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Abstract: This paper presents a study on active control of the wakes and one-dimensional 

vortex-induced vibrations (VIVs) of a single circular cylinder using a pair of synthetic 

jets (SJs) at a low Reynolds number Re = 100. To facilitate this study, a lattice Boltzmann 

method based numerical framework is established, in which the multi-block scheme and 

the overlap-mesh approach with improved information exchange mechanisms are used to 

balance the computational accuracy and efficiency, and the interpolated bounce-back 

scheme and a corrected momentum exchange scheme are adopted for accurate force 

evaluation. Two configurations are considered. In the first configuration, the cylinder is 

fixed, on which a pair of SJs is implemented and operates in phase. Effects of the SJ pair 

on the cylinder wake are investigated in a systematical way, with the focus placed on the 

SJ’s momentum coefficient, frequency and position. Simulation results indicate that the 

Kármán vortex street formed behind the cylinder can be effectively suppressed when the 

SJ pair operates with sufficiently high momentum coefficient, at a frequency close to the 

cylinder’s natural vortex shedding frequency, and is placed in the quarter arc edge of the 

cylinder’s leeward side. In the second configuration, the same cylinder is allowed to 

oscillate in the cross-flow direction under the excitation of asymmetrically shedding 

vortices as well as the constraint of a spring. It is well demonstrated that this one-

dimensional VIV of the cylinder can be successfully suppressed by the use of SJ control. 
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Due to stronger vortex shedding induced by increased relative motion between the 

cylinder and its surrounding flow, however, not all the cases that perform complete wake 

suppression on the fixed cylinder are able to completely suppress the VIVs of the 

oscillating cylinder. Through the present study, details about SJ-controlled flow around 

the cylinder and in the wake are also revealed. 

 

Keywords:    Synthetic Jet, Wake Control, Vortex-Induced-Vibration Control, Lattice 

Boltzmann Method. 

 

1. Introduction 

 

Asymmetric vortices shed from bluff structures in flows cause dynamic loading on the 

structures. When the shedding frequency matches the structure’s natural frequency, large-

amplitude vibrations may occur, and, if that happens, the structure is prone to damage due 

to extreme stress or fatigue. Therefore, it is desirable to control the asymmetric vortex 

shedding and suppress the vortex-induced vibrations (VIVs). For years, numerous flow 

control methods have been used to suppress the asymmetric vortex shedding and VIVs, 

including passive (no power required), active open-loop (no sensor required) and active 

closed-loop (sensor required) schemes, on which Choi et al. (2008) has given a 

comprehensive review.  

 

As a promising active flow control method, synthetic jets (SJs) have been used in various 

applications, including flow separation control (Wang et al. 2007; Tang et al. 2014), mixing 

control (Pavlova et al. 2008), and turbulence control (Rathnasingham and Breuer 2003). A 

SJ is a chain of vortex rings/pairs produced through a small orifice/slot by oscillation of 

single or multiple diaphragms attached to a cavity. An attractive feature of the SJ is that it 

can produce non-zero momentum flux to control ambient flows with zero net mass flux. 

Since its emergence, the SJ technology has been applied on bluff bodies to modify wakes 

and control VIVs. Using a single SJ, Feng et al. (2010) and Feng and Wang (2012, 2014b) 

experimentally investigated its effects on wake modification and drag reduction of a 

cylinder. The same group (Feng and Wang, 2010, 2014a) also investigated the effects of a 
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single SJ on modifying wakes when the SJ is located at the rear or front stagnation point of 

a cylinder. For control using multiple SJs, Williams et al. (1992) utilized a pair of in-phase 

and out-of-phase SJs operating at low frequencies to alter vortex shedding frequencies and 

wake patterns behind a cylinder at a cylinder diameter based Reynolds number Re = 470. 

Munday and Taira (2013) investigated the effects of excitation frequency and velocity 

amplitude of a pair of out-of-phase SJs on the lock-on characteristics and drag reduction of 

a cylinder at Re = 100. And Ma et al. (2014) found several new wake patterns behind a 

circular cylinder, such as the symmetric 2P mode and asymmetric 2P+2S mode, when a 

pair of in-phase SJs is implemented. In addition to on circular cylinders, SJs were also 

applied on bluff bodies of other shapes. Pastoor et al. (2008) employed a pair of SJs on a D-

shape cylinder for the purpose of drag reduction. By applying a feedback controller, they 

experimentally achieved a 15% drag reduction at the body height based Reynolds number 

ranging from 23,000 to 70,000. They attributed the drag reduction to the mechanism that 

the use of in-phase SJs enhances the initial symmetry of the wake by forcing synchronous 

vortex shedding. Parkin et al. (2014) did a numerical study on a similar D-shape cylinder. 

At the Reynolds number of 23,000, they found the optimal drag reduction occurred at the 

SJ forcing frequency approximately half of the natural vortex shedding frequency. 

 

Although in some of the above-mentioned investigations SJs have been applied to modify 

wakes of single circular cylinders, their effects at very low Reynolds numbers such as Re = 

O(100) have not been fully understood, and the control was mainly focused on drag 

reduction instead of VIV mitigation. The VIV control at such low Reynolds numbers is still 

meaningful and worth investigating. For instance, the VIVs of a hot-wire or hot-film probe 

may cause significant errors in the velocity or temperature measurements (Perry and 

Morrison 1971; Atta and Gharib 1987; Anderson et al. 2005). Although its practical 

implementation is very challenging, the SJ control can be a new way of handling similar 

low-Reynolds-number VIV problems. Therefore, the present study aims to investigate the 

effects of three key parameters of a pair of SJs, i.e., the momentum coefficient, frequency, 

and location, on suppressing the asymmetric vortex shedding and one-dimensional VIVs of 

a circular cylinder at a Reynolds number Re = 100. To focus the present investigation, this 
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pair of SJs is placed symmetrically about the cylinder’s centerline, issues along the 

incoming flow direction, and operates in phase. 

 

This paper is organized as follows. In Section 2 two SJ-based flow control problems are 

described. In Section 3 a lattice Boltzmann method based numerical framework is 

introduced and validated. Section 4 presents the results and discussions associated with the 

two simulation scenarios. In the end conclusions from the present study are drawn. 

 

2. Problem description 

 

In the present study, two SJ-based flow control problems are considered: control of 

asymmetric wakes behind a fixed circular cylinder and the resulting lift oscillation 

experienced by the cylinder, and control of one-dimensional VIVs of the same cylinder 

that is allowed to move in the cross-flow direction. In both problems, the diameter-based 

Reynolds number is fixed at Re = 100, at which the flow is unsteady, laminar and two 

dimensional as reported by Williamson (1996). 

 

2.1. Fixed cylinder in uniform flows 

 

In this problem, a circular cylinder is horizontally immersed in a uniform flow. At the 

Reynolds number of interest, i.e., Re = 100, the flow around the cylinder will be governed 

by absolute wake instability. The upper and lower shear layers will strongly interact, as 

depicted in Fig. 5a. The vortex A that is produced by the roll-up of the upper shear layer 

pulls the lower shear layer up and hence induces the creation of the new vortex B. Once 

growing and convecting downstream, vortex B will trigger the creation of a new vortex 

from the upper shear layer. In this way, strong vortices of opposite signs shed and convect 

alternatively in the wake, forming a von Kármán vortex street. To control this asymmetric 

wake and the resulting lift oscillation experienced by the cylinder, a pair of SJs is 

implemented on the leeward portion of the cylinder, symmetrical about the cylinder’s 

horizontal centerline, as shown in Fig. 1. 
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The SJs are activated after the flow achieves its steady state. Their velocity is given as 

       max sin 2 cos ,sinu

sj e uU f t    u  (1) 

       max sin 2 cos ,sinl

sj e lU f t      u  (2) 

where the superscripts “u” and “l” indicate the upper and lower SJs, respectively. Umax is 

the amplitude of jet velocity, fe the excitation frequency, u and l the operating phases of 

the two SJs, and  the SJ orientation angle defined relative to the cylinder’s horizontal 

centerline. A non-dimensional SJ excitation frequency is defined as 

 = e

n

f
f

f


 (3) 

where fn is the natural frequency of vortex shedding from the cylinder. The momentum 

coefficient of the SJ pair characterizes the SJ strength and is defined as 
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where d is the width of SJ actuators and U the incoming flow velocity. In the present 

study, this width is set as 1/72 of the cylinder perimeter, i.e., d = D/72. 

