t) =min\{ \psi (0),\psi (\=t)\} =min\{ 1, \epsilon 21/\epsilon 2\} \geq min\{ \epsilon 21/\epsilon 2, \epsilon 32\} ,
which together with (4.11) yields (\tau gk)

2/\tau Hk =\psi (k)\geq min\{ \epsilon 21/\epsilon 2, \epsilon 32\} for all k\geq 0.
(i) From Lemma 4.4(i) and the definitions of \Omega (\delta f , \delta c) and Lk,H , we see that

Lk,H is a Lipschitz constant of \nabla 2
xx
\widetilde \scrL (x,\lambda k;\rho k) on a convex open neighborhood

of \{ x : \widetilde \scrL (x,\lambda k;\rho k) \leq \widetilde \scrL (xkinit, \lambda k;\rho k)\} . Also, recall from Lemma 4.4(ii) that
infx\in \BbbR n \widetilde \scrL (x,\lambda k;\rho k) \geq flow - \gamma - \Lambda \delta c. By these facts, \widetilde \scrL (xkinit, \lambda k;\rho k) \leq fhi (see
(4.9)), and Theorem 3.2(iii) with (Fhi, Flow,L

F
H , \epsilon g, \epsilon H) = (\widetilde \scrL (xkinit, \lambda k;\rho k), flow - \gamma -

\Lambda \delta c,Lk,H , \tau
g
k , \tau

H
k), one has

(6.34)
Tk = \scrO ((fhi - flow + \gamma +\Lambda \delta c)L

2
k,H max\{ (\tau gk) - 2\tau Hk , (\tau

H
k) - 3\})

(6.33)
= \scrO (\rho 2kmax\{ (\tau gk) - 2\tau Hk , (\tau

H
k) - 3\}) =\scrO (\epsilon - 4

1 max\{ \epsilon - 2
1 \epsilon 2, \epsilon

 - 3
2 \}),

where the last equality is from (\tau gk)
2/\tau Hk \geq min\{ \epsilon 21/\epsilon 2, \epsilon 32\} , \tau Hk \geq \epsilon 2, and \rho k =\scrO (\epsilon

 - 2
1).

Next, if c(x) = Ax - b for some A \in \BbbR m\times n and b \in \BbbR m, then \nabla c(x) = AT and
\nabla 2ci(x) = 0 for 1\leq i\leq m. By these facts and (6.32), one has Lk,H =\scrO (1). Using this
and similar arguments as for (6.34), we obtain that Tk =\scrO (max\{ \epsilon - 2

1 \epsilon 2, \epsilon
 - 3
2 \}). By this

result, (6.34), and K\epsilon 1 = \scrO (| log \epsilon 1| 2) (see Remark 4.9), we conclude that statement
(i) of Theorem 4.10 holds.

(ii) In view of Lemma 4.4(i) and the definition of Uk,H , one can see that Uk,H \geq
supx\in \BbbR n\{ \| \nabla 2

xx
\widetilde \scrL (x,\lambda k;\rho k)\| : \widetilde \scrL (x,\lambda k;\rho k)\leq \widetilde \scrL (xkinit, \lambda k;\rho k)\} . Using this, \widetilde \scrL (xkinit, \lambda k;\rho k)

\leq fhi, and Theorem 3.2(iv) with (Fhi, Flow,L
F
H ,U

F
H , \epsilon g, \epsilon H) = (\widetilde \scrL (xkinit, \lambda k;\rho k), flow -

\gamma - \Lambda \delta c,Lk,H ,Uk,H , \tau
g
k , \tau

H
k), we obtain that

(6.35)

Nk= \widetilde \scrO ((fhi - flow + \gamma +\Lambda \delta c)L
2
k,Hmax\{ (\tau gk) - 2\tau Hk ,(\tau

H
k) - 3\} min\{ n,(Uk,H/\tau

H
k)1/2\})

(6.33)
= \widetilde \scrO (\rho 2kmax\{ (\tau gk) - 2\tau Hk , (\tau

H
k) - 3\} min\{ n, (\rho k/\tau Hk)1/2\})

= \widetilde \scrO (\epsilon - 4
1 max\{ \epsilon - 2

1 \epsilon 2, \epsilon
 - 3
2 \} min\{ n, \epsilon - 1

1 \epsilon
 - 1/2
2 \}),

where the last equality is from (\tau gk)
2/\tau Hk \geq min\{ \epsilon 21/\epsilon 2, \epsilon 32\} , \tau Hk \geq \epsilon 2, and \rho k =\scrO (\epsilon

 - 2
1).

