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Abstract

This paper studies the control of fixed-wing unmanned areal vehicles (UAVs) in the

presence of stochastic winds. A nonlinear controller is designed based on a full non-

linear mathematical model that includes the stochastic wind effects. The air velocity

is controlled exclusively using the position of the throttle, and the rest of the dynam-

ics are controlled with the aileron, elevator, and rudder deflections. The nonlinear

control design is based on a smooth approximation of a sliding mode controller. An

extended Kalman filter (EKF) is proposed for the state estimation and filtering. A

case study is presented: landing control of a UAV on a ship deck in the presence of

wind based exclusively on LADAR measurements. The effectiveness of the nonlinear

control algorithm is illustrated through a simulation example.

1. Introduction

Nonlinear control of fixed-wing UAVs has attracted considerable research efforts

during recent years both for civilian and military purposes. The control approaches

developed for such systems include gain scheduling, model predictive control, back-

stepping, sliding modes, nested saturation, fuzzy control, H∞ control, dynamic inver-

sion based control, model reference adaptive control, and model based fault tolerant
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control [1,2,4–10]. Most of these works use simplified kinematic and dynamic models

ignoring the wind effects.

There are few UAV research papers that consider the wind effects in the literature.

In [11], a nonlinear gust attenuation H1 controller has been proposed to stabilize the

velocity, the attitude and the angular rates. Estimation of the wind using a nonlinear

disturbance observer can be found in [12]. In [13], an adaptive backstepping approach

is employed to achieve directional control in presence of an unknown crosswind. On-

line wind parameter estimation using adaptive control techniques can be found in [14].

The work in [15] proposes an image-based visual servo control design for fixed-wing

UAVs for locally tracking linear infrastructure in the presence of wind. It must be

noted that only attitude and airspeed are usually controlled in the aforementioned

papers, and limited attention is paid to the accurate tracking of the translational

state variables.

Because of the highly nonlinear and uncertain structure of UAVs, many difficulties

arise in the design of linear and nonlinear controllers. Sliding mode control is a

preferable option, as it guarantees the robustness of the system against changing

working conditions. In this paper, a sliding mode control strategy is proposed for

the control of fixed-wing UAVs in the presence of wind. The equations of motion

(EOMs) of the UAV are nonlinear, but partially affine in control input for the chosen

aircraft model. It is assumed that the mean wind velocity and its direction are known

constants whereas the gust has a stochastic characterization.

The main contributions of this paper are (i) the development of a novel sliding

mode controller that is inherently robust to perturbations, (ii) the design of an ex-

tended Kalman filter (EKF) for state estimation purposes, and (iii) the application

of the theoretical development to the autonomous landing of UAVs on moving vessels

based exclusively on laser radar measurements.

This paper is organized as follows: In Section 2, a full nonlinear dynamic model

of an aircraft in the presence of wind is presented. In Section 3, the development of a

sliding mode controller (SMC) is described. In Section 4, an EKF method is proposed

for the state estimation in the presence of noise. Section 5 gives a case study in which
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the efficacy of the control algorithm is tested. Finally, some conclusions are drawn in

Section 6.

2. Aircraft Dynamics

As in [16], let Fo, Fb and Fa denote the Earth-fixed frame (considered inertial

under the hypothesis of flat and nonrotating Earth), the body frame, and the aero-

dynamic frame, respectively. The body frame Fb is defined as the aircraft-fixed axes

frame (xb, yb, zb), where xb is the longitudinal axis, yb is the lateral axis, and zb is

the directional axis. Moreover, it is assumed that xb-zb is the symmetry plane. In

what follows, a superscript refers to the frame used within the formulations. The

abbreviations s(·) = sin(·), c(·) = cos(·), and t(·) = tan(·) are used throughout the

paper.

An engine that can deliver a thrust T whose point of application is M , which

has coordinates (xbM , y
b
M , z

b
M) in the body frame, is considered. It is assumed that

symmetry is respected so that ybM = 0 and that the engine pitch setting is negligible.

