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Abstract
In cancer studies, it is commonplace that a fraction of patients participating in the
study are cured, such that not all of them will experience a recurrence, or death due
to cancer. Also, it is plausible that some covariates, such as the treatment assigned
to the patients or demographic characteristics, could affect both the patients’ survival
rates and cure/incidence rates. A common approach to accommodate these features
in survival analysis is to consider a mixture cure survival model with the incidence
rate modeled by a logistic regression model and latency part modeled by the Cox
proportional hazards model. These modeling assumptions, though typical, restrict
the structure of covariate effects on both the incidence and latency components.
As a plausible recourse to attain flexibility, we study a class of semiparametric
mixture cure models in this paper, which incorporates two single-index functions
for modeling the two regression components. A hybrid nonparametric maximum
likelihood estimation method is proposed, where the cumulative baseline hazard
function for uncured subjects is estimated nonparametrically, and the two single-index
functions are estimated via Bernstein polynomials. Parameter estimation is carried
out via a curated EM algorithm. We also conducted a large-scale simulation study to
assess the finite-sample performance of the estimator. The proposed methodology
is illustrated via application to two cancer datasets.
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1 Introduction
In conventional survival analysis, a usual assumption is that all subjects will experience
the event of interest in their lifetime. This assumption can be violated in some
applications when there exists a fraction of the population that is non-susceptible to the
event. For example, breast cancer patients1;2 and melanoma patients3;4 may be relapse-
free for the rest of their lifetime after receiving a certain treatment at which all cancer
cells are eliminated. In these studies, it is preferable to accommodate the existence of
long-term survivors, or a cure fraction, in the population. The mixture cure model is the
most popular class of cure models, which comprises two basic components, namely the
incidence and latency components. The term ‘incidence’ pertains to whether an event
would occur (i.e. whether a subject is uncured with finite failure time, or not), whereas
the term ‘latency’ refers to when the event actually occurs, given the event will occur. In
the pioneering work of Boag5 and Berkson and Gage,6 a subject is classified as cured
or uncured according to a binary latent variable where the incidence parameter is an
unknown constant, and the failure time of an uncured subject is assumed to follow a
covariate-independent parametric distribution.

To introduce covariates to the incidence component, Farewell7 and Ghitany et al.8

assumed a logistic regression model for the probability of being uncured. Lam et al.2

proposed the probit and complementary log-log models as alternatives to the logistic
regression model. Although the popular logistic link function used in the incidence
component is easy to interpret and implement, Amico et al.9 have criticized its S-shaped
functional form for being too restrictive, and a prespecified link function may not fit
the data well in practice. They proposed a flexible nonparametric non-monotone link
function for the incidence probability, which is more robust against different shapes
of underlying functions compared to fully parametric models. In the same vein, Musta
and Yuen10 studied the use of a nonparametric monotone link function on the incidence
probability model.

Farewell11 and Ghitany et al.8 assumed a Weibull and exponential regression model,
respectively, for the latency component to capture the effects of covariates on the
failure time distribution. Based on the semiparametric Cox proportional hazards (PH)
model,12 Kuk and Chen13 proposed a maximum marginal likelihood approach with
Monte Carlo approximations for parameter estimation, while Sy and Taylor14 proposed
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1 INTRODUCTION 3

the Expectation-Maximization (EM) algorithm where the parameters in the incidence and
latency components can be updated separately in the M-step, and the profile likelihood15

approach is still applicable in the estimation of the latency parameters. Lu16 proposed a
nonparametric maximum likelihood estimation approach, with the unknown cumulative
baseline hazard function approximated via a step function, while Wang et al.17 proposed
a smoothing splines approach for the variance model for each of the two components,
and adopted a penalized EM algorithm for estimation. A comprehensive summary of the
development of the cure survival model was provided in Amico and Van Keilegom.18

The Cox PH model assumes that the covariates have linear effects on the log-hazard
function. Nevertheless, there are practical situations where this assumption may not be
satisfied. For example, in a variety of epidemiological and cancer studies, the effects of
important covariates, such as age, tobacco/alcohol use, and socioeconomic status, can
be nonlinear. In such situations, more flexible models are necessary to obtain reliable
inferences.

In this paper, we develop a single-index mixture cure model that allows an unspecified
link function for the incidence model, and a nonlinear effect of a single index in the
latency model. In single-index models (SIMs), we assume that a linear combination
of covariates, referred to as an index, affects the outcome variable nonparametrically.
SIM19–21 and partially linear single-index models (PLSIM)22;23 have been studied
extensively for non-censored data, serving as extensions to the generalized linear
models that relaxes the linearity assumptions. For the analysis of right-censored
data, the SIM and PLSIM are mainly constructed as generalizations of the Cox PH
regression model.24–28 A major motivation for considering the SIM/PLSIM over the
fully nonparametric models29;30 is to avoid the “curse of dimensionality” issue when
the dimension of the covariates involved in the nonparametric function is large. Another
popular alternative to the SIM for coping with the dimensionality issue is the additive
model,31 where covariate effects can be characterized nonparametrically. In comparison,
the SIM is more computationally tractable in the presence of numerous covariates. Also,
as remarked in Yu and Ruppert,23 interactions among covariates are completely ignored
in the additive models, but they are automatically captured in the SIM.

To fit SIM/PLSIM, a variety of estimation methods have been proposed, which include
but are not limited to the kernel smoothing methods9;21;24 and spline approximations;25;27

piecewise linear functions32;33 are special cases of splines. A particular choice of
splines is the Bernstein polynomial (BP),34 which has been adopted to approximate the
baseline cumulative hazard functions in the bivariate transformation survival models,35 to
approximate nonlinear covariate effects in the additive Cox model for interval-censored
data,36 and to approximate the distribution function in the semiparametric transformation
non-mixture cure models.37 The BP is easy to implement, even if there is a monotonicity
constraint on the underlying function, and requires no pre-specification of the interior
knots. To the best of our knowledge, the BP has not been considered for the estimation
of SIM/PLSIM in the analysis of survival data with a cure fraction. Utilizing the BP
approach for SIM/PLSIM estimation is the central contribution of this paper.

The rest of the paper is organized as follows. Section 2 introduces the model,
likelihood, associated sieve-nonparametric maximum likelihood (NPML) estimation
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method, and related model identifiability. The computational details are presented in
Section 3, where a carefully devised EM algorithm powers the sieve-NPML estimation.
The standard error estimation for the Euclidean parameter estimates is also discussed.
In Section 4, we conduct a simulation study to evaluate the finite-sample performance
of the estimator. The proposed methodology is illustrated via application to two cancer
datasets, on head and neck cancer and breast cancer. Finally, some concluding remarks
appear in Section 5.

