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On flame height of circulation-controlled firewhirls with variable 

physical properties and in power-law vortices: A 

mass-diffusivity-ratio model correction  

Dehai Yu and Peng Zhang* 

Department of Mechanical Engineering, the Hong Kong Polytechnic University, Kowloon, Hong Kong 

Abstract 

This paper presents a theory on the flame height of circulation-controlled firewhirls, approximately 

combining variable physical properties, a power-law vortex model, and a mass-diffusivity-ratio 

model. The theoretical results show that the dimensionless flame height can be expressed as a 

multiplication of four dimensionless factors. The first factor is the 

stoichiometric-mixture-fraction-scaled Peclet number that was first identified by Chuah et al. (Proc. 

Combust. Inst. 33, 2011) in their theory based on the assumptions of Burgers vortex and constant 

physical properties. The second factor characterizes the axial flame-stretching effect found by 

Klimenko and Williams (Combust. Flame 160, 2013) in their theory based on the assumptions of 

power-law strong vortex and constant physical properties. The third factor quantifies the effect of 

variable density, which was recently unveiled in Yu and Zhang’s theory (Proc. Combust. Inst. 36, 

2017). The last factor describes the effect of distinct mass diffusivities of fuel and oxidizer, which 

has not been considered in the previous studies. Although integrating the first three factors in the 

theory would lead to an over-prediction to the flame height, accounting for the distinct mass 

diffusivities of fuel and oxidizer, leading to a mass-diffusivity-ratio model correction, results in the 

finding of a “reduction” mechanism for the flame height, which is comparable in order of magnitude 

with the other “enhancement” mechanisms obtained from considering either the power-law strong 

vortex or variable density.  
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Keywords: Firewhirl; Flame height; Variable physical properties; Power-law vortex; Coupling 

function 

Nomenclature 

Physical quantities  

   strain rate of vortical flow 

   correction function in matching solutions of coupling function 

    constant-pressure specific heat  

       diameter (radius) of the fuel liquid pool 

   mass diffusivity  

   pressure  

    heat of combustion per unit mass of fuel 

    latent heat of vaporization per unit mass of fuel 

      cylindrical coordinates 

    vortex core radius in physical coordinate 

    flame height location 

   temperature  

    flame temperature 

    ground temperature 

    representative temperature 

      velocity components in       directions  

       velocity components in     coordinate 

   molar weight 

   molar fraction 

   mass fraction 

     stoichiometric mixture fraction 

    exponent in power-law vortex model (outside vortex core) 

  
   exponent in power-law vortex model (inside vortex core) 

       effective exponent in power-law vortex model 
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    parameter characterizing temperature-dependent mass diffusivity 

    ratio of fuel mass diffusivity to oxidizer mass diffusivity,          

    flame height location in     coordinate 

     average collision diameter               

     average collision diameter               

   thermal conductivity 

   kinematic viscosity 

     collision integral between fuel and nitrogen molecules 

   density 

     stoichiometric mass ratio       
        

    

    the vortex core radius in     space.  

Average quantities at     

    
  

           
                  

  
   modified temperature   

           

Non-dimensional and normalized variables  

   integral factor in far-field solution of coupling functions 

    Lewis number           

    Peclet number              

                      

                  

           

                  

            

           

           

Transformed coordinates  

      stream function coordinates 

      density-mass-diffusivity-weighted coordinates  
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Subscripts  

   physical quantities of the oxidizer  

   physical quantities of the fuel  

   physical quantities of nitrogen as inert gas  

0 physical quantities at     

   physical quantities in the far field  
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1. Introduction 

 As a natural phenomenon that often occurs in wild and urban fires and holds potential to cause 

severe damages to lives and property, firewhirls have attracted numerous experimental and 

theoretical studies in the past decades [1-19]. There are particular interests in understanding the 

controlling mechanism for the flame height of firewhirls because it is a crucial parameter for 

characterizing a firewhirl [3-5, 9, 10, 19]. For example, the increase of flame height can enhance the 

radiant energy flux transmitted to the ambience, leading to the spread of spot fires in distance.  

The present study is concerned with the circulation-controlled firewhirls experimentally 

investigated by Chuah et al. [5], in which strong firewhirls were observed to preserve their 

orientation to be perpendicular to the inclined fuel pool surface. This observation implies that these 

firewhirls were controlled by flow circulation instead of buoyance, which would otherwise turn the 

firewhirls to the vertical direction. To interpret the experimental observation, Chuah et al. proposed a 

theory for the firewhirls with large Peclet number and derived a dimensionless formula for the flame 

height as  
  

  
 

  
     

 

(1) 

To derive this equation, Chuah et al. assumed that the vortical flow of the firewhirls can be 

approximated as a Burgers vortex, that the density and physical properties are constants throughout 

the flow field, and that the Lewis number is unity to invoke a mixture-fraction formulation. Although 

the theory predicts the right trend that the scaled flame height,      , changes linearly with the 

stoichiometric-mixture-fraction-scaled Peclet number,           , it significantly underestimates 

the flame heights in the presence of strong vortical flows [5].  

