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Abstract 

Based on first-principles calculations and full iterative solution of the linearized 

Boltzmann-Peierls transport equation for phonons, we systematically investigate 

effects of strain, size and temperature on the thermal conductivity k of suspended 

graphene. The calculated size-dependent and temperature-dependent k  for finite 

samples agree well with experimental data. The results show that, contrast to the 

convergent room-temperature k =5450 W/m-K of unstrained graphene at a sample 

size ~8 cm, k of strained graphene diverges with increasing the sample size even at 

high temperature. Out-of-plane acoustic phonons are responsible for the significant 

size effect in unstrained and strained graphene due to their ultralong mean free path 

and acoustic phonons with wavelength smaller than 10 nm contribute 80% to the 
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intrinsic room temperature k of unstrained graphene. Tensile strain hardens the 

flexural modes and increases their lifetimes, causing interesting dependence of k  on 

sample size and strain due to the competition between boundary scattering and 

intrinsic phonon-phonon scattering. k of graphene can be tuned within a large range 

by strain for the size larger than 500 µm. These findings shed light on the nature of 

thermal transport in two-dimensional materials and may guide predicting and 

engineering k of graphene by varying strain and size. 

Keywords: phonon thermal transport, graphene, first principles, strain and size 

effects 

 

1. Introduction 

Graphene, a two-dimensional (2D) sheet of carbon atoms, has attracted great 

interest in recent years due to its extraordinary mechanical, chemical, electronic and 

thermal properties. The experimentally reported ultrahigh thermal conductivity k (up 

to 5300 W/m-K) [1] of graphene renders it the most thermally conductive material, 

and of promise for thermal management applications [2-4]. Moreover, graphene 

provides a benchmark model for the study of thermal transport in 2D materials. 

Therefore, intensive efforts have been committed to understand the underlying 

thermal transport physics in graphene experimentally [1, 5-16] and theoretically [2, 

17-30].  

Previous experimental studies [1, 5, 6, 10] using an opto-thermal Raman 

technique have reported k values of suspended graphene that scatter significantly, 

ranging from 600 [10] to 5300 [31] W/m-K even with temperature effects accounted 



3 

 

for. Using direct thermal-bridge measurements, Xu et al. [7] recently observed 

significant size effects on k of graphene and reported that k diverges logarithmically 

with sample length; in contrast, previous Raman experiments did not discern a size-

dependence of k [1, 6]. Pettes et al. [11] found that k of graphene may be significantly 

influenced by the residual polymeric layer produced during the transfer process of 

graphene. It can be seen from previous experiments that measured k depends strongly 

on various extrinsic factors including sample size, process conditions, sample quality, 

measurement method and substrate coupling [12, 13], all giving large scatter in 

experimental k data. 

On the theoretical side, fundamental problems concerning the details of thermal 

transport in graphene have been subjects of debate [17-30], including the convergence 

behavior of k with system size, the extent of the diffusive and ballistic transport 

regimes, the role of flexural acoustic (ZA) phonons for thermal transport and strain 

effects on the convergence of k. It is generally believed that acoustic phonons [31] 

dominate the thermal transport in graphene. Based on this, 2D models give a 

logarithmic divergence with system size [27] but neglect the contributions from ZA 

phonons due to their low group velocities near the center of first Brillouin zone (FBZ) 

and their large Grüneisen parameters [32]. However, molecular dynamics (MD) 

simulations [17, 18, 26, 29, 30] with large system sizes have reported that room-

temperature k of graphene converges, though at values much lower than experimental 

results on finite-size systems.  

First-principles lattice dynamics calculations [22, 24, 28] of k of graphene within 

three-phonon scattering framework have also been conducted. Using the single-mode 
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relaxation time approximation (SMRTA), Bonini et al. [22] showed that k of infinite 

graphene diverges under infinitesimal isotropic tensile strains, while k converges to 

~550 W/m-K for infinite unstrained graphene at room temperature. The results are 

partly different with aforementioned MD predictions [18] that k of infinite graphene 

diverges only under large tensile strain (> 0.02). We note that the SMRTA incorrectly 

treats the momentum-conserving Normal (N) processes as independent resistive 

processes on the same footing as Umklapp (U) processes [33], and it cannot be used 

to appropriately present the phonon thermal transport in graphene, as justified by 

