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Abstract
In medical and biological image processing, multi-dimensional images are
often corrupted by blur and Poisson noise. In this paper, we first propose a
new tensor logarithmic Schatten-p (t-log-Sp) low-rank measure and a tensor
iteratively reweighted Schatten-p minimization algorithm for minimizing such
measure. Furthermore, we adopt this low-rank measure to regularize the non-
local tensors formed by similar 3D image patches and develop a patch-based
non-local low-rank model. The data fidelity term of the model characterizes
the Poisson noise distribution and blur operator. The optimization model is fur-
ther solved by an alternating minimization technique combined with variable
splitting. Experimental results tested on 3D fluorescence microscope images
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show that the proposed patch-based tensor logarithmic Schatten-p minimiza-
tion method outperforms state-of-the-art methods in terms of image evaluation
metrics and visual quality.

Keywords: tensor low-rank measure, non-local low-rank regularization,
Poisson noise, deblurring

1. Introduction

Image degradation by blur and Poisson noise is inevitable in electronic microscopy [1], astro-
nomical imaging [2], single particle emission computed tomography (SPECT) [3, 4], positron
emission tomography (PET) [5], and so on. On one hand, images are convoluted by a point
spread function (PSF) of the imaging device or body movement caused by the respiratory
shake of the patient. On the other hand, due to the low photon count [6], images such as x-
ray tomography [7], fluorescence microscopes [1], astronomy [2], mammography [8], and
tomosynthesis [9], are often affected by Poisson noise.

For deconvoluting Poissonian images, a popular method is the Richardson–Lucy (RL)
algorithm [10], which calculated a Poisson maximum likelihood estimate. The ameliorated
RL (ARL) algorithm [11] accelerated the deblurring procedure of the RL algorithm. But the RL
and ARL algorithmsmay amplify the noise after several iterations. To efficiently restore blurry
Poissonian images, various optimization models with regularization terms were developed and
further solved by efficient algorithms. The most commonly used regularization is the total
variation (TV) regularization [12–19]. Dey et al [12] enhanced the RL algorithm by the TV
regularization; Harmany et al [13] solved the TV regularized model by sequential quadratic
approximations; Bonettini and Ruggiero [14] combined a Poisson log-likelihood data fidelity
term with the TV regularization term and used an alternating extragradient algorithm to solve
the model; Figueiredo and Bioucas-Dias [15] solved the model by the alternating direction
method of multipliers; Liyan et al [16] proposed a dictionary learning model in addition to
the TV regularization for Poissonian image restoration. Other regularizations such as wavelet
based regularizations [20–25] and Hessian Schatten norm regularization [26] were also pro-
posed. However, those regularization techniques are primarily designed for 2D images and
cannot be easily extended to 3D images.

Recent approaches for 3D Poissonian image deblurring converted Poisson noise into
Gaussian noise through some transformations and then restored the image via denoising
tools for Gaussian noise. Dupe et al [27] utilized the Anscombe variance stable transform-
ation (VST) [28] leading to Gaussian noise and denoised the blurry Gaussian image by a con-
vex optimization model; Azzari et al [29] deconvolved the blurry image by a linear regularized
inverse filter and then adopted VST and block matching 3D (BM3D) [30] or BM4D [31] to
remove Poisson noise. Besides these approaches, the methods based on the Poisson unbiased
risk estimate (PURE) also achieved great performance. The PURE-LET method that charac-
terized the deconvolution process as a linear combination of elementary functions (LET) was
proposed in [32] for 2D images and in [33] for 3D images. Each LET function contains a
Wiener filtering and wavelet-domain thresholding and the PURE is used to estimate the coef-
ficients of the linear combination.

In this paper, we propose a patch-based approach for 3D Poissonian image deblurring.
First, a new tensor low-rank measure called the t-log-Sp low-rank measure is proposed, and
an efficient algorithm with convergence results is also proposed for minimizing such measure.
Second, according to the image non-local self-similarity, we use the proposed tensor low-rank
measure to regularize the low-rankness of the tensors formed by similar 3D patches extracted
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from the 3D image. Then we further propose a non-local low-rank model with a data fidelity
term for Poissonian deblurring and solve it by an alternating minimization algorithm with a
proximal term. Lastly, we demonstrate the proposed method outperforms the state-of-the-art
methods in removing Poisson noise and deblurring of fluorescence microscope images.

The main contributions of this paper are as follows:

• We propose a matrix logarithmic Schatten-p (log-Sp) low-rank measure for 2D images,
which can reveal the weighting strategy used in the weighted Schatten p-norm minimiz-
ation [34]. Then we further extend the log-Sp low-rank measure to tensor log-Sp (t-log-Sp)
low-rank measure for 3D images. It can be demonstrated in this paper that the t-log-Sp meas-
ure is efficient and suitable for applications in 3D image restoration such as 3D Poissonian
image deblurring.

• For the proposed log-Sp and t-log-Sp measures, we introduce some properties and develop
reliable solvers for their minimization problems. In particular, we develop an iteratively
reweighted Sp minimization (IRSpM) algorithm for the log-Sp minimization and a tensor
IRSpM (t-IRSpM) algorithm for the t-log-Sp minimization. A convergence analysis of each
algorithm is provided in detail, showing any accumulation point generated by the algorithm
is a stationary point of the problem.

• We build a new patch-based non-local low-rank model using the proposed t-log-Sp measure
for 3D Poissonian image deblurring. This approach can achieve state-of-the-art performance
for 3D Poissonian image deblurring.

This paper is organized as follows. In section 2, we provide some tensor notations and defini-
tions, then introduce matrix and tensor logarithmic Schatten-p (log-Sp) low-rank measures and
their properties. To solve the matrix and tensor log-Sp minimization problems, in section 3 we
propose matrix and tensor IRSpM algorithms, respectively, along with convergence analysis.
We further develop our model for 3D Poissonian image deblurring in section 4. Experimental
results tested on 3D fluorescence microscope images are presented in section 5. Section 6
concludes this paper.

2. Tensor logarithmic Schatten-p low-rank measure

In this section, we first introduce the definitions and notations of tensors including tensor sin-
gular value decomposition (t-SVD). Then we propose a t-log-Sp low-rank measure and present
its properties.

2.1. Preliminaries on tensors

Tensors are represented by bold calligraphy letters, e.g. X ; matrices are represented by bold
capital letters, e.g. X; vectors are represented by bold lowercase letters, e.g. x; and scalars
are represented by lowercase letters, e.g. x. For an N-order tensorX ∈ Rn1×n2×···×nN , the vec-
torization of X is denoted as x= vec(X ) ∈ Rn1n2...nN , and the jth element of x is equal to

the (i1, i2, . . . , iN)th element ofX with j = i1 +
∑N

s=2

(
(is− 1)

∏s−1
m=1 nm

)
. The mode-k tensor

matricization ofX is denoted as X(k) ∈ Rnk×
∏

s̸=k ns , and the (ik, j)th element of X(k) is equal to

the (i1, i2, . . . , iN)th element of X , where j = 1+
∑N

s=1,s̸=k(is− 1)Js with Js =
∏s−1

m=1,m ̸=k nm.
And the operator ‘unfold’ and its inverse operator ‘fold’ are defined by X(k) = unfold(k)(X )
and X = fold(k)(X(k)), respectively.
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For a three-order tensor X ∈ Rn1×n2×n3 , xi j k denotes the (i, j,k)th entry of X , X(k) denotes
the kth frontal sliceX (:, :,k), andX denotes the discrete Fourier transform (DFT) ofX along

the 3rd dimension, i.e. X = fft(X , [ ],3). This also implies X = ifft(X , [ ],3). X
(i)

denotes the
ith frontal slice of X . The block diagonal matrix of X is defined as

bdiag
(
X
)
=


X
(1)

X
(2)

. . .

X
(n3)

 ,

and the block circulant matrix of X is defined as a matrix of size n1n3 × n2n3 having the
following form:

bcirc(X ) =


X(1) X(n3) . . . X(2)

X(2) X(1) . . . X(3)

...
...