On the other hand, if c is assumed to be affine, it follows from the above discussion
that Lk,H =\scrO (1). Using this, Uk,H \leq U1+\rho kU2, and similar arguments as for (6.35),

we obtain thatNk = \widetilde \scrO (max\{ \epsilon - 2
1 \epsilon 2, \epsilon

 - 3
2 \} min\{ n, \epsilon - 1

1 \epsilon
 - 1/2
2 \}). By this, (6.35), andK\epsilon 1 =

\scrO (| log \epsilon 1| 2) (see Remark 4.9), we conclude that statement (ii) of Theorem 4.10 holds.

Next, we provide a proof of Theorem 4.14. To proceed, we first observe from
Assumptions 4.1(c) and 4.12 that there exist Uf

g > 0, U c
g > 0, and \sigma > 0 such that

(6.36) \| \nabla f(x)\| \leq Uf
g , \| \nabla c(x)\| \leq U c

g , \lambda min(\nabla c(x)T\nabla c(x))\geq \sigma 2 \forall x\in \scrS (\delta f , \delta c).

We next establish several technical lemmas that will be used shortly.

Lemma 6.5. Suppose that Assumptions 4.1 and 4.12 hold and that \rho 0 is suffi-
ciently large such that \delta f,1 \leq \delta f and \delta c,1 \leq \delta c, where \delta f,1 and \delta c,1 are defined as in
(4.10). Let \{ (xk, \lambda k, \rho k)\} be generated by Algorithm 4.1. Suppose that

(6.37) \rho k\geq max\{ \Lambda 2(2\delta f)
 - 1, 2(fhi - flow+\gamma)\delta - 2

c +2\Lambda \delta - 1
c +2\gamma , 2(Uf

g +U
c
g\Lambda +1)(\sigma \epsilon 1)

 - 1\}

for some k \geq 0, where \gamma , fhi, flow, \delta f , and \delta c are given in Assumption 4.1, and Uf
g ,

U c
g , and \sigma are given in (6.36). Then it holds that \| c(xk+1)\| \leq \epsilon 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1760 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

Proof. By (6.37) and \| \lambda k\| \leq \Lambda (see step 6 of Algorithm 4.1), one can see that \rho k \geq
max\{ \| \lambda k\| 2(2\delta f) - 1,2(fhi - flow+\gamma)\delta - 2

c +2\| \lambda k\| \delta - 1
c +2\gamma \} . Using this, (4.1), the first re-

lation in (4.6), and Lemma 6.4(iii) and (iv) with (x,\lambda , \rho , \~\delta f , \~\delta c) = (xk+1, \lambda k, \rho k, \delta f , \delta c),
we obtain that f(xk+1) \leq fhi + \delta f and \| \~c(xk+1)\| \leq \delta c. In addition, recall from
\| c(z\epsilon 1)\| \leq 1 and the definition of \~c in (4.4) that \| c(xk+1)\| \leq 1 + \| \~c(xk+1)\| . These
together with (4.3) show that xk+1 \in \scrS (\delta f , \delta c). It then follows from (6.36) that
\| \nabla f(xk+1)\| \leq Uf

g , \| \nabla c(xk+1)\| \leq U c
g , and \lambda min(\nabla c(xk+1)T\nabla c(xk+1)) \geq \sigma 2. By

\| \nabla f(xk+1)\| \leq Uf
g , \| \nabla c(xk+1)\| \leq U c

g , \tau
g
k \leq 1, \| \lambda k\| \leq \Lambda , (4.4), and (4.6), one has

\rho k\| \nabla c(xk+1)\~c(xk+1)\| \leq \| \nabla f(xk+1) +\nabla c(xk+1)\lambda k\| + \| \nabla x
\widetilde \scrL (xk+1, \lambda k;\rho k)\|

(4.6)

\leq \| \nabla f(xk+1)\| + \| \nabla c(xk+1)\| \| \lambda k\| + \tau gk \leq U
f
g +U c

g\Lambda + 1.(6.38)

In addition, note that \lambda min(\nabla c(xk+1)T\nabla c(xk+1)) \geq \sigma 2 implies that
\nabla c(xk+1)T\nabla c(xk+1) is invertible. Using this fact and [6.38], we obtain

\| \~c(xk+1)\| \leq \| (\nabla c(xk+1)T\nabla c(xk+1)) - 1\nabla c(xk+1)T \| \| \nabla c(xk+1)\~c(xk+1)\|

= \lambda min(\nabla c(xk+1)T\nabla c(xk+1)) -
1
2 \| \nabla c(xk+1)\~c(xk+1)\|

(6.38)

\leq
Uf
g +U c

g\Lambda + 1

\sigma \rho k
.(6.39)

We also observe from (6.37) that \rho k \geq 2(Uf
g + U c

g\Lambda + 1)(\sigma \epsilon 1)
 - 1, which along with

(6.39) proves \| \~c(xk+1)\| \leq \epsilon 1/2. Combining this with the definition of \~c in (4.4) and
\| c(z\epsilon 1)\| \leq \epsilon 1/2, we conclude that \| c(xk+1)\| \leq \epsilon 1 holds as desired.