Lindsay et al. [23] and Fugallo et al. [28]. Based on a full iterative solution of the 

linearized Boltzmann-Peierls Equation (BPE), Lindsay et al. [23] found that ZA 

phonons give the dominant contributions to k in finite graphene up to 50 μm with 

strong dependence of k on boundary scattering; Fugallo et al. [28] found that room 

temperature k of unstrained graphene with a size of 1000 μm is up to 4300 W/m-K, 

close to the reported highest experimental value [31]. Although the previous works 

provided excellent insights into understanding thermal transport of graphene, many 

conclusions apply to finite graphene because of the compulsively adopted boundary 

constraint. It can be seen clearly from the literature that the following fundamental 

problems still remain unclear: 1) k convergence in strained graphene by full solutions 

of BPE; 2) the role of ZA modes in k of strained graphene at different temperatures; 3) 

the scattering behavior of low-frequency phonons at the long-wavelength limit; 4) the 

interplay of strain and size effects. 

In this work, we intend to elucidate these problems using a rigorous first 

principles BPE for phonon transport approach with and without applying boundary 

http://dict.youdao.com/w/infinitesimal/


5 

 

constraint. Full iterative solutions of the linearized BPE from reciprocal-space 

calculations and further mathematical analysis show that with increasing system size k 

converges for unstrained graphene and diverges for strained graphene. Mode 

contribution analysis shows that ZA phonons are the major heat carriers and control 

the convergence behaviors in both unstrained and strained graphene up to 3000 K. 

Further, the long mean free paths of ZA phonons make finite size effects on k 

persistent up to ~8 cm for unstrained graphene. The joint effect of strain and size on k 

of finite graphene is also clarified, which makes it promising to tune k of graphene in 

a large range when the sample size is larger than 500 m. Considering the large 

graphene fracture strain (~ 0.25) and recently successfully fabrication [34] of single 

crystal graphene sample with the size of a few centimeters, mediating k of graphene 

by tensile strain and size is of practical significance. 

 

2. Computational methodologies 

A microscopic description of the lattice thermal conductivity k can be derived 

from BPE for phonons [21, 22, 24, 35] within the three-phonon scattering framework. 

Considering the isotropic thermal conductivity of infinite graphene, along an in-plane 

crystallographic direction α, the intrinsic k is calculated by the following equation [23, 

35]:  
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                           (1) 

where λ represents a phonon mode with wavevector q and branch index j. k is the 

contribution of mode λ to k.  , v
 , and   are the angular frequency, group 
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velocity and phonon lifetime, respectively. kB, ħ, fλ are the Boltzmann constant, the 

reduced Plank constant and the Bose-Einstein distribution of phonons at temperature 

T, respectively. V is the volume of the graphene unit cell with a thickness of 0.335 nm 

[23]. This work combines an iteratively self-consistent solution to the linearized BPE 

with harmonic and anharmonic interatomic force constants (IFCs) from Density 

Functional Perturbation Theory (DFPT) and Density Functional Theory (DFT) 

calculations [23, 24], respectively, using the QUANTUM ESPRESSO package [36] 

within the local density approximation (LDA) and using a norm-conserving 

pseudopotential to represent the core carbon electrons. Before calculating IFCs, the 2-

atom unit cell of unstrained graphene is optimized fully along three axial directions to 

minimize the internal stress. The convergence precisions for energy and atomic force 

are taken as 1×10-10 eV and 1×10-7 eV/Å, respectively, to ensure the absolute value 

of in-plane stress is less than 0.01 kbar. To determine the harmonic IFCs, DFPT 

calculations are employed with a 13 × 13 k-point mesh and 120 Ryd plane-wave 

cutoff for the 2-atom unit cell. To determine the interatomic forces and resulting 

anharmonic IFCs, DFT calculations with Γ-point sampling in slightly perturbed 162-

atom supercells with a 100 Ryd plane-wave cutoff are used. For harmonic IFCs of 

unstrained graphene, the translational and rotational invariance conditions are 

enforced using the acoustic sum rules proposed in the work by Bonini et al.[22]. Only 

translational invariance conditions are applied to harmonic IFCs of strained graphene. 