. . .
...

X(n3) X(n3−1) . . . X(1)

 .
As for block unfolding X and its inverse operation, the operations are defined as follows:

bvec(X ) =


X(1)

X(2)

...
X(n3)

 , bfold(bvec(X )) =X .

For a three-order tensor X ∈ Rn1×n2×n3 , the Frobenius norm of X is ∥X∥F =
√∑

i j k |xi j k|
2

and the tensor transpose of X is X T ∈ Rn2×n1×n3 defined as

X T = bfold

([
X(1),X(n3),X(n3−1), . . . ,X(2)

]T)
.

Using the tensor notations above, we present the definition of a tensor product.

Definition 2.1 (t-product, [35]). LetX ∈ Rn1×n2×n3 and Y ∈ Rn2×l×n3 . Then the t-product of
X and Y is Z ∈ Rn1×l×n3 defined as:

Z =X ∗Y = bfold(bcirc(X ) · bvec(Y)) .

Note that if n3 = 1, the operator ∗ reduces to matrix multiplication.

In fact, the t-product can also be calculated via the following equivalence under the DFT:

Z
(i)

= X
(i)
Y
(i)
, (1)

that is, the ith frontal slice of the DFT of the t-product is equal to the matrix product of the ith
frontal slices of the DFT of X and Y .

Definition 2.2 (identity tensor, [35]). The identity tensor I ∈ Rn×n×n3 is the tensor whose
first frontal slice is the n× n identity matrix, and other frontal slices are all zeros.
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Definition 2.3 (orthogonal tensor, [35]). A tensor Q ∈ Rn×n×n3 is orthogonal if it satisfies
QTQ=QQT = I .

Definition 2.4 (F-diagonal tensor, [35]). A tensor is F-diagonal if each frontal slice is
diagonal.

Note that each frontal slice of I is the identity matrix and each frontal slide ofQ, whereQ
is orthogonal, is an orthogonal matrix. Next, we present the definition of a t-SVD and several
tensor low-rank measures.

Theorem 2.5 (t-SVD, [35]). Let X ∈ Rn1×n2×n3 . Then there exist U ∈ Rn1×n1×n3 , S ∈
Rn1×n2×n3 and V ∈ Rn2×n2×n3 such that:

X = U ∗S ∗VT, (2)

where U and V are orthogonal, and S is a frontal-slice-diagonal tensor.

Definition 2.6 (tensor tubal rank, [36]). For a 3D tensorX ∈ Rn1×n2×n3 , the tensor tubal rank
of X , denoted as rankt(X ), is defined as the number of non-zero tubes of S where S is from
the t-SVD of X = U ∗S ∗VT. That is,

rankt (X ) = #{i : S (i, i, :) ̸= 0} .

The tensor tubal rank is a tensor low-rank measure based on t-SVD, which counts the num-
ber of non-zero tubes in t-SVD. In fact, the tensor tubal rank only depends on the first frontal
slice of S, that is, rankt(X ) = #{i : S(i, i,1) ̸= 0}. Since the tensor tubal rank minimization
is NP-hard, several tensor low-rank measures were proposed to approximate the tensor tubal
rank.

Definition 2.7 (tensor nuclear norm, [37]). Let X = U ∗S ∗VT be the t-SVD of X ∈
Rn1×n2×n3 . Then the tensor nuclear norm is defined as

∥X∥∗ =
n3∑
i=1

S (i, i,1) .

The tensor nuclear norm can also be computed via the frontal slices of X , that is,

∥X∥∗ =
1
n3

n3∑
i=1

∥X(i)∥∗.

As the frontal slices X
(i)

are matrices, the matrix nuclear norm can be replaced by other non-
convex surrogates of the matrix rank. For example, the tensor p-shrinkage nuclear norm [38]
replaces the nuclear norm by the Schatten-p quasi-norm; the tensor weighted Schatten-p
norm [39] uses the weighted Schatten-p norm, and the log-based tensor nuclear norm [40]
uses the log-det function.

2.2. Tensor logarithmic Schatten-p low-rank measure and its properties

Before we propose the tensor log-Sp low-rank measure, we first define a new matrix log-Sp
low-rank measure as follows.
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Definition 2.8 (log-Sp). GivenX ∈ Rm×n, the matrix logarithmic Schatten-p (log-Sp) low-rank
measure of X is defined as

Mlog,Sp (X) =
min{m,n}∑

j=1

log
(
σpj (X)+ ε

)
, (3)

where ε> 0, 0< p⩽ 1, and σj (X) represents the jth largest singular value of X.

If p= 1, then this log-Sp low-rank measureMlog,Sp(·) reduces to the log-det function [41],
which is a non-convex surrogate of the matrix rank. If 0< p< 1, due to the non-convexity of
the ℓp norm, Mlog,Sp(·) is also a non-convex relaxation of the matrix rank, and in fact it can
achieve a better approximation than the Sp quasi-norm [42] or log-det function.

Next, we propose a new tensor low-rank measure called the t-log-Sp low-rank measure,
which adopts the matrix log-Sp low-rank measure to characterize the low-rankness of the

frontal slices X
(i)
. The t-log-Sp low-rank measure also denoted as Mlog,Sp(·) is defined as

follows.

Definition 2.9 (t-log-Sp). Given X ∈ Rn1×n2×n3 , the tensor logarithm Schatten-p (t-log-Sp)
low-rank measure of X is defined as

Mlog,Sp (X ) =
1
n3

n3∑
i=1

Mlog,Sp

(
X
(i)
)
=

1
n3

n3∑
i=1

min{n1,n2}∑
j=1

log
(
σpj

(
X
(i)
)
+ ε
)
, (4)

where ε> 0 and 0< p⩽ 1. When n3 = 1, the t-log-Sp low-rank measure reduces to the matrix
log-Sp low-rank measure.

Proposition 2.10 (orthogonal invariance). The following assertions hold:

(i) For a given matrix X ∈ Rm×n, if U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, then

Mlog,Sp (X) =Mlog,Sp

(
UXVT

)
.

(ii) For a given tensor X ∈ Rn1×n2×n3 , if U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal
tensors, then

Mlog,Sp (X ) =Mlog,Sp

(
U ∗X ∗VT) .

Proof. (i) It immediately follows from σj(X) = σj(UXV
T), j = 1,2, . . . ,min{m,n}.

(ii) LetZ = U ∗X ∗VT. By equation (1), we have Z
(i)

= U
(i)
X
(i)
(V

(i)
)T, whereU

(i)
and V

(i)

are orthogonal matrices. According to (i), we have (ii) holds.

As shown in proposition 2.10, both the matrix and tensor log-Sp low-rank measures
Mlog,Sp(·) satisfy the orthogonal invariance property. This property is useful when we min-
imize these measures together with another function that also has an orthogonal invariance
property. For example, the log-Sp minimization problem that will be discussed in the next
section may be reduced to a minimization problem only in terms of the singular values using
this orthogonal invariance property.
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3. Tensor iteratively reweighted Sp minimization algorithm for the t-log-Sp
minimization

For a 3D tensor Y ∈ Rn1×n2×n3 , the t-log-Sp minimization problem is written as

min
X

1
2
∥X −Y∥2F+ τMlog,Sp (X ) , (5)

where τ > 0. By the definition of the t-log-Sp low-rank measure, Mlog,Sp(·) is separable in
terms of the frontal slices of X . Then solving the t-log-Sp minimization problem (5) is equi-

valent to solving for each frontal slice X
(i)

via the following problem

min
X(i)

1
2
∥X(i) −Y

(i)∥2F+ τMlog,Sp

(
X
(i)
)
. (6)

In section 3.1 we will propose an IRSpM algorithm for the log-Sp minimization problem
as in (6), and conduct in section 3.2 a convergence analysis for IRSpM algorithm. Then in
section 3.3, we summarize the tensor IRSpM (t-IRSpM) algorithm and its convergence analysis
for solving the t-log-Sp minimization problem (5).