Following [16], the translational EOMs for an aircraft having mass of m can be

written as follows:

ẋo = Vacγ2acγ3a + Vmwsψw + uogw (1)

ẏo = Vacγ2asγ3a + Vmwcψw + vogw (2)

ḣo = Vasγ2a − wogw (3)

mV̇a = −D + T cαacβa −mgsγ2a −mP1 (4)

mVaγ̇3acγ2a = Y cγ1a + Lsγ1a − T (cαasβacγ1a − sαasγ1a)

− m(P2cγ1a − P3sγ1a) (5)

mVaγ̇2a = −Y sγ1a + Lcγ1a + T (cαasβasγ1a + sαacγ1a)

− W cγ2a +m(P2sγ1a + P3cγ1a) (6)
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where

P1 = (qbww
b
w − rbwv

b
w)cαacβa + (rbwu

b
w − pbww

b
w)sβa + (pbwv

b
w − qbwu

b
w)sαacβa

P2 = Va(r
b
wcαa − pbwsαa)− (qbww

b
w − rbwv

b
w)cαasβa + (rbwu

b
w − pbww

b
w)cβa

− (pbwv
b
w − qbwu

b
w)sαasβa

P3 = Va(p
b
wcαasβa − qbwcβa + rbwsαasβa)− (qbww

b
w − rbwv

b
w)sαa

+ (pbwv
b
w − qbwu

b
w)cαa

Here Va is the air speed, Vmw is the mean wind speed (assumed to act in a horizon-

tal plane at a heading angle ψw); (x
o, yo, ho) denote the inertial coordinates (range,

lateral displacement and altitude) of the aircraft’s center of mass; (D, L, Y ) are the

drag, lift, and side forces (see the expressions in Appendix A) which contain the

aileron, elevator and rudder deflections (δa, δe, δr); g is the gravitational acceleration;

(γ1a , γ2a , γ3a) are the aerodynamic bank angle, the aerodynamic climb angle (con-

strained as γ2a < π/2), and the aerodynamic azimuth or track angle; (uogw , v
o
gw , w

o
gw)

are the inertial gust velocity components; (ubw, v
b
w, w

b
w) are the wind velocity com-

ponents, and (pbw, q
b
w, r

b
w) are the angular velocity components of the local wind in

the body frame, respectively. The aerodynamic angle of attack and sideslip angle are

denoted by αa and βa, respectively.

Again following [16], the rotational EOMs can be written as follows:
ϕ̇

θ̇

ψ̇

 =


1 sϕtθ cϕtθ

0 cϕ −sϕ

0
sϕ
cθ

cϕ
cθ



pba

qba

rba

+


pow

cψ
cθ

+ qow
sψ
cθ

−powsψ + qowcϕ

powcψtθ + qowsψtθ + row

 (7)


ṗba

q̇ba

ṙba

=I−1


L−(Iz−Iy)qbarba+Ixzpbaqba−qbah′z+rbah′y−P4

M+TzbM+(Iz−Ix)pbarba−Ixz
(
pba

2−rba
2
)
−rbah′x+pbah′z−P5

N−(Iy−Ix)pbaqba−Ixzqbarba−pbah′y+qbah′x−P6

 (8)
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where

I =


Ix 0 −Ixz
0 Iy 0

−Ixz 0 Iz


P4 = −Ixz(2qbapbw + pbwq

b
w) + (Iz − Iy)(q

b
ar
b
w + rbaq

b
w + qbwr

b
w)

− Ix(q
b
ar
b
w − rbaq

b
w) + qbwh

′
z − rbwh

′
y

P5 = Ixz(p
b
w

2
+ 2pbap

b
w − rbw

2 − 2rbar
b
w)− (Iz − Ix)(p

b
ar
b
w + rbap

b
w + pbwr

b
w)

− Iy(r
b
ap
b
w − pbar

b
w) + rbwh

′
x − pbwh

′
z

P6 = Ixz(2q
b
ar
b
w + qbwr

b
w) + (Iy − Ix)(p

b
aq
b
w + qbap

b
w + pbwq

b
w)

