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C O G N I T I V E  N E U R O S C I E N C E

Predicting the next sentence (not word) in large 
language models: What model-brain alignment tells us 
about discourse comprehension
Shaoyun Yu1*, Chanyuan Gu1, Kexin Huang1, Ping Li1,2*

Current large language models (LLMs) rely on word prediction as their backbone pretraining task. Although word 
prediction is an important mechanism underlying language processing, human language comprehension occurs 
at multiple levels, involving the integration of words and sentences to achieve a full understanding of discourse. 
This study models language comprehension by using the next sentence prediction (NSP) task to investigate mech-
anisms of discourse-level comprehension. We show that NSP pretraining enhanced a model’s alignment with 
brain data especially in the right hemisphere and in the multiple demand network, highlighting the contributions 
of nonclassical language regions to high-level language understanding. Our results also suggest that NSP can en-
able the model to better capture human comprehension performance and to better encode contextual informa-
tion. Our study demonstrates that the inclusion of diverse learning objectives in a model leads to more human-like 
representations, and investigating the neurocognitive plausibility of pretraining tasks in LLMs can shed light on 
outstanding questions in language neuroscience.

INTRODUCTION
Recent advances in generative artificial intelligence (AI) have put 
large language models (LLMs) under the spotlight. The impressive 
performance of LLMs arises from pretraining the models on large-
scale text data and representing words and meanings as high-
dimensional vectors (or “embeddings”). An increasing number of 
neurocognitive studies have begun to explore how model embed-
dings can capture human brain activities during language process-
ing (1–4), and some argue that the rise of LLMs has enabled us to 
test the neural mechanisms of language learning and representation 
in a more principled and explicit way (5, 6). Recently, a number of 
researchers (7) have advocated that connecting the study of compu-
tational models and the brain through “representational alignment” 
will promote knowledge transfer between the AI and the neurocog-
nitive research communities.

To relate computational models to the brain, a link between model 
embeddings and brain signals must be established through methods 
such as linear regression or representational geometry analysis (6, 
8). In this study, we refer to this general approach as “model-brain 
alignment.” To find out what computational properties of language 
models are relevant to the processing mechanisms in the brain, 
researchers compare how well the embeddings from different mod-
els align with brain data. Specifically, this means that we can test 
variations in the model and their relevance to human brain process-
es. Two computational principles of language comprehension have 
been proposed in the literature. First, contextual information is 
represented in the brain during language comprehension as it is in 
the model. Goldstein et al. (4) provided the key evidence that con-
textualized embeddings from GPT-2 (9) outperformed static em-
beddings from GloVe (10) in model-brain alignment (4). Second, 
word prediction is a core process of language comprehension as it 

has been implemented in the model (4, 11). Most state-of-the-art 
LLMs are trained by either the next word prediction task (i.e., pre-
dicting the next word from the previous context) or the masked lan-
guage modeling (MLM) task (i.e., predicting masked words from 
both the left and right context, akin to the cloze test). Several large-
scale model comparisons have found a strong correlation between 
a model’s word prediction ability and its alignment with brain data 
(12, 13).

Despite remarkable developments in the literature, several gaps 
exist in the study of model-brain alignment. To begin with, the word 
prediction tasks used by LLMs have a very different goal from hu-
mans who, instead of just identifying the best candidate based on 
statistics of words, process and integrate words and sentences to 
achieve an understanding of discourse (or a spoken conversation 
involving multiple people) (14–16). This multilayered nature of hu-
man language comprehension is shown in recent findings that the 
brain predicts multiple ranges and levels of language representations 
(17). Further, the human language system also interacts with other 
cognitive systems and serves a communicative function (6). A sec-
ond major gap is the lack of communication between the natural 
language processing (NLP) and the neuroscience of language re-
search communities (7). While NLP studies aim to improve model 
performance on various standardized benchmarks, they generally 
do not consider insights from neurocognitive findings, with a few 
exceptions (2, 18). Similarly, few neurocognitive studies have been 
interested in studying models that vary in pretraining tasks while 
investigating brain mechanisms, despite that how LLMs learn lan-
guage representations through pretraining (19, 20) could inform the 
learning and representation underlying the linguistic brain.

Given the above gaps, the current study asks whether we can le-
verage LLMs to study discourse comprehension, which is an area 
where recent investigations in NLP research and the neuroscience of 
language can be brought together (Fig. 1A). Discourse comprehen-
sion is critical to human communication and knowledge acquisi-
tion: Whether it be conversations, reading texts, or listening to 
speeches, we construe the meanings of language at the discourse 
level (i.e., across multiple sentences) rather than at the individual 
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word or sentence level (14, 21). A central process of discourse com-
prehension is text integration, which requires the understanding of 
the coherence between sentences (16, 22, 23). To investigate discourse 
processing mechanisms, neurocognitive studies often contrast the 
brain responses to coherent sentences and those to incoherent/
unconnected sentences (22–26). As a popular transformer (27) mod-
el, BERT (19) introduced the next sentence prediction (NSP) task 
along with the well-known MLM task to enhance the model’s un-
derstanding of sentence relationships (Fig. 1, B and C); the NSP task 
also uses pairs of coherent or unconnected sentences/texts during 
pretraining. Notably, this task does not predict the content of the 
next sentence per se. Instead, NSP predicts whether the second 
sentence is truly the one next to the first sentence (i.e., one that 
naturally follows it), demanding the model to distinguish be-
tween coherent and unconnected pairs of sentences or texts.