3.1. Iteratively reweighted Sp minimization algorithm for the log-Sp minimization

We consider the log-Sp minimization problem as follows

min
X∈Rm×n

1
2
∥X−Y∥2F+ τMlog,Sp (X) , (7)

where Y ∈ Rm×n is the given data, X ∈ Rm×n is the unknown to be computed, and τ > 0. Note

that X and Y can represent X
(i)

and Y
(i)
, respectively. By definition, the log-Sp low-rank meas-

ure can be written as

Mlog,Sp (X) =
min{m,n}∑

j=1

g
(
σpj (X)

)
,

where g : [0,∞)→ R is defined by g(t) = log(t+ ε). The function g is monotonically increas-
ing, concave, and continuously differentiable. Also, g has a Lipschitz continuous gradient with
constant Lg > 0, i.e.

|g ′(s)− g ′(t)|⩽ Lg|s− t|, ∀s, t ∈ [0,∞).

To solve the log-Sp minimization as in (7), we propose an iteratively reweighted Sp minim-
ization (IRSpM) algorithm as follows

Xk+1 = argmin
X∈Rm×n

µ

2

∥∥∥∥X−
[
Xk− 1

µ

(
Xk−Y

)]∥∥∥∥2
F

+ τ
l∑

j=1

ωkj σ
p
j (X) , (8)

where wkj = g ′
(
σpj (X

k)
)
= 1

σp
j (X

k)+ε
, l=min{m,n} and µ> 1.

Before solving equation (8), we recall some notations on the singular value decom-
position (SVD). Given a vector x ∈ Rl, let Diag(x) denote the l× l diagonal matrix with
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the jth diagonal element as xj. Given a matrix X ∈ Rm×n, the SVD of X is computed as
X= UΣVT, where U ∈ Rm×l and V ∈ Rn×l are orthogonal matrices with UTU= VTV= I,
and Σ ∈ Rl×l is a diagonal matrix, l=min{m,n}. In particular, Σ= Diag(σ(X)), where
σ(X) := [σ1(X),σ2(X), · · · ,σl(X)]T and σj(X) is the jth largest singular value of X.

Since equation (8) can be viewed as a weighted Sp minimization problem, we recall some
preliminary results in [34].

Lemma 3.1 ([34]). For the following optimization problem:

min
δ⩾0

f(δ) =
1
2
(δ−σ)

2
+wδp (9)

with w⩾ 0 and 0< p⩽ 1, there exists a specific threshold:

τGSTp (w) = (2w(1− p))
1

2−p +wp(2w(1− p))
p−1
2−p ,

and we have the following conclusions.

(i) When |σ|⩽ τGSTp (w), f has an optimal solution TGSTp (σ,w) = 0;
(ii) When |σ|> τGSTp (w), f has one unique optimal solution TGSTp (σ,w) = sign(σ)SGSTp (|σ|,w)

and SGSTp (|σ|,w) can be obtain by solving

SGSTp (|σ|,w)− |σ|+wp
(
SGSTp (|σ|,w)

)p−1
= 0. (10)

The generalized soft-thresholding (GST) algorithm proposed in [43] for finding an optimal
solution TGSTp (σ,w) of problem (9) is summarized in algorithm 1.

Algorithm 1. Generalized soft-thresholding (GST) [43].

Input: σ, w, p, J

1: τGSTp (w) = (2w(1− p))
1

2−p +wp(2w(1− p))
p−1
2−p ;

2: if |σ|⩽ τGSTp (w) then
3: TGSTp (σ,w) = 0;
4: else
5: k= 0, δk = |σ|;
6: for k= 0,1, . . . ,J do
7: δk+1 = |σ| −wp(δk)p−1;
8: k← k+ 1 ;
9: end for

10: TGSTp (σ,w) = sign(σ)δk.
11: end if
Output: TGSTp (σ,w)

Theorem 3.2 ([34]). Let Y ∈ Rm×n and τ > 0. And let w= [w1, . . . ,wl]T ∈ Rl such that 0⩽
w1 ⩽ w2 ⩽ · · ·⩽ wl, l=min{m,n}. Then a global optimal solution for the following problem

min
X∈Rm×n

1
2
∥X−Y∥2F+ τ

l∑
j=1

wjσ
p
j (X)

8
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is given by

Γτw (Y) = UDiag(γ)VT,

where Y= UΣVT is the SVD of Y, Σ= Diag(σ(Y)), and γ = [γ1,γ2, . . . ,γl]
T ∈ Rl satisfies

γj = TGSTp (σj(Y), τwj), i = 1,2, . . . , l. In particular, γ also satisfies γ1 ⩾ γ2 ⩾ · · ·⩾ γl ⩾ 0.

For the IRSpM algorithm given in equation (8), it can be easily verified that wk =
[wk1,w

k
2, . . . ,w

k
l ]
T ∈ Rl satisfies 0⩽ wk1 ⩽ wk2 ⩽ . . .⩽ wkl . Then a global optimal solution of (8)

can be efficiently solved according to theorem 3.2 as follows

Xk+1 = Γ τ
µw

k

(
Xk− 1

µ

(
Xk−Y

))
. (11)

We summarize the IRSpM algorithm in algorithm 2.

Algorithm 2. IRSpM algorithm for solving the log-Sp minimization problem (7).

Input: Y and parameter τ
1: Initialize X0

2: Set k= 0, µ> 1 and w0
j =

1
σj(X0)p+ε

3: while stopping criterion is not satisfied do
4: Compute the SVD of Xk− 1

µ
(Xk−Y), i.e. Xk− 1

µ
(Xk−Y) = Uk+1Σk+1(Vk+1)T

5: for j = 1,2, . . . , l

6: γk+1
j = TGSTp

(
Σk+1
jj , τ

µ
wkj

)
7: wk+1

j = 1
(γk+1

j )p+ε

8: end for
9: Xk+1 = Uk+1Diag(γk+1)(Vk+1)T

10: k← k+ 1.
11: end while
Output: Xk

Remark 3.3. If we initialize X0 by X0 = Y, the IRSpM algorithm can be simplified and only
requires one SVD operation. Suppose Y= UΣVT is the SVD of Y, where Σ= Diag(σ(Y)).
Then the sequence {Xk} generated by the IRSpM algorithm in (11) can be computed by

Xk+1 = UDiag
(
γk+1

)
VT,

where γk+1 = [γk+1
1 ,γk+1

2 , . . . ,γk+1
l ]T ∈ Rl, l=min{m,n}, satisfies that γ0 = σ(Y) and for

each j

γk+1
j = TGSTp

(
γkj −

1
µ

(
γkj −σj (Y)

)
,
τ

µ
wkj

)
, k= 0,1, . . . .

3.2. Convergence analysis of the IRSpM algorithm

We can prove that any accumulation point of the sequence {Xk} generated by algorithm 2 is a
stationary point of the objective function of the log-Sp minimization as in (7).

First, we recall some definitions of subdifferentials and some results on computing the sub-
differential of singular value functions introduced in [44].

9
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Definition 3.4 (subdifferentials). Let f : Rd → (−∞,+∞] be a proper and lower semicon-
tinuous function.

(1) For a given x ∈ dom∂f := {x ∈ Rd : ∂f(x) ̸= ∅}, the Fréchet subdifferential of f at x, writ-
ten ∂̂f(x), is the set of all vectors u ∈ Rd which satisfy

liminf
y̸=x y→x

f(y)− f(x)−⟨u,y− x⟩
∥y− x∥

⩾ 0.

When x /∈ dom f, we set ∂̂f(x) = ∅.
(2) The subdifferential of f at x ∈ Rd, written ∂f(x), is defined through the following closure

process

∂f(x) :=
{
u ∈ Rd : ∃xk → x, f(xk)→ f(x) and uk ∈ ∂̂f(xk)→ u as k→∞

}
.

Definition 3.5. A function f : Rn → R is absolutely symmetric if

f(x1,x2, . . . ,xn) = f
(
|xπ(1)|, |xπ(2)|, . . . , |xπ(n)|

)
,

for any permutation π.

Definition 3.6. A function F : Rm×n → R is a singular value function if F(X) = ( f ◦σ)(X),
where f : Rl → R is an absolutely symmetric function, l=min{m,n}.