The next lemma provides a stronger upper bound for \{ \rho k\} than the one in The-
orem 4.8.

Lemma 6.6. Suppose that Assumptions 4.1 and 4.12 hold and that \rho 0 is suffi-
ciently large such that \delta f,1 \leq \delta f and \delta c,1 \leq \delta c, where \delta f,1 and \delta c,1 are defined as in
(4.10). Let \{ \rho k\} be generated by Algorithm 4.1 and

(6.40) \~\rho \epsilon 1 :=max\{ \Lambda 2(2\delta f)
 - 1,2(fhi - flow+\gamma)\delta - 2

c +2\Lambda \delta - 1
c +2\gamma ,2(Uf

g +U
c
g\Lambda +1)(\sigma \epsilon 1)

 - 1,2\rho 0\} ,

where \gamma , fhi, flow, \delta f , and \delta c are given in Assumption 4.1, and Uf
g , U

c
g , and \sigma are

given in (6.36). Then \rho k \leq r\~\rho \epsilon 1 holds for 0\leq k\leq K\epsilon 1 , where K\epsilon 1 is defined in (4.15).

Proof. It follows from (6.40) that \~\rho \epsilon 1 \geq 2\rho 0. By this and similar arguments as
for (6.21), one has K\epsilon 1 \leq log(\~\rho \epsilon 1\rho

 - 1
0)/ log r+1, where K\epsilon 1 is defined in (4.12). Using

this, the update scheme for \{ \rho k\} , and similar arguments as for (6.22), we obtain

(6.41) max
0\leq k\leq K\epsilon 1

\rho k \leq r\~\rho \epsilon 1 .

If \| c(xK\epsilon 1
+1)\| \leq \epsilon 1, it follows from (4.15) that K\epsilon 1 =K\epsilon 1 , which together with (6.41)

implies that \rho k \leq r\~\rho \epsilon 1 holds for 0\leq k\leq K\epsilon 1 . On the other hand, if \| c(xK\epsilon 1
+1)\| > \epsilon 1,

it follows from (4.15) that \| c(xk+1)\| > \epsilon 1 for K\epsilon 1 \leq k \leq K\epsilon 1 - 1. This together with
Lemma 6.5 and (6.40) implies that for all K\epsilon 1 \leq k\leq K\epsilon 1 - 1,

\rho k<max\{ \Lambda 2(2\delta f)
 - 1,2(fhi - flow+\gamma)\delta - 2

c +2\Lambda \delta - 1
c +2\gamma ,2(Uf

g +U
c
g\Lambda +1)(\sigma \epsilon 1)

 - 1\}
(6.40)

\leq \~\rho \epsilon 1 .

By this, [6.41], and \rho K\epsilon 1
\leq r\rho K\epsilon 1

 - 1, we also see that \rho k \leq r\~\rho \epsilon 1 holds for 0 \leq k \leq
K\epsilon 1 .

Proof of Theorem 4.14. Notice from (6.40) and Lemma 6.6 that \~\rho \epsilon 1 = \scrO (\epsilon - 1
1)

and \rho k \leq r\~\rho \epsilon 1 , which yield \rho k =\scrO (\epsilon - 1
1). The conclusion of Theorem 4.14 then follows

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1761

from this and the same arguments as for the proof of Theorem 4.10 with \rho k =\scrO (\epsilon - 2
1)

replaced by \rho k =\scrO (\epsilon - 1
1).

7. Future work. There are several possible future studies on this work. First,
it would be interesting to extend our AL method to seek an approximate SOSP of
nonconvex optimization with inequality or more general constraints. Indeed, for non-
convex optimization with inequality constraints, one can reformulate it as an equality
constrained problem using squared slack variables (e.g., see [7]). It can be shown that
an SOSP of the latter problem induces a weak SOSP of the original problem and
also the linear independence constraint qualification holds for the latter problem if it
holds for the original problem. As a result, it is promising to find an approximate
weak SOSP of an inequality constrained problem by applying our AL method to the
equivalent equality constrained problem. Second, it is worth studying whether the
enhanced complexity results in section 4.3 can be derived under weaker constraint
qualification (e.g., see [5]). Third, the development of our AL method is based on a
strong assumption that a nearly feasible solution of the problem is known. It would
make the method applicable to a broader class of problems if such an assumption
could be removed by modifying the method possibly through the use of infeasibility
detection techniques (e.g., see [19]). Lastly, more numerical studies would be helpful
to further improve our AL method from a practical perspective.