 Klimenko and Williams [9] revisited Chuah et al.’s firewhirl theory by using a similar 

mixture-fraction formulation but replacing the Burgers vortex model by a strong vortex model, 

because the Burgers vortex was found to be insufficiently strong to describe the realistic vortices, 

such as tornadoes, hurricanes [20] and firewhirls [9]. A revised formula for flame height, retaining 

the linear relation of Equation (1), contains an additional multiplicative factor,     , as follows 
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(2) 

This factor originates from the power-law model of strong vortices, in which the stream function is 

given by 

               

(3) 

and the velocity components are  

       
 
 
  
  

                     
 
 
  
  

             

(4) 

Here       denotes the first-order derivative of     . By setting     , Equation (2) can 

degenerate to Equation (1) because Equations (3) and (4) degenerate to the stream function and 

velocity components of the Burgers vortex, respectively. However, the exponent    must fall below 

2 in realistic strong vortices. 

Figure 1 shows the radial profiles of the scaled axial velocity,            , and the scaled 

radial velocity,              . It is seen that the magnitudes of the axial and radial velocities of 

strong vortices (i.e. those with     ) are enhanced significantly in the vicinity of axis, compared 

with those of Burgers vortex. Moreover, the enhancement of strong vortex increases with decreasing 

  , which varies between 4/3 and 3/2 according to Klimenko’s studies [9, 20]. Consequently, 

Equation (2), with either        or recommended        , predicts considerable 

enhancement of flame heights of firewhirls, agreeing well with Chuah et al.’s experimental data.  

It should be noted that Equation (2) with      results in physically unrealistic axial velocity 

at the axis (i.e.    ), where the flame height is determined. To remedy the model deficiency, an 

alternative approach for deriving the flame height was proposed by Klimenko and Williams [9]. To 

facilitate a self-similar solution, which does not satisfy the boundary condition at the liquid fuel pool 

but is valid in the far field of the fuel pool, the stream function and velocity components were 

assumed, being in accordance with the strong vortex approximation, as  
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(5) 

where the piecewise smooth function      is given by 

        
           

                          
  

(6) 

The singularity of the axial velocity at the axis is absent in the modified power-law vortex model by 

taking into account of a viscous vortex core of radius   . The flow in the vortex core is similar to 

that of the Burgers vortex with     . Consequently, the influence of the unspecified vortex core 

radius on the flame height was accounted for in Equation (2) by treating    as a fitting parameter, 

denoted by      in the paper of Klimenko and Williams.  

In their recent theory of firewhirls [19], Yu and Zhang abandoned the assumption of constant 

density, which has been proved physically unrealistic in many flame problems. To facilitate the 

comparison with the previous theories, the assumptions of large Peclet number and unity Lewis 

number were retained and the Burgers vortex model was still adopted to describe the vortical flow. 

By analytically solving the problem in the coupling function formulation, Yu and Zhang obtained a 

flame height formula given by  

  

  
  

  
  

 
      

     
 

(7) 

The multiplicative factor,            , is always larger than unity and therefore provides another 

enhancement mechanism for the flame height due to variable density. This is because the “mean” 

temperature   , which denotes an exact albeit complicated integral of flow temperature, is always 

higher than   , and the parameter   , which is the exponent in the power-law formula 

characterizing the temperature-dependence of mass diffusivity, is always less than 2. For        

from the kinetic theory of gases employing rigid-sphere model, and        suggested by Chuah 

et al. [5], the predictions of Equation (7) agree well with Chuah et al.’s experimental data.  
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 It is seen that Equations (2) and (7) provide distinctly different “enhancement” mechanisms for 

predicting the flame heights, both reveal essential physics of the circulation-controlled firewhirls, 

and separately lead to results agreeing well with the experimental observations. The present study 

was motivated by integrating these two independent mechanisms into a unified formulation. It was 

subsequently found that any simple combination of these mechanisms could overshoot the 

experimental data of flame heights, implying that additional “loss” mechanisms may have been 

overlooked in the previous studies. Inspired by the classical results on single droplet combustion in a 

quiescent environment [21], that the d2-law theory based on the unity-Lewis-number and 

equal-diffusivity assumptions significantly overestimates the flame standoff distance, and accounting 

for that the much smaller diffusivity of fuel vapor compared with that of oxidizer can substantially 

reduce the distance, we hypothesized that the dissimilar diffusivities of liquid fuel and air in Chuah 

et al.’s experiments might play a similar role of reducing the flame height. Specifically, the shape of 

the non-premixed firewhirl flame is determined by the local stoichiometry; the smaller 

mass-diffusivity of fuel vapor results in that the iso-surface of stoichiometry tends to move towards 

the fuel pool.  

Based on the above considerations, we established a theory to investigate the flame heights of 

circulation-controlled firewhirls by integrating the following three factors. First, the physical 

properties such as density and mass diffusivity are treated as variables. Second, the mass diffusivities 

are distinct on the fuel and oxidizer sides of the flame. Third, a singularity-free power-law vortex 

model, consisting two power-law regimes with different exponents, is adopted. In section 2, a steady, 

axisymmetric firewhirl system is mathematically formulated and analytically solved in terms of 

coupling functions by invoking the unity-Lewis-number approximation. In section 3, a flame height 

expression is presented and the contributing components are discussed in detail for their physical 

meanings.  