Lemma 3.7 ([44]). Let f be an absolutely symmetric function, then the subdifferential of the
corresponding singular value function f ◦σ at a matrix X is given by the formula

∂ ( f ◦σ)(X) = UDiag(∂f [σ (X)])VT

with X= UΣVT being the SVD of X.

The log-Sp low-rank measure can be viewed as a singular value function and its subdif-
ferential can be computed by lemma 3.7. However, it is still challenging to find an explicit
expression for the subdifferential of the log-Sp low-rank measure due to the non-smoothness
of the Sp quasi-norm.

Second, motivated by the class of first-order stationary points for ℓp regularized low-rank
approximation problems introduced in [42], we define a class of first-order stationary points
for the log-Sp minimization problem (7) using

Õ (X) :=
{(
Ũ, Ṽ

)
∈ Rm×r×Rn×r : Ũ

T
Ũ= Ṽ

T
Ṽ= I and X= ŨDiag(σ̃ (X)) Ṽ

T
}
,

where σ̃(X) := [σ1(X),σ2(X), . . . ,σr(X)]T and r= rank(X). Note that Õ(X) is the set of all
such pairs (Ũ, Ṽ) of the rank reduced SVD of X.

Definition 3.8. A point X∗ is a first-order stationary point of problem (7) if

0 ∈
{
Ũ
T
(X∗ −Y) Ṽ+ τpDiag(d) :

(
Ũ, Ṽ

)
∈ Õ (X∗) and dj = σp−1

j (X∗)
(
σpj (X

∗)+ ε
)−1

}
.

(12)

The next theorem shows that a local minimizer of problem (7) is a first-order stationary
point.

10
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Theorem 3.9. Suppose that X∗ is a local minimizer of problem (7). Then X∗ is a first-order
stationary point of problem (7), that is, (12) holds at X∗.

Proof. Let X∗ = UDiag(σ̃(X∗))VT for some (U,V) ∈ Õ(X∗) and r= rank(X∗). Define φ :
Rr×r → R as

φ(Z) =
1
2

∥∥X∗ +UZVT−Y
∥∥2
F
+ τMlog,Sp

(
X∗ +UZVT

)
=

1
2

∥∥X∗ +UZVT−Y
∥∥2
F
+ τMlog,Sp (Diag(σ̃ (X∗))+Z) .

By theorem 7.1 in [44] and the definition of Õ(·), the subdifferential of φ(·) at Z= 0 is given
by

∂φ(0) =
{
UT (X∗ −Y)V+ τpÛDiag(d) V̂

T
:(

Û, V̂
)
∈ Õ (Diag(σ̃ (X∗))) and dj = σp−1

j (X∗)
(
σpj (X

∗)+ ε
)−1

}
.

Since 0 is a local minimizer of φ(·), we have 0 ∈ ∂φ(0). Hence, there exists some (Û, V̂) ∈
Õ (Diag(σ̃(X∗))) such that

UT (X∗ −Y)V+ τpÛDiag(d) V̂
T
= 0,

where dj = σp−1
j (X∗)(σpj (X

∗)+ ε)−1, j = 1,2, . . . ,r. Upon pre- and post-multiplying the

above equation by Û
T
and V̂, and using Û

T
Û= V̂

T
V̂= I, we obtain

Ũ
T
(X∗ −Y) Ṽ+ τpDiag(d) = 0,

where Ũ= UÛ and Ṽ= VV̂. Since (U,V) ∈ Õ(X∗) and (Û, V̂) ∈ Õ (Diag(σ̃(X∗))), then we
have

ŨDiag(σ̃ (X∗)) Ṽ
T
= U

(
ÛDiag(σ̃ (X∗)) V̂

T
)
VT = UDiag(σ̃ (X∗))VT = X∗.

Hence, (Ũ, Ṽ) ∈ Õ(X∗) and (12) holds.

Third, we show some convergence results on the sequence {Xk} generated by the proposed
IRSpM algorithm in algorithm 2. The objective function of (7) evaluated at the sequence {Xk}
is strictly decreasing and any accumulation point of {Xk} is a stationary point.

Proposition 3.10. LetΨ denote the objective function of the log-Sp minimization problem (7).
Suppose that {Xk} is a sequence generated by algorithm 2 and µ> 1. Then we have

Ψ
(
Xk
)
−Ψ

(
Xk+1)⩾ µ− 1

2
∥Xk+1 −Xk∥2F. (13)

11
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Proof. By the descent lemma [45] and the concavity of the function g, we obtain

Ψ
(
Xk
)
−Ψ

(
Xk+1)

=
1
2
∥Xk−Y∥2F−

1
2
∥Xk+1 −Y∥2F+ τ

l∑
j=1

[
g
(
σpj
(
Xk
))

− g
(
σpj
(
Xk+1))]

= ⟨Xk−Y,Xk−Xk+1⟩− 1
2
∥Xk+1 −Xk∥2F+ τ

l∑
j=1

[
g
(
σpj
(
Xk
))

− g
(
σpj
(
Xk+1))]

⩾ ⟨Xk−Y,Xk−Xk+1⟩− 1
2
∥Xk+1 −Xk∥2F+ τ

l∑
j=1

wkj
(
σpj
(
Xk
)
−σpj

(
Xk+1)) , (14)

where wkj = g ′
(
σpj (X

k)
)
and l=min{m,n}. Note that Xk+1 is a minimizer of (8), and thus we

have

⟨Xk−Y,Xk+1 −Xk⟩+ µ

2
∥Xk+1 −Xk∥2F+ τ

l∑
j=1

wkjσ
p
j

(
Xk+1)

⩽ ⟨Xk−Y,Xk−Xk⟩+ µ

2
∥Xk−Xk∥2F+ τ

l∑
j=1

wkjσ
p
j

(
Xk
)

= τ
l∑

j=1

wkjσ
p
j

(
Xk
)
.

That is,

⟨Xk−Y,Xk−Xk+1⟩+ τ
∑
j

wkj
(
σpj
(
Xk
)
−σpj

(
Xk+1))⩾ µ

2

∥∥Xk+1 −Xk
∥∥2
F
. (15)

Then substituting (15) into (14) yields (13).

Theorem 3.11. Let Ψ denote the objective function of the log-Sp minimization problem (7).
Suppose that {Xk} is a sequence generated by Algorithm 2 and µ> 1. Then the following
assertions hold:

(i) The sequence {Xk} is bounded.
(ii) lim

k→∞
∥Xk+1 −Xk∥F = 0.

(iii) Any accumulation point of {Xk} is a stationary point of Ψ.

Proof. (i) It follows from proposition 3.10 that the decreasing sequence {Ψ(Xk)} is bounded
above by Ψ(X0). Also, Ψinf = infXΨ(X)>−∞. Then assertion (i) holds since Ψ is
coercive.

(ii) Summing (13) from k= 0 to k=K, we have

K∑
k=0

∥Xk+1 −Xk∥2F ⩽
2

µ− 1

(
Ψ
(
X0)−Ψ

(
XK+1))⩽ 2

µ− 1

(
Ψ
(
X0)−Ψinf

)
<+∞.

12
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Taking K→∞, we have

∞∑
k=0

∥Xk+1 −Xk∥2F <+∞.

This yields assertion (ii).
(iii) Let X∗ be an accumulation point of the sequence {Xk} and let γ∗ ∈ Rl be a vector such

that γ∗ = σ(X∗). Assume that a subsequence {Xki} of {Xk} converges to X∗ as i→∞.
Due to assertion (ii), we also have Xki+1 → X∗ as i→∞. Then σ(Xki)→ σ(X∗) and
σ(Xki+1)→ σ(X∗), i.e. γki → γ∗ and γki+1 → γ∗, as i→∞.

Let r= rank(X∗). Then there exists some I0 > 0 such that γki+1
j > 0 for all j⩽ r and i> I0.

