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a b s t r a c t

Adverse Drug Event (ADE) extraction is one of the core tasks in digital pharmacovigilance, especially
when applied to informal texts. This task has been addressed by the Natural Language Processing
community using large pre-trained language models, such as BERT. Despite the great number of
Transformer-based architectures used in the literature, it is unclear which of them has better
performances and why. Therefore, in this paper we perform an extensive evaluation and analysis of
19 Transformer-based models for ADE extraction on informal texts. We compare the performance of
all the considered models on two datasets with increasing levels of informality (forums posts and
tweets). We also combine the purely Transformer-based models with two commonly-used additional
processing layers (CRF and LSTM), and analyze their effect on the models performance. Furthermore,
we use a well-established feature importance technique (SHAP) to correlate the performance of the
models with a set of features that describe them: model category (AutoEncoding, AutoRegressive,
Text-to-Text), pre-training domain, training from scratch, and model size in number of parameters.
At the end of our analyses, we identify a list of take-home messages that can be derived from the
experimental data.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In 2021, 50 new drugs were approved by the Food and Drug
dministration (FDA) [1], while 92 were recommended for mar-
eting authorization by the European Medicines Agency (EMA)
2]. The efficacy and safety of the newly-released medicines is
erified through medical trials, which also have the purpose of
dentifying possible Adverse Drug Events (ADEs). However, new
ollateral effects and adverse reactions might emerge once the
edicinal is administered to a larger population of patients of
ifferent ages and medical conditions. To further safeguard the
atients, Pharmacovigilance (PV) activities monitor all drugs af-
er they entered the market, detecting and analyzing all ADEs
eports.
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Traditionally, the process of collecting ADEs relies on formal
reporting methods (e.g., AERS, the Adverse Event Reporting Sys-
tem of the FDA), based on the communication between patients,
healthcare providers, pharmaceutical companies, and local PV au-
thorities. ADEs can also be extracted (either manually of automat-
ically) from formal medical documents, such as Electronic Health
Records (EHR) (see [3] for a recent overview). However, studies
show that such traditional reporting systems suffer from prob-
lems such as under-reporting: for example only 10% of serious
ADEs get registered in AERS [4].

Recently, however, more and more social media users discuss
their health status on forums and microblogging platforms, such
as Facebook and Twitter. These posts include details regarding
the users’ physical and mental health, opinions on medications,
and feedback on medical procedures. This health-centric chatter
generated on social media has the potential to become a new
information channel, which works in parallel with the traditional
reporting systems, to enhance the capabilities of digital PV sys-
tems [5,6]. In fact, social media data could be used to collect the
quasi-real-time feedback of the population during the roll-out
of new drugs (e.g. COVID-19 vaccines during 2021) to promptly
detect unexpected side-effects [7].
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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However, social media posts introduce several challenges due
to the nature and structure of the texts, which differs a lot from
formal EHRs. In fact, posts, tweets, and messages in medical
forums are usually highly informal, containing layman terms,
typos, linguistic phenomena that could affect the meaning of the
message. The same texts might also include specialized medical
terms, drug names (both brand and generic ones), and mentions
of medical conditions and procedures.

Given the complexity of the problem and the increasing need
for automatic solutions, the topic of digital PV and ADE detection
from social media texts has gained interest in the NLP com-
munity. A thematic workshop (Social Media Mining for Health
– SMM4H) has been organized since 2016 [8–14], to propose
innovative solutions for ADE-related tasks on social media texts.
In this context, one of the core challenges is the ADE extraction
task. It consists in tagging all spans of text representing an entity
of interest inside a document, which in this case are Adverse Drug
Events. For example, in the sentence ‘‘Fluoxetine and Quet combo
zombified me... ah, the meds merrygoround bipolar’’. we expect the
system to extract the ADE zombified.

This task is very complex for automatic systems due to the in-
formal nature of the language and the presence of the aforemen-
tioned linguistic phenomena (e.g., humor, irony, speculations,
negations), which can compromise the performance of current
ADE extraction models [15,16].

The proposed solutions were initially based on traditional
machine learning, but then shifted to deep neural networks such
as large language models. The latest proposed solutions employ
a massive use of Transformer-based architectures [17], especially
the ones based on pre-trained models like BERT [18], and BERT
variants trained on medical texts, such as BioBERT [19], EnDR-
BERT [20], and BioRoBERTa [21]. To further increase the final
performance of the system, the models are frequently ensembled
and often combined with additional processing modules such as
BiLSTM [22] and Conditional Random Field [23] (CRF) [24].

To the best of our knowledge, despite the great number of
Transformer-based architectures used for ADE extraction in the
literature, it is unclear which of these has the greatest benefits
when used for this task. This raises the following questions:

• Which Transformer-based architectures (AutoEncoding, Au-
toRegressive, Text-to-Text) and variants work best for ADE
extraction on informal texts?

• What characteristics are shared by the best Transformer
variants?

• How do the different characteristics of the models (e.g., base
architecture, the domain of the pre-training data) correlate
with their performance?

• What is the role played by the additional processing mod-
ules (e.g., BiLSTM and CRF) in the Transformers-based archi-
tectures?

To fill this gap, in this paper, we extensively compare 19
pre-trained Transformers-based models, ranging from the most
traditional to the most recent ones, and from general-purpose
ones to the ones specialized in the medical domain. To be more
thorough in our analysis, we decide to test the models on two dif-
ferent datasets, which represent different writing styles that can
be encountered in online user-generated texts. The most informal
writing style is represented by tweets, which are short, and
contain slang numerous and non-standard orthography. We then
chose forum posts as an example of longer social media texts, as
they contain more complex sentences and detailed descriptions.
Using these two data sources with different textual styles allows
us to better analyze the impact of the architectures of the models.
We also test the effect of additional processing modules (BiLSTM

and CRF) in the architectures. Finally, we employ a well-known

2

feature importance technique (Shapley values [25]) to analyze the
effect of the different model characteristics.

Our contribution can be summarized as follows:

• introduction of a unified framework to compare their pre-
dictions on the ADE extraction task, given the difference
in output of AutoEncoding and AutoRegressive/Text-to-Text
models;

• evaluation of the performance of the 19 pre-trained
Transformer-based models on two well-known and stylis-
tically different datasets;

• analysis of the effect of commonly used additional process-
ing modules for sequence labeling tasks (BiLSTM and CRF)
and how they interact with the base models.

To guarantee the reproducibility of our experiments, we make
publicly available2 the source code used to perform the exper-
iments and analysis presented in this paper.

The paper is organized as follows. First, in the Related Work
section, we present an overview of the methods commonly used
for ADE extraction. Next, in the Experimental Setting section, we
describe the two datasets and the three model architectures used
to address the task. The paper continues with a description of
the 19 Transformer variants that we are going to compare, the
metrics used to evaluate them and a summary of the training
details. In the Results section, we present the evaluation of the
models on the two datasets and an analysis to correlate the
characteristics and performance of the models. We conclude the
paper with a final discussion of the results.

2. Related work

In the literature, ADE extraction is usually framed as a Named
Entity Recognition (NER) task, where the entity of interest is the
ADE [26]. For this reason the first solutions developed for this
task were sequence labeling models based on traditional feature
engineering and simple word embeddings, such as Word2Vec
and GloVe [27,28]. For example, Sarker et al. [27] developed a
probabilistic modeling method, which takes as input hand-crafted
features extracted from the text, such as POS-tag, the presence of
negations, the use of words belonging to specific vocabularies etc.

With the continuous progress of machine learning techniques
and the introduction of the SMM4H shared task, methods based
on neural networks became the most common choice for tackling
the task.

With the advent of Transformers [17], and the consequent de-
velopment of large pre-trained language models (e.g., BERT [18],
GPT-2 [29], T5 [30], BART [31], etc.), the ADE extraction commu-
nity incorporated such models in new solutions, making them
the building blocks of most of the top-performing systems. For
example DeepADEMiner [32] is a full deep learning pipeline to
perform ADE extraction and normalization (i.e., mapping to med-
ical ontologies) on tweets. It is comprised of a binary classifier
based on RoBERTa, an ADE extractor based on DistilBERT and an
ADE normalizer based on BERT.

We can easily visualize how the proposed models became
more Transformer-oriented looking at the architectures proposed
to solve the SMM4H ADE extraction task, which was first intro-
duced in 2019. Each year the top-2 models have always been
Transformer-based (see Table 1), however the overall presence
of Transformer-based models in the shared task has changed
greatly.

In 2019, 50% of the proposed models (5 out of 10) were based
on traditional deep learning models. For example, the second-best
architecture [33] was based on Convolutional Neural Networks

2 https://github.com/AilabUdineGit/ade-detection-survey.

https://github.com/AilabUdineGit/ade-detection-survey
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Table 1
Details on the top-2 models in the SMM4H workshops (years 2019–2022).
Ref. Model Additional resources Notes

[39] BioBERT + CRF External dictionaries CADEC Ensemble of 10 models to improve robustness

[33] Character-level CNN
+ Word-level BiLSTM
+ Multi-head self-attention
+ CRF

Word2Vec emb.
ELMo emb.
POS tagging
Sentiment lexicon
SIDER lexicon

Use of several additional features and embeddings

[41] EnDR-BERT External dictionaries CADEC –

[40] BERT – Training only on tweets with at least one ADE mention,
padding/truncation to 50 tokens

[49] BioBERT Data augmentation Multi-task learning (binary classification + extraction +

normalization), the first 11 layers of BioBERT are frozen, three
to five binary classifiers are ensembled to improve robustness

[50] BiLSTM + CRF
+ RoBERTa emb.