 

Fig. 1 and Eqs. (1) to (4) reveal that the SJ performance depends on five non-dimensional 

parameters, i.e., the momentum coefficient C, operating frequency f*, position angle , 

orientation angle  and phase angle .  

 

2.2. Oscillating cylinder in uniform flows 

 

In this problem, the cylinder geometry, incoming flow condition, and SJ operation 

condition are exactly the same as in the previous problem. The only difference is that the 

cylinder is now connected to a spring-damper system and hence is allowed to move in the 

cross-flow direction, as depicted in Fig. 2. The SJs are activated when the cylinder 

transversely oscillates in the steady state, so as to damp the one-dimensional VIV of the 

cylinder.  

 

The dynamics of the oscillating cylinder is governed by  
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  Lmy Cy Ky F t    (5) 

where m is the mass of the cylinder, C the damping factor, K the spring stiffness and FL 

the time-dependent lift force experienced by the cylinder. Define two dimensionless 

variables  
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The dimensionless governing equation for the oscillating cylinder can be expressed as 
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where CL is the time-dependent lift coefficient, defined as 

 2

0

2 L
L

F
C

U D 

  (7) 

 is the mean fluid density. In Eq. (6) m* is the mass ratio defined as 

 
*
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  (8) 

s is the non-dimensional damping coefficient  

 
2

s

C

Km
   (9) 

and UR is the reduced velocity defined as 

 R

N

U
U

f D

  (10) 

where fN is the natural frequency of the present mass-spring-damper system in vacuum 

 
1

2
N

K
f

m
  (11) 

 

Since the purpose of Problem 2 is to demonstrate the capability of SJs in controlling the 

one-dimensional VIV of the cylinder, only one selected set of cases is investigated in the 

present study, i.e., m* = 2, UR = 5 and s = 0. Under this set of conditions, the SJ pair 

operates in exactly the same way as for the fixed cylinder in Problem 1.  
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2.3. Case summary 

 

To focus the analysis, the present study only investigates the effects of three major SJ 

parameters, i.e., the momentum coefficient Cμ, operating frequency f* and position angle 

γ, on the lift experienced by the fixed cylinder and its wake patterns. The values of these 

parameters are selected in such a way that different control effects can be observed. Five 

Cμ values, three f* values, and five γ values are selected, which are listed in Table 1. 

Therefore in total 75 cases are simulated. In all the cases, the SJ orientation angle, β, is 

fixed at 0°, meaning that the SJs are always issued horizontally regardless their location. 

In addition, the two SJs are operated in phase, i.e., u - l . The two SJs are switched 

on at the instant when the steady-state lift experienced by the cylinder reaches zero from 

negative values. 

 

Note the three selected frequencies are all greater than 1. This is because, during the 

process of selecting the frequency values, it was found that, in addition to the suppression 

of asymmetric vortex shedding, the SJs operating at around f* = 1 also induce another 

very interesting phenomenon, i.e., lock-on of the wake to the actuation frequency 

(Munday and Taira 2013). To focus the discussions only on the suppression of wake 

asymmetry and VIVs, therefore, the frequencies around 1 are intentionally skipped in the 

present study and will be specifically investigated in our next work. Furthermore, the 

three selected frequencies increase exponentially from 5 to 125, such that two SJ 

operating modes, i.e., the synthetic jet mode and the acoustic mode, can be covered, 

which will be revealed in details in later sections. 

 

Obtained from the time-averaged velocity field simulated by Munday and Taira (2013), 

the mean separation point on the cylinder at the same Reynolds number (Re = 100) is at 

about γ = 58°. Therefore the selected locations γ = 10°/30°/50° are downstream, and 

γ = 70°/80° are upstream of the separation point. 

 

As for the control of the oscillating cylinder, the same 75 cases are simulated. For the 
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purpose of demonstrating the SJ effectiveness in VIV control, however, the results from 

just one case with Cμ = 2.149, f* = 5, and γ = 30° is presented in this paper. 

 

3. Numerical method 

 

3.1. Lattice Boltzmann method 

 

To obtain the instantaneous flow field around and behind the cylinder in the two problems 

described in Section 2, the lattice Boltzmann method (LBM) is adopted, which is effective 

and efficient in solving complex fluid flows using microscopic models and mesoscopic 

kinetic equations (Chen and Doolen, 1998). The present simulations use the incompressible 

D2Q9 MRT LBE model, i.e., two-dimensional incompressible multiple-relaxation-time 

lattice Boltzmann equation model with nine discrete velocities. Compared to the 

conventional D2Q9 LBE model, the use of MRT technique can achieve improved 

numerical stability and accuracy as pointed out by Lallemand and Luo (2000) and Ginzburg 

and d’Humières (2003). In this model, the computational domain is discretized into a 

number of square lattices and fluid particles are represented by distribution functions f, 

where  indicates the particle moving direction. The redistribution and propagation of fluid 

particles are accomplished through a two-step, collision-streaming process. More details 

about the LBE model can be found in Lallemand and Luo (2000). 

 

3.2. Computational geometry and mesh 

 

Fig. 3 shows the computational domain used in the present study. A uniform flow flows 

from the left to the right with a speed U in a 60D (L) × 20D (W) channel. The circular 

cylinder, fixed or movable, is initially placed in the centerline of the channel. Its center is 

set 20D downstream from the channel inlet, which has been proved adequate by Jiang et 

al. (2013). The top and bottom boundaries represent the two channel walls. Instead of 

being stationary, these two wall boundaries are set moving together with the incoming 

flow, so that a uniform flow in an infinite domain around the cylinder is simulated, and 

meanwhile the computational time is significantly saved. Note that the chosen channel 
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width 20D is a bit smaller than those usually used in literature and also smaller than in the 

validation cases (see Section 3.6). This choice is based on the consideration on the 

required computational time and storage space for a large number of cases. Although this 

narrower channel width does affect the wake and aerodynamic forces as revealed in 

Section 4.1, it will not affect the analysis as long as it remains the same for all the 

investigated cases. 

 

To enhance the computational efficiency while maintaining sound accuracy, the MRT 

multi-block scheme proposed by Yu (2002) is applied in the present study. As shown in 

Fig. 3, the entire computational domain is divided into four sets of blocks with the mesh 

density being increased by a factor of 2. The mesh density gradually increases with the 

increase of block number. That is, Block 4 that contains the cylinder has the finest mesh 

spacing Δx = D/60, and Blocks 1.1 to 1.4 that are farthest from the cylinder have the 

coarsest mesh spacing 8Δx. 