− Iz(p
b
aq
b
w − qbap

b
w) + pbwh

′
y − qbwh

′
x

Here (ϕ, θ, ψ) denote the roll, pitch, and yaw angles; (pba, q
b
a, r

b
a) are the aerodynamic

angular velocity vector (roll, pitch, and yaw rates) in the body frame; (h′x, h
′
y, h

′
z)

is the angular momentum vector of all rotors about the aircraft-fixed xb, yb, zb axes;

(L, M, N ) are the rolling, pitching, and yawing moments (see expressions in Ap-

pendix); (Ix, Iy, Iz) are moments of inertia about the aircraft-fixed xb, yb, zb axes;

and Ixz denotes the product of inertia. Throughout the paper, 321 Euler angle se-

quence is used, so that | θ |< π/2.

The angles γ1a , αa and βa, are defined in terms of the aerodynamic variables as

follows [16]:

Va =

√
uba

2 + vba
2 + wba

2 (9)

αa = t−1w
b
a

uba
, βa = s−1 v

b
a

Va
(10)

γ1a = s−1 cαasβasθ + cβasϕcθ − sαasβacϕcθ

cγ2a
(11)

in the formulation above, where (uba, v
b
a, w

b
a) are the air velocity components in the

body frame. It should be noted that

γ1a = c−1 sαasθ + cαacϕcθ

cγ2a
(12)
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A simple model is generally used to define the modulus of thrust for a propeller

propulsion engine as follows:

T =
kmρ

Va
η (13)

where km is a constant and η represents the position of the throttle (between 0 and

1 inclusive).

Defining the state and control vectors as ξ̂ = [xo, yo, ho, Va, γ2a , γ3a , ϕ, θ, ψ,

pba, q
b
a, r

b
a]
T and û = [η, δa, δe, δr], respectively; and treating the stochastic terms

coming from the gusts σ = [uogw , v
o
gw , w

o
gw , p

o
w, q

o
w, r

o
w]
T as perturbations p(ξ̂, σ), the

aircraft dynamics can be expressed as follows:

˙̂
ξ = f̂(ξ̂) + ĝ(ξ̂, û) + p(ξ̂, σ) (14)

3. Control Algorithm

The control design is formulated into a trajectory tracking problem. For simplicity,

it is assumed that the mean wind velocity and its direction are known constants

whereas the gust has a stochastic characterization.

Equation (4) for the air velocity dynamics can be rewritten as

V̇a =
−D + T cαacβa

m
− gsγ2a − P1 (15)

where the thrust T is given by (13). Therefore, assuming that the state ξ̂ is measurable

and taking η as the control input, the air velocity equation can be expressed as

V̇a = −D(ξ̂)

m
+

(
kmρ

mVa
cαacβa

)
η − gsγ2a − P1 (16)

Denote by Vad the reference velocity and define the velocity error as eVa := Va − Vad .

Then, the velocity error dynamics are given by

ėVa = −D(eVa + Vad , ξ̂)

m
+

[
kmρ

m (eVa + Vad)
cαacβa

]
η − gsγ2a − P1 − V̇ad (17)

Proposition 1: Consider the system (17). The feedback control law given by

η =
eVa + Vad
kmρ

m

cαacβa

[
gsγ2a + V̇ad +

D(eVa + Vad , ξ̂)

m
− kVasign(eVa)

]
(18)
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where

kVa > max |P1| > 0 (19)

guarantees convergence of eVa to zero.

Proof: Choose a candidate Lyapunov function:

E =
1

2
e2Va (20)

such that the time derivative of E along the trajectories of (17) with feedback control

input (18) is given by:

Ė = −eVa (P1 + kVasign(eVa)) (21)

which is negative definite under the condition (19) and, thus, eVa will decay to zero.

�
Remark 1: In this paper, the signum function is defined as

sign(s) =


1 if s > 0

0 if s = 0

−1 if s < 0

In the literature, the sign function is undefined at 0, or it is defined as a point set

mapping, i.e., sign(0) ∈ [−1, 1]. In this paper, we define it as sign(0) = 0.