For anharmonic IFCs, translational invariance is enforced via a 
2 fitting procedure 

described in Ref. [37]. We note that the accuracy of these anharmonic IFCs was tested 

and discussed in Ref. [37]. Further technical details for the calculations of dispersion 
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relations and three-phonon scattering rates can be found elsewhere [23, 35]. A 

modified ShengBTE code [35] is used to calculate intrinsic k based on these IFCs. 

Comparison of the calculated dispersion of graphene with experimental data [38, 39] 

gives excellent agreements. The full 2D FBZ (Figure 1a) is discretized into a Γ-

centered regular N1 × N1 grid with N1 up to 501 considered in this study.  

 

3. Results and Discussion 

3.1 . Intrinsic thermal conductivities of unstrained and strained graphene 

Figure 1a shows the calculated room-temperature k of unstrained graphene 

(isotropic tensile strain ε = 0) with respect to the q-point sampling density. Here, ε=(a-

a0)/a0 where a0 = 2.44Å is the calculated equilibrium lattice constant and a is the 

lattice constant for a given tensile strain. For each N1, an iteration precision of 1×10-5 

(difference of k values for successive iterative steps) is taken to ensure full self-

consistent convergence of k. Interestingly, k decreases with increasing number of 

modes and a grid-converged k = 5450 W/m-K is achieved for N1  301. This k value 

from the iterative approach is several-fold higher than those from the SMRTA [22, 

24], confirming previous findings [21, 23] that both N- and U-processes and their 

relationship influencing the nonequilibrium populations of phonon modes are  
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Fig. 1. (a) Convergence of k of graphene with q-point sampling density for different 

isotropic tensile strains. (b) Lifetimes of ZA phonons in graphene under different 

strains.  

 

important for determining k of graphene. The convergence of k in our calculations for 

infinite unstrained graphene also justifies that intrinsic three-phonon scatterings can 

confine k, i.e., higher-order inter-phonon scatterings are not required for convergence 

of k as was previously suggested for k of unstrained single-walled carbon nanotubes 

[40, 41]. Under different strains ε = 0.0025, 0.01 and 0.1, k increases nearly linearly 

with increasing N1 and at a fixed N1 a larger ε gives a higher k, indicating non-

negligible contributions from longer-wavelength phonon modes and the divergence of 

k with increasing system size under strain. Unlike the work of Ref. [22], anharmonic 

IFCs are calculated here for each strain value considered. With increasing strain the 

magnitudes of the anharmonic IFCs tend to decrease. Our calculations show that 
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neglecting strain effects on these anharmonic IFCs does not change the convergence 

behavior qualitatively but causes significant underestimation of k especially for large 

strain. For example, a 31-fold underestimation in k at ε = 0.1 for N1 = 301 is observed 

when using unstrained anharmonic IFCs. The mixed IFC tests justify that the 

linearization of ZA dispersion plays a key role for the k divergence in strained 

graphene. Unless specified otherwise, all the results shown below are for N1 = 301 for 

unstrained and strained graphene. 

Figure 1b shows the calculated transport lifetimes τλ of ZA acoustic phonons for 

strained and unstrained infinite graphene at room temperature. Here we only consider 

ZA phonons since they dominate thermal transport in graphene. For unstrained 

graphene, τλ
1.4

−  is found for low-frequency ZA phonons. In strained graphene, 

long wavelength ZA phonon lifetimes are more strongly dependent on frequency, 

having τλ
2.1

− , 2.4

−  and 2.6

−  for ε = 0.0025, 0.01 and 0.1, respectively. Two 

factors may contribute to the lifetime enhancement at a given low frequency by 

tensile strains: one is that increasing strain decreases the magnitude of the anharmonic 

IFCs [23] and consequently reduces the scattering matrix elements; the other is zone 

center dispersion linearization of ZA modes [22] reduces ZA phonon density and 

consequently gives rise to less scatterings of ZA phonons [18]. The reduction of ZA 

phonon density is a result of linearization. The strain dependent phonon dispersion 

relations are shown in Fig. 2. The linearization degree is more significant with 

increasing strain level as shown in the inset. The abrupt ZA dispersion transition from 

purely quadratic to linearized at the long-wavelength limit has been shown via the 
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elastic theory of a thin plate [42]. In an early work by Bonini et al. [22], the authors 

also found quadratic ZA dispersion after enforcing translational and rotational 

invariance conditions on harmonic IFCs from DFPT calculations, and found that ZA 

dispersion is linearized after applying tensile strains. More recently, Carrete et al.[43] 

proposed the ‘by construction’ approach to build the physical IFCs and also suggested 

the quadratic ZA dispersion for unstrained graphene. 