 

Furthermore, for accurate and efficient evaluation of the aerodynamic forces on the 

cylinder, an overlap mesh is applied, initially overlapping the mesh in Block 4 and then 

moving together with the cylinder as time advances. This overlap mesh is realized using 

the arbitrary Lagrangian-Eulerian (ALE) approach (Meldi et al., 2013), but with two 

improvements incorporated. First, it is the distribution function fα instead of macroscopic 

variables such as velocity and pressure that are transferred between the overlap mesh and 

the fixed mesh. This avoids unnecessary variable conversion and hence improves 

numerical accuracy. Second, given the fact that during each time step the flow 

information on one node can only be streamed to its neighboring nodes, in the present 

approach the information exchange between the overlap mesh and the fixed mesh at each 

time step occurs in only three rows/columns of grids that cover the interfaces of the two 

sets of meshes. Compared to the process used in Meldi et al. (2013) where the 

information of the entire overlap mesh is transferred, the present method can save 

significant computational costs without degrading the numerical accuracy. 
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3.3. Boundary and initial conditions 

 

The boundary conditions are also shown in Fig. 3. At the channel inlet, the non-reflecting 

inlet boundary condition proposed by Izquierdo and Fueyo (2008) is used, whereas at the 

channel outlet, the homogenous Neumann boundary condition is implemented. On the top 

and bottom walls, the Dirichlet boundary condition is applied with the x-component 

velocity U and y-component velocity 0. 

 

The SJ actuators are represented by a number of nodes on the cylinder, and the time-

dependent SJ velocities are realized by enforcing u
u 

sj and u
l 

sj on these nodes. Therefore, the 

velocity boundary condition representing the SJ actuators on the fixed cylinder is 

 

u u

sj w sjsj

w l l

sj w sj

 
 



u r
u

u r
 (12) 

where rw is the position vector of a node, and 
u 

sj  and 
l 

sj are the portions on the 

cylinder representing the upper and lower SJ actuators, respectively. For the moving 

cylinder, the velocity on the entire cylinder wall is the superposition of the SJ velocity u
sj 

w  

and the translational velocity u
cm 

w  of the cylinder 

 
cm sj

w w w u u u    (13) 

where c represents the cylinder surface. 

 

To evaluate the change of flow when it encounters the fixed or oscillating circular 

cylinder, the interpolated bounce back scheme proposed by Lallemand and Luo (2003) is 

applied to adjust the distribution function near the cylinder after each collision/streaming 

process. By applying the second-order interpolation, this scheme outperforms its ancestor, 

i.e., the standard half way bounce back scheme. 

 

The velocity of the uniform incoming flow is set as U/c = 0.01, where c is the lattice 

velocity. Since D = 60Δx, the non-dimensional time step is Δt = 1/6000, much smaller 

than Δt = 1/1200 that is used in Jiang et al. (2013) at the same Reynolds number. 

 

w cr
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3.4. Force evaluation 

 

For fluid-structure interaction problems involving passively moving bodies such as in 

Problem 2, accurate evaluation of aerodynamic forces on the cylinder and hence the 

cylinder’s motion is of vital importance. To achieve this, a corrected momentum 

exchange scheme that incorporates the initial momentum of net mass transfer proposed 

by Chen et al. (2013) is adopted in the present study. 

 

3.5. Vortex tracking method 

 

To quantify the SJ effects on the vortex generation and evolution, an algorithm that 

identifies and tracks vortex cores is developed and integrated into the numerical 

framework. The definitions of relevant vortex parameters follow those used by Jardin and 

Bury (2012). The non-dimensional vorticity  is defined as 

 
D

U






  (14) 

where  is vorticity. The non-dimensional vortex circulation  is defined as 

 Σ
dxdyΓ

Γ =
DU DU




 




 (15) 

where  encloses the vortex core region identified using the ci criterion (Zhou et al., 

1999). The non-dimensional location of the vortex centroid (x
* 

c ,y
* 

c ) is evaluated by 

 c Σ
c

x dxdyx
x

D DΓ


  


 (16) 

 c Σ
c

y dxdyy
y

D DΓ


  


 (17) 

3.6. Validation  

 

The present numerical framework is validated through two case studies. One is the 

simulation of flow around a fixed cylinder at Re = 100. In this case, the cylinder is 

located along the centerline of a channel of 60D length and 40D width, and 20D 
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downstream from the inlet. The diameter of the cylinder is set as D = 48Δx. The uniform 

incoming velocity is set as U/c = 0.01.  

 

The flow is inherently unsteady at Re = 100. The oscillation magnitude of the lift 

coefficient CL and the Strouhal number St are listed and compared with experimental 

and simulation results obtained from other researchers in Table 2, where the Strouhal 

number is defined as 

 
nf D

St
U

  (18) 

 

It can be seen that the present numerical results agree well with the previous results: the 

St value matches the experimental data and is only 1.2% higher than the values obtained 

from the Navier-Stokes solvers, and the CL value falls between the other two simulation 

results with a mean discrepancy of 3.6%. 

 

In the second case, the cylinder is allowed to move in the cross-flow direction at Re = 

150, under the constraint of a spring, hence the dynamics of the cylinder is governed by 

Eq. (6). The mass ratio m* is set as 2, the damping coefficient s is set as 0, and the 

reduced velocity UR varies from 3 to 8 with an increment of 1. This VIV problem has 

been well studied by Ahn and Kallinderis (2006) using the finite volume ALE scheme, by 

Borazjani et al. (2008) using the curvilinear immersed boundary method, and by Jiang et 

al. (2013) using the LBM.  

 

Dimensions of the computational domain for this validation case are set identical to those 

used in Jiang et al. (2013), where the cylinder is located along the centerline of a channel 

with 48D length and 24D width, and 12D downstream from the inlet. The diameter of the 

cylinder is set as D = 48Δx. The uniform freestream velocity is also set as U/c = 0.01.  

 

Fig. 4 compares the simulated non-dimensional oscillation amplitude A = Amax/D of the 

cylinder with those obtained from references at various reduced velocity UR. It is found 

that the present simulation results are reasonably close to with Jiang et al. (2013)’s 
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results, with a mean discrepancy of 3.9%. However, relatively larger discrepancies are 

observed if compared with the results reported by Ahn and Kallinderis (2006) (mean 

difference of 5.9%) and Borazjani et al. (2008) (mean difference of 9.0%). The reason for 

these discrepancies may stem from the use of different numerical solvers and curved 

boundary treatment methods. 

 

4. Results and discussions 

 

The simulation results are reported and discussed in this section. The results of the 

uncontrolled fixed and vibrating cylinder cases are presented first to serve as the 

benchmark. Then the effects of three SJ parameters, i.e., the momentum coefficient, 

frequency, and location, on the lift force experienced by the fixed cylinder and its wake 

pattern are discussed. In the end, the same set of SJ control cases on the vibrating 

cylinder is simulated to investigate the capability of SJs in suppressing the one-

dimensional VIV of the cylinder.  

 

4.1. Uncontrolled flow 

 

The two steady-state wake patterns behind the uncontrolled fixed and vibrating cylinders 

are shown in Fig. 5, where the solid and dash lines represent isolines of ci = 0.2 that 

enclose vortex cores of positive and negative vorticity, respectively. Although these two 

wake patterns seem very similar and both belong to the 2S mode (Williamson and 

Roshko, 1988), they are different in two aspects. First, on the fixed cylinder the 

separation point remains almost unchanged during a vortex shedding cycle, whereas on 

the vibrating cylinder it moves back and forth due to the cylinder’s motion. Second, the 

cross-flow distance between two successive vortices behind the vibrating cylinder is 

larger, whereas their streamwise distance is smaller than that behind the fixed cylinder. 

The reason for the latter change is because, although the oscillation of the cylinder is 

caused by the asymmetric vortex shedding, it in return induces more violent interactions 

between the upper and lower shear layers and hence expedites the shedding of 

asymmetric vortices. 
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Vortex evolution in these two cases is also quantified and shown in Fig. 6, where only the 

quantities associated with “positive” vortices are plotted. Behind the fixed cylinder, the 

normalized circulation Γ* increases until it reaches its maximum value 4.3 at x* = 1.2, 

indicating that the vortex is saturated around this position as shown in Fig. 6(a). After 

that Γ* starts dropping quickly to 2.5 due to the vortex shedding. As the vortex convects 

further downstream, Γ* continues decreasing but with a much smaller rate. As shown in 

Fig. 6(b), the vortex centroid first moves towards and then away from the channel 

centerline (y* = 0). Immediately after the vortex is shed at x* = 1.4, it is closest to the 

centerline. 