In our simulations to alleviate the chattering and speed up the simulations, the

following smooth approximation of the discontinuous signum function is used:

sign(s) ≈ tanh(ks) (22)

where k is a sufficiently large positive constant. Stability properties of the system

(17) with the smooth implementation of the control law (18) can be analyzed using

the ideas in [3]. In particular, it can be shown that the system converges to a small

neighborhood of the origin. That is, the closed-loop system can be shown to be globally

uniformly ultimately bounded with respect to a compact set around the origin. This

set can be made arbitrarily small by increasing the slope k of the tanh(ks) function

at s = 0.

A sliding mode controller (SMC) is now introduced to control the rest of the

dynamics. Since the control law (18) has been already introduced for the throttle,
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only 3 active control inputs (δa, δe, and δr) are available. Therefore, the reduced

state equations (14) with state and control input vectors given by

ξ = [yo, ho, γ2a , γ3a , ϕ, θ, ψ, p
b
a, q

b
a, r

b
a]
T , u = [δa, δe, δr]

T

can be rewritten as

ξ̇ = f(ξ) + g(ξ, u) + p(ξ,σ) (23)

Note that the range xo (which is closely related to the air velocity) is not included in

the above formulation. Partition the state as ξ = [ξT1 , ξ
T
2 ]
T , where

ξ1 = [yo, ho, γ2a , γ3a , ϕ, θ, ψ]
T , ξ2 = [pba, q

b
a, r

b
a]
T (24)

so that the state equations can be rewritten as

ξ̇1 = f1(ξ) + g1(ξ, u) + p1(ξ,σ) (25)

ξ̇2 = f2(ξ) + g2(ξ)u+ p2(ξ,σ) (26)

Without loss of generality, assume that the desired (reference) trajectory is given

by yod = hod = 0, where a subscript d denotes the desired variable. Consider the

following transformation: 
ϕd

θd

ψd

 =


0

α0 + γ2ad

γ3ad

 (27)

where α0 denotes the trim angle of attack (assumed to be known). Based on equations

(2) and (3), γ2ad
and γ3ad

can be chosen as

γ2ad
= −s−1

(
kγ2a sign(h

o)
)

(28)

γ3ad
= −s−1

(
kγ3a sign(y

o) +
Vmwcψw
Vacγ2a

)
(29)

where

1 > kγ2a > max

∣∣∣∣wogwVa
∣∣∣∣ > 0 (30)

1−
∣∣∣∣ Vmwcψw
Vacγ2a

∣∣∣∣ > kγ3a > max

∣∣∣∣ vogw
Vacγ2a

∣∣∣∣ > 0 (31)
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For simplicity, it will be assumed that Vacγ2a ≈ Vd in (29). This assumption can be

easily relaxed.

Proposition 2: Define the sliding functions as

s =


λϕ̇

(
ϕ̇− ϕ̇d

)
+ λϕ (ϕ− ϕd)

λθ̇

(
θ̇ − θ̇d

)
+ λθ (θ − θd)

λψ̇

(
ψ̇ − ψ̇d

)
+ λψ (ψ − ψd)

 (32)

where λϕ, λθ, λψ, λϕ̇, λθ̇, and λψ̇ are positive constants. Assume that the following

condition holds

ClδaCnδr
̸= Cnδa

Clδr (33)

Then, the matrix ∂s
∂ξ2

g2(ξ) is non-singular.

Proof: It can be easily shown that

∂s

∂ξ2
g2(ξ) = QS


λϕ̇ λϕ̇sϕtθ λϕ̇cϕtθ

0 λθ̇cϕ −λθ̇sϕ

0 λψ̇
sϕ
cθ

λψ̇
cϕ
cθ

 Î (34)

where

Î =


b
IzClδa + IxzCnδa

IxIz − I2xz
0 b

IzClδr + IxzCnδr

IxIz − I2xz

0 c
Cmδe

Iy
0

b
IxzClδa + IxCnδa

IxIz − I2xz
0 b

IxzClδr + IxCnδr

IxIz − I2xz

 (35)

which is clearly invertible if the condition (33) holds. �
Proposition 3: Consider the system (23) with the control law

u = −
(
∂s

∂ξ2
g2(ξ)

)−1 [
∂s

∂ξ
f(ξ) + L sign(s)

]
(36)

where L = diag{Li}, i = 1, 2, 3, such that Li >
∣∣∣ ∂s
∂ξ

p
∣∣∣
i
, ∀t. Then the system trajectory

converges to the desired trajectory y0d = h0d = 0.