FastText emb.
Byte-Pair emb.
POS tagging

Ensemble of 3 models to improve robustness

[43] W2NER
(BERT + LSTM + CNN)

– Character and location features

[44] DeepADEMiner (RoBERTa) Flair emb. –
(CNNs), BiLSTMs, CRF and Multi-head self-attention, employing
features such as part-of-speech tagging, ELMo embeddings [34],
and Word2Vec embeddings [35]. Sarabadani [36] also used LSTMs
and CNNs, combined with ELMo embeddings and three special-
ized lexicon sets, while Lopez et al. [37] used a CRF with GloVe
embeddings [38]. The other half of the proposed models were all
based on the recently-introduced BERT and its variants, including
the best architecture for 2019 [39], which employed an ensemble
of BioBERTs with a CRF module.

In the 2020 SMM4H edition, 66% of the proposed models
4 out of 6) were based on Transformers, and the three best
rchitectures were based on BERT [40] or multilingual AutoEn-
oding models such as EnDR-BERT [41] (pre-trained on an English
ollection of consumer comments on drug administration) and
oBERTa [42].
Finally, in 2021 and 2022, 100% of the teams who provided

ystem descriptions used Transformer-based models. The top
rchitectures in SMM4H 2022 combined them with additional
eatures, such as character and location features [43], or Flair
mbeddings [44]. The third-best architecture used an ensemble
f 5 BERT-large models to increase the system’s robustness [45],
hile the fourth team [46] was the first to report using GPT-2, a
ext-to-Text model, during these shared tasks.
In the last years, Text-to-Text approaches based on Transform-

rs have been proposed [47] to solve the ADE extraction task with
romising results on several datasets, including generalizability
cross text genre and some zero-shot cross-language transfer
apabilities.
Since Transformer-based models showed great results in

edical-domain NLP, Wang et al. [48] compiled an extensive sur-
ey of their use in the biomedical domain, including an overview
f tasks and architectures. However, this work does not include a
ractical performance evaluation of the models and, in particular,
t does not cover the topic of ADE extraction on social media.

Instead, in this paper, we perform an extensive comparison
f Transformers-based architectures for ADE extraction on social
edia texts. To perform a more complete analysis, we take into
onsideration the three main categories of Transformer-based
odels: AutoEncoding, AutoRegressive and Text-to-Text models.

. Material and methods

With the aim of performing a systematic analysis of
ransformer-based architectures in the context of ADE extraction,
n this section we report the details of the experimental setting
3

put in place. We introduce the 19 Transformer variants used for
the task of ADE extraction and the two benchmark datasets with
different grades of informality and different textual styles. We
also illustrate how the two additional processing modules (LSTM
and CRF) are incorporated in the experiments. Finally, we de-
scribe the methodology used to perform the feature importance
analysis using Shapley values, to correlate the models features
and their performance.

3.1. Datasets

Due to the strong interest of the research community on the
task of ADE extraction, over the years several corpora containing
informal texts have been released [12,27,51–53]. Among all these
datasets, we selected the two most widely used ones: CADEC [52]
and SMM4H [12]. They are the largest and most updated datasets
for ADE extraction on social media texts, fully annotated for the
presence of ADEs and widely used by the community. These
datasets also present two different textual typologies, which al-
lows us to perform a comparative analysis of different kinds of
social media data.

Indeed, CADEC is composed of long and structured messages
from medical forum reports, while SMM4H contains highly infor-
mal texts coming from Twitter.

To verify the difference in textual style, we extract some
statistics from the texts of the two datasets and report them in
Table 2: the count of syllables, lexicon (how many different word
types are being used), sentences, characters, and the number
of difficult words per samples. ‘‘Difficult words’’ refers to the
number of polysyllabic words with Syllable Count > 2 that are
not included in the list of words of common usage in English.
We calculate the same metrics for the full texts of the samples,
and the ADEs. Table 2 shows that the CADEC dataset contains
significantly longer texts and more complex words (14 versus 4
Difficult Words per sample). The ADE mentions in CADEC are also
longer (4.06 syllables versus 1.32 syllable on SMM4H), and there
are more ADE mentions per sample (5.40 versus 1.62).

CADEC. The dataset contains 1250 posts from the health-related
forum ‘‘AskaPatient’’,3 where the users report their ADEs. A total
of 1107 posts contain at least one ADE (positive samples), while
the remaining 143 do not contain any ADE mention (negative
samples). The language used in this forum posts is generally infor-
mal, frequently deviating from standard English. For the training
and evaluation we use the splits made publicly available by [55].

3 https://www.askapatient.com/.

https://www.askapatient.com/
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Table 2
Average textual metrics for the two datasets, computed with the textstat [54]
ython library. The readability metrics are calculated on the full text of the
ocuments (first 5 rows) and on the ADEs only.

Metric CADEC SMM4H

Full text

Syllable Count 116 ± 2.7 25 ± 8.6
Lexicon Count 83 ± 1.9 17 ± 6.1
Sentence Count 5 ± 0.1 2 ± 0.9
Character Count 461 ± 10.5 86 ± 28.6
Difficult Words 14 ± 0.3 4 ± 2.1

Number of ADEs 5.40 ± 4.5 1.62 ± 0.7

ADE

Syllable Count 4.06 ± 2.7 1.32 ± 1.8
Lexicon Count 2.62 ± 1.9 0.89 ± 1.3
Character Count 14.07 ± 8.5 4.78 ± 6.1
Difficult Words 0.89 ± 0.8 0.29 ± 2.1

SMM4H. The dataset is composed of English-language tweets
containing a drug name and possibly an ADE. We use the anno-
tated data of the ADE Extraction Task of the SMM4H 2020 shared
task, which contains 1862 tweets, 1080 of which are positive
for the presence of ADEs while the remaining 782 are negative.
Similarly to previous works [56,57], we only use the annotated
samples provided by the shared task (training and validation set)
and not the blind test set for our analyses. The evaluation on
the blind test set is available through the CodaLab platform,4

however CodaLab allows for a limited number of test runs. Since
our work entails a large number of experiments with multiple
base models, combinations with extra modules, and multiple
seeds, this would create a large amount of traffic on the platform,
long queues to get the results, and could reach the run limit.
Furthermore, using the blind test set would not allow us to
compute additional metrics or perform in-depth error analyses
on the models predictions. Therefore, we only use the annotated
train and validation sets. The available samples are partitioned
into new train, validation, and test sets.5 Each set contains the
same proportion of texts with and without ADEs.

Data preprocessing. In both datasets, the presence of an ADE is
annotated at the character level with a list of (start, end) annota-
tions indicating that the ADE entity begins at the character start
and spans until the character end (excluded). Following the pre-
vious literature, we converted the annotations using the Begin-
Inside-Outside (BIO) annotation scheme for the tokens (words
that compose a text), where B marks the beginning of an entity, I
the following tokens belonging to the entity and O marks the fact
that the token does not belong to an ADE.

Some specialized preprocessing steps were necessary due to
the different tagging procedures used in the two datasets. The
annotation scheme of CADEC allows for the presence of dis-
continuous and/or overlapping entities, meaning that the ADE
might be composed by non-consecutive pieces of text (e.g., ‘‘I
felt an intense, even if expected, nausea’’ → ‘‘intense nausea’’)
or the same piece of text could belong to two different ADEs
(e.g., ‘‘I felt intense pain in the hip and right foot’’ → ‘‘pain in
he hip’’, ‘‘pain in the right foot’’). The customary solution is
o disambiguate the annotations, merging overlapping ADEs and
eparating discontinuous mentions, which constitute about 10%
f mentions in CADEC [55].6 Both datasets were preprocessed to
isambiguate overlapping and discontinuous annotations.

4 https://competitions.codalab.org/competitions/23705#results.
5 Splits available at https://github.com/AilabUdineGit/ADE.
6 Some past works proposed alternative NER-based approaches to deal with

hese kinds of annotations without disambiguation [55,58].
4

3.2. Model architectures

The analyzed models belong to three macro-categories, Au-
toEncoding, AutoRegressive and Text-to-Text, which need differ-
ent architectural choices to address the task.

AutoEncoding models are the most commonly used model for
the task of ADE extraction, while AutoRegressive and Text-to-Text
models, which produce textual outputs, have only recently been
tested on ADE extraction [47].

