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A B S T R A C T

In the era of emerging technologies, the transportation system is witnessing the introduction of innovative
mobility services, such as autonomous vehicles, which possess unique service features that cannot be seen from
conventional travel modes. To facilitate the understanding of the behavioral impacts and the adoption of inno-
vative mobilities, a novel binary weibit model with an oddball alternative (BW-O) is developed for the binary
choice between conventional and emerging mobilities. The BW-O model explicitly considers the unprecedented
(or unique) service features of emerging travel modes while retaining the closed-form choice probability. This
study empirically illustrates the application of the BW-O model in the mode choice context. The desirable
properties of the BW-O model compared to the existing binary choice models are discussed both theoretically and
empirically. In the binary mode choice problem with an emerging travel mode, the unique service features of the
emerging mode can lead to the “oddball” effect and “superstar” effect, which play a critical role in the travel
behavior and mode adoption. The BW-O model inherently captures both effects by considering a higher
perception variance for the emerging mode and asymmetric choice probabilities between different modes. Thus,
as revealed by the empirical results, the BW-O model outperforms the basic binary weibit model in terms of both
model fit and predictive power. The developed BW-O model is not only applicable to the mode choice problem in
transportation systems, but also opens a door for more general class-imbalanced binary choice contexts where an
alternative has additional attractiveness and asymmetric choice probability.
1. Introduction

In the era of emerging technology, a variety of innovative transport
modes such as the autonomous vehicles (AVs) have been introduced to
the transportation system. With the improved transportation service,
these emerging modes are expected to be gradually adopted through the
competition with conventional modes (Aramrattana and Fu, 2022; Fag-
nant and Kockelman, 2015; Gu and Chen, 2023; Jansuwan et al., 2021;
Olovsson et al., 2022). Compared with conventional modes, the
emerging technologies often provide some unique service features, such
as the safety concern and autonomous driving of AVs. These features will
reduce travel disutility but bring additional subjective uncertainty as
travelers have not experienced them in the current services. Aramrattana
and Fu (2022) investigated travelers’ behavioral adaptations to AVs,
which suggests that the introduction of AVs exerts significant but
Environmental Engineering, The
Chen).

r 2023

vier Ltd on behalf of Tsinghua U
heterogenous impacts on the travel behavior. This may significantly
change how travelers perceive the emerging mode and compare it with
the conventional ones and hence influence the mode choice behavior
(Acharya and Mekker, 2022; Dubey et al., 2022; Song, 2019). Few at-
tempts have been made to specifically consider the effect of unprece-
dented service features in the forecast of the adoption of emerging modes
(Bansal et al., 2021; Haboucha et al., 2017; Jang et al., 2021; Jiang et al.,
2019; Ortúzar, 2021). For instance, Dubey et al. (2022) developed an
elegant but complicated binary choice modeling framework that is
effective to model the additional uncertainty related to AVs but is hungry
for the word-of-mouth information, the collection of which requires high
cost in terms of money, time, and human resources. To facilitate fore-
casting the adoption rate of emerging modes, it is imperative to develop
advanced and easy-to-implement binary choice models for understand-
ing the choice behavior between conventional and emerging modes.
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Some existing discrete choice models are applicable to model the
choice between emerging and conventional modes considering specific
features of the binary mode choice. For example, the emerging mode is
likely to be preferred and have a rapidly increasing adoption rate during
the transition period, which can be driven by the desire for innovation
and the growing social influence of novel services (Song, 2019). This
phenomenon can be modeled as the “superstar” effect (Chorus, 2018),
i.e., the “superstar” alternative attracts much more demand than other
alternatives even when its advantage in quality is not as significant.
Chorus (2018) modeled the “superstar” effect by transforming systematic
utility of the additive random utility model (ARUM) to enlarge the dif-
ference in satisfaction. Brathwaite and Walker (2018) developed a series
of logit-type binary choice models with asymmetric and closed-form
choice probability functions, which are applicable to the
class-imbalanced choice between alternatives with distinct demands.
However, these models mainly focus on modifying the deterministic part
of utility function or the aggregate choice probability expression, while
the additional subjective uncertainty arising from the emerging service
features is not explicitly modeled.