And γki+1
j > 0 implies that γkij − 1

µ (γ
ki
j −σj(Y))> τGSTp ( τµw

ki
j ) and

γki+1
j = TGSTp

(
Σki+1
jj ,

τ

µ
wkij

)
= SGSTp

(
Σki+1
jj ,

τ

µ
wkij

)
.

By lemma 3.1, the following equation holds for all j⩽ r and i> I0,

γki+1
j −Σki+1

jj +
τ

µ
wkij p

(
γki+1
j

)p−1
= 0. (16)

Denote γ̃ki+1 := [γki+1
1 ,γki+1

2 , . . . ,γki+1
r ]T and denote dki+1 := [dki+1

1 ,dki+1
2 , . . . ,dki+1

r ]T with

dki+1
j = wkij (γ

ki+1
j )p−1 = ((γkij )

p+ ε)−1(γki+1
j )p−1. Let Σ̃

ki+1
denote the r× r matrix formed

by the first r rows and first r columns of Σki+1, let Ũ
ki+1

denote the m× r matrix formed by

the first r columns of Uki+1 and let Ṽ
ki+1

denote the n× r matrix formed by the first r columns
of Vki+1. Then from equation (16), we obtain

Ũ
ki+1

Diag
(
γ̃ki+1)(Ṽki+1

)T
− Ũ

ki+1
Σ̃
ki+1

(
Ṽ
ki+1
)T

+
τp
µ
Ũ
ki+1

Diag
(
dki+1

)(
Ṽ
ki+1
)T

= 0.

We observe that Ũ
ki+1

Diag(γ̃ki+1)(Ṽ
ki+1

)T = Uki+1Diag(γki+1)(Vki+1)T−∑l
j=r+1 γ

ki+1
j Uki+1

j (Vki+1
j )T = Xki+1 −

∑l
j=r+1 γ

ki+1
j Uki+1

j (Vki+1
j )T, where Uki+1

j and Vki+1
j

denote the jth column of Uki+1 and Vki+1, respectively. Also, Ũ
ki+1

Σ̃
ki+1

(Ṽ
ki+1

)T =

Uki+1Σki+1(Vki+1)T−
∑l

j=r+1Σ
ki+1
jj Uki+1

j (Vki+1
j )T = Xki − 1

µ (X
ki −Y)

−
∑l

j=r+1Σ
ki+1
jj Uki+1

j (Vki+1
j )T. These imply that

µ
(
Xki+1 −Xki

)
+
(
Xki −Y

)
+µ

l∑
j=r+1

(
Σki+1
jj − γki+1

j

)
Uki+1
j

(
Vki+1
j

)T
+ τpŨ

ki+1
Diag

(
dki+1

)(
Ṽ
ki+1
)T

= 0.

Upon pre- and post-multiplying the equation above by (Ũ
ki+1

)T and Ṽ
ki+1

and using

(Ũ
ki+1

)TŨ
ki+1

= I and (Ṽ
ki+1

)TṼ
ki+1

= I, we obtain for all i> I0

µ
(
Ũ
ki+1
)T (

Xki+1 −Xki
)
Ṽ
ki+1

+
(
Ũ
ki+1
)T (

Xki −Y
)
Ṽ
ki+1

+ τpDiag
(
dki+1

)
= 0. (17)

13
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Next, it can be easily verified that {Ũki+1} and {Ṽki+1} are bounded. Considering a con-

vergent subsequence if necessary, without loss of generality we assume that Ũ
ki+1 → Ũ

∗
and

Ṽ
ki+1 → Ṽ

∗
. Then taking the limit of both sides of equation (17) as i→∞ and using assertion

(ii), we have

(
Ũ

∗)T
(X∗ −Y) Ṽ

∗
+ τpDiag(d∗) = 0,

where d∗ = [d∗1 ,d
∗
2 , . . . ,d

∗
r ]
T ∈ Rr such that d∗j = (γ∗

j )
p−1((γ∗

j )
p+ ε)−1 = σp−1

j (X∗)(σpj (X
∗)+

ε)−1. Since (Ũ
ki+1

)TŨ
ki+1

= I and (Ṽ
ki+1

)TṼ
ki+1

= I, we have (Ũ
∗
)TŨ

∗
= I and (Ṽ

∗
)TṼ

∗
= I.

Since γ∗
j = 0 for all j> r, we have X∗ = Ũ

∗
Diag(γ̃∗)(Ṽ

∗
)T, that is, (Ũ

∗
, Ṽ

∗
) ∈ Õ (X∗).

Therefore, X∗ is a stationary point of Ψ.

3.3. The tensor IRSpM algorithm and its convergence analysis for the t-log-Sp minimization

As mentioned in the beginning of section 3, solving the t-log-Sp minimization (5) is equivalent

to solving a log-Spminimization (6) for each frontal sliceX
(i)
. Then a tensor IRSpM (t-IRSpM)

algorithm can be proposed for the t-log-Sp minimization using the IRSpM algorithm for the
log-Sp minimization.We summarize the t-IRSpM algorithm in algorithm 3 and its convergence
results in theorem 3.13.

Algorithm 3. The t-IRSpM Algorithm for solving the t-log-Sp minimization problem (5).

Input: Y and parameter τ
1: Set initialization denoted as Z
2: Y = fft(Y, [ ],3)
3: Z = fft(Z, [ ],3)
4: for i = 1,2, . . . ,n3 do

5: X
(i)

= IRSpM(Y
(i)
, τ) initialized with Z

(i)
.

6: end for
7: X = ifft(X , [ ],3)
Output:X

Definition 3.12. A point X ∗ is a first-order stationary point of problem (5) if for i =
1,2, . . . ,n3,

0 ∈
{
Ũ
T
(
X∗

(i) −Y
(i)
)
Ṽ+ τpDiag(d) :

(
Ũ, Ṽ

)
∈ Õ

(
X∗

(i)
)

and dj = σp−1
j

(
X∗

(i)
)(

σpj

(
X∗

(i)
)
+ ε
)−1

}
.

(18)

To present the convergence results of the t-IRSpM algorithm, we denote {X(i)
k } as the

sequence generated by IRSpM in the fifth line in Algorithm 3 and denoteX k = ifft(X k, [ ],3),

where the i-frontal slice of X k is X
(i)
k .

14
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Theorem 3.13. Let Φ denote the objective function of the log-Sp minimization problem (7).
Suppose that {X k} is a sequence generated by Algorithm 3. Then the following assertions
hold:

(i) Φ(X k)−Φ(X k+1)⩾ µ−1
2 ∥X k+1 −X k∥2F, where µ> 1 is an IRSpM algorithm

parameter.
(ii) The sequence {X k} is bounded.
(iii) lim

k→∞
∥X k+1 −X k∥F = 0.

(iv) Any accumulation point of {X k} is a stationary point of Φ.

Proof. Let Ψi(X
(i)
) denote the objective function of problem (6). Note Φ(X ) =

1
n3

∑n3
i=1Ψi(X

(i)
) and ∥X k+1 −X k∥F = 1

n3

∑n3
i=1 ∥Xk+1

(i) −Xk
(i)∥2F. All the assertions

immediately hold.

4. Patch-based approach for 3D Poissonian image deblurring

In this section, we propose a non-local low-rank model for 3D Poissonian image deblurring by
exploiting low-rank priors of the non-local similar patch groups extracted from the observed
images.

4.1. Problem statement

For a 3D image x ∈ RN, the image degradation model under Poisson noise can be written as

y= P(Hx) , (19)

where x denotes an image that is not degraded, H ∈ Rn×n denotes a matrix operation of the
convolution of a PSF, P(·) denotes a process in which the image is contaminated with Poisson
noise, and y denotes a degraded image. If H is an identity matrix, the model becomes a simple
denoising model. In this paper, we consider periodic boundary conditions and then the blurring
operator H keeps the block-cyclic structure.

Since the variance of the Poisson noise is proportional to the intensity of the signal in each
pixel, more precisely, assuming that the observed value of image f at position i is independent,
we can write

P(y |Hx) =
∏
i

e−(Hx)i
(
(Hx)i

)yi
yi!