There is recent evidence that using NSP pretraining in BERT 
models substantially improves the models’ performance on discourse-
level NLP tasks (28, 29). However, NSP’s contribution to general 
model performance has been in question (30); many recent BERT-
based models even dropped this task from pretraining (31, 32). 
From a neurocognitive perspective, the NSP task, in addition to the 
word prediction task, may serve as a good computational principle 
for how humans process and understand discourse. Mason and Just 
(23) proposed a model of discourse comprehension in the human 

brain (Fig. 1D) that includes two types of text integration, one for 
integrating coherent sentences and the other for integrating uncon-
nected or incoherent sentences. As NSP enables the model to under-
stand what sentence pairs are coherent and what pairs are not, it 
directly maps onto the two types of integration in the discourse 
comprehension model.

Despite decades of research, the brain networks and the hemi-
spheric division of labor for discourse comprehension remain less 
well understood. From the perspective of large-scale brain networks 
(33), the classical left-lateralized language network is known to play 
an indispensable role in processing words and sentences (34); how-
ever, recent findings suggest that this network might not be sensitive 
to the coherence of sentences (24). The role of the domain-general 
multiple demand (MD) network (35, 36) in language and discourse 
comprehension is also under debate (24, 37, 38). Traditionally, neu-
rocognitive studies have focused on the left hemisphere (LH) for 
lexical-semantic processing. In discourse comprehension and lan-
guage learning, however, the right hemisphere (RH) has been sug-
gested to play an important role (16, 23, 39–44); for example, 
patients with RH damage often showed difficulties in discourse-
level understanding (45, 46). Mason and Just’s Parallel Networks of 
Discourse model (Fig. 1D) proposed five components of discourse 
comprehension, which also highlighted the contribution of the RH: 
for example, while coherent text integration was hypothesized to 
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Fig. 1. NSP as a computational account of discourse comprehension. (A) Humans integrate words and sentences to achieve a full understanding of discourse. In LLMs, 
the NSP task proposed by BERT (19) can serve as a computational account of human discourse comprehension. (B) Illustration of the MLM task. (C) Illustration of the NSP 
task and its relevance to the Mason and Just model (23). (D) Illustration of Mason and Just’s neurocognitive model of discourse processing. Yang et al. (22) explicitly labeled 
two key aspects in this model as “coherent text integration” and “incoherent text integration” (originally “text integration” and “coherence monitoring”). The human head 
illustration in (A) was created with BioRender.com.
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recruit a left-lateralized brain network, incoherent text integration 
was considered to engage a bilateral dorsolateral prefrontal network. 
In coarse semantic processing (39, 47), the RH has been hypothe-
sized to represent semantics on a coarse and more global scale to 
facilitate higher-level language understanding. However, a recent 
large-scale meta-analysis (25) suggested that text integration only 
consistently involves the LH, and thus, it remains unclear whether 
and to what extent the RH is involved in discourse comprehension.

In this study, we focus on leveraging different pretraining tasks to 
better align LLMs with the human language system, and by using 
model-brain alignment, we hope to gain insights into how the brain 
processes discourse. Specifically, we test NSP as a plausible compu-
tational mechanism for discourse comprehension and explore brain 
networks that correspond to this mechanism. To this end, we built 
two BERT-based deep language models (DLMs) that manipulated 
the presence of NSP in pretraining and used two functional mag-
netic resonance imaging (fMRI) datasets that emphasized coherent 
and unconnected sentence relationships, respectively. Model-brain 
alignment performance was examined in the language network and 
the MD network for both hemispheres. Overall, our results showed 
that LLMs and the brain converged better on high-level language 
mechanisms beyond word prediction.

RESULTS
Two fMRI datasets about sentence reading were used in this study: 
the Mars subset of the Reading Brain project (48–50) in which the 
sentences are connected to make a coherent story and the dataset 
from Pereira et al. (1) in which the stimuli are dominated by uncon-
nected relationships (see Materials and Methods for details). We 
refer to the two datasets as the “Reading-brain2019 dataset” and the 
“Pereira2018 dataset.” To identify the contributions of NSP to model-
brain alignment, we trained two types of models using the BERT 
architecture: the MLM model that performed only the MLM task 
and the MLM_NSP model that performed both the MLM (for word 
prediction) and NSP (for sentence coherence prediction/evaluation) 
tasks. All other training procedures for the two models were kept 
identical. To estimate model-brain alignment, we used representa-
tional similarity analysis (RSA) (51) as the alignment function (7), 
which evaluates the correlation between the model and the brain’s 
representational spaces (see Materials and Methods for details). The 
brain networks that may reflect NSP’s computational mechanism 
were revealed by examining brain regions that displayed higher 
alignment with the MLM_NSP model than with the MLM model. 
An illustration of our overall approach is shown in Fig. 2.