Appendix A. A capped conjugate gradient method. In this part we
present the capped CG method proposed in [56, Algorithm 1] for finding either an
approximate solution to the linear system (3.6) or a sufficiently negative curvature
direction of the associated matrix H, which has been briefly discussed in section 3.1.
The details can be found in [56, section 3.1].

The following theorem presents the iteration complexity of Algorithm A.1.

Theorem A.1 (iteration complexity of Algorithm A.1). Consider applying Al-
gorithm A.1 with input U = 0 to the linear system (3.6) with g \not = 0, \varepsilon > 0, and H
being an n\times n symmetric matrix. Then the number of iterations of Algorithm A.1 is\widetilde \scrO (min\{ n,

\sqrt{}
\| H\| /\varepsilon \}).

Proof. From [56, Lemma 1], we know that the number of iterations of Algo-
rithm A.1 is bounded by min\{ n,J(U,\varepsilon , \zeta)\} , where J(U,\varepsilon , \zeta) is the smallest inte-
ger J such that

\surd
T\tau J/2 \leq \widehat \zeta , with U, \widehat \zeta ,T , and \tau being the values returned by

Algorithm A.1. In addition, it was shown in [56, section 3.1] that J(U,\varepsilon , \zeta) \leq \bigl\lceil \bigl(\surd
\kappa + 1

2

\bigr)
ln
\bigl(144(\surd \kappa +1)2\kappa 6

\zeta 2

\bigr) \bigr\rceil
, where \kappa = \scrO (U/\varepsilon) is an output by Algorithm A.1.

Then one can see that J(U,\varepsilon , \zeta) = \widetilde \scrO (\sqrt{} U/\varepsilon). Notice from Algorithm A.1 that the
output U \leq \| H\| . Combining these results, we obtain the conclusion as desired.

Appendix B. A randomized Lanczos based minimum eigenvalue ora-
cle. Here we present the randomized Lanczos method proposed in [56, section 3.2],
which can be used as a minimum eigenvalue oracle for Algorithm 3.1. As briefly
discussed in section 3.1, this oracle outputs either a sufficiently negative curvature
direction of H or a certificate that H is nearly positive semidefinite with high prob-
ability. More detailed motivation and explanation of the oracle can be found in
[56, section 3.2].

The following theorem justifies that Algorithm B.1 is a suitable minimum eigen-
value oracle for Algorithm 3.1. Its proof is identical to that of [56, Lemma 2] and thus
omitted.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

1762 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

Algorithm A.1 A capped conjugate gradient method.

Inputs: symmetric matrix H \in \BbbR n\times n, vector g \not = 0, damping parameter \varepsilon \in (0,1),
desired relative accuracy \zeta \in (0,1).
Optional input: scalar U \geq 0 (set to 0 if not provided).
Outputs: d type, d.

Secondary outputs: final values of U,\kappa , \widehat \zeta , \tau , and T .
Set

\=H :=H + 2\varepsilon I, \kappa :=
U + 2\varepsilon

\varepsilon
, \widehat \zeta := \zeta

3\kappa
, \tau :=

\surd
\kappa \surd

\kappa + 1
, T :=

4\kappa 4

(1 -
\surd
\tau)2

,

y0\leftarrow 0, r0\leftarrow g, p0\leftarrow - g, j\leftarrow 0.
if (p0)T \=Hp0 < \varepsilon \| p0\| 2 then

Set d\leftarrow p0 and terminate with d type=NC;
else if \| Hp0\| >U\| p0\| then

Set U \leftarrow \| Hp0\| /\| p0\| and update \kappa , \widehat \zeta , \tau , T accordingly;
end if
while TRUE do

\alpha j\leftarrow (rj)T rj/(pj)T \=Hpj ; \{ Begin Standard CG Operations\}
yj+1\leftarrow yj + \alpha jp

j ;
rj+1\leftarrow rj + \alpha j

\=Hpj ;
\beta j+1\leftarrow \| rj+1\| 2/\| rj\| 2;
pj+1\leftarrow - rj+1 + \beta j+1p

j ; \{ End Standard CG Operations\}
j\leftarrow j + 1;
if \| Hpj\| >U\| pj\| then

Set U \leftarrow \| Hpj\| /\| pj\| and update \kappa , \widehat \zeta , \tau , T accordingly;
end if
if \| Hyj\| >U\| yj\| then

Set U \leftarrow \| Hyj\| /\| yj\| and update \kappa , \widehat \zeta , \tau , T accordingly;
end if
if \| Hrj\| >U\| rj\| then

Set U \leftarrow \| Hrj\| /\| rj\| and update \kappa , \widehat \zeta , \tau , T accordingly;
end if
if (yj)T \=Hyj < \varepsilon \| yj\| 2 then