,

where yi denotes the pixel value of the observed image at each position i, and x denotes the
original clear image. Using the Bayesian framework, Triet et al [46]. proposed a minimization
model as follows for 2D Poissonian image deblurring

min
x

τ⟨Hx− y logHx,1⟩+ ∥∇x∥1, (20)

where 1 denotes the vector whose entries are all ones, the logarithm and multiplication with y
are component-wise operations, and τ > 0 is a parameter. The first term of model (20) is the
data fidelity term derived from the log-likelihood function of the Poisson distribution, and the
second term is the classical discrete TV regularization [47] defined as the composition of the
l1 norm and the first-order difference operator∇.
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For 3D Poissonian image deblurring, the data fidelity term of model (20) for 2D Poissonian
image deblurring can also be used. However, due to the ill-posedness of the problem, TV
regularization-based methods have some limitations in preserving the image textures, espe-
cially for 3D images. Therefore, we propose a non-local low-rank model based on the t-log-Sp
low-rank measure.

4.2. Non-local low-rank model for 3D images

Non-local self-similarity for 2D images indicates that for each patch of the 2D image, sim-
ilar patches can be found in the image and grouped to obtain a low-rank matrix. And using
this property, non-local low-rank models have been developed for various applications in
image restoration [48–54]. For example, weighted nuclear norm minimization [52] has been
applied to image denoising [52], image deblurring [53], Rician noise removal [54] and phase
retrieval [51]. For 3D images, the non-local self-similarity property also exists. The non-local
low-rank regularization for 3D images can be imposed by usingmatrix low-rankmeasures [55]
or tensor low-rank measures [56, 57]. For example, Kronecker-basis-representation (KBR)
tensor sparsity regularization [58] has been applied to multispectral image denoising [58] and
low-dose dynamic cerebral perfusionCT reconstruction [59] and low-doseCT sinogram recov-
ery [60]. In the following, we adopt our t-log-Sp tensor low-rankmeasure proposed in section 2,
and develop a non-local low-rank model for 3D Poissonian image deblurring.

First, we group non-local 3D patches, also called cubes, with similarity together by cube
matching and form a non-local similar patch tensor. Given a 3D image x, suppose it can
be divided into L overlapping cubes of size

√
n1 ×

√
n1 × n3, denoted as {x1,x2, · · · ,xL}.

For each reference cube xi of the image, a total number of n2 non-local self-similar cubes
{xi,1,xi,2, · · · ,xi,n2} can be found by cube matching. Here, the cubes are grouped using
Euclidean distances, and the tensor Ri(x) is generated for the reference cube xi by stack-
ing the grouped unfolding cubes in the ascending order of Euclidean distance in the second
dimension, see definition 4.1.

Definition 4.1. Given a vectorized 3D image x ∈ RN and a reference vectorized cube xi ∈
Rn1n3 , the non-local similar patch matrix Ri,j ∈ Rn1n3×N is a binary matrix (whose terms are 1
or 0), i = 1,2. . . . ,L, j = 1,2. . . . .n2, such that Ri,jx is the jth vectorized cube in the ith non-
local similar group xi,j, that is, Ri,jx= xi,j. LetRi : RN → Rn1×n2×n3 be the extraction operator
for the ith non-local self-similar tensor defined as

Ri (x) = fold(2)
(
[Ri,1x, . . . ,Ri,n2x]

T
)
.

Here, Ri(x) is the constructed tensor for the ith reference cube. And this tensor describes
the spatial correlation along the first dimension, presents the repeated patterns of similar cubes
along the second dimension, and keeps the mode-3 correlation of the 3D image along the third
dimension. Note that the order of the modes can be switched. AndRi(x) should be a low-rank
tensor according to non-local self-similarity if x is a clean image.

Second, we adopt the t-log-Sp low-rank measure to regularize the low-rank properties of
these non-local similar patch tensors. By combining the low-rank tensor regularization using
t-log-Sp low-rank measure defined as in (4) with the tensor Poissonian image deblurring
model (20), a non-local low-rank tensor model for image restoration is as follows

min
x

τ⟨Hx− y logHx,1⟩W+
L∑

i=1

ηiMlog,Sp (Ri (x)) , (21)
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whereRi(x) represents the constructed tensor for each reference cube,W=
∑L

i=1RT
i ◦Ri =∑L

i=1

∑n2
l=1R

T
i,lRi,l is a diagonal matrix whose main diagonal entries indicate the counts for

each pixel, ⟨·, ·⟩ is the W-weighted inner product and ηi > 0. This model preserves the struc-
tural correlation of the constructed tensors, thus obtaining better denoising results.

Lastly, we use variable splitting to reformulate the model. By introducing relaxation vari-
ables, and problem (21) can be rewritten as a constrained problem:

min
x

τ⟨h− y logh,1⟩W+
L∑

i=1

ηiMlog,Sp (Li) , s.t. Hx= h, Li =Ri (x) .

Then by relaxing these equalities of the splitting variables, the constrained problem can be
relaxed to an unconstrained problem as follows

min
x,h,Li

τ⟨h− y logh,1⟩W+
α

2
∥h−Hx∥2W+

L∑
i=1

[
1
2
∥Li−Ri (x)∥2F+ ηiMlog,Sp (Li)

]
, (22)

where τ > 0, α> 0 and ηi > 0. We call this model as the non-local low-rank tensor model for
3D Poissonian image deblurring.

4.3. The full algorithm for 3D Poissonian image deblurring

To solve the proposed model (22) for 3D Poissonian image deblurring, we perform an altern-
ating minimization algorithm with a proximal term as follows.

• Update of Li: given x= xk, we update Lk+1
i by solving the following subproblem

min
Li

1
2

∥∥Li−Ri
(
xk
)∥∥2

F
+ ηiMlog,Sp (Li) . (23)

We solve this t-log-Sp minimization problem by the t-IRSpM algorithm given in algorithm
3 using Lk

i as an initial solution.
• Update of h: given x= xk, we update hk+1 by minimizing problem (22) with respect to h
as follows

hk+1 = argmin
h

τ⟨h− y logh,1⟩W+
α

2
∥h−Hxk∥2W.

This is a least squares problem. Its closed-form solution is

hk+1 =
1
2

(
Hxk− τ

α

)
+

√
1
4

(
Hxk− τ

α

)2
+

τy
α
. (24)

• Update of x: given h= hk+1 andLi =Li
k+1, the update of the estimated image xk+1 at the

(k+ 1)th step is computed by minimizing problem (22) together with a proximal term as
follows

xk+1 = argmin
x

α

2

∥∥∥hk+1 −Hx
∥∥∥2
W
+

L∑
i=1

1
2

∥∥∥Lk+1
i −Ri (x)

∥∥∥2
F
+

β

2

∥∥x− xk
∥∥2
W ,
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where β > 0. The update of x has a closed-form solution as follows

xk+1 =
[
αHTH+(β+ 1)I

]−1

(
αHThk+1 +

L∑
i=1

W−1RT
i

(
Lk+1
i

)
+βxk

)
, (25)

where RT
i : Rn1×n2×n3 → RN is an inverse process of Ri defined as RT

i (X ) =∑n2
j=1R

T
i,j vec(X (:, j, :)).

Since the update of h has a closed-form solution, the algorithm can be viewed as alternatively
updating variables Li and x. We call this algorithm as the patch-based tensor logarithmic Sp
minimization (TLSpM) algorithm and summarize it in Algorithm 4. The convergence analysis
of this algorithm is presented in the next subsection.

Algorithm 4. Patch-based TLSpM algorithm for 3D Poissonian deblurring.

Input: y, and parameters τ,α,ηi, and β.
1: Initialize x0 = y, k= 0
2: Set extractionRi by cube matching
3: repeat
4: Update Lk+1

i by t-IRSpM(Ri(xk),ηi) initialized with Lk
i , i = 1,2, . . .,L;

5: Update hk+1 by equation (24);
6: Update xk+1 by equation (25);
7: k← k+ 1.
8: until convergence
Output: xk

4.4. Convergence analysis of the Patch-based TLSpM algorithm

We can prove that any accumulation point of the sequence {(x∗,h∗,{Li
∗})}, where {Li

∗}
denotes {L1

∗,L2
∗, . . . ,LL

∗}, generated by patch-based TLSpM algorithm in Algorithm 4 is
a stationary point of the objective function of the proposed model in (22).