NSP-pretrained model displayed greater model-brain 
alignment in the language and MD networks
We provided our models with each stimulus sentence from the two 
datasets and extracted their embeddings. Model-brain alignment 
was computed for both the MLM_NSP and MLM models. We ex-
amined the models’ differences in regions of interest (ROIs) from 
two major brain networks: the language network (34) (10 ROIs) and 
the domain-general MD network (35, 52) (20 ROIs). One-sided 
Wilcoxon signed-rank tests were performed because of our hypoth-
esis that the MLM_NSP model would better align with the brain 
and also because of the lack of normal distribution in this type of 
correlational results. False discovery rate (FDR; α = 0.05) correction 
for multiple comparisons was applied to ROIs from the same brain 

network. The results from the Reading-brain2019 and the Pereira2018 
datasets suggest that a pretraining process that combined NSP and 
MLM, as compared with pretraining only based on MLM, signifi-
cantly increased the model’s alignment with brain data in the com-
prehension of both coherent sentences and unconnected sentences.
Reading-brain2019 dataset
The sentences in this dataset consisted of a coherent narrative text 
about humans going to Mars (see Materials and Methods for de-
tails). As illustrated in Fig. 3A, we found that the MLM_NSP model 
showed significantly higher model-brain alignment than the MLM 
model in four language network ROIs: the bilateral (left and right) 
inferior frontal gyri (IFG), the right orbital part of the IFG (IFGorb), 
and the right anterior temporal gyrus (ATG), PFDR = 0.038 for these 
regions. These ROIs can be considered to have a greater correspon-
dence with NSP’s computational mechanism, which involves the 
understanding of sentence coherence. No significant model differ-
ences were found in the MD network (see table S1 for details). Our 
results suggest that the language network is critically engaged in 
comprehending coherent sentences, contrasting the null results re-
ported by Jacoby and Fedorenko (24). The IFG areas are classic lan-
guage processing regions (53, 54), whereas the bilateral ATG is a 
major hub for conceptual and semantic integration (55). Further, 
while the ROIs in the LH of the language network are considered the 
classical “core” for language processing, the ROIs identified in our 
results as having higher model-brain alignment reside more in the 
RH homologs (i.e., the right IFG, IFGorb, and ATG) rather than in 
the LH regions, suggesting a crucial role of the RH in discourse 
comprehension.
Pereira2018 dataset
This dataset consisted of 384 sentences dominated by unconnected 
relationships (see Materials and Methods for details). The sentences 
were organized into 96 unconnected sentence groups about various 
topics, with each group consisting of four locally coherent sentenc-
es. As illustrated in Fig. 3B, we found that the MLM_NSP model 
showed significantly higher model-brain alignment than the MLM 
model in five MD network ROIs. Two ROIs were from the LH: the 
left middle frontal gyrus (MFG) and the left anterior cingulate cor-
tex/presupplementary motor cortex (ACC/pSMA); three ROIs were 
from the RH: the right superior frontal gyrus (SFG), right orbital 
part of the MFG (MFGorb), and right precentral gyrus (PrecG), 
PFDR = 0.039 for the right MFGorb, PFDR = 0.029 for the other four 
ROIs. These ROIs can be considered to have a stronger association 
with NSP’s computational mechanism. However, unlike with the 
Reading-brain2019 dataset, no significant model differences were 
found in the language network (see table S2 for details). Our results 
thus showed that, despite recent debates surrounding the role of the 
MD network in language comprehension (24, 37, 38), multiple fron-
tal MD network regions in both hemispheres were implicated in the 
comprehension of unconnected/incoherent sentences. This finding 
partially overlaps with Mason and Just’s proposal (23) that the inte-
gration of incoherent sentences recruits a bilateral dorsolateral pre-
frontal brain network (Fig. 3C).

NSP-pretrained model captured individual differences in 
reading time
A recent study (56) found that model-brain alignment computed 
with GPT-2 could predict subjects’ listening comprehension scores. 
To test the association between reading performance and model-brain 
alignment, we performed Pearson correlation analyses for individual 
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ROIs from the language and MD networks, respectively, for the 
model with both MLM and NSP pretraining and the model with 
MLM pretraining only. We tested the significance of the correlation 
coefficients for the MLM_NSP versus the MLM model and applied 
FDR correction (α = 0.05) to ROIs from the same brain network. 
Here, we only report the findings for the Reading-brain2019 dataset 
as the Perreira2018 dataset did not contain any reading performance 
data (reading time or accuracy).

Our findings indicated that reading time was negatively corre-
lated with model-brain alignment in all language ROIs, except the 
left MFG, for both the MLM_NSP and the MLM models; for the 
left MFG, only the MLM_NSP pretraining model showed signifi-
cant correlation (Fig.  4, A and C). Likewise, reading time was 
negatively correlated with model-brain alignment in the ROIs 
from the MD network (Fig. 4B) for both types of models, except 
for the right superior parietal lobule (SPL), where only the MLM_
NSP pretraining model showed significant correlation (Fig.  4, B 
and C). However, in neither type of model did we find significant 
correlations between reading accuracy and model-brain align-
ment. These findings demonstrate that model-brain alignment 
computed with the MLM_NSP and MLM models were both sensi-
tive to reading efforts indexed by reading time rather than reading 
outcomes indexed by accuracy. Further, model-brain alignment 
derived from the MLM_NSP model displayed a slight advantage 
in capturing individual variations in reading time, manifested as 

the significant correlations in all ROIs from the language and MD 
networks.