2 Methods

2.1 Model specification
Let U be a binary latent variable, which equals 0 if a subject is cured and 1 otherwise. Let
T be the failure time, with T “ 8 if U “ 0, and T follows a finite distribution if U “ 1.
Let X,W , and Z be p-, q- and r- dimensional vectors of covariates, respectively; they
do not contain any constant elements. We assume thatW andZ do not overlap, but both
of them can overlap withX . Furthermore, we assume a SIM for the incidence with

P pU “ 1|Xq “ κtGpαTXqu ” πpαTXq, (1)

where κpxq “ t1 ` expp´xqu´1 is the standard logistic function, G is an unknown
smooth monotone increasing link function, and α is a vector of regression parameters.
Model (1) includes the logistic regression model, with Gpxq “ c` x, and the
complementary log-log model, with Gpxq “ log rexptexppc` xqu ´ 1s, as special
cases, where c is an unknown parameter. We propose a PLSIM for the latency component.
The conditional hazard function of T given U “ 1 takes the form

λupt|W ,Zq “ λptq exp
␣

βTW `HpγTZq
(

, (2)

where β and γ are vectors of regression parameters, λ is an arbitrary baseline hazard
function, and H is an unknown smooth link function. In model (2), we assume a linear
effect ofW on the log-hazard, but the effect of Z is potentially nonlinear. An appealing
feature of the PLSIM is that the class of models includes both the partially linear survival
model (withZ being univariate)32;33 and the single-index survival models (in the absence
ofW )24;25 as special cases. Based on (1) and (2), the population survival function is

Spt|X,W ,Zq “ 1 ´ πpαTXq ` πpαTXqSupt|W ,Zq, (3)

where Supt|W ,Zq “ exp
“

´ Λptq exptβTW `HpγTZqu
‰

, and Λptq “
şt

0
λpsqds.

To ensure model identifiability, we note that any additive constants in H could be
absorbed in λ; so, we impose the constraint Hp0q “ 0. Similarly, any additive constants
in G could be absorbed, so X does not contain any constant elements. We also require
}α} “ }γ} “ 1, since the scaling factors of the parameters could be absorbed in G and
H . In addition, the sign of γ cannot be identified, since we can find qHp¨q “ Hp´¨q and
qγ “ ´γ, such thatHpγTZq “ qHpqγTZq. Therefore, we assume that the first component
of γ is positive. By contrast, such a constraint is not needed for α, as G is monotone
increasing.
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2 METHODS 5

2.2 Likelihood
Suppose that the failure time T is subject to right censoring, and let C be the random
censoring time. We only observe Y ” minpT,Cq and the event indicator ∆ ” IpT ă

Cq. We assume that T and C are independent given the covariates pX,W ,Zq. A
random sample of size n comprises O “ tpYi,∆i,Xi,Wi,Ziq, i “ 1, . . . , nu. Let θ ”

pα,β,γ,Λ, G,Hq be the set of all unknown parameters. We further let η ” pβ, H,γq be
the set of parameters in the survival model, and let hipηq “ βTWi `HpγTZiq. Then,
the likelihood function for θ is given by

Lpθ|Oq “

n
ź

i“1

“

κtGpαTXiquλpYiq expthipηqu expr´ΛpYiq expthipηqus
‰∆i

ˆ
“

1 ´ κtGpαTXiqu ` κtGpαTXiqu expr´ΛpYiq expthipηqus
‰1´∆i

.

The maximization of this objective function is challenging because (i) it possesses
three infinite-dimensional nonparametric components, namely Λ, G and H; and (ii) the
partial likelihood approach is not applicable (despite a traditional right-censoring setup)
since the failure time distribution depends on the cure status.

2.3 Sieve estimation
We propose a sieve-NPML estimation method to approximate the likelihood in a
parameter space with finite dimensions. We approximate Λ by a step function with non-
negative jump sizes at the unique observed event times. For G and H , we employ sieve
methods and approximate the functions using BP. We define the sieve space for the
approximation of G as

BG “

!

Gm1
pxq “ Bpx;ψ,m1, uq : ´Mg ď ψ0 ď ¨ ¨ ¨ ď ψm1

ă Mg

)

,

where

Bpx;ψ,m1, uq ”

m1
ÿ

j“0

ψjBjpx,m1, uq “

m1
ÿ

j“0

ψj

ˆ

m1

j

˙ˆ

x` u

2u

˙j ˆ

1 ´
x` u

2u

˙m1´j

is a BP with degree m1, Mg is some large constant, ψ ” pψ0, . . . , ψm1
qT is a vector of

coefficients of the basis polynomials, and u is some large enough positive value such that
r´u, us contains the support of αT

0X . In practice, we can set u “ maxi“1,...,n }Xi}.
The order constraints on ψ ensure that the members of BG are monotone increasing.
Similarly, we define the sieve space

BH “

!

Hm2pzq “ Bpz;ϕ,m2, vq : |ϕi| ă Mh, i “ 0, . . . ,m2

)

for the approximation of H , where Mh is a positive constant, ϕ ” pϕ0, . . . , ϕm2
qT is

a vector of coefficients of the basis polynomials, and v is such that r´v, vs contains the
support of γT

0 Z; we set v “ maxi“1,...,n }Zi}. We denote the sieve maximum likelihood
estimator by pθ ” ppζ, pΛ, pG, pHq where ζ ” pα,β,γq denotes the set of Euclidean
parameters.
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2.4 Identifiability
Let ζ0 ” pα0,β0,γ0q,Λ0, G0, andH0 be the true parameter values. Let S Ă Rp ˆ Rq ˆ

Rr be the support of pX,W ,Zq, and let D1 and D2 be the supports of αT
0X and γT

0 Z,
respectively. Let τ be the end-of-study time. We impose the following conditions for
model identifiability.

(C1) The function G0 is monotone increasing, differentiable, and non-constant on D1.
The function H0 is differentiable and non-constant on D2, with H0p0q “ 0. The
function Λ0 is strictly increasing and continuous on r0, τ s with Λ0p0q “ 0.

(C2) The parameters α0 P Aα and γ0 P Aγ , where Aα “
!

pα1, . . . , αpq |
řp
j“1 α

2
j “ 1

)

and Aγ “

!

pγ1, . . . , γrq |
řr
j“1 γ

2
j “ 1, γ1 ě ϵ

)

for some positive constant ϵ.

(C3) The supports of X and pWT,ZTqT are not contained in any proper linear
subspace of Rp and Rq`r, respectively.

(C4) Both X and Z are continuous, and P p}X} ` }Z} ` }W } ă Mq “ 1 for some
constant M . The set S includes the value p0,0,0q. For any x ‰ 0, there exists
pw, zq such that βT

0 w `H0pγT
0 zq ‰ 0 and px,w, zq P S.

(C5) The censoring time C satisfies P pC ě τ | X,Z,W q “ P pC “ τ | X,Z,W q ą

ϵ almost surely, for some positive constant ϵ and τ ă 8.