3.2.1. AutoEncoding models
The first category of models we consider are the AutoEncoding

models. With the term AutoEncoding model we mean an archi-
tecture that is composed of a stack of Transformer encoders. This
stack produces as output a series of embeddings. At the top of
this architecture, other layers can be added to solve a particular
task. In this case, we add a Linear Layer to project the sequence
of embeddings to a probability distribution over the output labels
(BIO labels). Finally, the actual output is calculated for each input
word (token). More precisely, given a sentence s = t1, . . . , tn,
where n is the sentence length and ti is the ith token, we perform
token classification to extract ADEs in the following way:

h = M(s) h ∈ Rn×768

a = Wh + b W ∈ R768×3

yi =
eai∑n
i eai

i = argmax(yi)

here ℓi is the predicted label for the ith token ti and M is the
utoEncoding model.
This base architecture and the training procedure are shown

n Fig. 1.
Following the literature on this task, we experiment and com-

ine the AutoEncoding models with two additional processing
ayers: Conditional Random Fields (CRF) [23] and bidirectional
STMs (BiLSTM) [22].
The AutoEncoding + CRF architecture combines the Trans-

ormer model with a CRF classifier. The BIO probability distribu-
ion generated by the Transformer model becomes the input of a
RF module, which produces another sequence of subword-level
IO labels. This step aims at denoising the sub-word output labels
roduced by the previous component.
The AutoEncoding + LSTM architecture combines the Trans-

ormer model with a BiLSTM. The embeddings generated by the
ransformer model become the input of a one-layer BiLSTM that
roduces new embeddings of the same size. These new represen-
ations are then passed to a Linear Layer + Softmax, turning them
nto a probability distribution over the BIO labels.

.2.2. AutoRegressive and Text-to-Text models
AutoRegressive and Text-to-Text models work similarly. Both

inds of models take a text as input and return a text as output.
owever, AutoRegressive models are composed of a stack of
ransformers decoders, while Text-to-Text models use the entire
ecoder–decoder architecture of the original Transformer [17].
We train the models to produce as output the list of the

DEs present in the input text, separated by semicolons. This
rchitecture and the training steps are shown in Fig. 2.
To evaluate the performance of the model, it is necessary

o map its output back to the original text, however there is
o guarantee that the strings produced by the model are exact
ubstrings of the original text. Therefore, a simple postprocessing
rocedure is used to map the list of output ADEs to the input text.
et us consider the example in Fig. 3. Each item in the semicolon-
eparated output can contain more than one word. If the item

https://competitions.codalab.org/competitions/23705#results
https://github.com/AilabUdineGit/ADE
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Fig. 1. The ADE extraction pipeline for AutoEncoding models.
o
d
w
f

Fig. 2. The ADE extraction pipeline for AutoRegressive and Text-to-Text models.

Fig. 3. Example of the post-processing procedure used to map the string output
of the AutoRegressive and Text-to-Text models to a list of ADE entities contained
in the input text.

is a perfect sub-string of the input text, we consider it as single
prediction. This is the case for ‘‘stomach ache’’, which becomes
span 1 after postprocessing. If the item is not a perfect sub-string
if the input, we split it into shorter substrings that belong to the
text and consider them as separate prediction. For example, the
item ‘‘strong headache’’ gives origin to two predictions: spans 2
and 3. If part of the item cannot be found in the original text, such
as ‘‘dizzy’’ in our examples, that part is completely discarded and
does not generate a prediction.
 m

5

3.3. Transformer variants

In this section, we briefly present the 19 Transformer-based
model variants chosen for this survey, illustrating their main
features. We start with all the models trained on general-domain
texts only and then move to the variants that use in-domain
knowledge, either medical or coming from social media data.7

Notice that three of the in-domain variants were pre-trained
from scratch (SciBERT, PubMedBERT, and BERTweet), meaning
that they have a unique vocabulary tailored to their pre-training
corpus and include specific embeddings for in-domain words.

Table 3 is a summary of the information about the version of
all Transformer-based models used. The upper part of the Table
lists general-domain variants (Section 3.3.1), while the lower part
lists variants with in-domain knowledge (Section 3.3.2). The first
column reports the model’s category (AutoEncoding, AutoRegres-
sive or Text-to-Text). The column ‘‘From Scratch’’ marks which
models were trained from scratch, as opposed to the ones which
were initialized with another model’s weights (e.g., RoBERTa
was trained from scratch while BioRoBERTa was initialized with
RoBERTa’s weights and therefore shares part of its knowledge).
The three columns under the name ‘‘Pre-training Domain’’ record
the kind of documents which the models were pre-trained on:
General domain knowledge (e.g., Wikipedia or BookCorpus), Med-
ical domain (e.g., PubMed full-texts or health records), and Social
domain (e.g., tweets or forum posts). For example, RoBERTa was
pre-trained on General-domain documents only, while
BioRoBERTa has both General-domain knowledge (derived from
RoBERTa’s pre-training) and Medical-domain knowledge (derived
from its own additional pre-training). Finally, the Table reports
the model’s size in millions of parameters.

3.3.1. General-domain variants

BERT [18], AutoEncoding. Standard model, pre-trained on gen-
eral-domain texts (Wikipedia and BookCorpus) with two ob-
jectives: Masked Language Modeling (MLM) and Next Sentence
Prediction (NPS). In MLM, a token in the input sentence is re-
placed with the MASK token and the goal of the model is to
identify the original one. In NSP the model classifies the second

7 There is a great number of AutoEncoding and AutoRegressive pre-trained
r fine-tuned on in-domain datasets. We have selected the most relevant and
iverse ones to include in the analysis. Other models present in the literature
ould have been an interesting addition (e.g., Med-GPT2 [59], a GPT-2 model

ine-tuned on EHRs), but could not be included due to lack of public code and
odel checkpoints.
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Table 3
Information about the version of all the Transformer-based models used and their pre-training.
Model name Category From Pre-training domain Model

scratch General Medical Social size

BERT AutoEncoding × × 109M
DistilBERT AutoEncoding × 66M
SpanBERT AutoEncoding × × 108M
RoBERTa AutoEncoding × × 124M
ELECTRA AutoEncoding × × 109M
XLNet AutoRegressive × × 118M
GPT-2 AutoRegressive × × 124M
T5 Text-to-Text × × 223M
PEGASUS Text-to-Text × × 570M
BART Text-to-Text × × 139M

BERTweet AutoEncoding × × 354M
BioBERT AutoEncoding × × 109M
BioClinicalBERT AutoEncoding × × 108M
SciBERT AutoEncoding × × 109M
PubMedBERT AutoEncoding × × 108M
EnDR-BERT AutoEncoding × × 177M
BioELECTRA AutoEncoding × × 109M
BioRoBERTa AutoEncoding × × 124M
SciFive Text-to-Text × × 223M
input sentence as related or not to the first one. As mentioned
in the related work, BERT achieved state-of-the-art results in
several NLP tasks and worked as the foundation of many other
pre-trained models.

DistilBERT [60], AutoEncoding. It is a distilled version of the
original BERT model. A student network, with half the number of
layers of BERT, is initialized with the weights of its BERT teacher,
taking one layer out of two. The student model is then trained
to replicate the output distribution of the teacher using three
losses: Masked Language Modeling (MLM), distillation loss (CE),
and cosine embedding loss (COS).

SpanBERT [61], AutoEncoding. A version of BERT that introduces
n additional loss called Span Boundary Objective (SBO), along-
ide the traditional MLM loss used for BERT.
Let us consider a sentence S = [w1, w2, . . . , wk] and its sub-

string Sm:n = [wm, . . . , wn]. wm−1 and wn+1 are the boundaries
of Sm:n (the words immediately preceding and following it). We
mask S by replacing all the words in Sm:n with the [MASK] token.
SpanBERT reads the masked version of S and returns an embed-
ding for each word. The MLM loss measures if it is possible to
reconstruct each original word wi ∈ Sm:n from the corresponding
embedding. The SBO loss measures if it is possible to reconstruct
each wi ∈ Sm:n using the embeddings of the boundary words
wm−1 and wn+1. This kind of pre-training procedure makes its
embeddings more appropriate for NER-like tasks.

RoBERTa [62], AutoEncoding. Starting from the assumption that
BERT was under-trained, RoBERTa was developed changing some
aspects of BERT’s pre-training phase. It dynamically changes the
masking pattern: instead of using a static masking strategy, each
training sample was duplicated 10 times, masking each sequence
in 10 different ways. Additionally, RoBERTa is trained without the
NSP objective, for more steps, with more data, bigger batches,
and on longer text sequences. This model achieved state-of-the-
art performances surpassing BERT on many general-domain NLP
tasks.

ELECTRA [63], AutoEncoding. It is a pre-trained model where
the MLM objective is replaced with the Replaced Token Detec-
tion task, in which the model learns to distinguish real input
tokens from synthetically generated replacements. The network
is trained as a discriminator that predicts for every token whether
is original or a replacement. The role of the generator is usually
covered by a small MLM model. In this way, the model gains
6

knowledge from all input tokens instead of just the small masked-
out subset. This approach keeps the performances close to the
ones of BERT, while lowering the computational costs of training
the model.

XLNet [64], AutoRegressive. It is a pre-trained model that tries
to leverage the best of both AutoRegressive and AutoEncoding
language modeling. Instead of using a fixed forward or backward
factorization order, it maximizes the expected log-likelihood of a
sequence with respect to all possible permutations. This objective
is called Permutation Language Modeling. A difference with BERT
is that this model does not rely on data corruption (e.g. token
masking).