 

Fig.2. The calculated phonon dispersion relations of graphene under different 

tensile strains. The inset shows the ZA dispersion linearization at low frequencies. 

 

These lifetime data provide a better understanding of the results shown in Figure 

1a. The nonzero minimum |q| corresponding to N1 is 
1

q
N


= where  is a constant. 

Then, at small wavevector the phonon frequency and velocity corresponding to |q| in 

the ZA branch [22] are given by 
2 4

2 42

2 4

1 1

C D
C q D q

N N


 
 = + = +  and 

d
v

dq

 



= . The 

lifetimes follow a power law behavior A 

  −= . Here A, C, D and   are strain-

dependent parameters and C = 0 for zero strain. For unstrained and strained graphene 
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as 1N →  , 0 →
 
and Bk T

f


→ . Therefore, for ZA mode λ in unstrained 

graphene ( =), we have
1

1

4 20
1

1
lim lim 0

N
N

k
N

  −→ →
→

 =  based on Eq.(1), implying ZA 

phonons in the long-wavelength limit contribute little to k and k will converge. For 

strained graphene (   ), we have
1
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diverge. The fitted β parameters in our calculations support the corresponding 

conclusions regarding the convergence of unstrained and strained graphene. Further, 

our calculations with larger N1 (N1=401, 501) gives slightly larger β values at low 

frequencies than that corresponding to N1=301 for graphene with strain   = 0.01. The 

reason is as follows: larger N1 involves lower frequencies for which the dispersion 

relations have stronger linearization than those of high-frequency phonons. Therefore, 

the corresponding β value based on these lower frequencies is larger, and still gives 

divergent behavior. Compared with the results shown in Fig.1 from discrete numerical 

solutions of the BPE, the present analytical expressions based on the β behavior more 

clearly demonstrate the strain dependent k convergence. When k is divergent, k will 

keep increasing when more longer-wavelength modes are considered in BPE without 

boundary constraint. Therefore, a series of calculations with different large q-point 

grid densities (N1≥100) are required to sample long-wavelength ZA modes at low 

frequencies to judge the k divergence or convergence behavior.  

 

3.2 . Comparisons with previous experiments and phase space approach 
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We also compare the calculated k of unstrained graphene with measured data for 

graphene of varying sample size, temperature and isotope abundance. Here we discuss 

the implementation of extrinsic scattering mechanisms in the calculation of k for 

better comparison with measured k values. We define k as a scalar value, ignoring 

anisotropy from finite system size due to the relatively large experimental samples 

that we are comparing with [23]. The lifetime 
f

  of a phonon in a finite sample may 

be calculated using the Matthiessen rule [23], expressed here as 

1 1 1 1 1
f iso b w

        
= + + + . 

1


 is the intrinsic phonon-phonon scattering rate;  

1
iso


 

represents the scattering rate from naturally occurring isotopes (1.1% C13) in graphene 

and is obtained from perturbation theory for a random isotope distribution [35]; 
1

b


 

represents the scatting rate by contact boundaries and is expressed empirically as 

21
x

b

v

L


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=

 

[40] and 
1

x

b

v

D




=  [23, 28] respectively for a rectangle sample and a 

circular sample. This is consistent with experiments using rectangular samples in the 

thermal-bridge measurements of k [7] and circular samples in the Raman 

measurements of k [6]. The direction of the temperature gradient, x, is assumed to be 

along the sample length, L, or diameter, D. 
1
w


 represents the scatting rate due to 

finite sample width W of the rectangular samples and is expressed as [44, 45] 

21
y

w

v

W




= , where 

yv


 is the group velocity along the width direction and 

perpendicular to the transport direction. As shown in Figure 3a, the calculated room  
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Fig. 3. (a) Comparison of calculated k with previous experimental data for samples of 

a width W=1.5 m and different lengths. (b) Comparison of calculated k with previous 

experimental data for samples of a fixed diameter D=2.8 m at different temperatures. 