NSP-pretrained model consistently performed better with 
different context lengths
To investigate how model-brain alignment could be modulated by 
the contextual window available to LLMs (2, 57, 58), we presented 
the two types of models with both the stimulus sentences and their 
prior context. At each context length, we compared the model-brain 
alignment performance between the MLM_NSP and MLM models.
Reading-brain2019 dataset
We varied each stimulus sentence’s context length from one to seven 
preceding sentences, which were equal to 10 to 70 words on average. 
As displayed in Fig. 5A, the impact of context length followed a non-
monotonic pattern that peaks at a short-range length. Specifically, 
for both the MLM_NSP and MLM models, the alignment between 
the model and brain representational dissimilarity matrices (RDMs) 
quickly increased within a context length of one to two preceding 
sentences (an average of 10 to 20 words), and then there was an 
overall decline as the contextual window expanded further beyond 
20 words on average. This advantage of short-range context echoes 
Toneva and Wehbe’s finding (2) based on a story-reading dataset, 
which also demonstrated an effect of short context length for their 
BERT model. Our study also showed that the MLM_NSP model 
consistently outperformed the MLM model: The four language network 

Fig. 2. Overview of the datasets, computational models, and analysis. To investigate model-brain alignment in discourse comprehension, we pretrained two BERT-
based models and used two neuroimaging datasets. To extract model-based sentence representations, we fed the two types of models with the same sentences read by 
human subjects. RSA was used to evaluate the correlation between model embeddings and brain activation.
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ROIs identified when no preceding sentences were given (bilateral 
IFG, right IFGorb, and right ATG) continued to demonstrate a sig-
nificant advantage of the MLM_NSP model across a range of con-
text lengths, from one to seven sentences. The MLM_NSP model’s 
advantage also extended to most other ROIs in the language and 
MD networks (see fig. S1 for details), suggesting that the MLM_NSP 
model benefited more from the prior context compared to the 
MLM model.
Pereira2018 dataset
Context lengths were limited to a max of three sentences before the 
stimulus sentence because this dataset was composed of various 
four-sentence groups (see Materials and Methods for details); con-
textual windows across different sentence groups were not available 
due to the lack of trial order information. Therefore, for each stimu-
lus sentence, we only included its preceding sentences from the 
same group as its context (henceforth, the “group local context”), 
which varied from one to three sentences, or averagely 11.8 to 
35.4 words. As shown in Fig. 5B, model-brain alignment did not 
substantially vary with the length of group local context for both 

the MLM_NSP and MLM models; there were only minor fluctua-
tions in alignment, which can also be described as a nonmonotonic 
pattern. Such a near-flat pattern suggests that increasing group local 
context did not necessarily improve model-brain alignment when 
the whole sentence set was dominated by unconnected relation-
ships. The results resonate with Caucheteux and King’s (12) obser-
vation that varying context lengths did not significantly affect 
model-brain alignment in a dataset where all sentences were un-
connected to each other. Despite this lack of context length effect, 
we observed that the MLM_NSP model had significantly higher 
model-brain alignment than the MLM model in several MD net-
work regions, including the left SPL, the right SFG, the bilateral 
MFG, MFGorb, ACC/pSMA, and PrecG (Fig.  5B). Such advan-
tages of the MLM_NSP model were less widespread compared 
to the results from coherent sentences (Fig. 5A), demonstrating 
again that the effect of context length was much more limited for 
unconnected sentences. Further, the MLM_NSP model’s advan-
tage was exclusively found in the MD network rather than in the 
language network (see fig. S2 for details), which is consistent with 

A B

C

Fig. 3. NSP-pretrained model displayed higher alignment with brain data. NSP significantly improved model-brain alignment for both coherent and unconnected 
sentence relationships in discourse-level comprehension. (A) In the Reading-brain2019 dataset (coherent sentences), four language network ROIs displayed significantly 
higher alignment with the MLM_NSP model. (B) In the Pereira2018 dataset (mainly unconnected sentences), five MD network ROIs displayed significantly higher align-
ment with the MLM_NSP model. The two models’ performances were compared with one-sided Wilcoxon signed-rank tests. Asterisk (*) indicates statistical significance 
after FDR correction (α = 0.05). Error bars indicate SEs. (C) Brain networks in Mason and Just’s discourse comprehension model, adapted from figure 1 of (23).
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our suggestion that the MD network plays a critical role in process-
ing unconnected sentences.

DISCUSSION
How can human brain research and AI inform one another in the 
era of generative AI and LLMs? Here, we advocate the examination 
of model-brain alignment as an approach to studying brain mecha-
nisms of language processing using models with diverse pretraining 
tasks, taking advantage of machine learning–based language models 
and representational alignment analytics to link models and brain 
data (7, 59).

While word prediction has been validated as a critical computa-
tional principle in human language processing (4, 12, 13), successful 
discourse comprehension for humans requires multilevel compre-
hension beyond the word level, and as such, a single computational 
process (e.g., word prediction) is unlikely to fully account for hu-
man language comprehension (6, 59). In this regard, while the word 
prediction pretraining task has proven to be highly effective for 
LLMs, it does not match the multilevel processes of human lan-
guage processing if we aim at computational models that are brain-
inspired. In our study, we examined the NSP task in addition to 
word prediction, an LLM pretraining task that requires the model to 
classify whether the input sentences or texts are coherent or not. We 
found that NSP significantly improves a model’s alignment with 
brain data with respect to the correlations between the model and 

the brain’s representations. In neurocognitive models of discourse 
comprehension, such evaluation of sentence coherence is essential 
to the understanding of discourse or conversation (22, 23). Thus, 
we regarded NSP as a viable computational account of discourse-
level comprehension. By examining the roles of the brain regions 
showing greater model-brain alignment with NSP-enhanced versus 
MLM-only pretraining, our results also enabled us to explore the 
neural correlates of NSP. Through two datasets that focused on ei-
ther coherent or unconnected sentences, we found that the language 
network and the domain-general MD network had differential con-
tributions to discourse comprehension according to the coherence 
of sentences. Further, our results highlighted the importance of RH 
brain regions in discourse comprehension.