The additional subjective uncertainty of emerging mode can be
modeled as the “oddball” effect, i.e., an oddball alternative has unique
attributes that cannot be observed from other regular alternatives in the
choice set. Recker (1995) developed a logit-based ARUM to address the
“oddball” effect, where a Gumbel distributed random component is
assumed for the unique attributes in addition to that assumed for the
common attributes shared by all the alternatives. Thus, the oddball
alternative has a larger perception variance, which can reflect the addi-
tional subjective uncertainty. The logit-based oddball choice model also
has the potential to capture the “superstar” effect owing to the asym-
metric probability functions and the higher choice probability of the
oddball alternative. However, the Gumbel distributed assumption
embedded in the logit model and the additive utility function used in the
ARUM led to fixed perception variances for both regular and oddball
alternatives. This makes the logit-based oddball choice model inadequate
to reflect the heterogenous perceptions of service quality provided by
different modes or different service features.

This study investigates the adoption of emerging travel mode through
a multiplicative random utility model (MRUM) based on the Weibull
distribution, which considers the emerging mode as an oddball alterna-
tive with unique attributes. The developed weibit oddball choice model
retains the closed-form probability expression, which facilitates the
model implementation via efficient evaluation and exact estimation so-
lution and guarantees high interpretability of model outcomes. The
developed model is applied to investigate the adoption of AVs against the
conventional human-driven vehicles (HDVs). The empirical results
indicate the benefit of the developed model to address both the “oddball”
and “superstar” effects in the binary choice context with an emerging
mode like AV. Specifically, the multiplicative disutility function
embedded in the model allows disutility-dependent perception vari-
ances, which enables considering the heterogeneity in service quality
perceptions (Fosgerau and Bierlaire, 2009; Kitthamkesorn and Chen,
2013). On this basis, the developed model can effectively capture the
“oddball” effect owing to its flexibility to inherently reflect heteroge-
neous subjective uncertainties associated with different modes and
different service features. Furthermore, the asymmetric choice proba-
bility of the developed model facilitates to capture the “superstar” effect,
which is applicable to the class-imbalanced choice context between
emerging and conventional modes.

The remainder of this paper is organized as follows. Section 2 presents
the formulation and properties of the proposed binary mode choice
model. Empirical experiments are conducted in Section 3 to verify the
applicability of the proposed model for estimation and prediction of the
adoption rate of the emerging AVs. Section 4 presents concluding re-
marks and some directions for future research.
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2. Binary choice model between emerging and conventional
alternatives

2.1. Binary oddball weibit model formulation

This section presents the binary weibit model with an oddball alter-
native (BW–O) for the choice between conventional and emerging
modes. As an example, we consider the binary choice between a con-
ventional mode (labeled as mode 1 hereafter) and an emerging mode
(labeled as mode 2 hereafter). The two modes share a set of common
attributes τ, while the emerging mode has a set of unique attributes ~τ,
which indicates unprecedented service features and is assumed as an
independent random component (Recker, 1995). Consistent with weibit
choice models (Fosgerau and Bierlaire, 2009), the proposed BW-O model
has multiplicative disutility functions for both alternatives. The
perceived disutility of conventional mode V1 is represented as

V1 ¼ v1 � ε1 (1)

where v1 and ε1 are the systematic disutility and random error of con-
ventional mode 1, respectively. v1 is obtained based on the common at-
tributes:

v1 ¼
X
i2I

ωi � τi1 (2)

where I is the set of common attributes, τi1 and ωi denote the level of
attribute i of mode 1 and the coefficient of attribute i, respectively.