Remark 1. Conditions (C1)–(C3) include regularity conditions for the identifiability of
general single-index models, similar to those in Theorem 2.1 of Horowitz.38 In particular,
condition (C1) guarantees that there are no point masses in the event time distribution
and no jumps in the transformation functions G and H . Condition (C2) guarantees that
the scales of α and γ, as well as the sign of γ, are identifiable. Condition (C3) ensures
that the covariates are not linearly dependent. Condition (C4) imposes mild conditions on
the covariates that facilitate separate identification of the incidence and latency parts.
In particular, it requires that the covariates have non-zero effects on the latency part.
Condition (C5) guarantees that the event can be observed up to time τ .

Proposition 1. Under conditions (C1)–(C5), model (3) is identifiable.

The proof of the proposition is provided in the Appendix.

Remark 2. The aforementioned identifiability conditions are stated withX andZ being
vectors of continuous covariates. According to Horowitz,38 when X and Z contain a
mixture of discrete and continuous variables, we additionally require

(C6) The function H is nonperiodic.

(C7) When the values of the discrete component in X (and Z) vary, the support D1

(and D2) must not be divided into disjoint subsets.
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3 Computational details

3.1 EM algorithm
We devise an EM algorithm for the computation of the sieve NPML estimator. It suffices
to write down the complete data log-likelihood function based on the augmented data
O1

“ tpYi,∆i, Ui,Xi,Wi,Ziq, i “ 1, . . . , nu, which takes the form

ℓpθ | O
1

q “

n
ÿ

i“1

Ui log
“

κtGpαTXiqu
‰

` p1 ´ Uiq log
“

1 ´ κtGpαTXiqu
‰

(4)

`

n
ÿ

i“1

∆i

!

log λpYiq ` hipηq

)

´ UiΛpYiq expthipηqu.

Clearly, the complete data log-likelihood is a sum of two terms. The first term only
involves the parameters in (1), and the second term only involves the parameters in (2).

In the sequel, we use the superscript pdq to denote the parameter values in the
dth step of the EM algorithm, d “ 0, . . . . Let θ “ pθ1,θ2q where θ1 “ pα, Gq and
θ2 “ pβ,γ,Λ, Hq. In the E-step, we evaluate

Qpθ,θpdqq ” E
!

ℓpθq | O,θpdq
)

“ Q1pθ1,θ
pdqq `Q2pθ2,θ

pdqq (5)

where

Q1pθ1,θ
pdqq “

n
ÿ

i“1

pEpUiq log
“

κtGpαTXiqu
‰

`

!

1 ´ pEpUiq
)

log
“

1 ´ κtGpαTXiqu
‰

,

Q2pθ2,θ
pdqq “

n
ÿ

i“1

∆i

!

log λpYiq ` hipηq

)

´ pEpUiq
”

ΛpYiq expthipηqu

ı

,

and pE denotes the conditional expectation given the observed data, evaluated at the
parameter value θpdq. It suffices to compute

pEpUiq “ ∆i `
p1 ´ ∆iqκtGpαTXiqu exp r´ΛpYiq exp thipηqus

1 ´ κtGpαTXiqu ` κtGpαTXiqu exp r´ΛpYiq exp thipηqus

ˇ

ˇ

ˇ

ˇ

ˇ

θ“θpdq

.

In the M-step, we propose a numerically stable two-stage optimization procedure for
updating the pairs pψ,αq and pϕ,γq, where the BP coefficients and the single-index
coefficients are updated sequentially.

We update θ1 by maximizing Q1pθ1,θ
pdqq, subject to the constraint }α} “ 1. Note

that the monotonicity constraints in BG can be easily satisfied by the parameterization
ψ0 “ ψ˚

0 and ψq “ ψ˚
0 `

řq
i“1 e

ψ˚
i for q “ 1, . . . ,m1, where ψ˚

j P p´8,8q for j “

0, . . . ,m1. We first fix α at αpdq and obtain ψpd`1q by the quasi-Newton method
of Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm39 for unconstrained nonlinear
optimization problems. Then, by setting ψ “ ψpd`1q, and for some real number c1,
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8 Statistical Methods in Medical Research XX(X)

we update pαpdq, c
pdq

1 q by the standard Newton–Raphson iteration for the unconstrained
Lagrange function, in which we have to compute

ˆ

αpl`1q

c1pl`1q

˙

“

ˆ

αplq

c1plq

˙

´

ˆ

B
2Q1

BαBαT ` 2c1Ip 2α
2αT 0

˙´1ˆ
BQ1

Bα ` 2c1α
αTα´ 1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

pα,c1q“pαplq,c1plq
q

in an iterative manner for l “ 0, 1, . . . , where pαp0q, c1p0q
q “ pαpdq, c

pdq

1 q, and Ip
denotes the identity matrix of size p. We obtain pα˚, c˚

1 q upon convergence and set
pαpd`1q, c

pd`1q

1 q “ pα˚, c˚
1 q.

Next, we update θ2 by maximizingQ2pθ2,θ
pdqq, subject to the constraint }γ} “ 1. For

fixed γ, we can update pβpd`1q,ϕpd`1qq by first profiling out Λ in the expected complete-
data log-likelihood. The “profile log-likelihood” for pβpd`1q,ϕpd`1qq takes the form

Q3pβ,ϕ,γq “

n
ÿ

i“1

∆i

˜

hipηq ´ log

«

n
ÿ

j“1

RjpYiqpEpUjq expthjpηqu

ff¸

, (6)

where Rjptq ” IpYj ě tq is the risk-set indicator of the jth individual at time t. Hence,
with γ fixed at γpdq, we update pβ,ϕq by maximizing Q3. To avoid potential numerical
instability under poorly assigned initial parameter values, we adopt a step-halving40

Newton–Raphson algorithm that searches for candidates with current estimate plus
2´K times pK “ 0, 1, . . . q the usual updating term of the Newton–Raphson algorithm.
Specifically, for a given K:

ˆ

βpKq

ϕ˚
pKq

˙

“

ˆ

βpdq

ϕpdq

˙

´ 2´K

˜

B
2Q3

BβBβT
B
2Q3

BβBϕT

B
2Q3

BϕBβT
B
2Q3

BϕBϕT

¸´1˜
BQ3

Bβ
BQ3

Bϕ

¸
ˇ

ˇ

ˇ

ˇ

ˇ

pβ,ϕq“pβpdq,ϕpdqq

.

For identifiability, we set ϕpKq “ ϕ˚
pKq

´Hm2
p0;ϕ˚

pKq
q1 where 1 is a pm2 ` 1q-

vector of ones, such that Hm2
p0;ϕpKqq “ 0 is satisfied for every K. Then, we

set pβpd`1q,ϕpd`1qq “ pβpK˚q,ϕpK˚qq, where K˚ is chosen to be the smallest
non-negative integer K such that Q3pβpKq,ϕpKq,γ

pdqq ě Q3pβpdq,ϕpdq,γpdqq. The
Breslow-type estimator of Λ is given by

Λpd`1qptq “

n
ÿ

i“1

∆iIpYi ď tq
n
ř

j“1

RjpYiqpEpUjq expthjpηqu

.