 

Unlike in the fixed cylinder case where Γ* monotonically increases before the vortex 

sheds, Γ* behind the vibrating cylinder first increases to its maximum value 5.0 at x* = 

0.8, and then decreases until the vortex sheds at x* = 1.1, as shown in Fig. 6(a). The 

reason for this increase-decrease trend is because of the change of moving direction of 

the cylinder. The maximum circulation is about 17% larger than that behind the fixed 

cylinder, which is attributed to the larger relative velocity due to the vibrating cylinder's 

cross-flow motion. After the vortex sheds and convects downstream, Γ* continues 

decreasing. Fig. 6(b) shows that the trajectory of this vortex crosses the channel 

centerline. After the vortex shedding, it is farther away from the centerline compared to 

the trajectory behind the fixed cylinder. This magnified off-axis behavior is caused by the 

cross-flow flow induced by the cylinder motion. 

 

The lift experienced by the two cylinders is time-dependent and varies with the periodical 

vortex shedding process. Its oscillation magnitudes (CL) and root-mean-square values 

(CL(rms)), as well as the Strouhal number (St) are listed in Table 3. The normalized 

vibrating amplitude of the vibrating cylinder A* is also listed. The results reveal that the 

lift experienced by the vibrating cylinder is almost one order-of-magnitude larger than 

that experienced by the fixed cylinder, whereas the Strouhal numbers are relatively close. 

Allowing the cylinder to move results in an increase of the Strouhal number, meaning a 

faster vortex shedding rate. 
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Note that for the fixed cylinder slightly larger values in CL and St appear in the present 

results if compared with those listed in Table 2. These discrepancies stem from the 

narrower channel width used in the present simulation. 

 

4.2. Parametric study on SJ controlled fixed cylinder 

 

The root-mean-square (RMS) values of lift coefficient for all the 75 cases are presented 

in Fig. 7, which are grouped by the SJ location γ. In the following subsections, the effects 

of Cμ, f
* and γ will be discussed based on this figure and other additional contours/plots. 

 

4.2.1. Effects of momentum coefficient Cμ 

 

Fig. 7 reveals that the CL(rms) values for all SJ-controlled cases are smaller than those for 

the uncontrolled case, which demonstrates the capability of the SJs in attenuating the lift 

oscillation. It is also observed that CL(rms) monotonically decreases with increasing Cμ for 

a given jet frequency and location, indicating that the stronger the SJs, the better the 

control effect. Furthermore, CL(rms) approaches zero in some cases, such as the cases with 

γ = 30°/50°/70°, f* = 5 and Cμ ≥ 0.955, and the cases with γ = 30°/50°/70°, f* = 25 and Cμ 

= 2.149, meaning the lift oscillation is completely suppressed by SJs.  

 

To further explore the effects of Cμ, the wake patterns for the uncontrolled baseline case 

and five representative cases with γ = 70° and f* = 5 are compared. As shown in Fig. 8, as 

Cμ is relatively small (Cμ = 0 ~ 0.537), the wake is dominated by Kármán vortices. With 

the increase of Cμ the two shear layers developed from the cylinder elongate and the near-

cylinder flow gradually becomes symmetric, as shown from Fig. 8(a) to 8(d). As a result, 

the CL(rms) value gradually decreases (refer to Fig. 7(d)). As Cμ increases further, the wake 

becomes the symmetric 2S mode as shown in Figs. 8(e) and 8(f), resulting in zero lift 

oscillations. Similar SJ-controlled wake pattern was also reported in the experimental 

investigations by Williams et al. (1992) and Ma et al. (2014). In addition, the present 

study indicates that to obtain the symmetric 2S mode and zero lift oscillation, Cμ needs to 
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reach a critical value between 0.537 and 0.955. This value is close to the value 0.88 

reported in Williams et al. (1992) at slightly different flow and jet conditions. 

 

The suppression or delay of the asymmetric vortex shedding is realized through two 

major mechanisms: First, the high-frequency SJs mitigate the evolution of large-scale 

vortex formation; Second, the in-phase operating SJs force synchronous vortex shedding, 

and hence enhance the initial symmetry of the wake. Operating in phase at f* = 5, the two 

SJs eject five times in one natural vortex shedding period, hence interrupt the vortex 

shedding process five times. This phenomenon is well captured in Fig. 9, in which a time 

sequence of a selected case, i.e., γ = 70°, Cµ = 0.537, f* = 5, is presented in a close-up 

view, which corresponds to the case shown in Fig. 8(d). The development of a naturally 

shedding vortex is interrupted by the SJ ejection and as a result small pieces of symmetric 

vortices are generated. These small vortices then convect downstream, catch up with each 

other, and merge to form a large vortex as shown in Fig. 9(e).  

 

Spectral analysis on the normalized y-component velocity v* = v/U obtained at a probe 

P(1.5D, 0.5D) is also conducted to show the SJ effect. Fig. 10 shows the spectra for the 

uncontrolled case and SJ-controlled cases with γ = 70° and f* = 5. In the uncontrolled case 

(Cμ = 0), a major peak appears at f* = 1, representing the natural vortex shedding 

frequency. Two peaks that are at least one order-of-magnitude smaller are also observed 

at the harmonic frequencies. When the SJ is actuated, another peak appears at SJ 

operating frequency, i.e., f* = 5. As Cμ increases, the peak at f* = 1 reduces and the peak 

at f* = 5 increases. When Cμ ≥ 0.955, the peak at f* = 1 disappears, indicating the 

complete suppression of the natural vortex shedding, whereas the peak at f* = 5 

dominates the spectrum. 

 

The vortex circulation history and vortex trajectory for two selected cases (γ = 70°, Cµ = 

0.537 and 0.955, f* = 5) as well as the uncontrolled case are presented in Fig. 11. As for 

the case with Cµ = 0.537, Fig. 11(a) reveals that its non-dimensional circulation Γ* is 

consistently smaller than that in the uncontrolled case throughout the entire vortex 

evolution process. For example, its circulation at x* = 14 is only about 51% of the value 
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in the uncontrolled case. The significant reduction of the vortex circulation after 

implementing jet control on a circular cylinder was also reported by Jardin and Bury 

(2012). In their study, opposite-signed vorticity is introduced into the shear layer through 

a wall-tangential pulsed jet, which directly cancels a portion of vorticity in the shear 

layer. In the present study, however, the circulation reduction mechanism seems different. 

The SJ involves both blowing and suction so that the vorticity generated in blowing is 

mitigated by the suction through drawing ambient vorticity-carrying fluid. The flow 

details in Fig. 9 reveal that the reason for the pronounced circulation reduction is because 

of the formation of multiple pieces of small vortices due to the SJ interruption and then 

the fast vorticity reduction because of viscous dissipation and vortex turning/stretching of 

these small vortices. Such a vortex evolution process also explains the discontinuities in 

vortex circulation and trajectory plotted in Fig. 11, which appear before the vortex 

completely sheds from the cylinder at x* = 3.5. In addition, the trajectory shown in Fig. 

11(b) also reveals that, by introducing the SJs, the vortex shedding position (x* = 3.5) is 

pushed downstream from the original uncontrolled position x* = 1.4. This is consistent 

with the elongated shear layer observed in Fig. 8(d). 

 

As Cµ increases to 0.955 and even 2.149, the vortex is broken down by stronger SJs and 

the resulting smaller vortices disappear soon. As a result, the plots for circulation history 

and vortex trajectory are only up to about x* = 3 in Fig. 11, the CL(rms) values are 

approximately zero as shown in Fig. 7(d), and the wake patterns converge to the 

symmetric 2S mode as shown in Fig. 8(e) and 8(f). 