Proof : Define the following positive definite Lyapunov function in terms of the

sliding functions (32):

E =
1

2
sT s (37)
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Taking its time derivative yields

Ė = sT ṡ = sT
∂s

∂ξ
ξ̇ = sT

∂s

∂ξ
[f(ξ) + g(ξ, u) + p(ξ,σ)] (38)

It can be easily shown that the sliding functions given by (32) satisfy

∂s

∂ξ
g(ξ, u) =

∂s

∂ξ2
g2(ξ)u (39)

and therefore (38) can be rewritten as

Ė = sT
[
∂s

∂ξ
[f(ξ) + p(ξ,σ)] +

∂s

∂ξ2
g2(ξ)u

]
(40)

Clearly, the control law (36) yields

Ė = sT
(
∂s

∂ξ
p− L sign(s)

)
(41)

which is negative definite if the matrix L satisfies the conditions of the proposition.

This guarantees convergence of the roll, pitch and yaw angles to their desired values

given by (27). As shown in Remark 2, this implies that γ2a and γ3a will converge to

their desired values γ2ad
and γ3ad

, respectively; which by definitions (28)-(29) together

with equations (2)-(3) implies the following

ẏo = −Vacγ2akγ3a sign(y
o) + vogw (42)

ḣo = −Vakγ2a sign(h
o)− wogw (43)

A similar Lyapunov approach can be used as above together with conditions (30)-

(31) to subsequently ensure convergence of the inertial coordinates yo and ho to their

desired values (i.e., the origin). �
Remark 2: Assume that the Euler angles ϕ, θ and ψ converge to their desired values

so that 
ϕ

θ

ψ

 =


0

α0 + γ2ad

γ3ad

 (44)
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Using equations (10)-(12), it can be shown that

sβa = cγ2as(γ3a − γ3ad
) (45)

tαa =
cγ2as(α0 + γ2ad

)c(γ3a − γ3ad
)− sγ2ac(α0 + γ2ad

)

cγ2ac(α0 + γ2ad
)c(γ3a − γ3ad

) + sγ2as(α0 + γ2ad
)

(46)

sγ1a = sβa
s(α0 + γ2ad

− αa)

cγ2a
(47)

cγ1a =
c(α0 + γ2ad

− αa)

cγ2a
(48)

which yields

αa = α0, γ2a = γ2ad
, γ3a = γ3ad

It must be noted that the computed control inputs are subject to saturation and

rate limits. In particular, the maximum computed control inputs are given by:

umax =

(
∂s

∂ξ2
g2(ξ)

)−1

L

where gains can be appropriately changed to achieve a satisfactory performance.

Again, to smoothen the control inputs, the smooth approximation (22) of the signum

function can be used. Given the introduction of the matrix L in the controller, the

design is robust and estimation errors are acceptable for the stability derivatives. In

this regard, a minimum amount of information is needed to implement the controller.

4. Noise Addition and Filtering

Define the random variable w representing the process noise so that (14) can be

written as

˙̂
ξ = f̂(ξ̂) + ĝ(ξ̂, û) +w (49)

Given an output vector η and measurement noise vector v, the observation equation

can be expressed as

η = h(ξ̂) + v (50)

Equations (49) together with (50) describe the system required for the EKF imple-

mentation. In this paper it is assumed that w and v are zero-mean gaussian white

noises with covariance matrices Q and R, respectively.
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5. Case Study: Autonomous Landing via a LADAR System

In this section, the theoretical development is applied to autonomous landing of

a UAV on a moving vessel. As in [17], it is assumed that a LADAR system mounted

on the vessel is exclusively available for the estimation of the UAV’s inertial position

and attitude.