Finally, we fix pβ,Λ,ϕq at pβpd`1q,Λpd`1q,ϕpd`1qq, and update γ by maximizing Q2.
Analogous to the above, we use the Lagrange multiplier method to resolve the constraint
}γ} “ 1. For some real number c2, we update pγ, c2q iteratively, with

ˆ

γpl`1q

c2pl`1q

˙

“

ˆ

γplq

c2plq

˙

´

˜

B
2Q2

BγBγT ` 2c2Ir 2γ

2γT 0

¸´1
ˆ

BQ2

Bγ ` 2c2γ

γTγ ´ 1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

pγ,c2q“pγplq,c2plq
q
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3 COMPUTATIONAL DETAILS 9

for l “ 0, 1, . . . , where pγp0q, c2p0q
q “ pγpdq, c

pdq

2 q, and obtain pγ˚, c˚
2 q upon conver-

gence. We set cpd`1q

2 “ c˚
2 . If the first element of γ˚ is positive, we set γpd`1q “ γ˚.

If it is negative, we set γpd`1q “ ´γ˚ and, by virtue of the symmetry of BPs, reverse the
order of the elements in ϕpd`1q. We summarize the algorithm below.

Step 0 Start with d “ 0 and initial value θp0q.

Step 1 With α “ αpdq fixed, obtain ψpd`1q by maximizing Q1 via the BFGS algorithm.

Step 2 With ψ “ ψpd`1q fixed, obtain αpd`1q by the Lagrange multiplier method.

Step 3 With γ “ γpdq fixed, obtain pβpd`1q,ϕpd`1qq by maximizing Q3 with a step-
halving Newton–Raphson algorithm, where ϕpd`1q satisfies Hm2p0;ϕpd`1qq “ 0.

Step 4 Compute the Breslow-type estimator Λpd`1q.

Step 5 Obtain γpd`1q by the Lagrange multiplier method.

Step 6 Repeat Steps 1 to 5 for d “ 1, 2, . . . until convergence at which the maximum
absolute difference between two consecutive estimates of θ is less than a small
positive constant.

In the algorithm, we update pβ,ϕ,Λq by maximizing the expected complete-data log-
likelihood Qpθ,θpdqq at fixed γ and then update γ by maximizing Qpθ,θpdqq at the
updated pβ,ϕ,Λq. Alternatively, we can update pβ,ϕq by maximizing Q3 at fixed γ,
update γ by maximizing Q3 at the updated pβ,ϕq, and then update Λ using the Breslow-
type estimator at the updated pβ,ϕ,γq. Both methods increase the value of Qpθ,θpdqq

in the M-step and should yield the sieve NPML estimator.
There are several merits of using the EM algorithm for maximizing the observed

likelihood. First, the E-step involves only a simple closed-form expression concerning
the conditional mean of the latent variable. Second, the objective function in (5) can be
considered as two separate components that involve solely θ1 and θ2, respectively, which
simplifies the maximization problem. Third, the algorithm is computationally efficient
because (i) the commonly used Breslow-type estimator of Λ is preserved with an explicit
solution; and (ii) the pairs of coefficients pα,ψq and pγ,ϕq are updated sequentially, such
that no inversion of high-dimensional matrices is involved in the estimation procedures.
Remarks: We present three remarks on the computational aspects of our algorithm. First,
as proposed in Taylor,41 a zero-tail constraint is typically required for the numerical
stability of the EM algorithm. Hence, we set the conditional survival function to be 0
for those censored observations with observed failure times beyond the largest observed
event time in the estimation procedures, that is, we set pEpUiq “ 0 for any subject i
censored after the last observed event time. Second, the updating formula in (6) is
concave in pβ,ϕq, but not necessarily concave in γ. To avoid converging to local
maxima, we suggest to begin with multiple sets of initial parameter values and choose
the desired estimator to be the set of estimates that yields the largest observed likelihood.
Third, in applying the proposed method, one has to decide the degrees of the BPs, namely
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m1 and m2, used in the approximation of G and H respectively. We propose to set
m1 “ K1tn1{4u for a positive integer K1, where, tau is the largest integer smaller than a,
and use a data-adaptive approach to select m2 based on the Akaike information criterion
(AIC). Note that we adopt slightly different strategies to select m1 and m2. Since G is
monotone, including many knots in the BP would not cause numerical instability in the
estimation. Hence, we allow m1 to increase with the sample size based on a simple rule.
By contrast, H is generally nonlinear and can be very flexible. In our experience, using
an information criterion, such as the AIC, to select m2 yields an appropriate number of
knots to capture the shape of the true function and gives a more stable estimation.

3.2 Confidence interval estimation
The computation of the inverse of the observed Fisher information matrix can be
expensive due to the presence of the high-dimensional parameter Λ. To avoid heavy
computations, we propose to use the profile likelihood approach42 to approximate
the covariance matrix of pζ. If α1 is positive, then we reparameterize α “ pp1 ´

}ρ}2q1{2,ρTqT with ρ ” α´1 ” pα2, . . . , αpqT; otherwise, we reparametrize α “

p´p1 ´ }ρ}2q1{2,ρTqT. Likewise, we write γT “ pp1 ´ }ω}2q1{2,ωTqT with ω “

γ´1 ” pγ2, . . . , γrq
T. The inference for ζ˚ ” pρT,βT,ωTqT can be performed based

on the profile likelihood function for ζ˚.
As noted by Zeng et al.43, the covariance matrix estimator based on the sum of squares

of individual score statistics is guaranteed to be positive semi-definite, and is more
computationally efficient and stable than that based on the individual hessian matrix.
Let

plpζ˚q “ sup
Λ,G,H

logLpΛ, G,H; ζ˚q

be the profile-log-likelihood, which can be obtained through updating only Λ, G and H
in the M-step of the EM-algorithm at fixed ζ˚. The estimated covariance matrix for pζ˚

is given by the inverse of

Ippζ˚q ”

n
ÿ

i“1

»

—

–

$

&

%

B

Bζ˚
plipζ

˚q

ˇ

ˇ

ˇ

ˇ

ˇ

ζ˚“pζ˚

,

.

-

b2
fi

ffi

fl

,

where pli is the contribution to pl from the ith subject. We approximate Bplipζ
˚q{Bζ˚

numerically by
plip

pζ˚ ` hnekq ´ plip
pζ˚q

hn
,

where, ek is the kth canonical vector in Rp`q`r´2, and hn is a pre-specified perturbation
constant that depends on n. One complication in applying this method to the single-index
models is that the norm constraints may not be satisfied when a perturbation constant is
added to an element in ρ or ω. For the perturbation of the jth element in ρ, namely ρj
for j “ 1, . . . , pp´ 1q, we propose to choose hn “ ´signppρjqminp|pρj |,K2n

´1{2q for
some positive integer K2, and we choose hn for the perturbation of elements in ω in
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the same manner. We simply take hn “ K2n
´1{2 for the perturbation of β. Since pζ˚ is

asymptotically normal, it is easy to observe that pζ is also asymptotically normal, via the
delta method. Specifically, the estimate for the covariance matrix of pζ is given by

BI´1ppζ˚qBT.

where

B “

¨

˚

˚

˚

˚

˝

pαT
´1{pα1 01ˆq 01ˆpr´1q

Ip´1 0pp´1qˆq 0pp´1qˆpr´1q

0qˆpp´1q Iq 0qˆpr´1q

01ˆpp´1q 01ˆq pγT
´1{pγ1

0pr´1qˆpp´1q 0pr´1qˆq Ir´1

˛

‹

‹

‹

‹

‚

.