The exact role of the language network (34) in discourse compre-
hension has been under debate. For example, while previous find-
ings indicate that the processing of coherent texts engages the RH 
language regions (46, 60), a recent study (24) did not observe great-
er brain activations during the reading of coherent sentences com-
pared with unconnected sentences. Our results provide more support 
to the view that RH language regions are critically engaged in pro-
cessing coherent texts, given the model-brain alignment shown in 
the reading of coherent sentences from the Reading-brain2019 data-
set. The MLM_NSP model displayed significantly higher alignment 
with brain data than the MLM model in three language ROIs from 
the RH in addition to the left IFG: the right IFG, IFGorb, and 
ATG. Notably, we found higher model-brain alignment in the right 

BA

C

Fig. 4. Correlations between reading time and model-brain alignment. In the Reading-brain2019 dataset, reading time was negatively correlated with model-brain 
alignment computed from the MLM_NSP and MLM models. (A) Estimated correlations for ROIs from the language network. (B) Estimated correlations for ROIs from the 
MD network. The bars represent correlation estimates, and the gray lines indicate SEs. (C) Estimated correlations in the left MFG and the right SPL where the correlation 
between reading time and model-brain alignment was significant for the MLM_NSP model (blue) rather than the MLM (red) model. Asterisk (*) indicates statistical sig-
nificance after FDR correction (α = 0.05).
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IFG and IFGorb in the naturalistic reading of coherent sentences, 
while Jacoby and Fedorenko (24) found greater activation in these 
two regions for their unconnected sentences condition. This dis-
crepancy points to an important difference between the contrast-
based experimental fMRI approach and the model-based approach 
in our study (61, 62). The former approach relies on contrasting and 
analyzing well-controlled conditions, so it may overlook the in-
volvement of brain regions if the regions are active but do not show 
statistically stronger levels of activation compared to the contrasted 
condition. By comparison, the latter approach as used in our work 
can more directly test whether neural responses in a specific brain 
region correspond to the engagement of a specific computational 
mechanism. The significantly higher alignment with the MLM_NSP 
model in the right IFG and IFGorb suggests that these language net-
work regions are relevant to the understanding of coherent sentenc-
es in discourse-level comprehension.

In the past decade, the domain-general MD network has attracted 
continued attention and also generated debates regarding its role in 
language comprehension. Some recent studies have argued that the 
MD network is not essential for language comprehension (24, 37, 
38), while others have suggested that certain MD network regions 
are reliably involved in discourse comprehension, such as the right 
SPL (25). With the Pereira2018 dataset, our results supported this 
latter line of argument by showing higher model-brain alignment 
with the MLM_NSP model in the MD network. It is worth noting 

that three of the MD network regions found in the current study 
(i.e., the left MFG, right MFGorb, and right PrecG) overlapped with 
the MD regions showing stronger activation to unconnected sen-
tences reported by Jacoby and Fedorenko (24). However, our results 
do not lead to an interpretation to attribute the MD network activa-
tion to task-induced efforts (23, 38). The MD regions in our results 
were isolated by comparing the MLM_NSP and MLM models; 
therefore, activities in these regions should be interpreted as rele-
vant to NSP’s computational mechanism, that is, the evaluation of 
sentence relationships. Consequently, we suggest that the MD net-
work is genuinely engaged in discourse comprehension, particularly 
for understanding the relationship of unconnected sentences. Fu-
ture research should examine the impact of text properties such as 
the sentences’ lexical and syntactic structural relationships (63) in 
addition to coherence in modulating model-brain alignment.

Mason and Just’s Parallel Networks of Discourse model (23) pro-
posed that the integration of coherent sentences recruits a left-
lateralized brain network, while the integration of unconnected or 
incoherent sentences recruits a bilateral dorsolateral prefrontal 
network. By synthesizing the above findings from the Reading-
brain2019 and Pereira2018 datasets, our results indicate consistent 
recruitment of the RH in integrating both coherent and unconnect-
ed sentences. Our findings regarding the integration of unconnect-
ed sentences largely agreed with Mason and Just’s account, as 
suggested by higher alignment with the MLM_NSP model in the left 

B

A

Fig. 5. Model-brain alignment as a function of context length. Increasing the context length available to the models affected model-brain alignment in a nonmono-
tonic way, and there was evidence that the MLM_NSP model performed better than the MLM model for both coherent and unconnected sentence relationships. (A) Effect 
of context length for the Reading-brain2019 dataset (coherent sentences) in the language network. (B) Effect of context length for the Pereira2018 dataset (mainly uncon-
nected sentences) in the MD network. Asterisk (*) indicates statistical significance after FDR correction (α = 0.05). Yellow areas indicate ROIs identified when no preceding 
sentences were given. Gray areas indicate ROIs that showed a significant advantage of the MLM_NSP model at different context lengths.
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MFG, right MFGorb, and right SFG. However, we also found sev-
eral frontal regions, including the left ACC/pSMA and the right 
PrecG, which are not strictly within the dorsolateral prefrontal 
scope. Our findings regarding the integration of coherent sentences, 
however, differed from Mason and Just’s proposal that focused on 
the role of the left IFG and ATG; instead, we found a more right-
lateralized network, including the RH homologs of the IFG, IFGorb, 
and ATG. This finding does not mean that the left language network 
is not engaged in processing coherent sentences but that in dis-
course comprehension the model-brain alignment might be more 
sensitive to a more general, higher-level, and perhaps coarse seman-
tic integration process supported by the RH [see (47) for a discus-
sion of the division of labor for semantic processing at different 
levels]. Overall, our results contribute to a growing body of evidence 
suggesting the RH’s crucial role in high-order language functions, 
including discourse comprehension, first and second language learn-
ing, prosody processing, and the understanding of figurative lan-
guages (39, 41, 43, 44, 64–66).