To account for the “oddball” effect of the emerging travel mode, the
disutility function of mode 2 is constructed following the development of
the oddball logit model (Recker, 1995), which includes an additional
random error term with respect to the unique attributes. Recently, Gu
et al. (2024) extended the oddball logit model to the oddball weibit
model using a multiplicative error structure, where the disutility function
of the oddball alternative is constructed by multiplying the perceived
disutility of common attributes (V2 ¼ v2 � ε2) with that of the unique
attributes (~V2 ¼ ~v2 �~ε2). The disutility function is then expressed as Eq.
(3):

V2 ¼V2 � ~V2 ¼ðv2 � ε2Þ � ð~v2 �~ε2Þ¼ v2 � ζ2 (3)

where ε2 and ~ε2 denote the random errors; v2 and ~v2 are the systematic
disutility. Let v2 ¼ v2 �~v2 and ζ2 ¼ ε2 �~ε2 denote the total systematic
disutility and random error of the emerging mode, respectively. v2 and ~v2
are obtained based on the common attributes and unique attributes,
respectively:

v2 ¼
X
i2I

ωi � τi2

~v2 ¼
X
j2J

ωj �~τj2
(4)

where J is the set of unique attributes. The random error terms used in
the BW-O model, ε1, ε2, and ~ε2, are assumed to independently and
identically follow the Weibull distribution (λ;α;β). λ and α are the loca-
tion parameter and the scale parameter, which are set as λ ¼ 0 and α ¼ 1
for simplicity (Kitthamkesorn and Chen, 2013), respectively. This study
focuses on the shape parameter β, which implies the level of dispersion.

Following the principle of disutility minimization, the choice proba-
bility of the emerging mode P2 is equivalent to the probability that the
emerging travel mode 2 has a lower disutility than the conventional
mode 1, which can be expressed as

P2 ¼Pðv2 � ζ2 � v1 � ε1Þ¼P
�
ζ2
ε1

� v1
v2

�
(5)
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where Pð �Þ denotes the probability function.
Therefore, the choice probability can be obtained based on the cu-

mulative distribution function (CDF) of random variable ζ2
ε1
. Based on

Proposition 1 presented below, Eq. (5) can be written as

P2 ¼FZ

�
v1
v2

�
¼
�
v1
v2

�β

� exp
"�

v1
v2

�β
#
�E1

"�
v1
v2

�β
#
¼φ � eφ �E1ðφÞ (6)

where FZð �Þ denotes the CDF of ζ2
ε1
. φ ¼ ðv2Þ�β

ðv1Þ�β. E1ðxÞ ¼
Rþ∞
x

e�x

x dx is the

exponential integral. The choice probability of conventional mode 1 can
then be obtained as Eq. (7):

P1 ¼ 1� P2 ¼ 1� φ � eφ �E1ðφÞ (7)

Proposition 1. The CDF of the quotient between the random variables,
Z ¼ ζ2=ε1, can be expressed as

FZðzÞ¼ zβ � ezβ �E1

�
zβ
�

(8)

Proof. From Eqs. (1) and (3), the quotient between the two random error

terms can be expressed as ζ2
ε1

¼ ε2 �~ε2
ε1

¼
�
ε2
ε1

�
�~ε2. Given the property of the

Weibull distribution (Gu et al., 2022), the first term on the right-hand
side, ε2

ε1
, is the ratio between two independently and identically distrib-

uted (IID) Weibull variables, which follows the Log-logistic distribution
(1; β); while the second term on the right-hand side, ~ε2, follows the
Weibull distribution (0;1;β). Thus, random variable ζ2

ε1
can be expressed as

the product of a Log-logistically distributed variable and a Weibull
distributed variable.

Now consider two random variables X following the Log-logistic
distribution (1; β) and Y following the Weibull distribution (0; 1; β),
their product is Z ¼ X �Y. Hence, Y can be expressed based on Z and X as
Y ¼ Z=X. The probability density function (PDF) of random variable Z
can be expressed as Eq. (9):
fZðzÞ¼
Z þ∞

�∞
fXðxÞ �





1x




 � fY�zx

�
dx¼

Z þ∞

0
βxβ�1 exp

��xβ
� � 1

x
� βðz=xÞβ�1h
1þ ðz=xÞβ

i2 dx¼ βzβ�1 �
Z þ∞

0
βxβ�1 exp

��xβ
� � 1

xβ
� 1h
1þ ðz=xÞβ

i2 dx (9)
Let u ¼ xβ, Eq. (9) can be expressed as

fZðzÞ¼ βzβ�1 �
Z þ∞

0
u �AðuÞdu (10)

where AðuÞ ¼ e�u � 1
½uþzβ �2. Let v ¼ uþ zβ, the integration of AðuÞ can be

expressed as (Gradshteyn and Ryzhik, 2007):