4 Simulation study
The finite-sample performance of the proposed estimator is studied via extensive
simulation studies. We generate four independent variables whereX1 takes up the values
´1 and 1 with equal probability, and X2, X3 and X4 are independent standard normal
random variables. The true parameter values are set to be α “ p0.5,´0.5, 0.5,´0.5qT,
β “ p0.5,´0.5qT and γ “ p1{

?
2,´1{

?
2qT. Here, the covariatesW “ pX1, X2qT and

Z “ pX3, X4qT. The baseline cumulative hazard function is set to be Λptq “ 0.8t1.2.
Three scenarios are considered. In Scenario I, we have the classical logistic-Cox (LC)
model with πpxq “ κpxq and zero intercept value for the incidence component, and
Hpzq “ z for the latency component. Let Φ denote the cumulative distribution function
of a standard normal random variable. For Scenario II, we have πpxq “ 0.4 ` 0.6Φp2x´

1q, a function that starts at level 0.4 and increases to 1, and Hpzq “ logp1 ` z2q is
a v-shaped function. Finally, for Scenario III, we consider πpxq “ 0.5Φp2x` 3q `

0.5Φp2x´ 3q and Hpzq “ sinp3z{2q. The black solid lines in Figure 1 display π and H
under Scenarios I–III. We set the censoring time C to follow an exponential distribution
with a rate parameter 0.2. The response variables Y and ∆ are generated as follows. For
each individual, we first generate the binary random variable U according to (1). Then,
we set T “ 8 if U “ 0 and T follows the PLSIM described in (2) otherwise. Thus, we
obtain Y and ∆ by comparing the generated values of T and C. The average censoring
rates are 63%, 48%, and 61%, and the average cure proportions are 50%, 40%, and 50%
in Scenarios I, II, and III, respectively.

For the BP implementation, we fix m1 “ K1tn1{4u pK1 “ 1, 2, 3q, and for each fixed
m1, choosem2 from the candidates t1, . . . , 5u based on the AIC. For the implementation
of the EM algorithm, we assign standard normal random variables re-scaled to norm 1 for
αp0q and γp0q, respectively. We setψp0q such that κtGp¨qu is roughly linear and increases
from 0 to 1 over the support r´u, us. We set βp0q “ 0,ϕp0q “ 0, and set Λp0q to be a step
function that increases from 0 to 1 with equal step size at each observed event time. Five
sets of random initial parameter values are generated for the parameter estimation for
each given combination of m1 and m2. The convergence threshold of the EM algorithm
is set to 10´3. We set K2 “ 1, 5, and 10 in the perturbation constant hn used in variance
estimation of the Euclidean parameter estimators. For each scenario, we generate 1000
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Table 1. Main simulation results. Table entries are the Bias, empirical standard deviation
(ESD), average standard error (ASE), and coverage probability (CP) of the 95% nominal
level, under Scenarios I–III, for n “ 500 and 1000. Here, K1 “ 3 and K2 “ 5.

Scenario Par. n “ 500 n “ 1000
Bias ESD ASE CP Bias ESD ASE CP

I α1 ´0.019 0.112 0.108 0.94 ´0.008 0.073 0.074 0.95
α2 0.014 0.114 0.108 0.93 0.001 0.077 0.075 0.94
α3 ´0.012 0.116 0.109 0.94 ´0.005 0.079 0.075 0.94
α4 0.008 0.114 0.109 0.94 0.009 0.077 0.075 0.94
β1 0.012 0.091 0.093 0.95 0.003 0.064 0.064 0.94
β2 ´0.006 0.088 0.093 0.96 ´0.002 0.063 0.064 0.95
γ1 ´0.003 0.062 0.066 0.95 ´0.001 0.042 0.044 0.97
γ2 0.003 0.064 0.066 0.95 0.001 0.041 0.044 0.96

II α1 ´0.009 0.071 0.078 0.97 ´0.007 0.048 0.052 0.96
α2 0.010 0.073 0.082 0.96 0.002 0.049 0.054 0.96
α3 0.001 0.073 0.080 0.96 ´0.001 0.052 0.054 0.96
α4 0.003 0.075 0.081 0.94 0.000 0.049 0.054 0.96
β1 0.005 0.079 0.079 0.95 0.003 0.055 0.055 0.95
β2 ´0.004 0.077 0.080 0.96 0.001 0.054 0.055 0.95
γ1 ´0.001 0.070 0.074 0.93 ´0.002 0.047 0.049 0.96
γ2 0.006 0.071 0.074 0.94 0.001 0.046 0.049 0.96

III α1 ´0.017 0.134 0.140 0.94 ´0.008 0.092 0.098 0.96
α2 0.009 0.117 0.127 0.94 0.008 0.080 0.084 0.95
α3 ´0.015 0.120 0.126 0.94 ´0.008 0.078 0.083 0.96
α4 0.020 0.120 0.126 0.94 0.003 0.080 0.084 0.95
β1 0.010 0.095 0.091 0.94 0.001 0.062 0.063 0.96
β2 ´0.012 0.091 0.094 0.96 ´0.002 0.062 0.064 0.96
γ1 ´0.005 0.062 0.063 0.95 ´0.001 0.042 0.042 0.94
γ2 0.001 0.062 0.062 0.95 0.002 0.042 0.042 0.94

replicates with sample sizes n “ 500 and 1000. Based on the simulation results (see
Table S.1 and Figure S.1 in the Supplementary Materials), we suggest to use K1 “ 3,
which is sufficiently large for the estimated function to capture potential changes in G,
while K2 “ 5 works well in rendering the nominal 95% empirical coverage probability
level in all scenarios considered. Table 1 reports the estimation results for each Euclidean
parameter with K1 “ 3 and K2 “ 5, including the bias, empirical standard deviation
(ESD), average standard error (ASE) and coverage probability (CP) of the 95% nominal
level. The coverage probability is computed based on the 95% confidence intervals
constructed via the asymptotic normality of the estimators. It shows that the estimator
is virtually unbiased in all scenarios and that the proposed method is robust to different
underlying functional forms of π and H . The ASE aligns closely with the ESD, which
illustrates that the profile likelihood approach is reliable for standard error estimation. In
Figure 1, we plot the average estimates for π and H overlayed with the true values. The
average estimates align closely with the true values implying that the proposed sieve-
NPML estimation approach also provides good approximations of the nonparametric
components.