 

2. Mathematical Formulation 

2.1 Coupling-function Formulation  
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 A circulation-controlled firewhirl is modelled as a steady non-premixed flame in a forced 

axisymmetric vortical flow without buoyance effects [5, 9]. By following the previous studies [5, 9, 

19], we assume that the Lewis number is unity throughout the flow field to invoke a 

coupling-function formulation. However, we abandoned the assumption of constant physical 

properties by considering not only variable density but also distinct, variable transport properties on 

the fuel and oxidizer sides of the flame, and as such we have 

    
  

     
        

  

     
                 

(8) 

Consequently, the present problem can be characterized by two species-enthalpy coupling functions, 

namely,    and   . It is noted that the species coupling functions adopted in the authors’ previous 

paper are not applicable because of the distinct mass diffusivities for fuel and oxidizer. The transport 

equations for    and    are given by  

  
   

  
   

   

  
 

 
  

    
   

  
  

 
 

 
  

     
   

  
    

(9a) 

  
   

  
   

   

  
 

 
  

 
 
  

   
   

  
  

 
 

 
  

 
 
  

    
   

  
    

(9b) 

The temperature- and pressure-dependent mass diffusivity for binary diffusion (as nitrogen is 

abundant in the gas mixtures) can be evaluated by using the Chapman-Enskog theory [22]. The ratio 

of the mass diffusivities is thus given by      
  

    
              

   
              

. Because the temperature- 

and pressure-dependent factors of    and    have been cancelled out in deriving the equation,    

can be regarded as a constant in the entire flow field, only dependent on the fuel type. 

Equations (9a) and (9b) are rigorously valid on the fuel and oxidizer sides of the flame sheet, 

respectively, and are approximate on the other side. The exact solutions must be determined by 

matching    and    at the flame sheet, where both reactants vanish and temperature is the flame 

temperature   , rendering          [21]. Although such a matching solution approach works 
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for one-dimensional flames such as the classical droplet flame, it is however mathematically 

inapplicable to the present problem because the general solution to the partial differential equations 

(9a) and (9b) cannot be obtained without the prescribed boundary conditions at the two-dimensional 

flame sheet. In order to resolve the mathematical difficulty, we proposed an approximate matching 

solution procedure, which will be applied to the parabolized version of Equations (9a) and (9b) in 

Section 3.3.  

The corresponding boundary conditions (denoted by BC for short and hereinafter) are given by 

BC(1), at     

   

  
 

   

  
   

BC(2), at     

   

  
 

   

  
   

BC(3a), at     and      

        
   

  
          

  

  
  

     
 
  

   
   

  
        

  

  
  

BC(3b), at     and      

   

  
 

   

  
   

BC(4), at     

                   

BC(1) and BC(2) refer to the boundary conditions at the axis and in the far field, respectively. BC(3a) 

describes the Stefan flow in the evaporation layer, where the diffusive and convective transport of 

fuel along the axial direction is balanced by the fuel evaporation, and the energy required by the 

evaporation is supplied by the heat transported from the flame. The absence of radial derivatives can 

be attributed to that the radial dimension of the evaporation layer is significantly larger than the axial 

dimension. Consequently, the convective and diffusive transport in the axial direction dominate over 

those in the radial direction. Mathematically, integrating the transport equations for energy and 
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species in the axial direction, neglecting the radial convection and diffusion terms, we can obtain 

BC(3a). The derivation of BC(3a) can be briefly described in the following. The axial flux of 

convection and diffusion of oxidizer is zero, i.e.                  because oxidizer is not 

condensable. The total flow flux,   , is attributed only to the combined convective and diffusive 

fluxes of fuel, i.e.                  . As far the enthalpy transport, the net enthalpy flux, 

          , is equal to the heat conduction flux,       , subtracted by the amount required by 

vaporization,     . Similar but more general conservation conditions at an interface can be found in 

[23]. BC(3b) describes the non-vaporizing surface outside fuel pool. BC(4) indicates that there is no 

fuel on the oxidizer side of the flame, a result from the flame sheet assumption [21, 24].  

 

2.2 Coordinate Transformation  

Following the same approach adopted in the previous study [19], we introduced a 

density-mass-diffusivity-weighted coordinate system in the form of 

  
   

    
          

  

 
 

 
  

          
  

 
         

  

 
 

(10) 

The transformation (10) is analogous to the well-known Howarth-Dorodnitsyn transformation [25, 

26], which is widely used in self-similar compressible boundary layer problems. It should be noted 

that the present problem is not a self-similar flow because of the characteristic length scale   . A 

valuable self-similar solution can however be derived at the far field of fuel pool [9] and will be 

discussed shortly in the following section. 

 Applying the coordinate transformation to Equations (9a) and (9b) as well as the boundary 

conditions BC(1)-(4), yields  

  
   

  
   

   

  
 

 
     

 
 
  

  
 
  

        
  

   

  
  

   

  
  

  
  

      
 
  

 
 

        
 
  

  
       

    
  

   

  
         

   

  
  

(11) 
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(12) 

where we have  

         
 

      
 

 
   

           
  

 
          

  
       

 
   
   

   
  

 
 

(13) 

to account for the variations of density and mass diffusivity gradients in axial and radial directions. 

In addition, the non-dimensional velocity components in Equations (11) and (12) are given by  

                    
  
     

   

(14) 
The detailed derivations in the coordinate transformation have been presented in the Appendix A.  