GPT-2 [29], AutoRegressive. It is a stack of transformer-
decoders pre-trained with the simple objective of Next Word
Prediction. As mentioned in the related work, it achieved state-
of-the-art results on several text completion benchmarks.

T5 [30], Text-to-Text. It is an encoder–decoder model pre-trained
on a multi-task mixture of unsupervised and supervised tasks.
The are some small differences between T5 and the classical
Transformer encoder–decoder. An example is the use of a nor-
malization layer after each layer in both the encoder and decoder.
The Span-based language masking objective is used during the
pre-training phase, masking some randomly selected words in
the input sentence and generating those words separated by the
masking token ⟨M⟩. The model has been trained using the C4
corpus [65].

PEGASUS [31], Text-to-Text. It is an encoder–decoder model pre-
trained using a self-supervised objective (gap-sentence-objective)
and created originally to improve the fine-tuning performance on
abstractive summarization. In our case, the model is used in a
text-generation setting and not specifically for a summarization
task.

BART [66], Text-to-Text. It is a model pre-trained using two
strategies: corrupting text by shuffling the original order of sen-
tences and masking spans of text by replacing them with a mask
token. It matches the performance of RoBERTa on several NLP
benchmarks that require text comprehension, and is effective in
text-generation tasks.

3.3.2. Domain-specific variants

BERTweet [67], AutoEncoding. The model is trained from scratch
using the same pre-training procedure of RoBERTa and a dataset



S. Scaboro, B. Portelli, E. Chersoni et al. Knowledge-Based Systems 275 (2023) 110675

c
T
r
a
t

B
P
o
o
h
b
o
t
e
t

B
c
c

S

o
t

S
t
P

3

f
a
u
r
d

d
C
t

P
p
v
o
a

r

ontaining 873M tweets. Some of them belong to the general
witter Stream grabbed by the Archive Team,8 while others are
elated to the COVID-19 pandemic. We use the large version that
llows us to input up to 512 tokens, analyzing the longer CADEC
exts.

ioBERT [19], AutoEncoding. The model was pre-trained on
ubMed abstracts starting from a BERT checkpoint. The authors
f BioBERT provide different versions of the model, pre-trained
n different corpora. We selected the version which seemed to
ave the greatest advantage on this task, according to the results
y [19]. We chose BioBERT v1.1 (+PubMed), which outperformed
ther BioBERT v1.0 versions (including the ones trained on full
exts) in NER tasks involving Diseases and Drugs. Preliminary
xperiments against BioBERT v.1.0 (+PubMed+PMC) confirmed
his behavior on the datasets used in this work [56].

ioClinicalBERT [68], AutoEncoding. It was pre-trained on clini-
al texts from the MIMIC-III database [69], starting from a BioBERT
heckpoint.

ciBERT [70], AutoEncoding. It was pre-trained from scratch on
papers retrieved from Semantic Scholar [71] (82% of them belong-
ing to the medical domain).

PubMedBERT [72], AutoEncoding. It was pre-trained from scratch
on PubMed abstracts and full-text articles from PubMed Central.9
The vocabulary of PubMedBERT contains more in-
domain medical words than any other model under consideration
(as reported in their paper).

EnDR-BERT [20], AutoEncoding. The model was pre-trained on
an English corpus of health-related comments [20] starting from
a BERT base multilingual cased checkpoint.

BioRoBERTa [21], AutoEncoding. It was pre-trained from a
RoBERTa-base checkpoint on biomedical full-text papers from
S2ORC [73].

BioELECTRA [74], AutoEncoding. It was pre-trained from scratch
n clinical texts from PubMed abstracts using the same architec-
ure as ELECTRA.

ciFive [75], Text-to-Text. It is a domain-specific T5 model pre-
rained on a large biomedical corpus of PubMed Abstracts and
MC articles, starting from a T5 checkpoint.

.4. Metrics

Since the problem is framed as either multi-class token classi-
ication (BIO labels) or text generation, which eventually outputs
set of predicted entities, we use the standard evaluation metrics
sed by the ADE extraction community, which are entity-level
elaxed F1 score, Precision and Recall. The following describes in
etail how the metrics are calculated.
Given a set of gold (ground-truth) entities and a set of pre-

icted entities, we can calculate the following values (see Fig. 4):
orrect (Cor), the number of entities which perfectly correspond
o the gold ones; Missing (Mis) all gold entity not present in the
predictions; Spurious (Spu) number of excess predicted entities;
artial/Incorrect (Par/Inc) the number of predicted entities which
artially overlap a gold entity. In practice, one of the last two
alues is set to 0: Par = 0 if we want to consider partially
verlapping entities as incorrect, while Inc = 0 if consider them
s correct.
Starting from these values, we define the main evaluation met-

ics used for this task, which are the Strict and Relaxed versions

8 https://archive.org/details/twitterstream.
9 https://www.ncbi.nlm.nih.gov/pmc/.
7

Fig. 4. Visual representation of the intermediate metrics used to calculate
Precision, Recall, and F1 score. The schema compares the presence of real
annotations (Gold) and the predictions of the model (Pred).

of the F1, Precision, and Recall scores [76], calculated at the entity
level [77].

The Relaxed versions of the metrics, which allow for partial
overlaps, are defined as follows:

Recall =
Cor + (Par × 0.5)

Cor + Par + Inc + Mis

Precision =
Cor + (Par × 0.5)

Cor + Par + Inc + Spu

F1 =
2 × Precision × Recall
Precision + Recall

The Strict Recall, Precision, and F1 score are calculated using
the same formulas above, setting Par = 0.

Relaxed and Strict metrics are highly correlated and follow
the same trends. In this work, when commenting results we
will always refer to the Relaxed metrics to keep the discussion
concise and avoid repetitions. The Strict metrics are reported in
Appendix B.

3.5. Feature importance analysis

Our objective is to analyze how some high-level features of
the models correlate with their final performance (F1 score). For
this reason, we characterize each model with the following six
features:

1. Model Category: AutoEncoding (0), AutoRegressive (1),
Text-to-Text (2);

2. Pre-training domain - General data: Yes, No;
3. Pre-training domain - Medical data: Yes, No;
4. Pre-training domain - Social data: Yes, No;
5. Pre-training from scratch: Yes, No;
6. Model Size (number of parameters): less than 100M (0),

100M–130M (1), over 130M (2).

The values of these features of all the models can be derived
from Table 3. We encode Model Category using label encoding, as
opposed to one-hot encoding. We prefer label encoding to one-
hot encoding because it helps to better highlight and analyze the
effect of the three values of this feature. Using one-hot encoding
would split its contribution among three separate features and
make it harder to see their interaction with the chosen technique.
We verified that the ordering chosen to encode the features does
not impact the results by permuting the values used to encode
the Model Category and comparing all the results.

To explain the performance of the models starting from this
set of high-level features, we employ Shapley values [25], a
widely-used model interpretability technique. This technique as-
signs a positive or negative contribution to each value of all the
input features, representing the impact that they have on the
model’s output.

To calculate the Shapley values, we need to create a model
that takes as input the six high-level features previously listed
and outputs the F1 score of the Transformer variant. We choose
a Random Forest model, as it is well-suited to work on low-

dimensional data and it is also often used to perform these

https://archive.org/details/twitterstream
https://www.ncbi.nlm.nih.gov/pmc/
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Fig. 5. Process used to generate the Shapley values for the Transformer-based
models.

kinds of analyses. To generate a high number of input data to
fit the Random Forest model, we use the results of all 30 runs
of the previous experiments to calculate the performance of each
Transformer-based variant. Therefore, we obtain 570 (30 × 19)
samples containing the six high-level features and the F1 score
of the models.

Fig. 5 summarizes the process used to generate the Shapley
values.

After fitting the Random Forest, we can use the same set of
data to calculate the attributions for each input feature and their
values.

3.6. Training details

For all models, we performed hyperparameter tuning via grid-
search. The models were evaluated on the training set and the
best hyperparameters were chosen based on the highest relaxed
F1 score.

We tested the following parameters:

• learning rate: [5e−5, 5e−6, 1e−3, 1e−4, 1e−5]
• dropout rate: from 0.15 to 0.30, increments of 0.05
• batch size: [8, 16, 32] for SMM4H, [4, 8] for CADEC
• training epochs: 1 to 15

The best hyperparameters selected for all the models are re-
orted in Appendix A.
The input sequence length was fixed to 512 for the CADEC

ataset and 64 for the SMM4H dataset.
AutoEncoding and Text-to-Text models were allowed to gen-

rate sequences with a maximum length of 40 tokens for CADEC
nd 20 tokens for SMM4H, based on the expected output se-
uence length in the training set.
During the final evaluation, all the models were tested on

he test set, after being trained with the best hyperparameters
n the concatenation of the training set and the validation set.
he evaluation was repeated thirty times with different random
eeds. We report the average of the results over the thirty runs.
Both training and testing have been performed using an Nvidia

eForce 3090. The average training time for a single epoch is 40 s
n SMM4H and 90 s on CADEC for the base models. The training
ime increases slightly for the architectures using the additional
STM layer and doubles for the architectures using the CRF layer.