For the sake of proving convergence results for Algorithm 4, we assume with loss of gener-
ality that the t-IRSpM algorithm in line 4 performs q inner iterations. And we denote the inner
updates ofLi from the initialLqk

i to the outputLq(k+1)
i , which are corresponding to the initial

Lk
i to the output L

k+1
i in line 4.

Definition 4.2. A point (x∗,h∗,{Li
∗}) is a first-order stationary point of problem (22) if

0= τ
(
1− y

h∗
)
+α(h∗ −Hx∗)

0= αHT (Hx∗ −h∗)+ x∗ −
∑
i

W−1RT
i (L

∗
i ) ,

where the division of y is a component-wise operation and for s= 1,2, . . . ,n3, i = 1,2, . . . ,L,

0 ∈
{
Ũ
T
(
L∗
i
(s)

−Ri (x∗)
(s)
)
Ṽ+ τpDiag(d) :

(
Ũ, Ṽ

)
∈ Õ

(
L∗
i
(s)
)

and dj = σp−1
j

(
L∗
i
(s)
)(

σpj

(
L∗
i
(s)
)
+ ε
)−1

}
.
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Proposition 4.3. Let Φ denote the objective function of model (22). Suppose that
{(xk,hk,{Li

qk})} is a sequence generated by Algorithm 4. Then the following assertions hold:

(i) The following inequality holds for k= 1,2, . . .

Φ
(
xk,hk,

{
Li

qk
})

−Φ
(
xk+1,hk+1,

{
Li

q(k+1)
})

⩾ µ− 1
2

L∑
i=1

q∑
j=1

∥Lqk+j
i −Lqk+j−1

i ∥2F

+
β

2
∥xk+1 − xk∥2W, (26)

where µ> 1 is an IRSpM algorithm parameter.
(ii) The sequence {(xk,hk,{Li

qk})} is bounded.
(iii) lim

k→∞
∥xk+1 − xk∥W = 0, lim

k→∞
∥hk+1 −hk∥F = 0 and lim

k→∞
∥Lq(k+1)

i −Lqk
i ∥F = 0

(iv) Any accumulation point of {(xk,hk,{Li
qk})} is a stationary point of Ψ.

Proof. (i) By the update of Lq(k+1)
i via t-IRSpM algorithm, it follows from theorem 3.13

that

Φ
(
xk,hk,

{
Li

qk
})

−Φ
(
xk,hk,

{
Li

q(k+1)
})

⩾ µ− 1
2

L∑
i=1

q∑
j=1

∥Lqk+j
i −Lqk+j−1

i ∥2F.

By the updates of hk+1 and xk+1, we have Φ(xk,hk+1,{Li
q(k+1)})−

Φ(xk,hk,{Li
q(k+1)})⩾ 0 and Φ(xk+1,hk+1,{Li

q(k+1)})−Φ(xk,hk+1,{Li
q(k+1)})⩾

β
2 ∥x

k+1 − xk∥2W. It follows immediately from these inequalities that equation (26) holds.
(ii) Since Φ is bounded below and coercive assertion (ii) holds.
(iii) Summing (26) from k= 0 to k=K, we have

µ− 1
2

L∑
i=1

q∑
j=1

∥Lqk+j
i −Lqk+j−1

i ∥2F+
β

2
∥xk+1 − xk∥2W

⩽ Φ
(
x0,h0,

{
Li

0})−Φ
(
xK,hK,

{
Li

qK})<+∞.

Taking K→∞, we have

L∑
i=1

q∑
j=1

∥Lqk+j
i −Lqk+j−1

i ∥2F <+∞ and ∥xk+1 − xk∥2W <+∞.

These together with (24) yield assertion (iii).
(iv) Let (x∗,h∗,{Li

∗}) be an accumulation point of the sequence {(xk,hk,{Li
qk})}. Assume

that a subsequence {(xk,hk,{Li
qk})}K converges to (x∗,h∗,{Li

∗}) as k→∞.
According to the t-IRSpM algorithm and theorem 3.13, we have for s= 1,2, . . . ,n3, i =

1,2, . . . ,L,

0 ∈

{
Ũ
T
(
Lq(k+1)
i

(s)

−Ri (xk)
(s)
)
Ṽ+ τpDiag(d) :

(
Ũ, Ṽ

)
∈ Õ

(
Lq(k+1)
i

(s)
)

and dj = σp−1
j

(
Lq(k+1)
i

(s)
)(

σpj

(
Lq(k+1)
i

(s)
)
+ ε

)−1
}
.
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According to the updates of hk+1 and xk+1, we have

0= τ

(
1− y

hk+1

)
+α

(
hk+1 −Hxk

)
0= αHT

(
Hxk+1 −hk+1

)
+ xk+1 −

∑
i

W−1RT
i

(
Lq(k+1)
i

)
+β

(
xk+1 − xk

)
,

Taking k ∈ K approaches ∞ and using assertion (iii), we can obtain the assertion (iv).

5. Experimental results

In this section, we demonstrate the performance of the patch-based TLSpM algorithm in
Algorithm 4 for 3D Poissonian image deblurring. We compare this algorithm with other
Poisson deblurring algorithms including RL [10], ARL [11], VST-BM3D [29] and PURE-
LET [33] algorithms. Also, we test the KBR-denoising [61] for 3D Poissonian image deblur-
ring by using our proposed model and algorithm scheme. For example, in the KBR-PoisDebl
algorithm, the model is (22) whereMlog,Sp is replaced by KBR. The experiments were imple-
mented in MATLAB 2016b running a 64-bit Ubuntu 18.04 system and executed on an eight-
core Intel Xeon E5-2640v3 128GB CPU at 2.6 GHz. The proposed algorithm was accelerated
using parallel computing, as the estimation of each patch tensor can be computed in parallel.

5.1. Experiments on fluorescence microscope images

Poisson noise and blur degradation often occur simultaneously in fluorescence microscope
images. Fluorescence microscopy is widely used in biological studies to analyze cell and
tissue structures. Its resolution is affected by two factors. One is the ambiguity caused by
the Abbe diffraction limit, and the other is the noise that strongly depends on the signal.
We use 3D fluorescence microscope images for testing. Three test images are ‘Spherical-
beads’7 (128× 128× 64), ‘Micro-tubules’1 (128× 128× 64), and ‘Pollen’8 (256× 256× 32).
The 10th frontal slice of each original image is shown in figure 1. To simulate blurry Poissonian
images, we adopt the procedure in [16]. First, the original image is scaled by Peak/Imax, where
Imax is the maximum value of the original image and Peak is the peak value set as 255. Then the
image is further convolved with three different 3D blur kernels obtained by a microscope PSF
generator9, including one 3D Gibson & Lanni blur (G&L) [62] and two different 3D Gaussian
blur (G1 and G2). Lastly, Poisson noise is added to the blurry image.

For the proposed patch-based TLSpM algorithm, we first set the search window as 35× 35
and the number of non-local patches for each group as 60. The cube size is 7× 7× 7 for
the G&L blur kernel and 6× 6× 14 for the G1 and G2 blur kernels. Also, the parameters
p= 0.95, β= 0.0001 and µ= 1.0001 and the rest are shown in table 1. And to achieve better
performance, the cube matching Ri is also updated for certain iterations and then remains
unchanged afterward.

7 The ‘Spherical-beads’ and ‘Micro-tubules’ images are collected from http://bigwww.epfl.ch/deconvolution/index.
html#data.
8 The ‘Pollen’ image is collected from www.cellimagelibrary.org/images/35532.
9 The software package is downloaded from http://bigwww.epfl.ch/algorithms/psfgenerator/.
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Figure 1. The 10th frontal slices of fluorescence microscope images of ‘Spherical-
beads’, ‘Micro-tubules’ and ‘Pollen’, respectively.