Set d\leftarrow yj and terminate with d type=NC;

else if \| rj\| \leq \widehat \zeta \| r0\| then
Set d\leftarrow yj and terminate with d type=SOL;

else if (pj)T \=Hpj < \varepsilon \| pj\| 2 then
Set d\leftarrow pj and terminate with d type=NC;

else if \| rj\| >
\surd
T\tau j/2\| r0\| then

Compute \alpha j , y
j+1 as in the main loop above;

Find i\in \{ 0, . . . , j - 1\} such that

(yj+1 - yi)T \=H(yj+1 - yi)< \varepsilon \| yj+1 - yi\| 2;

Set d\leftarrow yj+1 - yi and terminate with d type=NC;
end if

end while

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1763

Algorithm B.1 A randomized Lanczos based minimum eigenvalue oracle.

Input : symmetric matrix H \in \BbbR n\times n, tolerance \varepsilon > 0, and probability parameter
\delta \in (0,1).
Output: a sufficiently negative curvature direction v satisfying vTHv\leq - \varepsilon /2 and
\| v\| = 1; or a certificate that \lambda min(H)\geq - \varepsilon with probability at least 1 - \delta .
Apply the Lanczos method [44] to estimate \lambda min(H) starting with a random vector
uniformly generated on the unit sphere, and run it for at most

(B.1) N(\varepsilon , \delta) :=min

\Biggl\{
n,1 +

\Biggl\lceil
ln(2.75n/\delta 2)

2

\sqrt{}
\| H\|
\varepsilon

\Biggr\rceil \Biggr\}
iterations. If a unit vector v with vTHv\leq - \varepsilon /2 is found at some iteration,
terminate immediately and return v.

Theorem B.1 (iteration complexity of Algorithm B.1). Consider Algorithm B.1
with tolerance \varepsilon > 0, probability parameter \delta \in (0,1), and symmetric matrix H \in \BbbR n\times n

as its input. Then it either finds a sufficiently negative curvature direction v satisfying
vTHv \leq - \varepsilon /2 and \| v\| = 1 or certifies that \lambda min(H) \geq - \varepsilon holds with probability at
least 1 - \delta in at most N(\varepsilon , \delta) iterations, where N(\varepsilon , \delta) is defined in (B.1).

Notice that \| H\| is required in Algorithm B.1. In general, computing \| H\| may
not be cheap when n is large. Nevertheless, \| H\| can be efficiently estimated via a ran-
domization scheme with high confidence (e.g., see the discussion in [56, Appendix B3]).

REFERENCES

[1] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma, Finding approximate local
minima faster than gradient descent , in Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, 2017, pp. 1195--1199.

[2] R. Andreani, E. G. Birgin, J. M. Mart\'{\i}nez, and M. L. Schuverdt, On augmented
Lagrangian methods with general lower-level constraints, SIAM J. Optim., 18 (2007),
pp. 1286--1309, https://doi.org/10.1137/060654797.

[3] R. Andreani, G. Haeser, and J. M. Mart\'{\i}nez, On sequential optimality conditions for
smooth constrained optimization, Optimization, 60 (2011), pp. 627--641.

[4] R. Andreani, G. Haeser, A. Ramos, and P. J. Silva, A second-order sequential optimality
condition associated to the convergence of optimization algorithms, IMA J. Numer. Anal.,
37 (2017), pp. 1902--1929.

[5] R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. S. Silva, Two new weak constraint
qualifications and applications, SIAM J. Optim., 22 (2012), pp. 1109--1135, https://doi.org/
10.1137/110843939.

[6] P. Armand and N. N. Tran, An augmented Lagrangians method for equality constrained
optimization with rapid infeasibility detection capabilities, J. Optim. Theory Appl., 181
(2019), pp. 197--215.

[7] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.
[8] W. Bian, X. Chen, and Y. Ye, Complexity analysis of interior point algorithms for non-

Lipschitz and nonconvex minimization, Math. Program., 149 (2015), pp. 301--327.
[9] E. G. Birgin, J. Gardenghi, J. M. Mart\'{\i}nez, S. A. Santos, and Ph. L. Toint, Evalu-

ation complexity for nonlinear constrained optimization using unscaled KKT conditions
and high-order models, SIAM J. Optim., 26 (2016), pp. 951--967, https://doi.org/10.1137/
15M1031631.

[10] E. G. Birgin, G. Haeser, and A. Ramos, Augmented Lagrangians with constrained subprob-
lems and convergence to second-order stationary points, Comput. Optim. Appl., 69 (2018),
pp. 51--75.