 

The above analysis confirms that the SJs are able to reduce or even eliminate the lift 

oscillation on the cylinder, and attenuate or even completely suppress the asymmetric 

wake. Such control effects are more pronounced when increasing Cµ for given f* and γ. 

As Cµ exceeds a threshold value that is between 0.537 and 0.955, symmetric vortex 

shedding appears which is accompanied by zero lift oscillation. Furthermore, through this 

study it is found that the Cµ values effective in the control at very low Reynolds numbers 

are significantly larger than those used at high Reynolds numbers. Past investigations 

revealed that the SJ-like control of the wake of a circular cylinder using plasma jets or 
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acoustic actuators at the Reynolds number ranging from 15,000 to 33,000 only required 

Cµ of O(0.001) (Hsiao and Shyu, 1991; Thomas et al., 2008; Jukes and Choi, 2009). The 

SJ control of the wake and drag of a D-shape body at the body height based Reynolds 

number ranging from 23,000 to 70,000 requires Cµ of O(0.01) (Pastoor et al. 2008; Parkin 

et al. 2014).  

 

4.2.2. Effect of SJ frequency f* 

 

Three different SJ operating frequencies, i.e., f* = 5, 25, and 125, are studied in the 

present study. As shown in Fig. 7, for given Cµ and , CL(rms) increases as f* increases. 

This implies that the capability of the SJs in reducing lift oscillation becomes weaker as f* 

increases in the present frequency range. In some cases, such as the four cases with γ = 

70° and Cµ = 0.955 plotted in Fig. 7(d), CL(rms) increases from zero to non-zero values as 

f* increases, indicating the recurrence of asymmetric vortex shedding. To confirm this, 

the wake structures for the three SJ controlled cases are presented in Fig. 12 (For the sake 

of brevity, Fig. 12 does not include the uncontrolled case, which however can be found in 

Fig. 8(a)). As f* increases from 5 to 25, the wake pattern changes from the symmetric 2S 

mode to the asymmetric 2S mode with an elongated shear layer as shown in Figs. 12(a) 

and 12(b), and as a result CL(rms) increases from 0 to 0.039. As f* further increases to 125, 

as shown in Fig. 12(c) the wake pattern remains the asymmetric 2S mode but with a 

shorter shear layer (still longer than that in the uncontrolled case), and CL(rms) increases 

further to 0.102. 

 

The effect of SJ operational frequency in the cases with a larger momentum coefficient, 

i.e., γ = 70° and Cµ = 2.149, is similar to that in the cases with Cµ = 0.955 as discussed 

above. But due to the stronger SJs the recovery of asymmetric vortex shedding with 

increasing f* is less obvious. As f* increases from 5 to 25, the wake remains symmetric as 

shown in Figs. 13(a) and 13(b), and CL(rms) remains zero. However, unlike at f* = 5, no 

obvious vortex is captured in the wake at f* = 25. As f* increases to 125, as shown in Fig. 

13(c) the wake pattern remains symmetric near the cylinder but then evolves into a 

weaker asymmetric 2S mode at about x* = 6, and as a result CL(rms) increases from 0 to 
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0.018. 

 

Fig. 14 compares the vortex circulation histories and vortex trajectories of the cases with 

γ = 70° and Cµ = 0.955. As f* increases, Γ* increases from very small values at f* = 5 to 

values at f* = 125 that are close to the uncontrolled values. In addition, the vortex 

trajectory at f* = 125 is closest to that of the uncontrolled case as shown in Fig. 14(b). 

These plots again confirm that the SJ control effects become weaker as f* increases.  

 

Through this frequency-dependent investigation, two SJ operational modes (Ingard, 

1953) are observed: the SJ mode dominated by momentum injection, and the acoustic 

mode dominated by propagation of sound waves. Fig. 15 shows instantaneous pseudo-

Schlieren images for the cases of f* = 5, 25, and 125 with γ = 70° and Cµ = 0.955. Thanks 

to the intrinsic compressible characteristics of the LBM, the pseudo-Schlieren images can 

be obtained by calculating the magnitude of density gradient (Dandois et al., 2007). 

 

In Fig. 15(c), when the pair of SJs operates at a relatively high frequency, i.e., f* = 125, 

very clear sound waves are observed, which propagate in all directions. The frequency of 

these sound waves coincides with the SJ operation frequency. In this case, the pair of SJs 

operates in the acoustic mode, and the energy introduced by the SJs is emitted in all 

directions, leaving only a small portion interacting with the shedding vortices. Hence the 

asymmetric shedding vortices are not affected too much by the SJs and appear very 

similarly to those in the uncontrolled case (compare Figs. 8(a) and 12(c)). But the wavy 

vortex circulation and trajectory curves shown for this case in Fig. 14 indicate that the 

sound wave propagation does result in small-amplitude velocity fluctuations. As the SJ 

operation frequency becomes as low as f* = 5, the sound wave propagation is not captured 

in Fig. 15(a). Instead, clear periodic jet flows in the streamwise direction are observed on 

the leeside of the cylinder, indicating the momentum injection by the pair of SJs. In this 

case, the energy introduced by the SJs is mainly carried by the jet flows, and the 

interaction between the jet flows and the shedding vortices is strong, eliminating the 

natural shedding of asymmetric vortices (see Fig. 12(a)). As the SJs operate at an 

intermediate frequency, i.e., f* = 25, both the jet flow and the sound wave propagation are 
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observed, suggesting that the SJs operate in a transitional mode. As a result, the wake 

pattern for this case falls between those at f* = 5 and at f* = 125, as shown in Fig. 12(b).  

 

4.2.3. Effect of SJ position γ 

 

From Fig. 7 the effect of SJ position γ on CL(rms) can also be observed. Generally, for 

given f* and Cμ, CL(rms) values at γ = 30°, 50°, and 70° are smaller than those at γ = 10° 

and 80°, indicating that the SJs located at γ = 10° and 80° exert less control on the 

shedding vortices. In addition, it is interesting to see that the CL(rms) values at γ = 10° are 

smaller than those at γ = 80° when f* = 5 and 25, whereas the trend is reversed when f* = 

125. 

 

To further demonstrate the effect of SJ position γ on the wake, the flow details at a 

selected instant for a series of representative cases with Cμ = 0.537 and f* = 5 are shown 

in Fig. 16. From the close view images in the left column, it is confirmed that each SJ 

produces a vortex pair during one operation period, and it is this pair of vortices that 

interacts with the shear layers and performs flow control. In the case with γ = 10° as 

shown in Fig. 16(b1), the two SJ actuators are very close to the cylinder’s horizontal 

centerline and away from the two shear layers. In addition, the two produced SJs are so 

close to each other that the two inner branches of their vortex pairs cancel out with each 

other. As a result, the SJ strength is reduced. For these reasons, it is not surprising to see 

that the SJ control effect in this case is significantly less compared to those in the cases 

with γ = 30°, 50°, and 70°, as demonstrated in the wake patterns shown in the right 

column of Fig. 16. 

 

On the other hand, in the case with γ = 80° the two SJ actuators are located far upstream 

of the mean separation points (at about γ = 58°) of the shear layers, and hence the 

produced SJs are deeply immersed in the shear layers all the time. The strong vorticity 

carried by the shear layers effectively suppresses the production of the upstream branch 

of the SJs. Therefore, much smaller and weaker vortices are produced by the SJs in this 

case as shown in Fig. 16(f1), and their control effect is also significantly discounted as 
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shown in Fig. 16(f2). 

 

In the rest of cases with γ = 30°, 50° and 70°, the SJ actuators are located either slightly 

downstream or slightly upstream of the mean separation points of the shear layers. The 

wake patterns shown in Fig. 16 and the CL(rms) values plotted in Fig. 7 reveal that at these 

locations the SJs can sufficiently interact with the shear layers and are able to effectively 

control the asymmetric vortex shedding. 