At the individual difference level, our study showed that model-
brain alignment computed with the MLM_NSP and MLM models 
was negatively correlated with reading time, suggesting that greater 
alignment between brains and models may be associated with faster 
reading. Reading time is one of the critical components for assess-
ing reading skills (67–69), which has been used to differentiate skilled 
and less skilled readers during discourse comprehension (50). Skilled 
readers, compared with less skilled readers, may be more efficient in 
selecting and organizing key contents to construct and integrate the 
mental representation, thus giving rise to quicker reading time (50, 
70). Our finding of the significant correlations between model-brain 
alignment and reading time during discourse comprehension dem-
onstrates that LLMs may be capable of characterizing the neuro-
cognitive map of skilled comprehension. In our modeling, we also 
observed that the MLM_NSP model had a small advantage in cap-
turing reading speed. Specifically, the model-brain alignment in the 
left MFG and right SPL, derived from the MLM_NSP model but not 
the MLM model, exhibited significant correlations with reading time. 
We speculate that the NSP-enhanced model may be more sensitive 
to the underlying neural mechanism of discourse comprehension, 
allowing it to better capture individual reading speed. Sentence 
coherence is indispensable for the integration and construction of 
mental representation (23, 71). The purpose of the NSP task is to 
judge whether sentences are coherent, so it may allow the MLM_
NSP model to encode certain high-level information about the up-
coming discourse content (28).

In transformer models, the attention mechanism allows each 
word to draw information from other words in computing contex-
tualized embeddings unique to the input context (27). Such a mech-
anism has neurocognitive relevance as information processing in 
the brain is influenced by memories of the context at various times-
cales (72, 73). In general, we found evidence that the MLM_NSP 
model consistently performed better than the MLM model when 
context was incorporated, suggesting that NSP pretraining allows a 
model to better use contextual information. Prior studies suggested 
that model-brain alignment is not a simple linear function of a model’s 
contextual window length. Most findings demonstrated that model-
brain alignment peaked or plateaued at a short context length of 
about 10 words (2, 57, 58). In contrast, Caucheteux and King (12) 
found that model-brain alignment was not significantly affected by 
context length; notably, this study used a dataset of unconnected 

sentences, while most previous work was based on coherent and 
narrative materials (e.g., podcast stories or book chapters). We lev-
eraged the two different datasets in our study to examine the impact 
of context length. Our results about coherent sentences (Reading-
brain2019 dataset) supported Toneva and Wehbe’s study (2) based 
on a narrative text: The model-brain alignment increased within a 
short-range context (in our case, one to two sentences) and then 
decreased. Such a pattern could suggest that, when the discourse is 
continuous and coherent, the recent context consistently contrib-
utes to the current sentence’s meaning and representation. By con-
trast, in the Pereira2018 dataset, we did not observe a substantial 
impact of group local context length (see Results for details) during 
unconnected sentence reading. This pattern indicated that incorpo-
rating the local context had limited contribution when the full sen-
tence set was dominated by unconnected relationships. Combined 
with previous findings, we suggest that the impact of context length 
depends on the coherence features of the whole context, which 
should be further investigated.

Recent LLMs such as GPT-3 and its successors have greatly ben-
efited from exploiting the “scaling laws” by increasing the model size 
(74). In contrast, less progress has been made in pretraining tasks. 
Mainstream LLMs all base their language pretraining on one task 
type: word prediction. In this study, we showed that the computa-
tional principle of the NSP task (i.e., sentence coherence prediction/
evaluation) is neurocognitively plausible and maps onto the theo-
retical framework of discourse comprehension (22, 23). Our results 
support the arguments of previous studies that NSP improves a 
model’s discourse-level language competence (19, 28, 29). The in-
creased model-brain alignment achieved through NSP-pretraining 
provides evidence that LLMs and the brain can converge on discourse-
level language mechanisms rather than only sharing the core prin-
ciple of word prediction.