. Results and discussion

First, we start by analyzing the performance of the base
ransformer-based architectures without additional processing
odules. We discuss the results of all the models on the two
8

atasets, taking into account the Shapley values to discover pat-
erns in the performances of the models. Secondly, we discuss the
ffects of using the additional CRF and LSTM modules, and how
hey have different effects on the two datasets.

.1. Base models performance

We start by analyzing the performance of all the base models
without additional LSTM/CRF modules) on the CADEC dataset.
e report the Precision and Recall of the models in Fig. 6, while

ig. 7 contains the results of the feature importance analysis
erformed with the Shapley values.
In Fig. 6, different shapes represent different models cate-

ories: ⃝ for AutoEncoding models, △ for AutoRegressive models,
and □ for Text-to-Text models. The colors show the domain of the
training data of the model: general in blue , specialized (medi-
cal or social) in violet , mixed general and specialized in coral

. The linestyle of the markers shows the size of the model:
dotted if the model has less than 100M parameters, dashed if the
model has between 100M and 130M parameters, and solid if it is
larger than 130M parameters. The dashed gray lines on the plot
are iso-F1 curves, showing points of equal F1-score.

As regards Fig. 7, each row represents one of the features used
by the Random Forest to predict the F1 score of the models.
Each point in a row is a sample, and its color represents the
input value of its feature. For example, considering the feature
Architecture, coral points are AutoEncoding models, light-blue
points are AutoRegressive models, and blue points are Text-to-
Text models. The x-coordinate represents SHAP values, which
are positive if the feature contributes to a higher F1 score, and
negative if it decreases it. The features are arranged in order of
importance, from top to bottom, based on the magnitude of the
SHAP values (i.e., their impact on the F1 score).

Looking at Fig. 6, we can clearly distinguish three clusters of
models: the AutoEncoding models ⃝ in the top right (together
with XLNet), which reach the highest performance; the Text-
to-Text models □, which have a considerably lower Precision;
GPT-2 (one of the AutoRegressive models △), which has the
worst performance overall and is clearly separated from the
other Transformer variants. This is confirmed by the Shapley
values (Fig. 7), which show that Architecture is the most impactful
feature, and its three values (coral, light-blue and blue) have
different impacts (negative or positive) on the expected F1 score.
All the models based on text generation (except XLNet) have a
low Recall (lower than 77%), and even lower Precision (lower
than 53%), which clearly separates them from the AutoEncoding
models. The low Recall is probably caused by the high number
of ADEs that need to be generated for the CADEC dataset, as the
Text-to-Text models seem to struggle to generate long sequences
of ADEs.

If we focus on the cluster of AutoEncoding models, we can see
that the best-performing model overall is EnDR-BERT, which is
also the largest AutoEncoding model (solid outline). Conversely,
the worst model of the cluster is DistilBERT, which is the smallest
model (dotted outline). Smaller models generally lead to a lower
F1 score, which is also attested by the Shapley values (Size is
the second most impactful feature on the performance of the
models).

The third most impactful feature on Fig. 7 is From scratch:
models which are not pre-trained from scratch have generally
a lower performance compared with the ones pre-trained from
scratch. These models correspond to the five mixed-domain ones

and DistilBERT. We can see that this is mostly true for
the three AutoEncoding models BioRoBERTa, BioClinicalBERT, and
BioBERT. EnDR-BERT and SciFive counter the relative drop in
performance thanks to their large size.
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Fig. 6. Precision and Recall of all the base models (with no additional modules) on the CADEC dataset.
Fig. 7. Shapley values calculated on the CADEC dataset.
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Another interesting observation from the Shapley values, is
hat pre-training on Social or Medical data has a positive impact
n the model’s performance (blue points have positive SHAP
alues). These models correspond to the in-domain models

in Fig. 6, where they are shown to achieve the same performance
as models trained on general-domain data . The positive con-
tribution seems to be too small to have an effect on this plot,
where it is overshadowed by the effects of the other model
characteristics.

Overall, the model that achieves the highest Precision on
CADEC is SpanBERT (general-domain ), while the one with
he highest Recall and F1 score is EnDR-BERT. Since the texts
nd ADE mentions present in CADEC are particularly long (see
haracter Count in Table 2), SpanBERT probably has an advantage
ver other models thanks to its span-based pre-training.
Figs. 8 and 9 report the same information as the previous

nes, but for the SMM4H dataset. The order of the most impactful
eatures according to the Shapley values is the same for the two
atasets.
 l

9

Differently from CADEC, there are two noticeable clusters in
Fig. 8: GPT-2 and all the other Transformer-based variants. Sim-
ilarly to CADEC, the Text-to-Text models □ have a lower Re-
call than most of the AutoEncoding models ⃝. However, on the
SMM4H dataset their Recall is closer to the other AutoEncoding
models (RoBERTa and BioRoBERTa), and their Precision is also
on-par with most of the other ones. For these reasons, they do
not create a separate performance cluster as happened in CADEC.
This is further confirmed by the Shapley values in Fig. 9: the
feature Architecture presents only two clusters (AutoRegressive
vs others), and both AutoEncoding (coral) and Text-to-Text (blue)
samples contribute to an increase in F1 score.

The model Size is still the second most impactful SHAP feature,
ut its effect on the Precision-Recall plot is more difficult to
bserve.
In sharp contrast with CADEC, the use of Medical domain pre-

raining leads to a lower performance, while General domain data
lightly increases it. Social data pre-training also has a sharp
ositive impact. This indicates that medical in-domain knowledge

eads to no advantage when dealing with highly informal texts,
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Fig. 8. Precision and Recall of all the base models (with no additional modules) on the SMM4H dataset.
Fig. 9. Shapley values calculated on the SMM4H dataset.
uch as tweets. Indeed, most of the models that reach the best
erformance in terms of Precision, Recall, or F1-score are trained
n general-domain data only (e.g., XLNet, BERT, and ELECTRA).
he only cases in which in-domain knowledge brings an advan-
age are BERTweet and EnDR-BERT, which are trained on social
edia texts (tweets and forum posts), highlighting that, in this
ase, social media pre-training is more valuable than medical
nowledge.
Finally, the effect of training a model From Scratch is more

oticeable on SMM4H, where it leads to a small increase in per-
ormance. Models that are not trained from scratch correspond
o the mixed-domain models in Fig. 8, and this decreases
10
their F1 score according to the Shapley values. This loss in perfor-
mance is probably connected to the fact that most mixed-domain
models include medical knowledge, which is not beneficial on the
SMM4H dataset.

To summarize, for both datasets: text-generation models (Au-
toRegressive and Text-to-Text) lead to the lowest performance;
larger models tend to have higher performance; using models
trained from scratch (regardless of their domain) is beneficial;
knowledge of social media language is highly beneficial.

The main difference between the two datasets is that models
pre-trained on medical data have lower performance on SMM4H,
due to the large gap in textual style.
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Fig. 10. Effect of the CRF module on Precision and Recall.
.2. Error analysis

Given the large number of analyzed models, it is challenging to
erform an in-depth error analysis and compare the kind of errors
roduced by the various base models. However, we performed
qualitative analysis of the output of the models as follows.
e fixed one of the thirty random seeds and gathered all the
redictions of the 19 base models. We divided the predictions
nto the following sets: Correct, Partial, Missing and Spurious
see Section 3.4 for the definitions). We then compared these
ets of predictions for all the models, creating rankings (ordering
he predictions according to how many models classified it as
orrect/Missing/Spurious) and grouping the predictions by topic
e.g., sleep disorders or weight change). The following trends
merged:

• Spurious predictions on CADEC and SMM4H. For both of the
datasets, 80% of the Spurious predictions are unique (pre-
dicted only once and by less than three models out of 19).
The spurious entities which are wrongly extracted/generated
by all the models are short one-word entities, which are
diseases (or symptoms of a disease, such as ‘‘headaches’’),
but denote real ADE mentions in other samples.

• AutoRegressive and Text-to-Text models on CADEC. A large
amount of the gold entities belongs to the Missing set for all
the models and are never predicted (neither as Correct nor
as Partial). The entities which are consistently Missing for all
the text-generation models are composed of multiple words
(e.g., ‘‘affected my balance’’, ‘‘blood pressure elevated’’, ‘‘al-
tered my heart function’’) and they are often very technical
(e.g., ‘‘peripheral neuropathy’’, ‘‘gastrointestinal cramping’’,
‘‘rheumatoid arthrtitis’’).
On the other hand, the entities which are predicted correctly
by all the text-generation models (Correct and Partial) are
short, one-word entities which are present in multiple sam-
ples (e.g., ‘‘constipation’’, ‘‘diarrhea’’, ‘‘fatigue’’, ‘‘insomnia’’).

• AutoEncoding models on CADEC. The proportion of Miss-
ing entities for the AutoEncoding models is significantly
smaller, as confirmed by their higher Recall. The entities
which are missed by all the models are extremely short ones
(e.g., ‘‘sick’’, ‘‘pain’’, ‘‘gas’’), which are difficult to contextual-
ize, and extremely long ones (e.g., ‘‘will never get back the
full use of my arms or legs’’). In general, all models struggle

to identify ADE with long character counts.