Z þ∞

0
AðuÞdu ¼

Z þ∞

zβ
e�ðv�zβÞ � 1

v2
dv ¼ ez

β

�
� e�v

v
þ E1ðvÞ

	




þ∞

zβ
(11)

Taking Eq. (11) into Eq. (10) and using integration by parts, the PDF
of random variable Z can be expressed as
fZðzÞ¼ βzβ�1 �
���

v� zβ
� � ezβ�� e�v

v
þ E1ðvÞ

�	




þ∞

zβ
� ez

β �
Z þ∞

zβ

�
� e�v

v
þE1ðvÞ

	

¼ βzβ�1 �
h
ez

β �E1

�
zβ
�þ ez

β � zβE1

�
zβ
�� 1

i
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Integrating the PDF shown in Eq. (12) leads to Eq. (8). Thus, the
product of the Log-logistically distributed variable ζ2

ε1
and the Weibull

distributed variable ~ε2, which leads to the variable ζ2=ε1 focused by
Proposition 1, has the CDF shown in Eq. (8). This completes the proof.

2.2. Model properties

2.2.1. Characterization of different alternatives
This section illustrates the random components considered in the BW-

O model through comparison with a logit-based “superstar” effect model
based on transforming systematic disutility vi

0 ¼ 25 � vi (Chorus, 2018).
As shown in Fig. 1(a), the transformation of systematic utility enlarges
the difference in satisfaction but does not influence the random error
distribution of each alternative. This implies identical perception vari-
ances for both “superstar” and regular alternatives, which may be inad-
equate to capture the distinct scales of enlarged systematic disutility and
the additional uncertainty associated with the unprecedented features of
emerging mode.

On the other hand, the developed BW-Omodel is able to capture both
the “oddball” effect and the “superstar” effect by introducing an inde-
pendent random component for the emerging mode. Fig. 1(b) compares
the PDFs of the random components related to emerging and conven-
tional modes with the shape parameter β ¼ 3:7. Compared with ε1
following the Weibull distribution, the distribution of ζ2 is the product of
two IID Weibull distribution, whose PDF curve is more right-skewed and
has a heavier tail. The changed shape of PDF curve captures the reduced
disutility perception and higher uncertainty of the oddball alternative.
These characteristics imply the BW-O model is suitable to explicitly ac-
count for unique service features of the emerging mode in terms of higher
service quality and higher subjective uncertainty.

2.2.2. Perception variances
This section presents the perception variance of the BW-O model,

which indicates the subjective uncertainty associated with conventional
and emerging modes. The conventional mode shares the same perception
variance as in the binary weibit (BW) model, which can be expressed as
(Castillo et al., 2008):

DðV1Þ¼E2ðV1Þ �
�
Γð1þ 2=βÞ
Γ2ð1þ 1=βÞ � 1

	
(13)

where EðVkÞ denotes the mean disutility of alternative k, Γð �Þ is the
Gamma function.

Based on the assumption that ε2, and ~ε2 are independently Weibull
distributed with the same shape parameter β, the perception variance of
the emerging mode is
dv
�
¼ βzβ�1 �

n
0þ ez

β �E1

�
zβ
�� ½ez � vE1ðvÞ � ez � e�v�jþ∞

zβ

o
(12)



Fig. 1. Comparison of PDFs of random components considered in (a) “superstar” effect model and (b) proposed BW-O model.

Fig. 2. Comparison of the perception variance between (a) BW model and (b) BW-O model.
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DðV2Þ¼DðV2 � ~V2Þ¼E
�
V2

2� �E�~V2
2�� E2ðV2Þ �E2ð~V2Þ"� �2

#

¼E2ðV2Þ � Γð1þ 2=βÞ

Γ2ð1þ 1=βÞ � 1
(14)

Remark. The perception variances of both modes are proportional to
square of mean disutility. The proportionalities are dependent on the
shape parameter β. Different from the BWmodel where both alternatives
share the same proportionality, the BW-O model allows the oddball
alternative to have a larger proportionality than the regular alternative,
which indicates the higher subjective uncertainty associated with the
emerging mode.