(c) Comparison of calculated k with previous results from a phase space approach 

[23]. 

temperature k for different sample lengths L agree with recently measured data for 

suspended samples with a width W = 1.5 m [7]. Figure 3b compares the calculated k 

with experimental data from Ruoff’s group [6] for graphene suspended over circular 

wells with a diameter D = 2.8 μm at different temperatures. For samples with 

naturally occurring carbon isotopes, acceptable agreement is observed throughout the 
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considered temperature range. For isotopically purified samples, a ~12% enhancement 

in k is predicted at room temperature, significantly less than the measured 

enhancement. Nonetheless, the calculated enhancement in k falls within the 

experimental uncertainties [6] from the Raman technique. Recently, slight k 

enhancements with isotopic purification, ~13% and ~16%, were also reported by 

Lindsay et al. [23] and Fugallo et al. [28], respectively. The reason for this 

discrepancy is unknown yet, and requires further experimental validation from more 

accurate measurements. We note that indeed there are discrepancies among k 

measurements in the literature.  Here we compared to two independent sets of data 

(separate microbridge and Raman thermometry measurements) to give some 

confidence in the calculations. Our calculations may not agree with other measured 

data for which other extrinsic factors may be more important.  The phase space 

approach [23] is also used to calculate room temperature k of finite samples based on 

the same IFCs and considering boundary scattering with the form
21

x

b

v

L




= and 

phonon-isotope scattering from natural isotope mass disorder. The corresponding 

results are shown in Fig.3c and compared with those by the present methodology. The 

agreement is quite good, somewhat surprising given the significant differences in 

algorithms implemented in the two methods. 

 

3.3 . Role of ZA modes for the thermal transport at different temperatures 

To better understand the role of intrinsic three-phonon scattering, we calculate the 

frequency ωλ dependent normalized k accumulation for unstrained infinite graphene at 
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300 K. The values are normalized by the k of unstrained, isotopically pure, infinite 

graphene, 5450 W/m-K. As shown in Figure 4a, ZA phonons are the main heat 

carriers in suspended unstrained graphene, contributing about 88% to k at room 

temperature. Moreover, the relative contribution of ZA phonons to k, as denoted 

by ZA /k k at given T is shown in Figure 4b. Although increasing T decreases ZA /k k , 

the dominant contribution of ZA phonons is still obvious (above 80%) for 

temperatures from 200 K to 2000 K. We also see that the intrinsic k shows different 

temperature dependent behaviors: 
1.13 6 3.966 10k T T− − +   for T ≤ 1200 K and 

1.05k T −  for T > 1200 K. On the other hand, the absorption process ZA+ZA→ TA 

(LA) [22] dominates the scattering of ZA modes and results in decreasing and 

increasing k contributions of ZA and TA(LA) modes, respectively, with increasing N1 

until convergence. For strained graphene, ZA phonons also provide the dominant 

contributions to k over the considered temperature range and k still diverges at 

temperature up to 2000 K,  as seen in  Figure 4c,  demonstrat ing  that  
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Fig. 4. (a) Normalized k accumulations of acoustic phonons for unstrained graphene 

with respect to frequency normalized by the corresponding cutoff frequency, i.e., 16.1 

THz, 23.5 THz and 40.4 THz for ZA, TA and LA branches, respectively. (b) Effects 

of temperature on the intrinsic k and the contribution of ZA phonons. (c) Convergence 

of k with q-point sampling density for isotropic tensile strains ε=0.0025 and ε=0.1 at 

temperature T=2000 K. 