 

The evolution of vortex circulation and trajectory for cases with three representative SJ 

positions, i.e., γ = 10°, 30°, and 70°, is plotted in Fig. 17. It is found that the evolution in 

the γ = 10° case is very similar to that in the uncontrolled case, whereas the evolution in 

the γ = 30° case is similar to those in the γ = 70° case. This is consistent with the wake 

pattern observation from Fig. 16. Note that there are obvious differences between the γ = 

30° and γ = 70° cases in the vortex evolution before about x* = 8. The break-up of the 

shedding vortex happens earlier and more discontinuities appear in the γ = 70° case. This 

is because the SJ actuators at γ = 70° are closer to the mean separation points of the shear 

layers, and hence they are able to exert more influence on the shear layers. 

 

4.3. SJ-controlled vortex-induced oscillating cylinder 

 

As described in Section 2.2, by allowing the cylinder to move in the cross-flow direction 

with the support of a spring-damper system, the cylinder oscillates under the excitation of 

asymmetrically shedding vortices. To control this one-dimensional VIV, a pair of SJs is 

applied which operates at the same set of operating conditions (Cμ, f
*, and γ) as for the 

fixed cylinder in Section 4.2. Among the 75 cases, it is found that the cross-flow 

oscillation of the cylinder can be completely suppressed only in three cases, i.e., with Cμ 

= 2.149, f* = 5, and γ = 30°, with Cμ = 2.149, f* = 5, and γ = 50°, and with Cμ = 2.149, f* = 

25, and γ = 50°. This indicates that, to completely suppress the one-dimensional VIV, the 

SJ momentum coefficient must be no less than Cμ = 2.149, the position of the SJ actuators 

should be at γ = 30° or 50°, and the SJ operating frequency is either f* = 5 or 25. This SJ 

operational range is much narrower compared to that for the fixed cylinder cases in which 
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the lift oscillation can be completely suppressed, i.e., CL(rms) = 0. There are two reasons 

for this reduction of the effective operational range. First, the transverse motion of the 

cylinder induces greater relative flow speed around the cylinder, resulting in shear layers 

with larger vorticity. The stronger shear layers then require stronger SJs for the control. 

Second, the motion of the cylinder causes the mean separation points of shear layers to 

move further downstream on the cylinder. As such, in most of the time the SJ actuators at 

γ = 70° are immersed in the shear layers. As a result, none of the cases with γ = 70° can 

completely suppress the VIV of the cylinder. 

 

To demonstrate the SJ control effectiveness, the case with Cμ = 2.149, f* = 5, and γ = 30° 

is presented here. The time history of the cross-flow location of the cylinder center is 

plotted in Fig. 18(a), where points (a) to (i) indicate the instants corresponding to the 

snapshots of wake structures shown in Figs. 19(a) to 19(i), respectively. The SJs are 

actuated when the cylinder is passing through point (d) at t* = t/T = 0 and y* = y/A = 0, at 

which the spring is at its original length. After that, the cylinder keeps moving upward 

and reaches the highest point (e) at t* = 0.267. At this instant, y* = 0.542, slightly less 

than the value 0.545 at point (a), but the shear layer detached from the upper surface of 

the cylinder (in blue) has been broken into two pieces by the SJs, if comparing the wake 

patterns shown in Figs. 19(a) and 19(e). At t* = 0.618 when the cylinder moves back to 

the its equilibrium position, point (f), that shear layer is totally separated from its 

downstream portion, while the shear layer detached from the lower surface (in red) has 

been broken into several pieces by the SJ pair, if comparing the wake patterns shown in 

Figs. 19(b) and 19(f). As the cylinder continues moving downward, it reaches the lowest 

point (g) y* = −0.168 at t* = 0.816, which is only 31% of the uncontrolled value (y* = 

−0.545) at point (c). Besides, the shear layers detached from the cylinder are completely 

disrupted by the SJs, if comparing the vorticity contours shown in Figs. 19(c) and 19(g). 

At t* = 1.070, the cylinder moves back to its equilibrium position again, represented by 

point (h). At this instant, the uncontrolled shear layers shown in Fig. 19(d) are replaced 

by a series of SJ produced vortices as shown in Fig. 19(h). As this SJ control continues, 

the oscillation amplitude of the cylinder keeps decreasing, and finally approaches zero at 

t* = 4.000, meaning the one-dimensional VIV of the cylinder has been completely 
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suppressed. At this instant, the wake pattern behind the cylinder becomes the symmetric 

2S mode as shown in Fig. 19(i). 

 

The effect of the SJ actuation timing is also studied. Three additional cases operating 

with Cμ = 2.149, f* = 5, and γ = 30° are investigated, in which the SJs are actuated when 

the cylinder is at the position corresponding to points (1), (3) and (4) as indicated in Fig. 

18(b). The time histories of the cylinder’s cross-flow position plotted in Fig. 18(b) reveal 

that in all the four cases the SJs are able to successively suppress the oscillation of the 

cylinder within three natural vortex shedding periods, suggesting that the one-

dimensional VIV control using the present SJ configurations is not sensitive to the SJ 

actuation timing. This finding is useful for future investigations on SJ flow control using 

feedback control schemes. 

 

5. Conclusion 

 

In this paper, active control of the wakes and one-dimensional VIVs of a single circular 

cylinder using a pair of SJs is conducted at a low Reynolds number of Re = 100. An 

LBM based numerical framework is established to facilitate this study, in which the 

multi-block scheme and the overlap-mesh approach with improved information exchange 

mechanisms are used to balance the computational accuracy and efficiency, and the 

interpolated bounce-back scheme and a corrected momentum exchange scheme are 

adopted for accurate force evaluation. 

 

Two cylinder configurations are investigated. In the first configuration, the cylinder is 

fixed, on which a pair of in-phase operating SJs is implemented. The effects of three key 

parameters of the SJ pair, i.e., momentum coefficient Cμ, frequency f*, and position , on 

the wake pattern behind the cylinder and the lift oscillation experienced by the cylinder 

are investigated. Main findings from this parametric study are as follows: 

(i) The control effect increases with the increase of Cμ. That is, the Kármán vortex 

street behind the cylinder is gradually replaced by symmetric 2S vortices or even 

no vortex shedding. As a result, the lift oscillation gradually reduces to zero. 
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(ii) To achieve effective SJ control, the required Cμ at the present low Reynolds 

number (Re = 100) is found be much larger than that required at high Reynolds 

numbers (Re = O(105)). 

(iii) Among the three frequencies considered in the present study, it is found that the 

SJs operating at f* = 5 give the best control effect. The reason is that at this 

frequency the SJs operate in the momentum-injection mode, in which most of the 

energy is injected into the wake, whereas at the highest frequency, i.e., f* = 125, 

the SJs operate in the acoustic mode, in which most of the energy is emitted in all 

directions through sound waves. 

(iv) It is found that the SJ pair works effectively at around the quarter arc edge of the 

cylinder’s leeward side, i.e., γ = 30°, 50° and 70°. If the SJ actuators are located 

close to the cylinder’s horizontal centerline, i.e., γ = 10°, the SJs are far away 

from the shear layers and hence have little control effect. If the SJ actuators are 

located near the cylinder’s vertical centerline, i.e., γ = 80°, the SJs are deep 

immersed in the shear layers and the injected vorticity flux are impaired by the 

strong surrounding shear, hence their control effect is significantly discounted. 

 

In the second configuration, the same cylinder oscillates in the cross-flow direction under 

the excitation of asymmetrically shedding vortices and the constraint of a spring. The 

same set of parameter combinations as in the first configuration is applied on this 

cylinder. It is found that not all the parameter combinations that completely suppress the 

lift oscillation on the fixed cylinder are able to completely suppress the one-dimensional 

VIV of the oscillating cylinder. The reason stems from the increased relative motion 

between the cylinder and its surrounding flow due to the cylinder’s cross-flow motion, 

leading to the shedding of stronger vortices. The suppression of one-dimensional VIV is 

well demonstrated by the use of the SJ control with three parameter combinations. It is 

also found that the VIV control using the present SJs is not sensitive to the SJ actuation 

timing. Furthermore, through the present study more flow details about SJ-controlled 

flow around the cylinder and in the wakes are revealed. 