Fig. 2 compares the perception variances in the BW and BW-Omodels
based on an example where conventional and emerging modes have the
same disutility of 10 and shape parameter β ¼ 3:7. The BWmodel fails to
distinguish the different uncertainties associated with different modes
Fig. 3. Comparison of the binary response curves between (a) th
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(Fig. 2(a)). On the other hand, the BW-O model allows for additional
subjective uncertainty for the emerging mode owing to the independent
random error assumed for the unprecedented service features (Fig. 2(b)).

2.2.3. Evaluation of the emerging mode choice probability
This section examines the proposedmodel in terms of its evaluation of

the emerging mode choice probability. The BW-O model is compared
with the widely used binary logit (BL) and BW models based on a binary
choice example, where the disutility of conventional mode is fixed at 5
and the disutility of emerging mode varies from 0 to 10. The shape
parameter of BW-O and BW models is β ¼ 3:7, the scale parameter of BL
model is θ ¼ 1.

As shown in Fig. 3(a), different from the symmetric BL model, the
BW-O model has an asymmetric choice probability function. The asym-
metry property is desirable for the class-imbalanced choice contexts,
where the preferred alternative tends to gain a larger increase/decrease
e BL and BW-O models and (b) the BW and BW-O models.



Table 1
Parameter definition and attribute levels.

Alternative

Attribute Taste
weight

Conventional
vehicle

Autonomous
vehicle

Changea

Purchase cost (1,000
USD)

�0.500 30 40 �10

Trip cost (per
commuting
direction)

(USD)

�1.000 1.50 1.25 �1.0

Penetration rate (%) �0.100 — 10 �20
Discount in
insurance (%)

�0.100 — 20 �10

Shape parameter for
Weibull
distribution

1.500 — — —

a It indicates that the changes in the explanatory attributes are distributed in
accordance with the truncated normal distribution.

Table 2
Estimation results of synthetic data (t-values in bracket).

Attribute Model

BW BW-O

Purchase cost �0.491 (�9.35) �0.699 (�6.85)
Trip cost �1.000 (fixed) �1.000 (fixed)
Additional cost for autonomous devices �0.299 (�6.22) �0.097 (�27.21)
Increase rate in driving insurance �0.707 (�8.98) �0.099 (�32.97)
Shape parameter for Weibull distribution 1.335 (54.83) 1.467 (60.68)
Model fit — —

Final log-likelihood �109,923.0 �109,594.8
BIC 219,894.8 219,238.5

Table 3
Simulated and predicted choice probabilities.

Predicted choice probability

Simulated choice
probability

BW BW-O

Conventional
vehicle

75.32% (150,643
observations)

75.49% (150,983
observations)

75.32% (150,644
observations)

Autonomous
vehicle

24.68% (49,357
observations)

24.51% (49,017
observations)

24.68% (49,356
observations)

RMSEa — 1.0752 0.0032

a RMSE was calculated based on the market share.

Table 4
The t-test results.

t-value BW BW-O

Purchase cost 0.17 �1.94
Additional cost for autonomous devices �4.14 0.82
Increase rate in driving insurance �7.71 0.44
Shape parameter for Weibull distribution �6.78 0.11

Table 5
Predictive ability of the different choice models on a hold-out sample.

BIC Correct choice rate

BW 40,665.26 98.36%
BW-O 31,394.42 99.97%
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in choice probability than the under-represented one even under an equal
decrease/increase in disutility (Brathwaite and Walker, 2018). This
property also implies that the proposed model has the potential to cap-
ture the “superstar” effect, as the adoption rate of emerging mode may
experience a more rapid increase during the transition to future trans-
portation systems (Song, 2019). Furthermore, the emerging mode tends
to have a higher choice probability in the BW-O model than in the BW
model (Fig. 3(b)), which is consistent with the “oddball” effect captured
by the logit-based oddball choice model (Recker, 1995).