that even at high temperature (though below the Debye temperature 2100 K) the 

intrinsic k does not converge within the three-phonon scattering framework though 

these scattering rates increase significantly. As explained by Lindsay et al. [19, 23], 

this dominance of the ZA phonons arises because the reflection symmetry of graphene 

forbids three-phonon scatterings involving odd numbers of ZA phonons. This 
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manifests itself in the scattering calculations via matrix elements that are zero for 

these couplings.  This gives another restriction to the scattering phase space beyond 

crystal momentum and energy conservation. Previous experiments on supported 

graphene [12, 13] also attribute measured reductions in k to the suppression of ZA 

phonon contributions by substrate coupling. Therefore, engineering k by suppressing 

the ZA phonon contributions through substrate coupling [12, 13], irregular doping or 

defect distributions [11, 28], or irregular out-of-plane deformations may be 

worthwhile. The most recent work [46] only investigated the temperature effects on 

phonon thermal transport in unstrained graphene under 800 K, which is still within the 

low-temperature range considering the graphene Debye temperature is up to 2100 K. 

Therefore, the present investigations may further the understanding of temperature 

effects. We note that at high temperature the k behavior of strained graphene may be 

affected by higher order phonon-phonon scattering [22]. A recent work [47] has 

demonstrated the importance of four-phonon scattering in bulk materials at high 

temperature. 

 

3.4 . Interplay of size and strain effects 

The ratios of phonon transport lifetimes to relaxation times given by SMRTA 

solutions show significant amplification for most acoustic modes, demonstrating that 

the SMRTA severely overestimates the intrinsic resistance in graphene. Therefore, 

using the SMRTA to determine size-dependent k may be misleading as the boundary 

scattering is relatively weak in comparison [48]. To examine further the mechanism 

for the significant size effects observed in previous experiments [7] and numerical 



 18 

calculations [23, 28, 29], we plot the normalized k accumulation with respect to the 

mean free path (MFP) (Figure 5a) and phonon wavelength (Figure 5b) of acoustic 

phonons in infinite unstrained graphene without isotope scattering. The contributions 

from ZA phonons with ultra-long MFP saturate at about 8 cm, while those of in-plane 

TA and LA phonons saturate around 10 μm or less. Therefore, for suspended samples 

with the system sizes of several hundreds of microns or less, boundary scattering will  

 

Fig. 5. (a) Normalized k accumulation with respect to the phonon mean free path for 

unstrained graphene. (b) Normalized k accumulation with respect to the phonon 

wavelength for unstrained graphene.  (c) Effects of sample length and strain on k. 
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significantly limit the thermal conductivity, and the calculated k will increase 

remarkably with increasing system size as demonstrated by the length dependent k 

shown in Figure 5c corresponding to the case ε = 0, W = ∞. Moreover, our calculation 

results as shown in Figure 5b  demonstrate that phonons with a wavelength smaller 

than 10 nm contribute ~80% to the intrinsic k, indicating low-frequency long-wave 

phonon contributions are not as important as expected before [6, 7]. However, for 

strained graphene, as shown in Fig.1a, the divergence of k with decreasing q or 

increasing size means the low-frequency long wavelength ZA modes play a dominant 

role in determining thermal transport. Therefore, the tensile strain acts as a key to turn 

on the long wavelength effect. We note that previous MD simulations [18, 49] also 

showed the divergence under strain and the dominant contributions from ZA modes. 

Recently, we systematically investigated strain effects on thermal transport of buckled 

group-IV monolayers including silicene, germanene and stanene [50] under tensile 

strains. A strong size effect on k for unstrained buckled group-IV monolayers was 

found. Similar conclusions were found by Xie et al. [51] for silicene that tensile 

strains may significantly enhance k with a peak enhancement at strain ～ 0.04. 

Contrasting with the ignorable size effect of k for unstrained silicene, the size effect 

for unstrained graphene is up to ~8 cm, indicating the significant effect from the 

buckled backbone of silicene.  