 

In the near future, two logical extensions of the present work will be conducted: 1. To 
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investigate new lock-on phenomena at lower frequencies around f* ≈ 1; 2. To suppress 

two-dimensional VIVs of a circular cylinder using SJs plus other control means. 
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Table captions 

 

Table 1. Selected SJ values for the parametric study. 

 

Table 2. Comparison of the oscillation magnitude of lift coefficient and Strouhal number at Re = 100. 

 

Table 3. Oscillation magnitudes and root-mean-square values of lift coefficient, Strouhal numbers, and the 

normalized oscillation amplitude of the uncontrolled cylinder. 
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Tables 

 

Table 1. Selected SJ values for the parametric study. 

Cμ f* γ 

0.060  10° 

30° 

50° 

70° 

80° 

0.239 5 

0.537 25 

0.955 125 

2.149  
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Table 2. Comparison of the oscillation magnitude of lift coefficient and Strouhal number at Re = 100. 

Reference Methodology CL St 

Williamson (1989) Experiment -- 0.166 

Liu et al. (1998) NS 0.339 0.164 

Choi et al. (2007) NS 0.315 0.164 

Present LBM 0.329 0.166 
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Table 3. Oscillation magnitudes and root-mean-square values of lift coefficient, Strouhal numbers, and 

the normalized oscillation amplitude of the uncontrolled cylinder. 

Cases CL CL(rms) St A* 

Fixed cylinder 0.337 0.238 0.169 -- 

Vibrating cylinder 2.962 2.109 0.186 0.545 
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Figure captions 

 

Fig. 1. Schematic of a fixed cylinder equipped with a SJ pair. The two short red line sections represent the 

SJ pair; U∞ is the freestream velocity; D is the cylinder diameter; d is the SJ width; β describes the 

orientation of the SJs; γ describes the location of the SJs; u
u 

sj and u
l 

sj are the velocities of the upper and lower 

SJs, respectively; Point P located at (1.5D, 0.5D) is a detection point. 

 

Fig. 2. Schematic of the passively oscillating cylinder equipped with a SJ pair. The two red line sections 

represent the SJ pair; U is the freestream velocity; D is the diameter of the cylinder; c is the density of the 

cylinder; u
cm 

w  is the translational velocity of the cylinder; u
u 

sj and u
l 

sj are the velocities of the upper and lower 

SJs relative to the oscillating cylinder, respectively; K is the stiffness of the spring; and C is the damping 

factor. 

 

Fig. 3. Computational domain with multi-block arrangement (not in scale). 

 

Fig. 4. Normalized maximum amplitude A* = Amax/D of the cylinder against reduced velocity UR. 

 

Fig. 5. Wake patterns of (a) unforced fixed-cylinder case and (b) unforced oscillating-cylinder case. The 

contour is normalized vorticity *. The solid and dash lines represent vortices identified by ci = 0.2 

isolines enclosing positive and negative vorticity, respectively. 

 

Fig. 6. Evolution of (a) normalized vortex circulation Γ* and (b) normalized vortex position y* = y/D against 

streamwise position x* = x/D. Symbols ■ and □ represent the unforced fixed and oscillating cylinder cases, 

respectively. 

 

Fig. 7 Variation of root-mean-square values of lift coefficient, CL(rms), against the momentum coefficient, 

Cμ, for the SJ pair placed at γ = (a) 10°; (b) 30°; (c) 50°; (d) 70°; (e) 80°. 

 

Fig. 8. Wake patterns of (a) unforced case; (b) γ = 70°, Cµ = 0.060, f* = 5; (c) γ = 70°, Cµ = 0.239, f* = 5; (d) 

γ = 70°, Cµ = 0.537, f* = 5; (e) γ = 70°, Cµ = 0.955, f* = 5; (f) γ = 70°, Cµ = 2.149, f* = 5. The contour is 

normalized vorticity . The solid and dash lines represent vortices identified by ci = 0.2 isolines enclosing 

positive and negative vorticity, respectively. Refer to Fig. 5(a) for the colorbar. 

 

Fig. 9. Evolution of wake pattern within one natural vortex shedding period for the case of γ = 70°, Cµ = 

0.537 and f* = 5 at five different instants: (a) t = 0.2T; (b) t = 0.4T; (c) t = 0.6T; (d) t = 0.8T; (e) t = 1.0T. 

The contour is normalized vorticity . The solid and dash lines represent vortices identified by ci = 0.2 

isolines enclosing positive and negative vorticity, respectively. Refer to Fig. 5(a) for the colorbar. “A” 
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denotes anti-clockwise vortices, the superscript “-1” denotes the identified vortices shed in the previous 

period, and the subscripts denotes the original piece number of vortices shed in the current period. For 

instance, A1+2+3 represents a new vortex that forms through the combination of vortices A1, A2 and A3 shed 

in the current period. 

 

Fig. 10. Spectral analysis of normalized y-component velocity v = v/U probed at P(1.5D,0.5D). γ = 70°, f* 

= 5. 

 

Fig. 11. Evolution of (a) normalized vortex circulation Γ* and (b) normalized vortex position y* = y/D 

against streamwise position x* = x/D. Symbols ■, ◇ and + represent the unforced case, case with γ = 70°, Cµ 

= 0.537, f* = 5, and case with γ = 70°, Cµ = 0.955, f* = 5, respectively. 

 

Fig. 12. Wake patterns for (a) Cµ = 0.955, f* = 5, γ = 70°; (b) Cµ = 0.955, f* = 25, γ = 70°; (c) Cµ = 0.955, f* 

= 125, γ = 70°. The contour is normalized vorticity . The solid and dash lines represent vortices identified 

by ci = 0.2 isolines enclosing positive and negative vorticity, respectively. Refer to Fig. 5(a) for the 

colorbar. 

 

Fig. 13. Wake patterns for (a) γ = 70°, Cµ = 2.149, f* = 5; (b) γ = 70°, Cµ = 2.149, f* = 25; (c) γ = 70°, Cµ = 

2.149, f* = 125. The contour is normalized vorticity . The solid and dash lines represent vortices 

identified by ci = 0.2 isolines enclosing positive and negative vorticity, respectively. Refer to Fig. 5(a) for 

the colorbar. 

 

Fig. 14. Evolution of (a) normalized vortex circulation Γ* and (b) normalized vortex position y* = y/D 

against streamwise position x* = x/D. Symbols ■, +, ○, and ∆ represent the unforced case; γ = 70°, Cµ = 

0.955, f* = 5; γ = 70°, Cµ = 0.955, f* = 25; γ = 70°, Cµ = 0.955, f* = 125, respectively. 

 

Fig. 15. Instantaneous pseudo-Schlieren visualization: γ = 70°, Cµ = 0.955, and (a) f* = 5; (b) f* = 25; (c) f* = 

125. For better presentation, the contour scale in (c) is 10 times of those in (a) and (b). 

 

Fig. 16. Near and far field wake patterns: (a) unforced case; (b) Cµ = 0.537, f* = 5, γ = 10°; (c) Cµ = 0.537, f* 

= 5, γ = 30°; (d) Cµ = 0.537, f* = 5, γ = 50°; (e) Cµ = 0.537, f* = 5, γ = 70°; (f) Cµ = 0.537, f* = 5, γ = 80°. 

The contour is normalized vorticity . The solid and dash lines represent vortices identified by ci = 0.2 

isolines enclosing positive and negative vorticity, respectively. Refer to Fig. 5(a) for the colorbar. 