11
• All models on SMM4H. The overall number of Missing en-
tities is low. The ones which are shared among all the
models are extremely short, and some of them are hash-
tags (e.g., ‘‘#nosleepp’’, ‘‘#wideawake’’). The Missing entities
which are common for all the models trained on medical
domain only are short, colloquial terms such as ‘‘puking’’,
‘‘out of it’’ and ‘‘passing out’’.

4.3. Effect of the CRF

Fig. 10 shows the effect that using the additional CRF module
has on the AutoEncoding model and XLNet. The plots report the
difference between the metric achieved by the model with the
CRF module and the one without. Positive values indicate an
advantage in using the additional module, while negative values
mean it decreases the base performance of the model.

Looking at the results on the CADEC dataset, we observe that
the CRF module generally has a positive impact on the Recall of
the models and a mixed impact on the Precision. It leads to a
gain of up to 3 points in Precision and up to 1.5 points in Recall,
leading to an overall increase in F1-score too. There seems to be
no pattern that relates the pre-training domain with the effect of
the CRF module.

On the SMM4H dataset, the CRF module seems to have dif-
ferent effects based on the pre-training domain of the models.
It leads to a decrease in Precision for models with specific or
general-domain knowledge ( ), with a subsequent loss in
F1-score. On the contrary, mixed-domain models ( ) experi-
ence a gain in Precision (up to 4 points) and in Recall, with an
overall increase in F1-score.

4.4. Effect of the LSTM

In Fig. 11 we report the results for the LSTM module using the
same format of Fig. 10.

On the CADEC dataset, the LSTM generally increases the Pre-
cision of the models (up to 2.5 points) and has a small (mostly
negative) impact on the Recall, which is more frequent for gen-
eral-domain ( ) models. The overall effect is generally an in-
crease in F1-score.

The effect of the LSTM on the SMM4H dataset seems to show
no regularities: the Precision increases or decreases with no def-
inite pattern, almost all the models experience a drop in Recall
(up to 12.5 points). The overall effect on the F1-score is negative.
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Fig. 11. Effect of the LSTM module on Precision and Recall.
Table A.4
Unique identifiers of the models in the Huggingface Transformer library.
Name Model name in the Transformers library

BERT bert-base-uncased
DistilBERT distilbert-base-uncased
SpanBERT SpanBERT/spanbert-base-cased
RoBERTa roberta-base
ELECTRA google/electra-base-discriminator
XLNet xlnet-base-cased
GPT-2 gpt2
T5 t5-base
PEGASUS google/pegasus-xsum
BART facebook/bart-base

BERTweet vinai/bertweet-large
BioBERT monologg/biobert_v1.1_pubmed
BioClinicalBERT emilyalsentzer/Bio_ClinicalBERT
SciBERT allenai/scibert_scivocab_cased
PubMedBERT microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
EnDR-BERT cimm-kzn/endr-bert
BioELECTRA kamalkraj/bioelectra-base-discriminator-pubmed
BioRoBERTa allenai/biomed_roberta_base
SciFive razent/SciFive-base-Pubmed
The LSTM seems to have a similar effect on both datasets,
herefore it could be reasonable to use it in cases where we are
nterested in increasing the Precision of the base model.

.5. Take-home messages

To summarize the results of all the previous experiments, we
bserved that:

• AutoEncoding models are the best choice of model to deal
with this task, while models based on text generation (Au-
toRegressive and Text-to-Text) do not have good perfor-
mances on long texts or texts that contain a high number
of ADEs;

• when all other features are the same, bigger models have
the highest performance on both formal and informal texts;

• pre-training on social media texts leads to a consistent
increase in performance on both datasets, while medical
pre-training is only effective when working with social me-
dia texts that have a more formal language (in this case the
forum posts from CADEC);

• the use of additional modules needs to be evaluated on a
case-by-case basis. On the whole, the CRF module has a
positive impact on the Recall of the models when used in
formal texts, and positive effects on Precision for mixed-
domain models in informal texts. On the other hand, the
LSTM tends to increase the Precision of the models in formal
texts but has negative effects on most of the metrics in
informal texts.
12
5. Conclusions

In this paper, we performed a systematic analysis of 19
transformer-based models for ADE extraction on informal texts.
We compared their performance on two datasets with differ-
ent textual styles, and correlated it with the following model
features: category (AutoEncoding, AutoRegressive, Text-to-Text),
pre-training domain, training from scratch, and model size in
number of parameters. We used feature importance techniques to
correlate each of these characteristics to the performance of the
models. Furthermore, we analyzed the impact of commonly-used
additional processing layers (CRF and LSTM) on the performance
of the models. To conclude our analyses, we presented a list of
take-home messages that can be derived from the experimental
data.

Since the code we used for these analyses is publicly available,
it will be possible to adapt it and use it for other tasks. In
particular, future researchers will be able to use it to test different
kinds of models comparing their features and performances on
other tasks and domains.

In the future, we plan to expand our analyses to other tasks
in the medical domain. This will help building a more solid un-
derstanding of which model characteristics are more effective for
each task, especially in the new field of digital pharmacovigilance

on social media texts.
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Table A.5
Best hyperparameters for all models.
Model name CADEC SMM4H20

lr dropout epoch batch_size lr dropout epoch batch_size

BERT 1e−4 0.25 6 4 5e−5 0.25 10 16
BERTweet 5e−5 0.3 8 4 5e−5 0.15 7 16
BioBERT 1e−4 0.2 7 8 5e−5 0.2 5 16
BioClinicalBERT 5e−5 0.2 8 4 5e−5 0.15 3 8
BioELECTRA 5e−5 0.2 9 8 1e−4 0.2 4 8
BioRoBERTa 1e−4 0.25 15 8 5e−5 0.15 7 16
DistilBERT 5e−5 0.3 7 8 1e−4 0.3 4 8
ELECTRA 5e−5 0.15 8 8 5e−5 0.15 7 32
EnDR-BERT 5e−5 0.3 14 4 5e−5 0.15 5 32
PubMedBERT 5e−5 0.3 10 4 5e−5 0.2 10 16
RoBERTa 5e−5 0.15 10 8 5e−5 0.15 7 8
SciBERT 5e−5 0.3 13 4 5e−5 0.3 13 8
SpanBERT 5e−5 0.15 10 4 5e−5 0.15 8 8
XLNet 5e−5 0.15 7 4 5e−5 0.2 15 32
T5 2-e4 0.15 9 4 5e−5 0.15 10 8
GPT-2 1-e3 0.15 6 8 5e−5 0.15 4 32
BART 5-e5 0.15 10 32 6e−5 0.15 10 16
PEGASUS 2-e4 0.15 5 4 5e−5 0.15 8 8
SciFive 6-e5 0.15 12 4 1e−4 0.15 11 8

BERT + CRF 1e−4 0.3 9 4 1e−4 0.3 7 16
BERTweet + CRF 5e−5 0.25 11 4 5e−5 0.15 6 32
BioBERT + CRF 5e−5 0.25 7 8 1e−4 0.2 6 8
BioClinicalBERT + CRF 5e−5 0.25 7 4 1e−4 0.2 5 16
BioELECTRA + CRF 5e−5 0.3 15 4 1e−4 0.15 5 16
BioRoBERTa + CRF 5e−5 0.25 9 4 5e−5 0.15 8 16
DistilBERT + CRF 1e−4 0.3 8 8 1e−4 0.25 5 8
ELECTRA + CRF 5e−5 0.25 10 4 1e−4 0.25 7 16
EnDR-BERT + CRF 1e−4 0.25 8 8 5e−5 0.15 4 16
PubMedBERT + CRF 1e−4 0.3 14 8 5e−5 0.2 8 8
RoBERTa + CRF 5e−5 0.15 8 4 5e−5 0.2 10 8
SciBERT + CRF 5e−5 0.2 6 4 1e−4 0.2 6 32
SpanBERT + CRF 5e−5 0.15 9 8 5e−5 0.15 7 8
XLNet + CRF 5e−5 0.25 12 4 5e−5 0.15 7 16

BERT + LSTM 5e−5 0.2 7 4 5e−5 0.25 7 8
BERTweet + LSTM 5e−5 0.15 8 4 5e−5 0.15 15 32
BioBERT + LSTM 5e−5 0.2 8 4 5e−5 0.25 7 8
BioClinicalBERT + LSTM 1e−4 0.3 9 4 5e−5 0.25 9 16
BioELECTRA + LSTM 5e−5 0.25 12 4 5e−5 0.2 8 8
BioRoBERTa + LSTM 5e−5 0.15 9 4 5e−5 0.25 14 8
DistilBERT + LSTM 1e−4 0.2 6 4 1e−4 0.2 6 16
ELECTRA + LSTM 5e−5 0.2 6 4 5e−5 0.2 11 32
EnDR-BERT + LSTM 1e−4 0.3 9 8 5e−5 0.15 5 8
PubMedBERT + LSTM 1e−4 0.15 8 8 5e−5 0.15 8 16
RoBERTa + LSTM 5e−5 0.15 10 4 5e−5 0.2 14 16
SciBERT + LSTM 5e−5 0.3 12 4 5e−5 0.25 14 32
SpanBERT + LSTM 5e−5 0.15 8 8 5e−5 0.2 10 8
XLNet + LSTM 5e−5 0.15 9 4 5e−5 0.15 12 32
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Appendix A. Further details on the models

Table A.4 reports the unique identifiers of all the models in the
HuggingFace library for reproducibility.