     To illuminate tensile strain effects on k of finite graphene samples, i.e., the 

interplay between strain and size effects, we also plot the sample length L dependent 

room-temperature k at different strain levels in Figure 5c. Within the applicable length 

range 1 μm < L ≤ 500 m, a rather small strain (ε = 0.0025) leads to a slightly higher k 
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compared with that of the unstrained case, while further increasing strain results in 

decreasing k, as shown in the inset. Lindsay et al. [23] also observed this behavior for 

a 10-m system. However, within this length range, the difference in k caused by a 

strain less than 0.01 is estimated to be less than 10%. Considering the uncertainties 

involved in experimental measurements (~20%), it is difficult to distinguish the strain 

effects as strains during measurements are often smaller than 0.01. For L > 500 μm, 

the trend changes, i.e., larger strain gives higher k and several times improvement in k 

by strain for large samples can be achieved. Considering the large graphene fracture 

strain (~ 0.25) and recently successfully fabrication [34] of single crystal graphene 

sample with the size of a few centimeters, the strong dependence of k on strain and 

size for large graphene samples indicates the great potential in tuning k of graphene 

by varying size and strain. The strong dependence of k on strain magnitude and 

sample size results from a competition between boundary and intrinsic three-phonon 

scattering. Our analysis shows that the mode heat capacities of ZA phonons decrease 

due to the decrease of phonon number per unit frequency. For a ZA mode λ, its 

contribution 
totalk  to k satisfies 1/ 1/ 1/total intrinsic boundaryk k k  = + , where 1/

intrinsick  and 

1/
boundaryk are the thermal resistivities corresponding to the intrinsic phonon-phonon 

scattering and boundary scattering, respectively. At a fixed sample length, increasing 

strain decreases 
boundaryk due to the decrease in mode heat capacities of ZA phonons 

while enhancing 
intrinsick  due to the increase in lifetimes of ZA phonons. Therefore, for 

applicable sample sizes in the range 1 μm < L ≤ 500 m  for which 
intrinsick  and 

boundaryk  are comparable, their opposite variation trends will result in a peak 
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enhancement to 
totalk  by strain, as observed in k. For L > 500 μm, we find intrinsic 

three-phonon scattering dominate over boundary scattering for the whole frequency 

range considered. Therefore, increasing strain leads to the improvement of 
totalk and in 

turn k. This result is consistent with those shown in Figure 1a for which the boundary 

scattering is neglected completely. Interestingly, the tensile-strain-induced 

enhancement of k is in contrast to those reported for other carbon-based materials 

such as 3D diamond [52] and 1D carbon nanotubes [30, 53], wherein tensile strains 

reduce k through phonon softening [53]. While the softening of LA, TA and optic 

phonons in graphene is indeed observed here (see Fig.2), we find hardening of the ZA 

modes, i.e., higher ZA frequencies and group velocities of low frequency modes for 

the strain levels considered. The ZA phonon hardening coupled with decreasing 

anharmonic IFCs increases the lifetimes of ZA phonons and enhances k. We note that, 

in calculations for strained graphene going from finite size to infinity, using the 

intrinsic three-phonon scattering rates from a finite q-sampling density will result in a 

false convergence for k, as shown by cases ε = 0.0025 and 0.01 in Figure 5c. 

Theoretically, 1N →   is required to match L →   and present the divergence for 

strained graphene. Our tests using a larger q-sampling density (N1 > 301) give the 

uniform results in Figure 5c except that the false convergence plateau for k occurs at a 

higher k value and larger length, validating our judgments on k variations with size 

and strain. In other words, the actual tuning range for k of finite graphene is expected 

to be even larger than the results shown in Figure 5c.  
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4. Conclusive remarks 

 Based on rigorous first-principles lattice dynamics calculations we present a 

comprehensive picture of phonon thermal transport in unstrained and strained 

graphene. Acceptable agreement between calculated k and experimental data as well 

as agreement with results from a previous phase space methodology validate the 

present approach for calculating k in 2D systems. We find that the intrinsic room 

temperature k converges for unstrained graphene but diverges for strained graphene 

with system size. Analysis based on the phonon lifetimes confirms this finding. For 

unstrained graphene, we conclude that centimeter-order MFP of ZA phonons is 

responsible for the significant size effect observed in previous experiments. Low-

frequency long wavelength ZA phonons are not as important as expected before in 

unstrained graphene while they play the dominant role in strained graphene for 

thermal transport below 2000 K. For finite strained graphene, tensile strain hardens 

the flexural modes, increases their lifetimes and causes unusual dependences of 

thermal conductivity on sample size and strain due to the competition between the 

boundary and phonon-phonon scattering; once the sample larger than 500 μm, 

increasing strain or size may effectively enhance k.  
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