5.1. LADAR Observation Model

LADAR technology consists of a modulated laser emitter coupled with a focal

plane array detector and the required optics. This sensor creates an “image” of the

environment, but producing a 2D image where each pixel has an associated range and

intensity value. A typical algorithm first converts the imaging sensor measurements

to a 3D point cloud, and then significant environmental features such as planar, line

or point features are extracted from one 3D imaging sensor frame to the next. Finally,

characteristics of those features such as the direction vectors are used to compute the

platform position and attitude changes. In this paper, it will be assumed that a set

of N points Qi (i = 1, . . . , N) are identified by the LADAR at every time step (given

by its sampling rate) based on their reflectance characteristics and that those points

can be identified from one frame to the next.

Let us denote by riL and rObL the position vectors of a point Qi on the aircraft

and the origin of the aircraft body frame Ob with respect to the LADAR, respectively;

and riOb
the position vector from Ob to Qi (see Fig. 1). Then, the following equations

can be written:

rsObL
+Tsbr

b
iOb

= rsiL, ∀i (51)

where Tsb represents the rotation matrix from the UAV-fixed body frame to the

LADAR frame. Note that the vectors rsiL and rbiOb
are known from the LADAR

observations and the geometry of the aircraft is assumed to be known; however, rsObL

is not known a priori.

Using equation (51), the following can be obtained:

Tsba
b
ij = bsij, ∀i, j, i ̸= j (52)
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Ob

LADAR

Qi

Qj

riOb

rjOb

rObL riL

rjL

Figure 1: Relations between points on the aircraft and their LADAR observations.

where abij = rbiOb
− rbjOb

and bsij = rsiL − rsjL.

Since usuallyM > 2 observations are available, a statistical method can be applied

to make use of all the information. One way to state the problem is to find a matrix

Tsb that minimizes the loss function J defined as:

J(Tsb) =
1

2

M∑
l=1

wl | bsl −Tsba
b
l |2 (53)

where wl denote the weightings. Different methods are available in the literature

to solve this minimization problem. In this paper, an exact method known as the

“q-method” [18] is chosen. The details of this method can be found in [18].

Once the relative orientation matrix Tsb is estimated, equation (51) can be used to

determine the position of the origin of the UAV-fixed body frame with respect to the

LADAR. As a first approach, the average of all available measurements is considered,

i.e.,

rsObL
=

1

N

N∑
i=1

(rsiL −Tsbr
b
iOb

) (54)

Finally, the dynamics of the UAV can be recovered from

[xo, yo, ho]T = Tosr
s
ObL

+ [Xo, Y o, −Zo]T (55)

where Tos is the rotation matrix from the LADAR to the inertial frame (assumed to

be known) and

ϕ = t−1Tbo23
Tbo33

, θ = −s−1Tbo13 , ψ = t−1Tbo12
Tbo11

(56)

where Tbo = TbsTso and Tboij denotes the ij-th component of the matrix Tbo.
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Since these estimations are made at a constant sampling frequency, they can be

discretized at every time step tk. Then, using a simple Euler discretization algorithm,

the observation vector can be defined as

ηk = [ẋo, ẏo, ḣo, ϕ, θ, ψ, ϕ̇, θ̇, ψ̇]Tk (57)

which will be used for feedback purposes.

5.2. Landing Procedure

Given the stochastic nature of the landing pad motion and the presence of multiple

uncertainties in the described system (e.g. wind, measurement noises, and model

uncertainties), tracking an accurate landing trajectory is impracticable. For this

reason, the landing trajectory is described by a straight line at the end of which the

UAV can be recovered by a capture net.

5.3. Simulations

The feedback control law developed in the previous section is implemented here.

Table 1 lists the physical parameters used in the simulations, which correspond to

actual values of the Lambda Unmanned Research Vehicle [19] except for the inertia

values. The saturation limits are assumed to be

| δa |≤ 30o, | δe |≤ 30o, | δr |≤ 30o, 0 ≤ η ≤ 1

The initial conditions are taken as:

(y, h)0 = (50, 25)m, V0 = 26.14m/s, (ϕ, θ, ψ)0 = (15o, 3o, −15o)

The control objective is to track a trajectory defined by (y, h)d = (0, 0) and Vd =

22.22 m/s. Note that for this flight condition the trim angle of attack is α0 = 7.11o.