Table A.5 contains the best hyperparameters used for all ar-
chitectures on SMM4H and CADEC, respectively.

Appendix B. Detailed metrics of all the models

The following tables report the Strict and Relaxed evaluation
metrics for all the models used in the paper. Tables B.6–B.8 report
the results on SMM4H. Tables B.9–B.11 report the results on
CADEC.
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Table B.6
Metrics of all the base models on SMM4H.

Relaxed Strict

F1 P R F1 P R

BERT 70.43 ± 0.22 64.29 ± 1.53 77.96 ± 1.79 61.99 ± 0.90 56.65 ± 1.44 68.52 ± 2.11
DistilBERT 69.09 ± 1.36 65.37 ± 2.62 73.35 ± 1.27 60.70 ± 1.41 57.43 ± 2.39 64.44 ± 1.48
SpanBERT 70.04 ± 1.01 65.29 ± 1.76 75.57 ± 0.10 62.59 ± 1.39 57.84 ± 2.83 68.33 ± 0.85
RoBERTa 64.97 ± 1.08 61.52 ± 1.95 68.93 ± 2.14 56.12 ± 1.23 53.25 ± 1.99 59.41 ± 1.86
ELECTRA 71.81 ± 1.51 70.47 ± 1.89 73.28 ± 2.60 63.46 ± 1.91 62.45 ± 1.73 64.58 ± 3.09
XLNet 71.55 ± 0.52 65.93 ± 1.79 78.36 ± 2.37 62.89 ± 0.88 57.80 ± 1.23 69.07 ± 2.71
GPT-2 20.15 ± 2.74 30.83 ± 2.58 15.19 ± 2.85 11.73 ± 4.74 17.16 ± 5.87 08.97 ± 3.82
T5 68.90 ± 1.08 69.47 ± 1.60 68.34 ± 0.77 61.90 ± 1.08 62.42 ± 1.58 61.40 ± 0.72
PEGASUS 63.31 ± 0.84 60.10 ± 1.38 66.90 ± 0.76 55.90 ± 1.05 53.07 ± 1.47 59.07 ± 0.89
BART 62.44 ± 1.81 58.15 ± 3.87 67.61 ± 1.42 54.35 ± 1.85 50.62 ± 3.61 58.85 ± 1.11

BERTweet 73.57 ± 0.72 70.03 ± 1.07 77.54 ± 2.17 64.44 ± 1.56 61.34 ± 1.38 67.93 ± 2.69
BioBERT 67.83 ± 0.72 63.51 ± 1.56 72.86 ± 2.03 59.62 ± 1.56 55.81 ± 1.47 64.06 ± 2.81
BioClinicalBERT 66.42 ± 1.19 61.60 ± 1.73 72.09 ± 1.16 57.52 ± 1.20 53.40 ± 1.62 62.36 ± 1.26
SciBERT 68.14 ± 0.72 63.67 ± 1.96 73.36 ± 1.40 59.77 ± 0.94 55.91 ± 1.87 64.28 ± 1.34
PubMedBERT 70.63 ± 0.91 68.95 ± 1.13 72.44 ± 1.82 63.00 ± 1.18 61.90 ± 2.00 64.23 ± 2.15
EnDR-BERT 70.64 ± 1.21 65.54 ± 2.88 76.76 ± 1.38 62.36 ± 1.33 57.39 ± 2.26 68.37 ± 1.32
BioRoBERTa 64.01 ± 0.83 60.46 ± 0.71 68.04 ± 1.90 54.68 ± 1.20 50.85 ± 1.55 59.24 ± 2.60
BioELECTRA 68.93 ± 1.40 67.10 ± 1.54 70.87 ± 1.75 61.62 ± 1.78 59.99 ± 1.84 63.36 ± 2.04
SciFive 66.16 ± 1.09 65.55 ± 2.01 66.81 ± 1.02 59.75 ± 1.14 59.20 ± 2.05 60.34 ± 0.74
Table B.7
Metrics of the AutoEncoding models with CRF module on SMM4H.

Relaxed Strict

F1 P R F1 P R

BERT 70.19 ± 0.42 64.03 ± 1.07 77.69 ± 1.10 62.14 ± 0.62 56.69 ± 0.90 68.79 ± 1.34
DistilBERT 68.64 ± 0.52 65.67 ± 1.82 72.01 ± 1.99 59.19 ± 1.09 57.14 ± 1.41 61.42 ± 1.29
SpanBERT 68.50 ± 2.99 66.04 ± 3.68 71.39 ± 4.50 60.25 ± 3.71 58.10 ± 4.21 62.79 ± 4.73
RoBERTa 62.64 ± 3.46 58.09 ± 5.54 68.32 ± 0.99 53.38 ± 4.78 49.46 ± 6.12 58.21 ± 2.76
ELECTRA 70.00 ± 1.61 66.45 ± 1.43 73.97 ± 1.82 61.32 ± 2.68 56.25 ± 3.82 67.49 ± 0.97
XLNet 70.97 ± 1.16 65.97 ± 1.85 76.86 ± 1.60 61.17 ± 1.55 56.81 ± 2.03 66.31 ± 1.80

BERTweet 74.08 ± 0.96 69.41 ± 1.45 79.43 ± 0.64 65.24 ± 1.19 61.13 ± 1.31 69.96 ± 1.40
BioBERT 70.12 ± 1.81 68.50 ± 1.29 71.88 ± 3.10 63.25 ± 2.94 61.77 ± 2.13 64.86 ± 4.10
BioClinicalBERT 70.26 ± 1.24 66.32 ± 1.67 74.75 ± 2.02 62.25 ± 2.33 58.35 ± 2.70 66.78 ± 2.77
SciBERT 67.23 ± 0.92 63.04 ± 1.08 72.03 ± 1.02 58.62 ± 1.04 54.96 ± 1.16 62.81 ± 1.09
PubMedBERT 70.08 ± 1.14 67.23 ± 2.14 73.30 ± 2.51 62.65 ± 1.36 60.20 ± 2.19 65.42 ± 2.38
EnDR-BERT 71.39 ± 1.09 66.64 ± 1.93 76.94 ± 1.67 63.44 ± 1.18 58.88 ± 2.35 68.88 ± 1.62
BioRoBERTa 64.20 ± 1.09 59.74 ± 0.64 69.42 ± 2.32 54.94 ± 0.86 50.90 ± 0.58 59.73 ± 2.16
BioELECTRA 67.02 ± 1.91 65.23 ± 2.13 69.05 ± 3.49 59.02 ± 1.90 58.20 ± 2.76 59.93 ± 1.96
Table B.8
Metrics of the AutoEncoding models with LSTM module on SMM4H.

Relaxed Strict

F1 P R F1 P R

BERT 71.03 ± 1.12 65.24 ± 1.12 77.95 ± 1.56 62.94 ± 1.39 57.89 ± 1.29 69.00 ± 2.44
DistilBERT 69.53 ± 0.81 67.45 ± 2.42 71.86 ± 1.30 60.38 ± 1.30 58.58 ± 2.65 62.39 ± 0.90
SpanBERT 60.75 ± 0.07 58.66 ± 1.26 63.04 ± 1.31 50.06 ± 0.68 47.18 ± 0.82 53.33 ± 0.49
RoBERTa 61.56 ± 3.87 59.17 ± 4.12 64.18 ± 3.72 50.23 ± 6.63 48.30 ± 6.64 52.35 ± 6.67
ELECTRA 71.36 ± 1.49 68.22 ± 2.20 74.85 ± 1.38 62.64 ± 1.51 59.89 ± 2.22 65.69 ± 1.10
XLNet 72.90 ± 1.28 69.26 ± 1.50 76.97 ± 1.46 64.35 ± 1.90 61.14 ± 2.08 67.94 ± 1.90

BERTweet 73.04 ± 1.06 70.68 ± 1.29 75.59 ± 1.65 63.99 ± 1.09 62.44 ± 0.63 65.67 ± 2.11
BioBERT 68.53 ± 0.91 65.44 ± 0.68 71.96 ± 2.00 60.83 ± 1.41 58.08 ± 0.57 63.88 ± 2.52
BioClinicalBERT 67.16 ± 1.21 61.84 ± 1.12 73.50 ± 1.71 57.54 ± 1.45 52.98 ± 1.27 62.97 ± 1.92
SciBERT 66.09 ± 2.07 61.91 ± 1.89 70.94 ± 3.03 57.75 ± 2.64 53.59 ± 2.95 62.64 ± 2.37
PubMedBERT 64.21 ± 4.46 62.86 ± 4.58 65.75 ± 5.39 52.86 ± 7.46 52.67 ± 8.09 53.09 ± 6.89
EnDR-BERT 72.95 ± 1.47 69.45 ± 1.34 76.87 ± 2.37 65.24 ± 2.34 62.09 ± 1.66 68.77 ± 3.38
BioRoBERTa 62.20 ± 2.10 57.06 ± 3.04 68.44 ± 1.87 51.91 ± 2.92 47.70 ± 3.34 57.03 ± 3.04
BioELECTRA 68.97 ± 1.49 67.15 ± 2.03 70.94 ± 1.58 60.56 ± 1.96 58.91 ± 2.53 62.34 ± 1.77
14
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Table B.9
Metrics of all the base models on CADEC.