Table 1. Parameter settings for patch-based TLSpM algorithm.

Image Spherical-beads Micro-tubules Pollen

PSF G&L G1 G2 G&L G1 G2 G&L G1 G2

α 20 20 2 20 20 2 20 20 2
τ 150 200 80 150 200 80 240 200 60
ηi 5000 5000 900 5000 5000 900 5000 35 000 700

In the experiment, the peak signal-to-noise ratio (PSNR) [63] and structural similarity index
measure (SSIM) [64] are used to measure the quality of the restored images. In particular, the
PSNR value is defined as

PSNR= 10log10
Peak2

∥x∗ − x∥22
,

where x∗ is the restored image and x is the original image. And the SSIM value is defined in
[64].

The PSNR and SSIM values of the restored images obtained by different algorithms are
shown in table 2. The best PSNR and SSIM values for each case are marked in bold. It shows
that the proposed patch-based TLSpM algorithm achieves the best numerical values for most
of the testing cases. For example, for ‘Micro-tublules’ image with the G2 blur kernel, the
PSNR value of the proposed algorithm exceeds the state-of-the-art PURE-LET algorithm by
1.18 dB. The PoisDebl-KBR method that is modified from our proposed model performs very
competitive numerical results, achieving only 0.17 dB in average less than our Patch-based
TLSpM in terms of PSNR values.

To evaluate the visual quality of the restored images obtained by different algorithms, we
compare several selected slices of the restored 3D images in figures 2–4. In figure 2, for
the ‘Spherical-beads’ image with the G&L blur kernel, the proposed patch-based TLSpM
algorithm obtains the best performance in preserving the spherical structure of beads and separ-
ating distinct beads. In contrast, The RL and ARL algorithms were not able to remove Poisson
noise and restore the shape of the beads; the VST-BM4D and PURE-LET fail to separate the
distinct beads if they are too close to each other; and the PoisDebl-KBR method can separ-
ate the beads but the gaps between the beads are not as clear as our proposed method, even
though the PSNR value of PoisDebl-KBRmethod exceeds our proposed method by 0.03dB. In
figure 3, the lateral slice of the original ‘Micro-tubules’ image contains many luminous points.
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Table 2. PSNR and SSIM comparison among different algorithms under different blur
kernels.

Image

Metric

Spherical-beads Micro-tubules Pollen

PSF G&L G1 G2 G&L G1 G2 G&L G1 G2

Noisy
PSNR 14.53 13.82 14.67 19.66 19.64 19.66 23.77 23.76 23.64
SSIM 0.291 0.197 0.315 0.220 0.221 0.224 0.429 0.462 0.450

RL
PSNR 18.80 17.78 18.60 20.85 20.95 20.92 26.46 25.17 25.82
SSIM 0.782 0.674 0.766 0.325 0.337 0.324 0.626 0.475 0.581

ARL
PSNR 17.44 15.64 17.44 19.79 19.81 19.74 24.72 23.23 23.90
SSIM 0.639 0.451 0.686 0.305 0.286 0.280 0.557 0.417 0.501

VST-BM4D
PSNR 19.09 19.13 19.24 22.01 22.32 22.18 27.25 25.60 26.51
SSIM 0.756 0.746 0.766 0.358 0.381 0.365 0.642 0.546 0.594

PURE-LET
PSNR 19.41 18.97 19.28 22.39 22.72 22.69 28.23 26.82 27.59
SSIM 0.779 0.734 0.787 0.357 0.356 0.371 0.741 0.595 0.627

PoisDebl-KBR
PSNR 19.70 19.21 19.56 23.15 23.55 23.67 28.40 27.34 28.10
SSIM 0.820 0.787 0.812 0.607 0.574 0.628 0.717 0.600 0.658

Patch-based PSNR 19.67 19.42 20.97 23.58 23.65 23.87 28.49 27.35 28.40
TLSpM (ours) SSIM 0.788 0.795 0.846 0.634 0.602 0.634 0.720 0.689 0.718

Figure 2. The 20th frontal slices of the images restored by different algorithms from
the noisy ‘Spherical-beads’ image with the G&L blur kernel. The PSNR values of the
restored images are: (b) noisy image (14.53 dB); (c) RL (18.80 dB); (d) ARL (17.44 dB);
(e) VST-BM4D (19.09 dB); (f) PURE-LET (19.41 dB); (g) PoisDebl-KBR (19.70 dB);
(h) Patch-based TLSpM (ours) (19.67 dB).
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Figure 3. The 33rd lateral slices of the images restored by different algorithms from the
noisy ‘Micro-tubules’ image with the G1 blur kernel. The PSNR values of the restored
images are: (b) noisy image (19.64 dB); (c) RL (20.95 dB); (d) ARL (19.81 dB); (e)
VST-BM4D (22.32 dB); (f) PURE-LET (22.72 dB); (g) PoisDebl-KBR (23.55 dB); (h)
Patch-based TLSpM (ours) (23.65 dB).

TheARL and RL algorithms cannot recognize luminous points, while the VST-BM4D, PURE-
LET, PoisDebl-KBR and proposed algorithms can identifymost of the luminous points. In fact,
the proposed algorithm can restore images with higher accuracy and fewer artifacts, compared
to the VST-BM4D, PURE-LET and PoisDebl-KBR algorithms, as shown in the zoomed-in
image of figure 3. Lastly, in figure 4, for the ‘Pollen’ image with the G2 blur kernel, the pro-
posed and PoisDebl-KBR algorithms can recover the pattern of the cell wall, while the RL and
ARL algorithms fail to remove the noise on the cell wall and the state-of-the-art VST-BM4D
and PURE-LET algorithms restore blurry cell walls without details.

All in all, the proposed patch-based TLSpM algorithm outperforms the competing
algorithms in removing Poisson noise and retrieving details from blurry images.
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Figure 4. The 12th frontal slices of the images restored by different algorithms from the
noisy ‘Pollen’ image with the G2 blur kernel. The PSNR values of the restored images
are: (b) noisy image (23.64 dB); (c) RL (25.82 dB); (d) ARL (23.90 dB); (e) VST-BM4D
(25.51 dB); (f) PURE-LET (27.59 dB); (g) PoisDebl-KBR (28.10 dB); (h) Patch-based
TLSpM (ours) (28.40 dB).

Figure 5. Sensitivity analysis of parameter p. (a) Plot of the PSNR value for p ∈ (0,1)
vs the number of iterations; (b) The PSNR difference for p ∈ [0.65,1) vs the number of
iterations.

5.2. Analysis on the parameter p

The denoising performance of the proposed patch-based TLSpMmethod is related to the para-
meter p, which is used in the t-log-Sp low-rank measure. We conduct a sensitivity analysis on
parameter p using the ‘Spherical-beads’ image with a G2 blur kernel. Figure 5(a) presents the
plot of the PSNR value for p ∈ (0,1) vs the number of iterations. We can observe that when
p ∈ (0,0.65), the PSNR value decreases as p decreases; when p ∈ [0.65,1), the differences in
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PSNR are not very significant. To analyze the sensitivity of parameter p ∈ [0.65,1), we use the
PSNR value for p= 0.8 as a reference and compute the difference between the PSNR value
for each p and the reference PSNR. Figure 5(b) presents the plot of the PSNR difference vs
the number of iterations. When fewer than 100 iterations are performed, the PSNR differences
are not significant; when 100–300 iterations are performed, p= 0.8 performs the best; when
500 iterations are performed, p= 0.95 performs the best. In summary, the proposed method
can achieve satisfactory performance by choosing p ∈ [0.65,1). When early stop is preferred,
one may choose p= 0.8; otherwise, one may choose p= 0.95.

6. Conclusion

In this paper, we first define a new t-log-Sp low-rank measure for tensors. Then we propose
a patch-based non-local low-rank approach, called patched-based TLSpM, for removing blur
and Poisson noise. The experimental results show that this algorithm is effective in improving
the image quality of 3D fluorescence microscopes, and it is superior to the existing methods
in terms of visual quality and quantitative quality measures.
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