[11] E. G. Birgin and J. M. Mart\'{\i}nez, Practical Augmented Lagrangian Methods for Constrained
Optimization, SIAM, 2014, https://doi.org/10.1137/1.9781611973365.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/060654797
https://doi.org/10.1137/110843939
https://doi.org/10.1137/110843939
https://doi.org/10.1137/15M1031631
https://doi.org/10.1137/15M1031631
https://doi.org/10.1137/1.9781611973365

1764 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

[12] E. G. Birgin and J. M. Mart\'{\i}nez, The use of quadratic regularization with a cubic descent
condition for unconstrained optimization, SIAM J. Optim., 27 (2017), pp. 1049--1074,
https://doi.org/10.1137/16M110280X.

[13] E. G. Birgin and J. M. Mart\'{\i}nez, Complexity and performance of an augmented Lagrangian
algorithm, Optim. Methods Softw., 35 (2020), pp. 885--920.

[14] J. F. Bonnans and G. Launay, Sequential quadratic programming with penalization of
the displacement , SIAM J. Optim., 5 (1995), pp. 792--812, https://doi.org/10.1137/
0805038.

[15] N. Boumal, V. Voroninski, and A. S. Bandeira, The non-convex Burer-Monteiro approach
works on smooth semidefinite programs, in Advances in Neural Information Processing
Systems 29, Curran Associates, 2016, pp. 2757--2765.

[16] L. F. Bueno and J. M. Mart\'{\i}nez, On the complexity of an inexact restoration method
for constrained optimization, SIAM J. Optim., 30 (2020), pp. 80--101, https://doi.org/
10.1137/18M1216146.

[17] S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization, Math. Program., 95 (2003), pp. 329--357.

[18] S. Burer and R. D. C. Monteiro, Local minima and convergence in low-rank semidefinite
programming, Math. Program., 103 (2005), pp. 427--444.

[19] J. V. Burke, F. E. Curtis, and H. Wang, A sequential quadratic optimization algo-
rithm with rapid infeasibility detection, SIAM J. Optim., 24 (2014), pp. 839--872, https:
//doi.org/10.1137/120880045.

[20] R. H. Byrd, F. E. Curtis, and J. Nocedal, Infeasibility detection and SQP methods for
nonlinear optimization, SIAM J. Optim., 20 (2010), pp. 2281--2299, https://doi.org/
10.1137/080738222.

[21] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, A trust region algorithm for non-
linearly constrained optimization, SIAM J. Numer. Anal., 24 (1987), pp. 1152--1170,
https://doi.org/10.1137/0724076.

[22] Y. Carmon and J. Duchi, Gradient descent finds the cubic-regularized nonconvex Newton
step, SIAM J. Optim., 29 (2019), pp. 2146--2178, https://doi.org/10.1137/17M1113898.

[23] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, ``Convex until proven guilty"":
Dimension-free acceleration of gradient descent on non-convex functions, in International
Conference on Machine Learning, PMLR, 2017, pp. 654--663.

[24] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, Accelerated methods for non-
convex optimization, SIAM J. Optim., 28 (2018), pp. 1751--1772, https://doi.org/
10.1137/17M1114296.

[25] C. Cartis, N. I. M. Gould, and P. L. Toint, Adaptive cubic regularisation methods for uncon-
strained optimization. Part II: Worst-case function- and derivative-evaluation complexity,
Math. Program., 130 (2011), pp. 295--319.

[26] C. Cartis, N. I. M. Gould, and Ph. L. Toint, On the evaluation complexity of cubic regu-
larization methods for potentially rank-deficient nonlinear least-squares problems and its
relevance to constrained nonlinear optimization, SIAM J. Optim., 23 (2013), pp. 1553--
1574, https://doi.org/10.1137/120869687.

[27] C. Cartis, N. I. M. Gould, and P. L. Toint, On the complexity of finding first-order critical
points in constrained nonlinear optimization, Math. Program., 144 (2014), pp. 93--106.

[28] C. Cartis, N. I. M. Gould, and Ph. L. Toint, On the evaluation complexity of con-
strained nonlinear least-squares and general constrained nonlinear optimization using
second-order methods, SIAM J. Numer. Anal., 53 (2015), pp. 836--851, https://doi.org/
10.1137/130915546.

[29] C. Cartis, N. I. M. Gould, and P. L. Toint, Evaluation complexity bounds for smooth
constrained nonlinear optimization using scaled KKT conditions and high-order models,
in Approximation and Optimization: Algorithms, Complexity and Applications, Springer,
2019, pp. 5--26.

[30] C. Cartis, N. I. M. Gould, and Ph. L. Toint, Optimality of orders one to three and be-
yond: Characterization and evaluation complexity in constrained nonconvex optimization,
J. Complexity, 53 (2019), pp. 68--94.