One limitation of the current work is that our experiments were 
based on two research-oriented, comparatively smaller-scale mod-
els with the BERT architecture (see Materials and Methods for de-
tails). Our choices regarding the model type and size were limited by 
two practical considerations; first, currently BERT is the only major 
open-source model that proposed a cognitively plausible pretrain-
ing task beyond word prediction, and second, large-scale models 
such as Meta AI’s LLaMA required hundreds or thousands of GPUs 
for pretraining, which exceeds the capability of single research labs. 
Nevertheless, we expect our findings to be extendable to larger-sized 
models because recent LLMs share the same underlying transform-
er architecture with BERT, and they have mostly been limited to 
word prediction tasks in pretraining. To evaluate the effectiveness of 
NSP beyond BERT-like transformer encoder models, future studies 
may generalize the NSP task and extend it to other transformer de-
coder models (e.g., GPT models). In addition, future work can also 
adapt alternative sentence-level training algorithms (20) and assess 
their cognitive plausibility as well as effectiveness compared to 
NSP. A second limitation of the current study is that our models 
were evaluated against two neuroimaging datasets collected from 
different participants. In addition to the difference in the key prop-
erties modeled in our study (i.e., coherence versus unconnected-
ness), the two datasets may differ on other dimensions due to data 
collection and processing differences beyond our control. Future 
studies can aim at more controlled fMRI data from a single study, 
although resource demands in collecting such data may be quite 
challenging.
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Even with the above limitations and constraints, our study of 
model-brain alignment can shed light on NLP research so that the 
significance of a model and model components can be evaluated not 
only on NLP benchmarks but also on its neurocognitive relevance. 
We highlighted at the beginning the lack of communication as a ma-
jor gap between NLP research and the neuroscience of language. 
Our findings demonstrate that pretraining methods as experiment-
ed with in NLP studies can inform neuroscientists when testing 
computational hypotheses about how the human brain processes 
and represents language. The current study shows how neurocogni-
tive researchers can leverage LLMs to study higher-level language 
mechanisms by going beyond word prediction. For a true approxi-
mation of the human language system, it is important to note that 
human language involves more diverse and intricate mechanisms 
than what existing computational models and neurocognitive theo-
ries could account for. Our findings align with recent proposals that 
future LLMs need to embrace more modularity, diverse learning 
objectives, multimodal information integration of features in the ex-
ternal world, and integrations beyond core linguistic abilities (6, 7, 
59, 75). By showing the advantage of combining multiple levels of 
language pretraining, our findings are also in line with the view that 
hierarchical or multilevel representations might be crucial for AI to 
approach the efficiency and flexibility of human intelligence, which 
is a direction explored by recent endeavors such as the Joint Embed-
ding Predictive Architecture (76). We conclude that model-brain 
alignment promotes a close communication of ideas and methods 
between the AI and the neurocognitive research communities, which 
will lead to future research in brain-inspired AI and AI-informed 
brain studies.

MATERIALS AND METHODS
Computational models
We built the MLM_NSP and MLM models with the transformers 
Python library. Both models were uncased and used a base BERT 
structure of 12 hidden layers. The MLM model was trained with 
only the MLM task, while the MLM_NSP model was trained with 
both the MLM and NSP tasks. We used the entire English Wikipedia 
(version 20220301, available on Hugging Face) as the pretraining 
dataset. The masked token ratio of the pretraining data was set to 
15%. Both models were trained for 11 epochs with a learning rate of 
5 × 10−5; the amount of epochs was comparable to those used in 
smaller-scale research-purpose models (77). Figure S3 illustrates the 
training loss curves of the MLM and MLM_NSP models. The pre-
training was performed on two NVIDIA Tesla V100S GPUs.

Neuroimaging datasets
Reading-brain2019 dataset
We used the native English speaker dataset from the Reading Brain 
Project (48–50), which is a multimodal naturalistic reading database 
that combined fMRI and eye tracking. Fifty-two right-handed na-
tive English speakers participated in reading expository texts in the 
fMRI scanner. In the current study, two subjects were excluded from 
the data analysis due to preprocessing errors. We used the subset for 
the Mars text (31 sentences) as it had the highest Flesch Reading 
Ease score, indicating that it was the easiest to comprehend (see 
Supplementary Text for full text). The subjects read the text sen-
tence by sentence on the screen in the natural order. The experi-
ment was self-paced, with an 8-s limit for each sentence. Multiband 

echo-planar imaging data were acquired with a repetition time of 
400 ms. The dataset is available on OpenNeuro (https://openneuro.
org/datasets/ds003974/).
Pereira2018 dataset
We used the experiment 2 dataset from the Pereira et al. study (1) 
and chose the nine subjects analyzed by Schrimpf et al. (13). The to-
tal 384 sentences consisted of 96 four-sentence groups about 96 dif-
ferent concepts (e.g., elephant and farm). The 96 concepts can be 
further grouped into 24 broader categories (e.g., animal and place). 
All sentences were written in an expository style. The subjects read 
the stimuli on the screen sentence by sentence at a fixed pace, with 
each trial consisting of a 4-s display followed by a 4-s interval. The 
96 groups of sentences were presented randomly for each subject; 
within each sentence group, the order of the four sentences was fixed. 
All stimuli were repeated three times across three scanning sessions. 
Data availability and additional details are given in (1) and (13).

Neuroimaging data processing
Reading-brain2019 dataset
The fMRI data were preprocessed with fMRIPrep 22.0.0 (78). Sub-
jects’ structural images (T1-weighted) were corrected for field inho-
mogeneity, and brain tissue was extracted and segmented. Subjects’ 
functional images were corrected for head motion and slice time. 
The functional images were then coregistered to their structural ref-
erence images. Confound time series were estimated on the basis of 
the processed blood-oxygen-level-dependent signals. The function-
al images were resampled into the Montreal Neurological Institute 
(MNI) space using the MNI ICBM 152 nonlinear sixth asymmetric 
template (79). The brain activation (beta maps) for each sentence 
was estimated with general linear models (GLMs) in Nilearn, and 
the least squares single modeling method was applied (80). The ca-
nonical SPM hemodynamic response function was used to model 
brain responses. The GLMs also included confound regressors for 
head motion, white matter, cerebrospinal fluid, and mean global sig-
nal. The high-pass filter was set at 100 s.
Pereira2018 dataset
We used the beta values for the stimulus sentences precomputed by 
Pereira et al. The data processing procedures are detailed in (1).