3. Empirical experiments

In this section, we apply synthetic data analysis to examine the per-
formance of the proposed model and generalize the comparative analysis
for a population who experience additional subjective uncertainty to the
emerging modes.

3.1. Synthetic data generation

Following the classical methodology to generate synthetic data
(Williams and Ortúzar, 1982), we generated 200,000 independent ob-
servations. The data represents the consumer purchasing choice between
HDVs and AVs. Whereas the conventional HDV was described by pur-
chase cost and trip cost, the emerging AV was described by not only
purchase cost and trip cost but also penetration rate and parking cost
reduction rate reflecting the additional subjective uncertainty (Haboucha
et al., 2017; Jiang et al., 2019). Therefore, the AV is deemed as an oddball
option in this choice context. The attribute levels were built with random
draws from independent truncated normal distribution functions with
arbitrary lower and upper bounds based on mean of the levels. To
moderate the effect of randomness, we generated 10 normalized random
draws, and used the average value, following Jang et al. (2017). Detailed
information of attribute level and taste weights are presented in Table 1.
Everyone is assumed to behave to minimize disutility following the
proposed models.

3.2. Estimation results

The estimation results of both BW and BW-O models are presented in
Table 2. Due to the identification issue of shape parameter, the parameter
for trip cost was fixed, following Fosgerau and Bierlaire (2009). All
parameter estimates are statistically significant at the 95% level. The
results show that the BW-O model results in better model fit than BW
model in terms of the Bayesian Information Criterion (BIC). Also, the
result from the Likelihood Ratio (LR) test indicates that the BW-O model
is preferable at the 95% level to the BW model. These results may be
rooted in predicted market shares.

Table 3 shows how much the models predicted choice probability for
both alternatives. The simulated data indicates that 75.32% of the whole
observations choose the conventional vehicle, while 24.68% choose the
AV. The BW model over-predicts the market share for conventional ve-
hicles (75.49%) and under-predicts it for AVs (24.51%). On the other
hand, the BW-O model shows predictions very similar to the actual ob-
servations. In terms of Root Mean Square Error (RMSE), it is only 0.0005.
There was only one case where choice was predicted to differ from
observation. Compared to the predictions by the BW model, the BW-O
model shows higher probability for the emerging alternative (AV),
reflecting the ‘superstar’ effect (Chorus, 2018) consistent with the dis-
cussions in Section 2.2.3.

In addition, the BW-O model better recovers the “true” parameters
defined to build the simulated data. The results of the t-test with a null
hypothesis that the parameter estimates in the BW-O model are equal to
the “true” parameters indicate that null hypothesis cannot be rejected in
all cases at a 95% level of statistical significance (Table 4). On the other
hand, the test for the BW model reveals that the null hypothesis is
rejected in all cases except for the parameter for the purchase cost.
5

3.3. Validation results

To provide insight into the predictive power of the proposed BW-O
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model, we conducted the hold-out test. 80% of observations were used to
estimate the model, and the hold-out samples, which is 20% of obser-
vations were used to validate the model. Table 5 shows the results of the
hold-out test. First, consistent with the estimation results of whole ob-
servations based on the BIC, the BW-O model outperforms the BWmodel
with respect to the performance on a hold-out sample. Second, the BW-O
model has a higher correct choice rate. The BW-O model predicts choice
identically to the simulated observations in all but 11 cases of the 40,000
observations (99.97%). In the case of the BW model, it predicts wrong
choice, inconsistent with the simulated observations, in 457 cases;
therefore, the correct choice rate is 98.36%.

3.4. Result discussion

In both estimation and validation tests, the BW-O model is consis-
tently superior to the BW model in terms of model fit, parameter esti-
mation, model performance, and prediction correctness. This is
consistent with the theoretical advantages of the BW-O model illustrated
in Section 2, which indicates its ability to account for the unique attri-
butes of the emerging AV mode. The results also imply the importance of
addressing both the “oddball” and “superstar” effects in the choice con-
texts with emerging mobilities that have unprecedented service features.
The performance of the developed BW-Omodel is also verified in the case
study based on a real-world mode choice data set as presented in Ap-
pendix A, which shows similar results to those obtained from the syn-
thetic dataset.