Correspondingly, the boundary conditions BCs (1)-(4) can be rewritten by  

BC(1’) at     

   

  
 

   

  
   

BC(2’) at     

   

  
 

   

  
   

BC(3a’) at     and     

         
  

  
 

 
    

   

  
  

        
  

 
   

  
  

       
  

  
 

 
      

   

  
  

        
    

 
   

  
  

BC(3b’) at     and     
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BC(4’) at     

                   

 As far as the circulation-controlled firewhirls being concerned, we can apply the large Peclet 

number approximation, i.e.,     , to simply the above equations. Physically, the firewhirl with 

large Peclet numbers is substantially elongated along the axial direction due to the strong axial 

convection dominant over the diffusion and the flame height is thus significantly larger than the 

radius of the fuel pool. Consequently, the axial coordinate is scaled by a factor of      by the 

transformation (10) so that the nondimensional velocities    and    in the     space have the 

same order of magnitude. As a consequence, we can deduce from Equation (13) that 

              and                   , which implies that the radial velocity   in 

physical coordinate is smaller than    by a factor     .  

 An alternative way to make the above estimations of orders of magnitude is as follows. We have 

used the radius of the fuel pool to nondimensionalize the coordinates, so the derivative with respect 

to the axial coordinate yields an     , which cancels out with a factor of    outside the integral in 

Equation (13), resulting in       . Because        weakly depends on temperature so that its 

radial derivative is of        , which is cancelled out by another factor of    produced from the 

axial integration of the radial derivative, rendering   to be of         

Based on the above considerations, we can neglect all the terms of         and         in 

Equations (11) and (12) and then have  

  
   

  
   

   

  
 

 
 

 
  

  
   

  
  

(15a) 

  
   

  
   

   

  
 

 
  

 
 

 
  

  
   

  
  

(15b) 

To derive Equations (15a) and (15b), we have invoked an approximation that 
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(16) 

is independent of the coordinate  . This approximation is a weaker version of the widely-used 

Chapman-Rubesin approximation, which further assumes      be a global constant [27]. 

Accordingly, the boundary conditions BCs (1’)-(4’) become  

BC(i) at    ,  
   

  
 

   

  
   

BC(ii) at    ,  
   

  
 

   

  
   

BC(iiia) at     and    ,  

                     

BC(iiib) at     and    ,  

                   

The mixed boundary condition BC(3a’) is replaced by the Dirichlet boundary condition BC(iiia) 

for mathematical convenience without losing the physics because the determination of the fuel vapor 

concentration     requires BC(3a’). The coupling function is valid in the whole flow field so that 

   and    must satisfy BC(iiia), given the quantities on the evaporating fuel pool are known. 

BC(iiib) actually implies an isothermal ground surface outside the pool flame. Such a boundary 

condition is not required by the previously theories [5, 9] based on the mixture fraction formulation, 

but it brings significant mathematical convenience to the theoretical analysis based on the coupling 

function formulation, resulting in the Burke-Schumann-like solutions produced by the mixture 

fraction formulations [5, 9]. One could formulate a theory with a prescribed ground temperature 

profile    , which however lacks experimental data and causes unnecessary mathematical 

complexities. Furthermore, the wall temperature    , being scaled by the heat of combustion      , 

is much smaller than the flame temperature     and the mass fractions     and    . In consequence, 

replacing     by     in the solutions of    and    is unlikely to make significant difference. 

Moreover, BC(4) is not needed for solving Equations (15a) and (15b) which are parabolic partial 

differential equations.  
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Because the fuel pool is in condensed phase, the physics of Stefan flow at the evaporating 

surface should be considered to derive three auxiliary equations to determine the fuel vapor mass 

fraction    , the Stefan flow velocity   , and the temperature   , for closuring the two-phase 

problem. The details of the derivations have been given in [19] and will be briefly described here. 

First, the axial diffusive and convective transport of fuel feeding the flame is balanced by the fuel 

evaporation from liquid phase to gaseous phase, yielding a mass balance equation. Second, the 

energy required by the evaporation is supplied by the heat transport from the flame, yielding the 

energy balance equation. Third, the Clausius-Clapeyron equation is needed to relate     and   . In 

addition, the equation of state and the Bernoulli’s equation can be used to determine the pressure    

and the density    on the evaporation layer. For the present focus of establishing a relation between 

the diameter-scaled flame height       and modified Peclet number           , we can assume 

those physical quantities on the evaporation are prescribed. It should be also noted that only axial 

transport is considered to derive the auxiliary equations for the problem closure because of the large 

Peclet number assumption. Therefore the equations cannot be applied in the         neighborhood 

of the origin, where the assumption is invalid. 

 

2.3 Power-law Vortex Model 

In Chuah et al.’s theory, the vortical flow was assumed to be a Burgers vortex, whose stream 

function contains a second-order power function of the radial coordinate, namely, Equation (3) with 

     [5]. To characterize the strong vortical flow of firewhirls, Klimenko and Williams adopted a 

power-law vortex model expressed in Equation (3) with        and further introduced a 

Burgers vortex core to eliminate the velocity singularity at the axis. To generalize these models, we 

assume that the stream function of the vortical flow can be described by a piecewise power-law 

vortex model in the     space as 

   
       

                            

  
  

                

  

(17a) 

and the resulting velocity components are given by  
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(17b) 

where    is the radius of the vortex core and      is subject to other conservation laws and 

boundary conditions.   
 , the exponent of the power law model in the inner regime, must be larger 

than or equal to 2 to avoid the velocity singularity at the axis, which does not physically exist in 

firewhirls. Furthermore, we can make use of     , which physically means that the radius of the 

vortex core is sufficiently smaller than that of the fuel pool. 