[31] X. Chen, L. Guo, Z. Lu, and J. J. Ye, An augmented Lagrangian method for non-
Lipschitz nonconvex programming, SIAM J. Numer. Anal., 55 (2017), pp. 168--193,
https://doi.org/10.1137/15M1052834.

[32] D. Cifuentes and A. Moitra, Polynomial Time Guarantees for the Burer-Monteiro Method ,
preprint, arXiv:1912.01745, 2019.

[33] T. F. Coleman, J. Liu, and W. Yuan, A new trust-region algorithm for equality constrained
optimization, Comput. Optim. Appl., 21 (2002), pp. 177--199.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/16M110280X
https://doi.org/10.1137/0805038
https://doi.org/10.1137/0805038
https://doi.org/10.1137/18M1216146
https://doi.org/10.1137/18M1216146
https://doi.org/10.1137/120880045
https://doi.org/10.1137/120880045
https://doi.org/10.1137/080738222
https://doi.org/10.1137/080738222
https://doi.org/10.1137/0724076
https://doi.org/10.1137/17M1113898
https://doi.org/10.1137/17M1114296
https://doi.org/10.1137/17M1114296
https://doi.org/10.1137/120869687
https://doi.org/10.1137/130915546
https://doi.org/10.1137/130915546
https://doi.org/10.1137/15M1052834
https://arxiv.org/abs/1912.01745

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 1765

[34] F. E. Curtis, D. P. Robinson, C. W. Royer, and S. J. Wright, Trust-region Newton-
CG with strong second-order complexity guarantees for nonconvex optimization, SIAM J.
Optim., 31 (2021), pp. 518--544, https://doi.org/10.1137/19M130563X.

[35] F. E. Curtis, D. P. Robinson, and M. Samadi, A trust region algorithm with a worst-case
iteration complexity of \scrO (\epsilon - 3/2) for nonconvex optimization, Math. Program., 162 (2017),
pp. 1--32.

[36] F. E. Curtis, D. P. Robinson, and M. Samadi, Complexity analysis of a trust funnel algo-
rithm for equality constrained optimization, SIAM J. Optim., 28 (2018), pp. 1533--1563,
https://doi.org/10.1137/16M1108650.

[37] G. N. Grapiglia and Y. Yuan, On the complexity of an augmented Lagrangian method for
nonconvex optimization, IMA J. Numer. Anal., 41 (2021), pp. 1546--1568.

[38] G. Haeser, H. Liu, and Y. Ye, Optimality condition and complexity analysis for linearly-
constrained optimization without differentiability on the boundary, Math. Program.,
(2019), pp. 1--37.

[39] M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), pp.
303--320.

[40] M. Hong, D. Hajinezhad, and M.-M. Zhao, Prox-PDA: The proximal primal-dual algorithm
for fast distributed nonconvex optimization and learning over networks, in International
Conference on Machine Learning, PMLR, 2017, pp. 1529--1538.

[41] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, How to escape saddle points
efficiently, in International Conference on Machine Learning, PMLR, 2017, pp. 1724--1732.

[42] C. Kanzow and D. Steck, An example comparing the standard and safeguarded augmented
Lanczos methods, Oper. Res. Lett., 45 (2017), pp. 598--603.

[43] W. Kong, J. G. Melo, and R. D. C. Monteiro, Complexity of a quadratic penalty accelerated
inexact proximal point method for solving linearly constrained nonconvex composite pro-
grams, SIAM J. Optim., 29 (2019), pp. 2566--2593, https://doi.org/10.1137/18M1171011.

[44] J. Kuczy\'nski and H. Wo\'zniakowski, Estimating the largest eigenvalue by the power and
Lanczos algorithms with a random start , SIAM J. Matrix Anal. Appl., 13 (1992),
pp. 1094--1122, https://doi.org/10.1137/0613066.

[45] Z. Li, P.-Y. Chen, S. Liu, S. Lu, and Y. Xu, Rate-improved inexact augmented Lagrangian
method for constrained nonconvex optimization, in International Conference on Artificial
Intelligence and Statistics, PMLR, 2021, pp. 2170--2178.

[46] S. Lu, A single-loop gradient descent and perturbed ascent algorithm for nonconvex functional
constrained optimization, in International Conference on Machine Learning, PMLR, 2022,
pp. 14315--14357.

[47] S. Lu, M. Razaviyayn, B. Yang, K. Huang, and M. Hong, Finding second-order station-
ary points efficiently in smooth nonconvex linearly constrained optimization problems,
in Advances in Neural Information Processing Systems 33, Curran Associates, 2020,
pp. 2811--2822.

[48] Z. Lu and X. Li, Sparse recovery via partial regularization: Models, theory, and algorithms,
Math. Oper. Res., 43 (2018), pp. 1290--1316.

[49] Z. Lu and Y. Zhang, An augmented Lagrangian approach for sparse principal component
analysis, Math. Program., 135 (2012), pp. 149--193.