Relaxed Strict

F1 P R F1 P R

BERT 78.76 ± 0.35 76.92 ± 0.73 80.71 ± 0.93 66.67 ± 0.40 65.11 ± 0.58 68.32 ± 0.91
DistilBERT 76.30 ± 0.34 73.29 ± 0.25 79.57 ± 0.53 62.90 ± 0.71 60.31 ± 0.74 65.73 ± 0.81
SpanBERT 79.58 ± 0.20 79.62 ± 0.82 79.54 ± 0.44 68.12 ± 0.30 68.14 ± 0.71 68.10 ± 0.58
RoBERTa 78.31 ± 0.32 77.08 ± 0.59 79.58 ± 0.60 65.83 ± 0.45 64.79 ± 0.50 66.90 ± 0.71
ELECTRA 79.30 ± 0.27 77.45 ± 0.80 81.25 ± 0.47 67.34 ± 0.70 65.87 ± 0.58 68.89 ± 1.27
XLNet 79.35 ± 0.64 77.63 ± 1.04 81.15 ± 0.30 67.48 ± 0.74 66.05 ± 1.07 68.97 ± 0.49
GPT-2 27.55 ± 5.93 28.69 ± 5.24 26.8 ± 7.03 12.98 ± 3.91 13.47 ± 3.53 12.67 ± 4.38
T5 62.77 ± 0.62 53.15 ± 0.82 76.65 ± 0.59 52.98 ± 0.88 44.86 ± 0.92 64.7 ± 0.98
PEGASUS 61.31 ± 0.65 51.49 ± 1.14 75.78 ± 0.72 50.51 ± 0.76 42.42 ± 0.97 62.43 ± 1.11
BART 57.98 ± 0.64 47.69 ± 0.85 73.95 ± 0.56 47.40 ± 0.78 38.99 ± 0.84 60.45 ± 0.87

BERTweet 78.28 ± 0.47 75.93 ± 0.36 80.78 ± 0.78 65.51 ± 1.01 63.43 ± 0.92 67.73 ± 1.12
BioBERT 78.32 ± 0.43 77.90 ± 0.84 78.75 ± 0.39 65.97 ± 0.75 65.62 ± 1.03 66.33 ± 0.64
BioClinicalBERT 78.09 ± 0.28 77.07 ± 0.91 79.17 ± 1.14 66.23 ± 0.58 65.09 ± 0.98 67.44 ± 0.95
SciBERT 79.22 ± 0.42 77.77 ± 0.69 80.73 ± 0.37 67.63 ± 0.63 66.44 ± 0.78 68.88 ± 0.60
PubMedBERT 79.18 ± 0.55 77.67 ± 0.84 80.76 ± 0.41 67.16 ± 0.80 65.85 ± 1.07 68.51 ± 0.63
EnDR-BERT 80.57 ± 0.45 79.08 ± 0.94 82.12 ± 0.40 69.12 ± 0.66 67.62 ± 1.20 70.69 ± 0.28
BioRoBERTa 77.77 ± 0.23 76.16 ± 0.81 79.48 ± 1.23 65.53 ± 0.37 63.83 ± 0.63 67.34 ± 0.88
BioELECTRA 78.25 ± 0.53 76.92 ± 0.97 79.66 ± 0.96 66.20 ± 0.82 65.01 ± 1.06 67.45 ± 1.09
SciFive 62.80 ± 0.19 53.09 ± 0.25 76.84 ± 0.36 52.74 ± 0.53 44.59 ± 0.46 64.53 ± 0.72
Table B.10
Metrics of the AutoEncoding models with CRF module on CADEC.

Relaxed Strict

F1 P R F1 P R

BERT 78.89 ± 0.55 76.87 ± 0.54 81.01 ± 0.88 66.86 ± 0.86 65.12 ± 0.69 68.70 ± 1.18
DistilBERT 77.92 ± 0.25 75.97 ± 0.28 79.97 ± 0.68 65.40 ± 0.53 63.75 ± 0.29 67.15 ± 0.90
SpanBERT 79.36 ± 0.20 78.89 ± 0.43 79.83 ± 0.30 67.72 ± 0.40 67.15 ± 0.66 68.30 ± 0.25
RoBERTa 78.50 ± 0.52 77.63 ± 0.94 79.39 ± 0.44 66.08 ± 1.03 65.58 ± 1.11 66.60 ± 1.26
ELECTRA 79.67 ± 0.62 77.15 ± 0.85 82.36 ± 0.66 67.82 ± 0.75 65.48 ± 1.03 70.35 ± 0.73
XLNet 79.44 ± 0.27 77.37 ± 0.32 81.63 ± 0.73 67.98 ± 0.33 66.07 ± 0.43 70.02 ± 0.65

BERTweet 79.75 ± 0.25 78.88 ± 0.50 80.63 ± 0.13 68.45 ± 0.37 67.61 ± 0.72 69.31 ± 0.25
BioBERT 77.55 ± 0.27 76.32 ± 0.43 78.83 ± 0.35 64.54 ± 0.53 63.63 ± 0.64 65.49 ± 0.53
BioClinicalBERT 78.49 ± 0.24 76.44 ± 0.92 80.67 ± 0.54 66.78 ± 0.34 65.07 ± 0.89 68.60 ± 0.32
SciBERT 78.32 ± 0.42 76.67 ± 0.91 80.04 ± 0.25 65.99 ± 0.74 64.61 ± 1.12 67.44 ± 0.42
PubMedBERT 78.98 ± 0.36 77.71 ± 0.52 80.28 ± 0.48 67.29 ± 0.26 66.14 ± 0.91 68.49 ± 0.48
EnDR-BERT 79.64 ± 0.64 77.98 ± 1.20 81.40 ± 0.32 67.82 ± 1.21 66.40 ± 1.64 69.31 ± 0.82
BioRoBERTa 77.45 ± 0.33 75.53 ± 0.32 79.47 ± 0.74 64.53 ± 0.75 62.71 ± 0.37 66.46 ± 1.19
BioELECTRA 79.22 ± 0.35 77.33 ± 0.35 81.21 ± 0.82 67.82 ± 0.65 66.10 ± 0.51 69.64 ± 1.01
Table B.11
Metrics of the AutoEncoding models with LSTM module on CADEC.

Relaxed Strict

F1 P R F1 P R

BERT 78.89 ± 0.30 77.86 ± 0.74 79.95 ± 0.66 66.95 ± 0.48 65.78 ± 0.51 68.16 ± 0.75
DistilBERT 77.84 ± 0.40 76.75 ± 1.03 78.99 ± 1.22 65.73 ± 0.42 64.84 ± 0.71 66.67 ± 1.19
SpanBERT 78.48 ± 0.53 78.22 ± 0.66 78.74 ± 1.06 66.25 ± 1.09 66.04 ± 1.20 66.48 ± 1.28
RoBERTa 78.01 ± 0.46 77.06 ± 0.93 79.00 ± 0.65 65.56 ± 0.50 64.61 ± 0.59 66.54 ± 0.75
ELECTRA 79.30 ± 0.47 77.40 ± 1.22 81.32 ± 0.41 66.96 ± 0.65 65.35 ± 1.26 68.66 ± 0.30
XLNet 79.00 ± 0.35 77.95 ± 0.78 80.08 ± 0.47 66.95 ± 0.53 66.17 ± 0.83 67.75 ± 0.27

BERTweet 78.66 ± 1.85 78.02 ± 2.67 79.32 ± 1.23 66.72 ± 2.87 66.19 ± 3.49 67.27 ± 2.31
BioBERT 78.63 ± 0.27 78.34 ± 0.51 78.92 ± 0.41 66.62 ± 0.34 66.40 ± 0.34 66.85 ± 0.59
BioClinicalBERT 78.79 ± 0.37 77.02 ± 0.65 80.65 ± 0.37 67.49 ± 0.58 65.97 ± 0.81 69.08 ± 0.46
SciBERT 79.31 ± 0.32 77.32 ± 0.23 81.41 ± 0.51 67.80 ± 0.69 66.00 ± 0.94 69.72 ± 0.88
PubMedBERT 78.50 ± 0.71 78.30 ± 1.66 78.73 ± 0.87 66.73 ± 1.16 66.72 ± 1.98 66.76 ± 0.86
EnDR-BERT 75.27 ± 4.90 73.12 ± 3.82 77.62 ± 6.27 62.21 ± 6.61 60.39 ± 5.64 64.19 ± 7.75
BioRoBERTa 78.09 ± 0.30 77.55 ± 0.86 78.65 ± 0.93 65.54 ± 0.63 64.83 ± 0.38 66.27 ± 1.20
BioELECTRA 79.33 ± 0.31 78.41 ± 0.45 80.28 ± 0.58 67.89 ± 0.65 67.10 ± 0.60 68.70 ± 0.86
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