A few remarks should be given to the present vortex model. By transforming    and    back to 

the physical coordinates, we can have the velocity field satisfying the continuity equation, indicating 

that the power-law vortex in the     space is physically realistic. The detailed derivations are 

presented in Appendix B. In the vortex models of the present study and Klimenko and Williams [9], 

a discontinuity of the axial velocity exists at the edge of the vortex core. The discontinuity can 

however be readily eliminated by adding higher order correction term of      
     to the inner part 

of the stream function. Because the term decreases at least cubically (as   
   ) with the radius of 

vortex core, neglecting the discontinuity does not cause any significant influence on the flame height. 

Furthermore, it is noted that the exponents in the stream function may slightly change with density 

variation. Nevertheless, the circulation-controlled firewhirls addressed in the present study presumes 

that the vortical flow field is so strong that it is unlikely to be substantially affected by the density 

variation, and that the functional form of the vortex model should remain as the power-law 

functional forms suggested by Klimenko and Williams [9].  

 

2.4 Stream Function Coordinates  

In order to facilitate analytical solutions of Equations (15a) and (15b) subject to the boundary 

conditions of BC(i), BC(ii) and BC(iii), we introduce the stream function coordinates, defined by  

  
  

 
        

(18) 
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Similar transformation in the dimensional form were adopted by Klimenko and Williams [9]. 

Applying Equation (18) to Equations (15a) and (15b), we have  

   

  
 

 
 

 
  

  
   

  
  

(19a) 
   

  
 

 
  

 
 

 
  

  
   

  
  

(19b) 

Accordingly, the boundary conditions in the stream function coordinates are given by  

BC(I) at     

   

  
 

   

  
   

BC(II) at     

   

  
 

   

  
   

BC(III-a) at     and     

                     

BC(III-b) at     and     

                   

Equation (19a) and (19b) together with BCs (I)-(III) formulate an analytically solvable PDE system 

describing the firewhirls. 

 

3. Flame Height of Firewhirls  

3.1 Approximate Matching Solutions of Coupling Functions  

 Similar to Equations (9a) and (9b), Equations (19a) and (19b) are rigorously valid on the fuel 

and oxidizer sides of the flame sheet, and are approximate on the other side. The exact solution must 

be obtained by means of matching at the flame sheet location, as we have discussed in the preceding 

section. Considering that the rigorous matching of the solutions of Equations (19a) and (19b) is 
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analytically impossible, recognizing that the two equations are linear and almost identical (except the 

factor     ), and noting that the far-field and axisymmetric boundary conditions are formally valid 

for    and   , we constructed the approximate matching solutions in the form of  

          
                  

         

(20) 

          
                  

         

(21) 

where  

  
                                              

 

 
 

  
                                             

  

  
    

 

 
 

are the leading order solutions obtained by formally extending Equations (19a) and (19b) to the 

entire flow field, and  

  
                                     

  

  
               

 

 
 

  
                                     

  

  
               

 

 
 

are the first-order corrections due to the factor     .         and         are bounded functions 

asymptotically satisfying                      and                     , 

which are proved in the Appendix C.  

 

3.2 Far-field Solutions  

In the present power-law vortex model, the  -dependence of the stream function is described by 

     according to Equation (17a). If the function      is assumed to be a linear function of  , 

special far-field solutions of    and    can be found regardless of the functional form of the 
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 -dependence of the stream function, which is not restricted to power functions. Such special 

far-field solutions can be given by  

   
             

   
          

 

 
      

(22) 

     
             

   
            

 

 
           

(23) 

where the constant   is defined by  

  
 
 
            

 

 
    

 

 
 

(24) 

The solutions (22) and (23) exactly satisfy the governing equations (19a) and (19b), respectively, 

subject to the boundary conditions BC (I) and BC(II), but they do not satisfy the boundary conditions 

BC(IIIa) and BC(IIIb). This can be regarded as a variant and generalized version of the result 

obtained by Klimenko and Williams[9], where a far-field solution of mixture fraction in physical 

coordinates was obtained for constant physical properties. In Equations (22) and (23), the effects of 

variable physical properties have been implicitly included in the coordinates   and  .  

 

3.3 Flame Height Equation 

The flame height can be determined by equating    and    from Equations (20) and (21), 

setting    equal to zero, resulting in the implicit expression for    as                  , 

which is written in detailed form by 
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(25) 

where    refers to the flame height location in     coordiantes.  

Evaluating the integrals exactly, we have 

                  
 

 
        

 
   

   

(26a) 

           
  

  
     

 

 
        

  

   
  

(26b) 

Substituting (26a) and (26b) into (25) and recalling the result that       [5, 9, 19], we can 

expand the above exponential terms in Taylor series, retain the first order correction, and have  

     
 

   
    

 
   

      
  

   
    

  

   
 

(27) 

Substituting Equation (27) into Equation (25), we have the flame height expression in the explicit 

form of  

   
  

    
   

         
  

 
                   

    
       

    

    
      

(28) 

To further simplify Equation (28), we can make the following estimation of the order of magnitude 

for the second term in the bracket. The stoichiometric mixture fraction,    , is much smaller than 
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unity for commonly used hydrocarbon fuels [5, 24]. The mass diffusivity ratio    is a quantity of 

order      for the concerned fuels, implying that           is of order      as well. 