The effectiveness of the controller (18) and (36) is demonstrated by applying it

to the complete nonlinear system (1)-(6) and (7)-(8). The control parameters are

chosen as kγ2a = 0.05, kγ3a = 0.05, kV = 0.5, λϕ = λθ = λψ = 3, λϕ̇ = λθ̇ = λψ̇ = 3,

L = diag{0.5, 0.5, 0.5}. Note that approximation (22) has been used for the “sign”

function with k = 10 in (18) and (36). This approximation reduces the chattering
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Table 1: Parameters for the Lambda UAV landing at sea level [19].

Parameter Value Parameter Value

ρ 1.225 kg/m3 g 9.81m/s2

m 92.10 kg Ix 83.75 kg ·m2

Iy 137.43 kg ·m2 Iz 210.99 kg ·m2

Ixz 3.05 kg ·m2 S 1.96m2

b 4.29m c 0.46m

CL0 0.7939 CLα 5.8200

CD0 0.0290 k1 0

k2 0.0363 Cm0 0

Cmα −1.1010 Cmδe
−0.8449

Cmq −15.4000 CYβ −0.4372

CYδr 0.2865 CYp −0.0016

CYr 0.2601 Clβ −0.0145

Clδa 0.2608 Clδr 0.0022

Clp −0.5538 Clr 0.0876

Cnβ
0.0600 Cnδa

−0.0137

Cnδr
−0.0943 Cnp −0.0360

Cnr −0.1650

in the control inputs; however, some high frequency chattering is still expected due

to the EKF implementation. This frequency can be further reduced by smoothening

the output of the EKF algorithm. Noted that the control input signal is sent to the

servos every 0.1 s.

The wind has been implemented using the “Dryden Wind Turbulence Model (Con-

tinuous)” MATLAB toolbox. In Fig. 2, a particular realization of a gust is shown for

the Lambda Unmanned Research Vehicle flying at 15 m and 26.14 m/s. The wind

speed at 6 m (W20) is taken as 5 m/s. The mean wind speed is Vmw = 5 m/s along

the inertial lateral axis (i.e., ψw = 0).

The landing platform is assumed to be a barge with zero forward speed and a
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heading angle of 135o. Fig. 3 shows the barge motion for an irregular sea described

by Modified Pierson-Moskowits spectrum with a significant wave height h1/3 = 4 m

and dominant wave period T = 7 s.

A highly dense point cloud is typically expected to be obtained from the LADAR.

For simulation purposes, N = 38 points have been considered and the cloud repre-

sented in Fig. 4. It has been assumed that UAV observations are made as far as

2000 m at a scan rate of 100 Hz (i.e., ∆t = 0.01 s) with an accuracy of 15 cm (one

standard deviation). These values reflects state of the art technologies (e.g. Leica

LAS60 Airborne Laser Scanner).

Zero-mean process (gaussian) noises with standard deviation of 0.005 are assumed

for the variables [Va, γ2a , γ3a , p
b
a, q

b
a, r

b
a]
T . The following matrices were used for the

estimation of the state variables:

Q = 0.0052 diag{1, 1, 1, 0, 0, 0, 1, 1, 1}

R = 10(0.15)2 diag

{
10

∆t
,
10

∆t
,
10

∆t
, 1, 1, 1,

1

∆t
,

1

∆t
,

1

∆t

}
As can be seen in Figs. 5-7, given the estimation (green line) of the inertial position

and orientation of the UAV based on LADAR measurements, the EKF is applied (red

line) and its estimation is used to obtain the control inputs. Given the deflection of

the different control surfaces, the actual values (blue line) of the state variables are

obtained. It can be seen that the velocity, lateral and vertical displacements as well

as the Euler angles converge to the desired values for acceptable values of the control

inputs.

Finally, the motion of the UAV relative to the barge is shown in Fig. 8 from which

a net can be sized for recovery purposes.
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Figure 2: Turbulence velocities for the Lambda Unmanned Research Vehicle flying at 15 m and

26.14 m/s (W20 = 5 m/s).
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Figure 3: Surge, sway, heave, roll, pitch and yaw motions for a barge at 0 kts and heading angle of

135 deg (sea state described by Modified Pierson-Moskowits spectrum with h1/3 = 4 m and T = 7

s).
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(blue line) compared with their estimate (green) and filtered (red) values.
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their estimate (green) and filtered (red) values.
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Figure 7: Time responses of the thrust (T ), aileron (δa), elevator (δe) and rudder (δr) deflections.
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Figure 8: Relative motion of the UAV with respect to the barge.