Statistical analysis
Representational similarity analysis
We used RSA (51) to evaluate the correspondence between model 
embeddings and brain activation. We computed the brain-based 
RDMs (henceforth, brain RDMs) using each subject’s brain activa-
tion elicited by the stimulus sentences (beta values). We generated 
model embedding-based RDMs (henceforth, model RDMs) by com-
puting pairwise distances between sentences in the embedding 
spaces of our models.

Model RDMs. We fed each individual sentence from the two da-
tasets to our custom-trained models and averaged the sentence’s to-
ken embeddings from the 12th hidden layer (the final hidden layer) 
as the sentence-level representation. The special tokens [CLS] and 
[SEP] were not included in averaging. We then generated the mod-
el RDMs by computing the pairwise cosine distance between the 
sentence representations for each dataset. In our investigation of 
context length effects, we provided the models with the stimulus 
sentence and its preceding sentences, allowing the models to draw 
information from the prior context in generating embeddings. 
We obtained sentence-level representations by averaging the token 
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embeddings from the stimulus sentence, and then we computed the 
model RDMs using these sentence representations.

Brain RDMs. We computed brain RDMs per subject and per ROI 
for the two neuroimaging datasets. For each ROI, beta values were 
extracted to represent brain activation elicited by the stimulus sen-
tences. RDMs were built by computing 1 − Pearson’s r for all sen-
tence pairs within each dataset. We used 10 fronto-temporal ROIs 
(5 per hemisphere) defined in the language-selective network (34), 
including the left IFG, IFGorb, MFG, ATG, PTG, and their RH homo-
logs; we chose 20 fronto-parietal ROIs (10 per hemisphere) from the 
MD network (52), including the bilateral SPL, IPL, SMA, SFG, 
PrecG, IFG (pars opercularis), MFG, MFGorb, insula, and ACC/
pSMA. The mask images for these ROIs are available at https://
evlab.mit.edu/funcloc/. For the Reading-brain2019 dataset, we ex-
tracted the ROI voxels by using the predefined group-level ROI 
masks for the two brain networks. For the Pereira2018 dataset, the 
ROIs were determined individually by combining localizer tasks 
and group-level masks (13), and we obtained the ROI voxels from 
the precomputed result data provided by Pereira et al. (1).

Model-brain alignment was evaluated with Pearson’s correla-
tions between the model RDM and the subjects’ brain RDMs (81). 
As we have an a priori hypothesis that the MLM_NSP model would 
exhibit higher model-brain alignment, we performed one-sided 
Wilcoxon signed-rank tests (MLM_NSP > MLM). FDR correction 
was applied to the P values for ROIs from the same brain network.
Correlation between reading performance and model-
brain alignment
We performed two-sided Pearson correlation analyses to estimate 
the association between reading performance and model-brain 
alignment. Our focus was on the Reading-brain2019 dataset due to 
its inclusion of individual performance data, whereas the Pereira2018 
dataset did not provide such information. The Reading Brain project 
used 10 questions to evaluate the understanding of expository text 
reading and recorded self-paced reading time and accuracy for each 
participant (48). Model-brain alignment was computed for the ROIs 
from the language and MD networks. To control for multiple com-
parisons, we applied FDR correction (α = 0.05) for ROIs from the 
same brain network and reported the corrected results.

Terminology for language models and pretraining tasks
We refer to BERT as an instance of LLM in a broad sense. When 
viewed more specifically, BERT can be defined as a neural language 
model (NLM). From a technical standpoint, LLMs are on a contin-
uum of NLMs because current LLMs share the same fundamental 
transformer architecture (27) and pretraining method (i.e., word 
prediction) with NLMs. In our reading of the literature and in the 
LLM field’s rapid development, we found that the usage of NLM and 
LLM has become blurred. For example, Wikipedia has explicitly 
referred to BERT as a type of LLM (https://en.wikipedia.org/wiki/
Large_language_model, accessed on 22 February 2024). The situa-
tion becomes even more complicated when some researchers use 
DLM to refer to BERT and GPT series models (4). We think that the 
terms NLM, DLM, and LLM tend to highlight different aspects of 
these language models (neural net-based, deep-layered, or large-
sized, respectively), and researchers are using them interchangeably 
(sometimes not technically correct).

Following the convention in the literature (12, 13, 19), we refer to 
the next word prediction and the MLM tasks as word prediction 
tasks, although technically they predict subword tokens instead of 

complete words. Language models internally work with subword 
tokens instead of words for efficiency and generalizability consider-
ations (e.g., to handle rare words by combining subword tokens 
known to the model); the segmentation of a word into tokens is de-
termined by the tokenizer algorithm, and tokens do not necessarily 
correspond to linguistic units such as letters or syllables.

The next word prediction task is more formally known as the 
language modeling (LM) task in NLP studies (9). The LM (i.e., next 
word prediction) task predicts the upcoming word based on the pre-
ceding context; the task is unidirectional in that it always uses the 
one-sided context (e.g., left context in left-to-right languages) to 
predict the next word. The MLM task is closely related to the LM 
task (19), and it can predict masked words (hence “masked” in the 
name) in any position instead of just the last/next word. MLM is 
bidirectional in that the task uses both the left and right context to 
predict the masked word. Despite the differences, both LM (next 
word prediction) and MLM are word prediction tasks (12).

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S3
Tables S1 and S2
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