Moreover, the factor                      can be written in the dimensional form by 

     
                   , which can be approximated by              because    is 

much larger than either     
  or     . As we have proved in Appendix C,                 

and                . Therefore, we can neglect the second term in the brace of Equation (28) 

and have  

   
  

    
 

(29) 

 To obtain the flame height in physical dimension, we should convert    into its dimensional 

form. This is however mathematically cumbersome because, in the present piecewise power-law 

model,    in the vortex core is generally different from that of outside. For mathematical 

convenience, we can formally write the stream function for the power-law vortex in the form of  

              

(30) 

where the effective exponent       , will be determined shortly in the following subsection. 

Consequently, the parameter    in the coordinate transformation (18) shall be replaced by the 

effective exponent       . According to Equations (10) and (18), we have  

   
      

 
 

  
      

        
  

 
 

      

 
  

 

     
 

  

    
  

 
 

(31) 

where the isobaric approximation has been adopted because it is well justified in low Mach number 

flows [21]. Substituting Equation (31) to Equation (29), we have  

        
  

 
 

    
        

          
 

(32) 
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To derive Equation (32), we have considered the temperature-dependence of the mass diffusivity 

within the flame through the relation  

       
 
  

 
  

 

(33) 

in which    is usually less than 2 [5, 28] and equal to 3/2 in the kinetic theory of gases employing 

the rigid-sphere model.  

To facilitate an explicit and concise mathematical expression for the flame height, we denoted 

the following integral by    

    
 
  

        
  

 
 
        

 

(34) 

   can be treated as a representative temperature in the flame and exactly calculated by the 

following integration, after by substituting Equation (27) to (34): 

    
 
  

     
     

     
    

     
     

     
 

  

 

            
  

  

 
  

      
        

 

 
   

 

 
 
    

   
        

 

(35) 

Substituting Eq. (34) into Eq. (32) we obtain the flame height of firewhirls as 

  

  
   

 
      

 
  
  

 
      

     
 

(36) 

in which the effect of variable density and mass diffusivity are represented by the factor of 

           , identical to that in our previous study [19]; the effect of strong vortex model is 

reflected in the factor         , which is formally the same as that obtained by Klimenko and 

William’s [9], but the determination of        is slightly different and will be discussed shortly in 
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following subsection; the newly identified effect of distinct mass diffusivities for fuel and oxidizer, 

represented by the factor   , will be discussed in detail in Section 4.  

 

3.4 Determination of        

To obtain an analytical form for the effective exponent        in Equation (36), we first recall 

that the flame height is determined by the farthermost axial location where both fuel and oxidizer 

vanish on the flame sheet. Because the axial location is sufficiently far away from the fuel pool, 

namely the flame height is substantially larger than the radius of the pool, the fuel and oxidizer 

profiles around the flame top can be described by their far-field solutions. Consequently, we can 

apply the alternative method, which was first proposed by Klimenko and Williams [9], to determine 

the flame height by making use of the far-field solutions of coupling functions (22) and (23). By 

equating the Eq. (22) to Eq. (23), we have 

   
  

     
      

      
  

               
    

  

(37) 

Using the same arguments on deriving Equation (29) from (33), Equation (37) can be simplified to  

   
  

     
 

(38) 

Rewriting Equation (38) in physical coordinates by using transformation (10), we have the 

alternative expression of the flame height based on the far-field solutions as  

  

  
   

 
 
 
  
  

 
      

     
 

(39) 

Comparing Equation (39) with Equation (36), we can conclude that the effective exponent        

should be the same as the integral factor  : 
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By substituting the axial and radial velocity profiles given by Equation (17b) in the above equation 

and assuming      as a linear function of  , we thus obtain an explicit expression for        as  

         
     

          
  
  

 

  
   

(40) 

It is seen that        relies on the radius of the vortex core as such it is equal to    in the limiting 

case of      and to   
  in the opposite limiting case of     . Because there is lack of 

velocity measurement of firewhirl in Chuah et al.’s experiment, it is impossible for the present study 

to further determine the precise value of        from Equation (40). As a result,        will be 

treated as a fitting parameter within the range of 1.33 to 1.43, suggested by Klimenko and 

Williams[9]. It should be also noted that Equation (40) is a generalization to the result obtained by 

Klimenko and Williams [9] because the assumptions of constant density and mass diffusivity are 

removed in the present study and because the inner regime is not restricted to the Burgers vortex.  

 

4. “Enhancement” and “Reduction” Mechanisms of Flame Height 

The expression for the flame height features a linear relation between the diameter-scaled flame 

height,       and the modified Peclet number,           ; the gradient of the linearity is affected 

by the three multiplicative factors, namely,            ,          and   . The physical 

significance of each factor will be discussed in detail as follows.  

The factor             characterizes the effect of variable density and mass diffusivity on the 

flame height, and has been identified and thoroughly discussed in the recent study of Yu and Zhang 

[19]. In summary,             provides an “enhancement” mechanism to the flame height 

because it is always larger than unity. Specifically, the representative temperature   , defined by 

Equation (34), is always larger than   , and the exponent    of a power-law function 

characterizing the temperature dependence of mass diffusivity is always smaller than 2 (for example, 

       according to the kinetic theory employing the rigid sphere model and        as 
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suggested by Chuah et al. [5]). The enhancement mechanism of the variable density and mass 

diffusivity can be physically interpreted by that the flow density decreases with increasing the flow 

temperature, that the flow with reduced density becomes more readily to be advected to larger height, 

leading to that the flame height tends to increase. For illustration, Figure 2 shows the ethanol flame 

contours, as an example, in the stream function coordinates (    ), the density-mass 

diffusivity-weighted coordinates (   ), and the physical coordinates (   ). The flame contour 

calculated by ignoring the density variation is also shown for comparison. It is seen that the variable 

density tends to expand the flame contour in both radial and axial directions without significantly 

changing their shape, leading to an increase of flame height [19]. 