6. Conclusion

A fully nonlinear aircraft dynamic model in the presence of wind has been intro-

duced. A sliding mode controller has been designed to control the air velocity using

the throttle position, and the rest of the dynamics via the aileron, elevator, and rud-

der deflections. The proposed controller has been shown to be applicable for highly

nonlinear conditions including high angle of attack regime as well as being inherently

robust to uncertainties and perturbations. An EKF method has been proposed for

the state estimation and noise filtering. The applicability of the proposed controller

has been illustrated through a case study: the landing control of a UAV on a ship

deck in the presence of wind based exclusively on LADAR measurements. It has

been shown that the full state converges to the desired values even in the presence of

stochastic wind. Future research includes the implementation of the moving horizon

estimation method for the state estimation problem. This optimization-based method

treats both the state and parameter estimation within one problem, which also allows

constraints to be incorporated.
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Appendix A

Assuming the wind vortex hypothesis in [16], the wind is modeled by a local linear

term around the aircraft and an angular velocity with respect to the Earth, such that:

V = Va +Vw, Ω = Ωa +Ωw (58)

where V and Va denote the ground and the air velocity of the aircraft’s center of

mass, respectively; Vw is the wind velocity; and Ω, Ωa, Ωw are the angular velocity

of the aircraft relative to Earth, the aerodynamic angular velocity, and the local wind

angular velocity relative to the Earth (atmospheric angular velocity relative to the

Earth), respectively. Note that for the wind velocity, the definition above corresponds

to the velocity of an atmospheric particle which could have been located at the center

of mass of the aircraft.

Assuming the wind velocity can be split into its mean value and gust components,

where the mean speed Vmw acts in a horizontal plane at a heading angle ψw, the linear

and angular velocity of the wind can be expressed in the body frame as follows:

Vb
w = [ubw, v

b
w, w

b
w]
T = Tbo[Vmwsψw + uogw , Vmwcψw + vogw , w

o
gw ]

T (59)

and

Ωb
w = [pbw, q

b
w, r

b
w]
T = Tbo[p

o
w, q

o
w, r

o
w]
T (60)

respectively, where

Tbo =


cθcψ cθsψ −sθ

sϕsθcψ − cϕsψ sϕsθsψ + cϕcψ sϕcθ

cϕsθcψ + sϕsψ cϕsθsψ − sϕcψ cϕcθ


represents the transformation matrix from the inertial to the body frame.

21



The air velocity can be expressed in terms of the aerodynamic climb and track

angles as follows: 
uba

vba

wba

 = VaTbo


cγ2acγ3a

cγ2asγ3a

−sγ2a

 (61)

For a truly symmetric configuration, standard expressions for the aerodynamic

forces and moments can be written as follows:

L = QS (CL0 + CLααa) (62)

D = QS
(
CD0 + k1CL + k2C

2
L

)
(63)

M = QSc

(
Cm0 + Cmααa + Cmδe

δe +
c

2Va
Cmqq

b
a

)
(64)

Y = QS

(
CYββa + CYδr δr +

b

2Va
(CYpp

b
a + CYrr

b
a)

)
(65)

L = QSb

(
Clββa + Clδaδa + Clδr δr +

b

2Va
(Clpp

b
a + Clrr

b
a)

)
(66)

N = QSb

(
Cnβ

βa + Cnδa
δa + Cnδr

δr +
b

2Va
(Cnpp

b
a + Cnrr

b
a)

)
(67)

where Q = ρV 2
a /2 is the dynamic pressure, ρ stands for the air density, S is the wing

surface, c is the mean aerodynamic chord, and b is the wing span. The applicability of

results of this paper can easily be extended to more general nonlinear mathematical

models of the aerodynamic forces and moments.
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