[50] J. M. Mart\'{\i}nez and M. Raydan, Cubic-regularization counterpart of a variable-norm trust-
region method for unconstrained minimization, J. Global Optim., 68 (2017), pp. 367--385.

[51] J. G. Melo, R. D. Monteiro, and W. Kong, Iteration-Complexity of an Inner Acceler-
ated Inexact Proximal Augmented Lagrangian Method Based on the Classical Lagrangian
Function and a Full Lagrange Multiplier Update, preprint, arXiv:2008.00562, 2020.

[52] Y. Nesterov and B. T. Polyak, Cubic regularization of Newton method and its global per-
formance, Math. Program., 108 (2006), pp. 177--205.

[53] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer, 2006.
[54] M. O'Neill and S. J. Wright, A log-barrier Newton-CG method for bound constrained opti-

mization with complexity guarantees, IMA J. Numer. Anal., 41 (2021), pp. 84--121.
[55] R. T. Rockafellar, Lagrange multipliers and optimality, SIAM Rev., 35 (1993), pp. 183--238,

https://doi.org/10.1137/1035044.
[56] C. W. Royer, M. O'Neill, and S. J. Wright, A Newton-CG algorithm with complexity

guarantees for smooth unconstrained optimization, Math. Program., 180 (2020), pp. 451--
488.

[57] C. W. Royer and S. J. Wright, Complexity analysis of second-order line-search algo-
rithms for smooth nonconvex optimization, SIAM J. Optim., 28 (2018), pp. 1448--1477,
https://doi.org/10.1137/17M1134329.

[58] M. F. Sahin, A. Eftekhari, A. Alacaoglu, F. Latorre, and V. Cevher, An inexact aug-
mented Lagrangian framework for nonconvex optimization with nonlinear constraints,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/19M130563X
https://doi.org/10.1137/16M1108650
https://doi.org/10.1137/18M1171011
https://doi.org/10.1137/0613066
https://arxiv.org/abs/2008.00562
https://doi.org/10.1137/1035044
https://doi.org/10.1137/17M1134329

1766 CHUAN HE, ZHAOSONG LU, AND TING KEI PONG

in Advances in Neural Information Processing Systems 32, Curran Associates, 2019,
pp. 13943--13955.

[59] Y. Xie and S. J. Wright, Complexity of Projected Newton Methods for Bound-Constrained
Optimization, preprint, arXiv:2103.15989, 2021.

[60] Y. Xie and S. J. Wright, Complexity of proximal augmented Lagrangian for nonconvex op-
timization with nonlinear equality constraints, J. Sci. Comput., 86 (2021), pp. 1--30.

[61] L. Yang, D. Sun, and K.-C. Toh, SDPNAL+: A majorized semismooth Newton-CG aug-
mented Lagrangian method for semidefinite programming with nonnegative constraints,
Math. Program. Comput., 7 (2015), pp. 331--366.

[62] X.-Y. Zhao, D. Sun, and K.-C. Toh, A Newton-CG augmented Lagrangian method for
semidefinite programming, SIAM J. Optim., 20 (2010), pp. 1737--1765, https://doi.org/
10.1137/080718206.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/3

1/
24

 to
 1

58
.1

32
.1

61
.1

80
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://arxiv.org/abs/2103.15989
https://doi.org/10.1137/080718206
https://doi.org/10.1137/080718206

	Introduction
	Notation and preliminaries
	A Newton-CG method for unconstrained optimization
	Main components of a Newton-CG method
	A Newton-CG method for problem (<0:xref 0:ref-type="disp-formula" 0:rid="disp7" >3.1</0:xref>)

	A Newton-CG based AL method for problem (<0:xref 0:ref-type="disp-formula" 0:rid="disp1" >1.1</0:xref>)
	Outer iteration complexity of Algorithm <0:xref 0:ref-type="statement" 0:rid="Al4-1" >4.1</0:xref>
	Total inner iteration and operation complexity of Algorithm <0:xref 0:ref-type="statement" 0:rid="Al4-1" >4.1</0:xref>
	Enhanced complexity of Algorithm <0:xref 0:ref-type="statement" 0:rid="Al4-1" >4.1</0:xref> under constraint qualification

	Numerical results
	Regularized robust regression
	Spherically constrained regularized robust regression

	Proof of the main results
	Proof of the main results in section  <0:xref 0:ref-type="sec" 0:rid="s3" >3</0:xref>
	Proof of the main results in section  <0:xref 0:ref-type="sec" 0:rid="s4" >4</0:xref>

	Future work
	Appendix A. A capped conjugate gradient method
	Appendix B. A randomized Lanczos based minimum eigenvalue oracle
	References