 The factor         , which is formally identical to the correction factor identified by Klimenko 

and Williams [9], characterizes another “enhancement” mechanism for the flame height because the 

power-law strong vortex (        ) generates more rapid axial flow near the axis, leading to more 

intensive axial stretching than the Burgers vortex (        ). In consequence, the flame top is risen 

to a larger height by a factor of         . It should be noted that the parameter        differs from 

either   
  in the vortex core or    in the outer regime. It is physically improper to adopt a constant 

exponent      for the entire flow field without either causing a singularity of axial velocity at the 

axis or violating the boundary condition at the radial infinity. The mathematical representative of the 

combining effects of both exponents is the effective exponent       , whose analytical expression is 

given by Equation (40). Following Klimenko and Williams’ approach [9],        will be treated as a 

fitting parameter in the present study because its precise determination is impossible due to the 

insufficient experimental observations on the vortical flow field in firewhirls. To facilitate the 

comparison with Klimenko and Williams’ study, we shall use             and             

recommended in their study [9].  

 The factor    characterizes the effect of distinct mass diffusivities of fuel and oxidizer, which 

can lead to a substantial reduction of the flame height, as will be shown shortly. The underlying 

physics is that the mass diffusivities of common liquid hydrocarbons are smaller than that of oxygen 

in air, because the binary mass diffusivity decreases with increasing the molecular weight of the 

concerned species according to the Chapman-Enskog theory [22]. The ratio of fuel mass diffusivity 

to oxidizer mass diffusivity depends on the fuel type and we have         for methanol, 
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        for ethanol, and         for 2-propanol [22]. Consequently, the required higher 

gradient of fuel mass fraction within the firewhirl flame causes the flame contour to move inside to 

the fuel side and therefore lead to the reduction of flame height.  

Equation (36) is the expression for the flame heights of firewhirls, which can degenerate to that 

of Chuah et al. [5] in the case of         ,      and     , to that of Klimenko and Williams 

[9] in the case of      and     , and to that of Yu and Zhang [19] in the case of          

and     .  

To illustrate the comparison between different theories with experimental results, Figure 3 

shows the theoretical predictions by Equation (36) with different combinations of        and   . In 

each subplot for a combination of        and   , the mass diffusivity ratio    varies according to 

the fuel types adopted in Chuah et al.’s study [5].  

First, we discuss about the situation of     , which is represented by the dashed line in each 

subplot. It is seen that       tends to increase with decreasing either        or    or both. Within 

the physically realistic ranges of         and   , namely,                  and        

   , the theoretical predictions always overshoot the experimental data. This means that the 

combined “enhancement” mechanisms due to the strong power-law vortex and variable physical 

properties produce a considerable overestimation to the flame height, which must be counteracted by 

some “reduction” mechanism.  

The “reduction” mechanism owing to      generates anew good theoretical predictions of 

flame height, presented as the solid lines in each subfigure of Figure 3, with the experimental data. 

The degree of the “reduction” depends on the fuel types so that it is more substantial for burning 

2-propanol than for burning methanol. The discrepancy may be attributed to that the flame 

temperature of propanol firewhirl is higher than that of the other two alcohols and using a higher 

propanol flame temperature can improve the theoretical predictions, as already pointed out by Yu 

and Zhang [19]. In the present calculations, the flame temperature for all liquid fuels is set as 1300K 

as suggested by Chua et al. [5] and further analysis of the propanol firewhirls is impossible without 

more details and uncertainty quantification about the experiments.  
 

5. Concluding Remarks  
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A theory of the flame height of firewhirls has been established in the present study by means of 

coupling function formulation, with a particular interest in approximately combining variable 

physical properties, a power-law vortex model and a mass-diffusivity-ratio model in the theory. 

Although the specified boundary conditions and the adopted approximations remain to be further 

verified, interesting and useful understanding on the problem has been obtained.  

In terms of the approximate matching solutions of the coupling functions, the theory yields a 

composite expression for the flame height, which can degenerate to those obtained in the previous 

studies [5, 9, 19], in the expression, the linearity between the diameter-scaled flame height       

and modified Peclet number            remains; the slope of the linear reaction is characterized 

by three factors, each of which interprets independent and indispensable physics. Specifically, the 

effect of variable density and diffusivities, characterized by        
    , results in reduced flow 

inertia and thus tends to increase the flame height. The effect of the power-law strong vortex, 

characterized by          with         , leads to the intensified axial stretching of the vortical 

flow near the axis thus causes the flame tip at the axis to grow higher. The effect of the distinct mass 

diffusivities of fuel and oxidizer, characterized by     , requires a larger gradient of fuel mass 

fraction within the flame contour, moves the flame closer to the fuel pool, and thus reduces the flame 

height. Combining the first two effects yields a considerable overestimation for the flame height, 

which can be satisfactorily corrected by the third factor, resulting good agreement with the 

experimental results.  