 

Fig. 17. Evolution of (a) normalized vortex circulation Γ* and (b) normalized vortex position y* = y/D 

against streamwise position x* = x/D.  Symbols ■, ,  and ◇ represent the unforced case; γ = 10°, Cµ = 

0.537, f* = 5; γ = 30°, Cµ = 0.537, f* = 5; γ = 70°, Cµ = 0.537,  f* = 5, respectively. 
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Fig. 18. Time history of the cross-flow position of the oscillating cylinder: (left) when the SJs are actuated 

at point (d); (right) when the SJs are actuated at points (1) to (4). 

 

Fig. 19. Snapshots of cylinder position and wake patterns: (a) to (i) correspond to points (a) to (i) in Fig. 18 

(a). The contour is normalized vorticity . The solid and dash lines represent vortices identified by ci = 

0.2 isolines enclosing positive and negative vorticity, respectively. Refer to Fig. 5(a) for the colorbar. 
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Figures 

 

 

Fig. 1. Schematic of a fixed cylinder equipped with a SJ pair. The two short red line sections represent the 

SJ pair; U∞ is the freestream velocity; D is the cylinder diameter; d is the SJ width; β describes the 

orientation of the SJs; γ describes the location of the SJs; u
u 

sj and u
l 

sj are the velocities of the upper and lower 

SJs, respectively; Point P located at (1.5D, 0.5D) is a detection point. 
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Fig. 2. Schematic of the passively oscillating cylinder equipped with a SJ pair. The two red line sections 

represent the SJ pair; U is the freestream velocity; D is the diameter of the cylinder; c is the density of the 

cylinder; u
cm 

w  is the translational velocity of the cylinder; u
u 

sj and u
l 

sj are the velocities of the upper and lower 

SJs relative to the oscillating cylinder, respectively; K is the stiffness of the spring; and C is the damping 

factor. 
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Fig. 3. Computational domain with multi-block arrangement (not in scale). 
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Fig. 4. Normalized maximum amplitude A* = Amax/D of the cylinder against reduced velocity UR. 

 

  



39 

 

 

 

 

 

Fig. 5. Wake patterns of (a) unforced fixed-cylinder case and (b) unforced oscillating-cylinder case. The 

contour is normalized vorticity *. The solid and dash lines represent vortices identified by ci = 0.2 

isolines enclosing positive and negative vorticity, respectively. 
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Fig. 6. Evolution of (a) normalized vortex circulation Γ* and (b) normalized vortex position y* = y/D 

against streamwise position x* = x/D. Symbols ■ and □ represent the unforced fixed and oscillating cylinder 

cases, respectively. 
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Fig. 7 Variation of root-mean-square values of lift coefficient, CL(rms), against the momentum coefficient, Cμ, 

for the SJ pair placed at γ = (a) 10°; (b) 30°; (c) 50°; (d) 70°; (e) 80°. 
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Fig. 8. Wake patterns of (a) unforced case; (b) γ = 70°, Cµ = 0.060, f* = 5; (c) γ = 70°, Cµ = 0.239, f* = 5; (d) 

γ = 70°, Cµ = 0.537, f* = 5; (e) γ = 70°, Cµ = 0.955, f* = 5; (f) γ = 70°, Cµ = 2.149, f* = 5. The contour is 

normalized vorticity . The solid and dash lines represent vortices identified by ci = 0.2 isolines enclosing 

positive and negative vorticity, respectively. Refer to Fig. 5(a) for the colorbar. 
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Fig. 9. Evolution of wake pattern within one natural vortex shedding period for the case of γ = 70°, Cµ = 

0.537 and f* = 5 at five different instants: (a) t = 0.2T; (b) t = 0.4T; (c) t = 0.6T; (d) t = 0.8T; (e) t = 1.0T. 

The contour is normalized vorticity . The solid and dash lines represent vortices identified by ci = 0.2 

isolines enclosing positive and negative vorticity, respectively. Refer to Fig. 5(a) for the colorbar. “A” 

denotes anti-clockwise vortices, the superscript “-1” denotes the identified vortices shed in the previous 

period, and the subscripts denotes the original piece number of vortices shed in the current period. For 

instance, A1+2+3 represents a new vortex that forms through the combination of vortices A1, A2 and A3 shed 

in the current period.  
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Fig. 10. Spectral analysis of normalized y-component velocity v = v/U probed at P(1.5D,0.5D). γ = 70°, 

f* = 5. 
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Fig. 11. Evolution of (a) normalized vortex circulation Γ* and (b) normalized vortex position y* = y/D against 

streamwise position x* = x/D. Symbols ■, ◇ and + represent the unforced case, case with γ = 70°, Cµ = 0.537, 

f* = 5, and case with γ = 70°, Cµ = 0.955, f* = 5, respectively. 
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Fig. 12. Wake patterns for (a) Cµ = 0.955, f* = 5, γ = 70°; (b) Cµ = 0.955, f* = 25, γ = 70°; (c) Cµ = 0.955, f* 

= 125, γ = 70°. The contour is normalized vorticity . The solid and dash lines represent vortices identified 

by ci = 0.2 isolines enclosing positive and negative vorticity, respectively. Refer to Fig. 5(a) for the 

colorbar. 
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Fig. 13. Wake patterns for (a) γ = 70°, Cµ = 2.149, f* = 5; (b) γ = 70°, Cµ = 2.149, f* = 25; (c) γ = 70°, Cµ = 

2.149, f* = 125. The contour is normalized vorticity . The solid and dash lines represent vortices 

identified by ci = 0.2 isolines enclosing positive and negative vorticity, respectively. Refer to Fig. 5(a) for 

the colorbar. 

 

  



49 

 

 

  

Fig. 14. Evolution of (a) normalized vortex circulation Γ* and (b) normalized vortex position y* = y/D 

against streamwise position x* = x/D. Symbols ■, +, ○, and ∆ represent the unforced case; γ = 70°, Cµ = 

0.955, f* = 5; γ = 70°, Cµ = 0.955, f* = 25; γ = 70°, Cµ = 0.955, f* = 125, respectively. 
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Fig. 15. Instantaneous pseudo-Schlieren visualization: γ = 70°, Cµ = 0.955, and (a) f* = 5; (b) f* = 25; (c) f* 

= 125. For better presentation, the contour scale in (c) is 10 times of those in (a) and (b). 
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Fig. 16. Near and far field wake patterns: (a) unforced case; (b) Cµ = 0.537, f* = 5, γ = 10°; (c) Cµ = 0.537, 

f* = 5, γ = 30°; (d) Cµ = 0.537, f* = 5, γ = 50°; (e) Cµ = 0.537, f* = 5, γ = 70°; (f) Cµ = 0.537, f* = 5, γ = 80°. 

The contour is normalized vorticity . The solid and dash lines represent vortices identified by ci = 0.2 

isolines enclosing positive and negative vorticity, respectively. Refer to Fig. 5(a) for the colorbar. 
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Fig. 17. Evolution of (a) normalized vortex circulation Γ* and (b) normalized vortex position y* = y/D 

against streamwise position x* = x/D.  Symbols ■, ,  and ◇ represent the unforced case; γ = 10°, Cµ = 

0.537, f* = 5; γ = 30°, Cµ = 0.537, f* = 5; γ = 70°, Cµ = 0.537,  f* = 5, respectively. 
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Fig. 18. Time history of the cross-flow position of the oscillating cylinder: (left) when the SJs are actuated 

at point (d); (right) when the SJs are actuated at points (1) to (4). 
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Fig. 19. Snapshots of cylinder position and wake patterns: (a) to (i) correspond to points (a) to (i) in Fig. 18 

(a). The contour is normalized vorticity . The solid and dash lines represent vortices identified by ci = 

0.2 isolines enclosing positive and negative vorticity, respectively. Refer to Fig. 5(a) for the colorbar. 

 