We compare the performance of the proposed model to the classical LC model, and
the Single-index/Cox (SIC) model proposed in Amico et al.9 We follow the exact EM
algorithm in Amico et al. for the estimation of the SIC model with their default parameter
values. The performance is evaluated based on the average squared error (ASQE) for
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4 SIMULATION STUDY 13

Figure 1. Average estimates of π and H in the simulation study. The black solid lines
represent the true values. The grey solid line and red dashed line represent the average
estimates under n “ 500 and n “ 1000, respectively.

the estimation of π and H in the incidence and latency components, respectively.
Define a grid of realizations pxi1, xi2, xi3, xi4q of the variables pX1, X2, X3, X4q

and a grid of realizations pzj1, zj2q of the variables pZ1, Z2q, i “ 1, . . . , B1 and j “

1, . . . , B2, where B1 and B2 denote the respective number of grid points. Here, X1

takes values in t´1, 1u, whereas X2, X3, X4 take the grid points on r´1.5, 1.5s with
a step size of 0.1. Then, for the proposed model and with estimates ppα, pγ, pG, pHq,
we can compute ASQEπ “ B´1

1

řB1

i“1

“

κt pGppαTxiqu ´ πpαTxiq
‰2

and ASQEH “

B´1
2

řB2

j“1

␣

pHppγTzjq ´HpγTzjq
(2

. Similarly, we can compute these two quantities
for the LC model and SIC model, where the estimated uncured probability is used in
ASQEπ , and γTzj is used in ASQEH , with γ the estimated effect of z. Figure 2 shows
the results with n “ 500 and 1000. For the incidence component, one can observe that
the estimation performance of the three models is comparable when the logistic model is
true, as in Scenario I (top-left figure). In particular, the LC model performs the best
as expected. The proposed model is slightly superior to the SIC model because the
logistic link function is indeed increasing. When the true model departs from the LC
model but still maintains a monotone increasing incidence link function (i.e. Scenarios
II and III), the proposed model outperforms the LC and SIC models. Next, as both
LC and SIC models assumed a classical Cox PH model for the latency, the proposed
model outperforms the LC and SIC models in the estimation of H under Scenarios II
and III, where the true H is nonlinear. In Table 2, we present the simulation results for
the estimation of β1 and β2 based on the LC and SIC models. The relative efficiency
(RE) is defined as the ratio of the mean squared error of the proposed estimator to that
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Figure 2. Average squared error (ASQE) for the estimation of π and H with n “ 500 and
1000 in the simulation study. Dark grey, light grey and white box plots represent the ASQE
computed based on the fitted proposed, SIC and LC models, respectively.

Table 2. Estimation results for parameters β1 and β2 based on the LC and SIC models
where RE stands for relative efficiency compared to the estimator of the proposed model.

Scenario Par. n “ 500 n “ 1000
Bias ESD RE Bias ESD RE

LC model
I β1 0.008 0.089 1.052 0.002 0.064 1.003

β2 ´0.003 0.086 1.041 ´0.001 0.062 1.025
II β1 ´0.075 0.077 0.539 ´0.078 0.054 0.336

β2 0.070 0.076 0.557 0.075 0.053 0.345
III β1 ´0.058 0.100 0.676 ´0.068 0.067 0.420

β2 0.055 0.099 0.653 0.061 0.068 0.462
SIC model

I β1 0.016 0.089 1.026 0.010 0.064 0.971
β2 ´0.015 0.087 0.997 ´0.011 0.063 0.982

II β1 ´0.075 0.076 0.552 ´0.076 0.054 0.350
β2 0.065 0.075 0.599 0.070 0.052 0.385

III β1 ´0.056 0.100 0.700 ´0.066 0.067 0.438
β2 0.044 0.098 0.733 0.054 0.068 0.516

of the LC and SIC models, respectively. As expected, the estimator for the LC model
performs the best in Scenario I. However, we observe considerable efficiency gain by the
proposed method in Scenarios II and III, compared to the estimators from the LC and
SIC models. Hence, the results show that estimation accuracy and efficiency for β can
be largely affected by the misspecification of the structures of π and H .

Prepared using sagej.cls



5 APPLICATION 15

Figure 3. Kaplan-Meier estimator for the CHANCE data, with 95% pointwise confidence
intervals.

5 Application

5.1 Head and neck cancer data
The first data set was collected from the Carolina Head and Neck Cancer Epidemiology
(CHANCE) Study.44;45 It was a retrospective case-control study that comprised the
survival data of 1381 head and neck (HN) cancer patients and 1396 age-, sex- and
race-matched controls. In this analysis, we focus on the HN cancer subjects, who were
diagnosed with the first primary squamous cell carcinoma of the oral cavity, pharynx,
or larynx, and resided in a 46-county region in central North Carolina between January
1, 2002, and February 28, 2006. The age-at-diagnosis of the patients ranges from 21 to
80 years. An administrative censoring occurred at the end of 2013, yielding a maximum
follow-up period of 12 years. The primary objective is to identify potential risk factors
that affect their survival since the initial tumor diagnosis. The plot of the Kaplan-Meier
estimator of survival probability (see Figure 3) reveals a plateau behavior for the right
tail at a high probability value, presumably due to the diminished impact of the initial
tumor on survival.

We apply the proposed cure rate model to the CHANCE data. Various covariates
are available to capture the heterogeneity between patients in terms of demographic
background, disease severity, and oral health conditions, namely sex, race, smoking,
alcohol use, tumor stage (T- and N- stages), number of dental visits in 10 years prior
to study entry, and age-at-diagnosis in the analysis. Subjects with missing covariates
are excluded. Subsequently, our analysis comprises 1255 HN cancer patients with 705
deceased during the 12-year observation period (i.e. censoring proportion is 44%). We
standardize and include all the covariates in both the incidence and latency components.
Referring to the PLSIM in (2), age-at-diagnosis is treated as Z since it is the only
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Table 3. CHANCE data analysis results. Table entries are the estimate (Par), estimated
standard error (ESE), and 95% confidence interval (95%CI) for the model parameters under
the proposed model and LC model.