Similar to all the previous theoretical studies, the present study formulates and analyzes the 

circulation-controlled firewhirls in an open space (semi-infinite space) instead of enclosed by side 

walls in the experiments [5]. For confined firewhirls, the wall-to-pan ratio is an important 

experimental factor, especially if it is insufficiently large. Physically, a small wall-to-pan size ratio 

results in more heat loss from the flame, which in turn affects the flame temperature and the flame 

height, requiring the consideration of finite-rate flame chemistry and heat loss mechanism in future 

studies. In addition, the wall effect in producing vortices of various strength should be taken into 

account and the applicability of the idealized power-law or Burgers vortex models needs to be 

reexamined. Future studies are also merited for considering the effects of non-unity Lewis number. 

Implementing      is analytically infeasible for the existing theoretical approaches based on 
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either mixture fraction or coupling function. Numerical simulation with modelling differential 

diffusions of species may play an important role in studying the non-unity Lewis number effects.   
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Appendix A  

The nondimensional governing equation for the coupling function    in physical coordinates 

can be expressed as  

    
   

   
     

   

   
 

 
  

 
   

      
   

   
  

 
  

 
  

 
   

        
   

   
  

(A1) 

We applied a density-mass-diffusivity-weighted coordinate transformation (10) to Equation (A1) and 

obtained the following spatial derivatives  
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(A4) 

 
  

 
  

 
   

        
 
   

 

 
      

  
 

  
       

 
  

       
    

 
  

  
  

       
 
  

         
 
  

 

 
 

          
 
  

       
    

 
  

  
 

        
 
  

         
 
  

   

(A5) 

where            
       

    
   

     
  and           
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 Substituting Equations (A2)-(A5) into Equation (A1), cancelling out the common term 

         , and denoting             and                     , we have Equation (11): 

  
   

  
   

   

  
 

 
   

 
  
 
 
  

  
 
  

        
  

   

  
  

   

  
  

  
 
  

 
    

 
  

 
 

        
 
  

  
       

    
  

   

  
         

   

  
  

The derivation of the transport equation for the coupling function    is almost the same, except 

all the diffusion terms on the RHS must be divided by the constant   , giving Equation (12).  

 

 

Appendix B  

According to Equation (13) the velocity components in physical coordinates can be transformed 

to    and    in the     coordinates:  
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(B2) 

In the power law vortex model,    and    are expressed by Equation (17b) generated from the 

piecewise stream function (17a). Substituting Equation (17b) into Equations (B1) and (B2), we 

obtain the velocity components in physical coordinates:  
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(B6) 

It is extremely complex to directly check the consistence of (B3)-(B6) with the continuity 

equation. We can however readily check it for degenerate situations. Under the situation of constant 

density and mass diffusivity and for      
   , the velocity components (B3) to (B6) can be 

written by  
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(B7) 

    
       

  
 
   

   
         

  
     

(B8) 

which accords with the Burgers vortex with constant physical properties except that the axial 

coordinate is stretched by a factor of            according to the coordinate transformation (10). 

Substituting Equations (B7) and (B8) into the continuity equation with constant density 

       
   

 
       
   

   

(B9) 

we can find that the equation holds exactly.  

Under the situation of constant density and mass diffusivity but for   
   , the flow velocities 

inside the vortex core are identical to Equations (B7) and (B8), and those outside the vortex core are 

given by  
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(B11) 

(B10) and (B11), together with (B7) and (B8), can be regarded as a generalized, nondimensional 

form of the strong vortex with constant density, which was formulated by Klimenko [9, 20]. The 

consistency of these velocity components with Equation (B9) can be readily verified.  

Under the situation of slow variation of        in radial direction, i.e.,   
   

             
   , 

and slow variation of    in axial direction, i.e.,     
   

     
   , and for      

   , we have  
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(B12) 

    
      

  
 
 
   

  
 
  

          
  

 
        

  

 
   

(B13) 

which can be regarded as the generalization of the variable-density Burgers vortex model proposed 

by Yu and Zhang [19] without assuming that the      is a linear function of  . Because of the 

variable physical property effects included in Equations (B12) and (B13) in the forms of integration, 

we have to invoke the additional assumption of constant Chapman-Rubesin-like parameter to satisfy 

the continuity equation with variable density.  

         
   

 
         

   
   

(B14) 

 

Appendix C  

 To estimate the value of    and    at the flame height location, we note that they must have 

the same order of magnitude due to their similar role in the matching solutions. Thus, we can 

approximately regard them as        , which is evaluated explicitly at the flame height location 

by replacing    and    by   in Eq. (28), yielding  

  
                                         

                            
 

(C1) 

Since the values of      and    , i.e., the temperatures being scaled by      , are much smaller than 

     and     , the quantity   can be very well approximated by  

  
                  

              
 

(C2) 
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Recalling that the stoichiometric mixture fraction     is a small quantity,    is of order of unity, 

and the combination        is of order of unity as well, the quantity   should also be of order 

unity, i.e.,  
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Figure 1. The radial profiles of (a) the axial velocity component and (b) the radial velocity 

component of power-law vortices. 
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Figure 2. Ethanol firewhirl contours in various coordinates. 
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Figure 3. Diameter-scaled flame height plotted against modified Peclet number. Solid symbols 

represent experimental data from Chuah et al. [5] for various alcohols: methanol (♦), ethanol (●) and 

2-propanol (▲). The lines represent the theoretical predictions with various ratios of mass 

diffusivities of fuel and oxidizer. 

 