4. Conclusions

This study develops a multiplicative random utility model focusing on
the binary choice between a regular and an oddball alternative. The
proposedmodel serves as a simplified and effective alternative to forecast
the adoption rates of emerging modes during the transition from current
to future transportation systems. The heterogeneous perceptions of travel
disutility can be inherently considered via the multiplicative disutility
function based on the Weibull distribution. The additional subjective
uncertainty associated with the unprecedented service features of the
emerging mode is explicitly modeled, while the closed-form probability
6

expression is retained. Empirical experiments based on a synthetic data
set are conducted to show the superiority of the proposed BW-O model
compared with the commonly used multiplicative random utility (BW)
model. The results indicate that the proposed model provides better
model fit and better predictive power when applied to the binary choice
context between AVs and HDVs.

Based on the proposed model, there are several potential directions
for future studies: (1) extend the proposed model to consider more than
one conventional and/or emerging modes; (2) integrate the proposed
model in the optimization of infrastructure planning, service design and
policy making for promoting emerging technologies; and (3) apply the
proposed model to other non-transportation choice contexts with class-
imbalanced choice sets, such as tourism destination choice, residential
location choice, and shoppers’ brand choice (Brathwaite and Walker,
2018; Chorus, 2018).

Replication and data sharing

The data used in this paper can be downloaded from https://transp-o
r.epfl.ch/pythonbiogeme/examples_swissmetro.html. The software used
in this paper can be accessed at https://www.apollochoicemodelling.c
om/and downloaded for use.
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Appendix A. Empirical experiment based on Swissmetro dataset

To verify the applicability of the developed BW-O model in real-world cases, we conduct an experiment based on the Swissmetro data set (Bierlaire
et al., 2001). The dataset comprises the stated preference survey data in the mode choice situation with an innovative Swissmetro service. This
experiment focuses on the binary mode choice between the conventional train and the innovative Swissmentro for transit passengers that do not have
access to car. The number of observations is 1,085. As shown in Table A1, the innovative Swissmetro mode is considered as an oddball alternative with
unique attributes (i.e., headway and availability of airline seats).
Table A1

Attributes of travel modes.

Attribute Travel mode
Train
 Swissmetro
Common attribute
 Train travel time (min)
 Swissmetro travel time (min)

Train travel cost (Swiss franc)
 Swissmetro travel cost (Swiss franc)
Unique attribute
 —
 Headway (min)

—
 Seat configuration
In model estimation, the coefficient of travel cost is normalized to minus unity and the shape parameters of the weibit-based models are estimated
(Fosgerau and Bierlaire, 2009). The estimation results from the BW and BW-O models are presented in Table A2.

https://transp-or.epfl.ch/pythonbiogeme/examples_swissmetro.html
https://transp-or.epfl.ch/pythonbiogeme/examples_swissmetro.html
https://www.apollochoicemodelling.com/
https://www.apollochoicemodelling.com/
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Table A2
Estimation Results of Swissmetro data (t-values in bracket).

Attribute Model
7

BW
 BW-O
Travel time
 �6.72 (�3.58)
 �2.10 (�2.06)

Travel cost
 �1.000 (fixed)
 �1.000 (fixed)

Frequency
 11.32 (1.85)
 0.4 (13.37)

Seat configuration
 59.44 (1.74)
 0.27 (1.84)

Shape parameter for Weibull distribution
 2.65 (10.08)
 1.95 (11.15)
Model fit

Final log-likelihood
 �512.75
 �505.84

AIC
 1033.51
 1019.68

BIC
 1053.38
 1039.56
The results show that the developed BW-O model has a higher log-likelihood and lower values of AIC and BIC, which are similar to those from the
synthetic data set described in Section 3. The model comparison results demonstrate that the BW-O model has a clear advantage compared to the basic
BW model, which can be attributed to the capability of simultaneously capturing both the “oddball” and “superstar” effects.
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