Covariates Proposed model LC model
Par ESE 95%CI Par ESE 95%CI

Incidence part
Intercept ´ 0.547 0.092 (0.367, 0.726)
Sex (female “ 1) 0.091 0.101 (´0.106, 0.288) 0.062 0.082 (´0.098, 0.222)
Race (white “ 1) ´0.226 0.102 (´0.426, ´0.027) ´0.134 0.085 (´0.301, 0.032)
Smoking (ą 10 pack-year) 0.280 0.093 (0.097, 0.462) 0.246 0.082 (0.086, 0.407)
Alcohol (ą 1 drink per week) 0.170 0.105 (´0.036, 0.377) 0.137 0.091 (´0.042, 0.316)
T-stage (T2–T4 vs T1) 0.214 0.099 (0.020, 0.408) 0.163 0.086 (´0.005, 0.332)
N-stage (N1–N3 vs N0) 0.231 0.095 (0.045, 0.417) 0.170 0.080 (0.013, 0.327)
Dental visits (ě 1 in 10 years) ´0.468 0.092 (´0.647, ´0.288) ´0.391 0.083 (´0.554, ´0.229)
Age-at-diagnosis 0.718 0.063 (0.594, 0.842) 0.581 0.088 (0.409, 0.754)
Latency part
Sex (female “ 1) 0.014 0.057 (´0.098, 0.126) 0.011 0.056 (´0.099, 0.121)
Race (white “ 1) ´0.011 0.051 (´0.111, 0.089) ´0.004 0.054 (´0.109, 0.102)
Smoking (ą 10 pack-year) ´0.007 0.059 (´0.122, 0.109) ´0.024 0.063 (´0.149, 0.100)
Alcohol (ą 1 drink per week) 0.061 0.066 (´0.068, 0.190) 0.069 0.068 (´0.066, 0.203)
T-stage (T2–T4 vs T1) 0.160 0.060 (0.042, 0.277) 0.159 0.063 (0.034, 0.283)
N-stage (N1–N3 vs N0) 0.154 0.050 (0.057, 0.251) 0.159 0.051 (0.059, 0.259)
Dental visits (ě 1 in 10 years) ´0.156 0.056 (´0.267, ´0.046) ´0.136 0.057 (´0.249, ´0.024)
Age-at-diagnosis ´ ´0.016 0.057 (´0.127, 0.095)

continuous variable in the dataset, and all other variables are treated asW . As analogous
to the simulation study, we set K1 “ 3 and K2 “ 5, and, based on the AIC, select
m2 “ 3 from the candidates t1, . . . , 8u. We consider 10 sets of different randomized
initial parameter values under each candidate value of m2, with the same randomization
procedure as in the simulation studies. Then, we obtain the set of estimates with the
highest likelihood. The convergence threshold of the EM algorithm is set to be 10´4.

Table 3 summarizes the estimation results of the proposed model together with that of
the LC model. Note, the estimates corresponding to the latency part pertain to effects on
the log-hazard ratios. From the LC model, we observe that an increase in the incidence
probability is associated with smoking, progressed N-stage, lack of dental visits, and
ageing, while a decrease in survival rate is associated with both progressed T- and N-
stages, and lack of dental visits. Specifically, sex, race, and alcohol consumption are not
significant in both components of the LC model, and age-at-diagnosis is not significant
in the latency component. Figure 4 illustrates the estimates of π and H in the proposed
model. We observe that the uncured probability is capped at 0.9, and the shape of the
fitted function deviates much from that of a logistic link function. This suggests that
even though the follow-up time may not be long and the Kaplan-Meier curve in Figure 3
does not exhibit a plateau, we still identify a cure probability bounded away from zero;
note that from Proposition 1, the cure probability is identifiable regardless of the end-of-
study time τ . The estimated H function is nonlinear and non-monotone. On the contrary,
the proposed model suggests that, in addition to the four identified risk factors in the
LC model, race and progressed T-stage are significantly associated with the incidence
probability. The conclusions drawn from the estimated linear effects of the covariates in
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Figure 4. Estimates of π and H for the CHANCE data. The observed values of pαTX and
the age variable are indicated at the bottom of the left and right panels, respectively.

the latency component are similar in both models, with comparable point and standard
error estimates.

5.2 Rotterdam breast cancer data
The second motivating study is the Rotterdam breast cancer (RBC) data,46 which
includes the disease-free survival times of 2982 breast cancer patients, with a right
censoring proportion of 42.6%. The Kaplan-Meier estimator presented in Figure 5
depicts a plateau well above zero at the right tail, suggesting that a certain fraction of
breast cancer patients are cured. Nine prognostic baseline variables are available in the
dataset, including hormonal and chemo- therapies indicators, tumor grade, menopausal
status, tumor size, age, number of positive nodes, progesterone receptor, and estrogen
receptor. The first five variables are discrete and the last four are continuous.

We apply the proposed methods to the RBC data. Since the continuous variables
except age are right-skewed, we apply a logarithmic transformation qpxq “ logp1 ` xq

to them. Then, we standardize and include all available covariates in both incidence
and latency components. Specifically in the PLSIM in (2), the five discrete variables
(i.e. hormonal and chemo-therapies indicators, tumor grade, menopausal status, tumor
size) are treated as W and the four continuous variables (i.e. age, number of positive
nodes, progesterone receptor, estrogen receptor) are treated as Z. We employ the same
configurations in the estimation procedure as in the analysis of CHANCE data (with
m2 “ 3 selected via AIC). The estimation results of the proposed and LC models are
summarized in Table 4, while the fitted nonparametric functions are provided in Figure
6. Once again, the estimates for the latency part pertain to effects on the log-hazard
ratios. Both models suggest that an increase in incidence probability is associated with
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Figure 5. Kaplan-Meier estimator for the RBC data, with 95% pointwise confidence intervals.

Table 4. RBC data analysis results. Table entries are the estimate (Par), estimated standard
error (ESE), and 95% confidence interval (95%CI) for the model parameters under the
proposed model and LC model.

Covariates Proposed model LC model
Par ESE 95%CI Par ESE 95%CI

Incidence part
Intercept ´ 1.351 0.148 (1.061, 1.642)
Hormonal therapy ´0.122 0.105 (´0.328, 0.084) ´0.114 0.110 (´0.330, 0.102)
Chemotherapy ´0.160 0.094 (´0.343, 0.023) ´0.174 0.090 (´0.351, 0.003)
Tumor grade 0.195 0.086 (0.026, 0.364) 0.139 0.089 (´0.035, 0.313)
Menopause ´0.108 0.129 (´0.361, 0.146) ´0.045 0.130 (´0.301, 0.211)
Tumor size 0.051 0.094 (´0.132, 0.234) 0.032 0.090 (´0.144, 0.208)
Age 0.247 0.120 (0.011, 0.482) 0.170 0.133 (´0.090, 0.430)
Number of positive nodes 0.812 0.064 (0.686, 0.938) 0.787 0.100 (0.592, 0.983)
Progesterone receptor 0.109 0.100 (´0.087, 0.306) 0.122 0.106 (´0.085, 0.329)
Estrogen receptor 0.419 0.102 (0.219, 0.619) 0.341 0.095 (0.155, 0.527)
Latency part
Hormonal therapy ´0.130 0.030 (´0.189, ´0.070) ´0.131 0.032 (´0.194, ´0.068)
Chemotherapy ´0.200 0.035 (´0.269, ´0.130) ´0.176 0.034 (´0.243, ´0.109)
Tumor grade 0.135 0.037 (0.062, 0.207) 0.147 0.039 (0.070, 0.224)
Menopause 0.067 0.047 (´0.024, 0.159) 0.000 0.056 (´0.110, 0.110)
Tumor size 0.173 0.040 (0.095, 0.251) 0.181 0.042 (0.099, 0.264)
Age 0.406 0.069 (0.271, 0.542) ´0.107 0.053 (´0.210, ´0.004)
Number of positive nodes ´0.814 0.031 (´0.876, ´0.752) 0.441 0.031 (0.380, 0.501)
Progesterone receptor 0.341 0.063 (0.218, 0.464) ´0.184 0.041 (´0.264, ´0.104)
Estrogen receptor 0.236 0.058 (0.123, 0.350) ´0.119 0.037 (´0.191, ´0.048)

an increase in the number of positive nodes or estrogen receptors; chemotherapy is
marginally significant, whereas tumor size is not significant. In contrast to the LC model,
the proposed model additionally suggests that tumor grade (grade 2 versus grade 3) and
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Figure 6. Estimates of π and H for the RBC data.

age at surgery are associated with the incidence probability. For the latency part, both
models illustrate that the discrete variables except menopausal status are (significantly)
predictive of the survival times of uncured subjects, where both therapies are shown to
be effective in improving the survival rates of patients. The effects of all continuous
variables are significant in the proposed model. Since the estimated H function is non-
monotone, the interpretation of the parameter estimates of the continuous variables is not
straightforward. However, from the magnitude of the estimated γ, we observe that the
number of positive nodes has the highest importance among the four variables, followed
by age, and the two receptors.

6 Discussion

In this paper, we consider a flexible class of mixture cure models with a SIM for incidence
probability and a PLSIM for the progression of the event time of the uncured subjects. A
hybrid nonparametric approach is adopted for estimation, where the two link functions
are approximated by the BPs, and the proposed estimator is computed via the EM
algorithm. The simulation study demonstrates that the proposed model outperforms the
LC model when the actual model deviates from the LC model, and it also outperforms
the SIC model when the actual model has a monotone increasing incidence link function
and a partially nonlinear structure in the latency component.

Massive and complex data arise naturally in the era of big data, providing
unprecedented opportunities for developing more effective and predictive survival
models. For instance, in the presence of numerous covariates Z and for
dimension reduction, the single-index assumption in the latency component of the
proposed model can be further generalized to the multiple-index model.47–49 A
partially linear multiple-index survival model may be specified as λupt|W ,Zq “

λptq exp
␣

βTW ` V pςT1 Z, . . . , ς
T
s Zq

(

where V is an unknown s-variate function with

Prepared using sagej.cls



20 Statistical Methods in Medical Research XX(X)

prespecified integer s ă r. More recently, Zhong et al.50 proposed the partially linear
PH model with the nonlinear component estimated via the deep learning approach.
They show that the rate of convergence for the linear effect estimate still achieves the
semiparametric efficiency, even though the nonparametric component converges slower
than n1{2. Along this line, a natural extension of the proposed single-index cure model is
to replace the single indexes with deep neural networks. In particular, the research work
on single-index incidence probability modeling is scanty and deserves more attention
with the implementation of some nonparametric methods. In this paper, we generalize
the parametric link function with a nonparametric monotone single-index function, where
the argument of the link function is assumed to be linear for simplicity. Future work may
pertain to relaxing this assumption via deep learning methods, and exploring how this
will affect the estimation of the latency components.
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Appendix
Proof of Proposition 1. In this proof, we consider a single observation and drop the
subscript i. By the continuity of Λ0 and condition (C5), we can set the survival time to
be right censored at any time point within r0, τ s when establishing identifiability. Let θ0
denote the set of true parameter values and rθ denote an arbitrary set of parameter values.
Suppose that the survival probabilities at t P r0, τ s evaluated at the two sets of parameters
are equal almost surely, i.e.,

1 ´ κtG0pαT
0 xqu ` κtG0pαT

0 xqu exp
␣

´ Λ0ptqeβ
T
0 w`H0pγT

0 zq
(

(7)

“ 1 ´ κt rGprαTxqu ` κt rGprαTxqu exp
␣

´ rΛptqe
rβTw`ĂHprγT zq

(

for all px, z,wq P S and t P r0, τ s. We wish to show that this implies α0 “ rα,β0 “

rβ,γ0 “ rγ,Λ0ptq “ rΛptq for t P r0, τ s, G0psq “ rGpsq for s P D1, and H0psq “ rHpsq
for s P D2. Define

Lps;xq “ 1 ´ κtG0pαT
0 xqu ` κtG0pαT

0 xqu expp´sq

Spt;x,w, zq “ LtΛ0ptqeβ
T
0 w`H0pγT

0 zq;xu.

For some small enough ϵ ą 0, Sp¨;x,w, zq ˝ S´1p¨;0,0,0q is well-defined on p1 ´

ϵ, 1s, with

StS´1ps;0,0,0q;x,w, zu

“ 1 ´ κtG0pαT
0 xqu ` κtG0pαT

0 xqu

„

s´ 1 ` κtG0p0qu

κtG0p0qu

ȷexptβT
0 w`H0pγT

0 zqu

.
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Note that by condition (C4), p0,0,0q P S. Let rSp¨;x,w, zq denote Sp¨;x,w, zq with
the parameter values set to be rθ. From (7), we have

StS´1ps;0,0,0q;x,w, zu “ rStrS´1ps;0,0,0q;x,w, zu (8)

for s in an open interval. Consider x ‰ 0 and pw, zq such that βT
0 w `H0pγT

0 zq

is nonzero and px,w, zq P S. Clearly, (8) implies that rβTw ` rHprγTzq ‰ 0.
Differentiating both sides of (8) with respect to s, taking logarithm, and then
differentiating again, we have

eβ
T
0 w`H0pγT

0 zq ´ 1

s´ 1 ` κtG0p0qu
“
e
rβTw`HprγTzq ´ 1

s´ 1 ` κt rGp0qu
,

and therefore βT
0 w `H0pγT

0 zq “ rβTw `HprγTzq andG0p0q “ rGp0q. Plugging these
results back into (8), we have

G0pαT
0 xq “ rGprαTxq. (9)

Note that this equality holds for all x in the support of X . Differentiating both sides of
(9) with respect to x, we have

α0 “
rG1prαTxq

G1
0pαT

0 xq
rα.

Because }α0} “ }rα} “ 1 and G1
0 and rG1 are positive, we conclude that α0 “ rα. From

(9), we have G0psq “ rGpsq for s P D1.
Similarly, by considering different values of pw, zq (and arbitrary values of x) in (8),

we have

βT
0 w `H0pγT

0 zq “ rβTw ` rHprγTzq (10)

for all values of pw, zq in the support of pW ,Zq. By condition (C2) and a similar
argument as the above, we conclude that β0 “ rβ, γ0 “ rγ, and H0psq “ rHpsq for
s P D2. Finally, applying the established identifiability results to (7), we conclude that
Λptq “ rΛptq for t P r0, τ s.
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Supplemental material

The R code associated with this article is available in the Github repository: https://github.
com/lcyjames/PLScure, which includes the code for implementing the proposed methods
and reproducible simulation results. The CHANCE dataset is not publicly available. The RBC
dataset is publicly available from the R package survival. Supplemental material that contains
additional simulation results are available online.
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