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Abstract: High-frequency transverse vibration of stepped beams has attracted increasing 

attention in various industrial areas. For an n-step Timoshenko beam, the governing differential 

equations of transverse vibration have been well established based on assembling classical 

Timoshenko's beam equations for uniform beam segments in the literature. However, solving 

the governing differential equation has not resolved well to date, manifested by a 

computational bottleneck: only first k modes (k≤12) are solvable for i-step (i≥0) Timoshenko 

beams. This bottleneck influences the completeness of the stepped Timoshenko beam theory. 

To address this problem, this study first reveals the root cause for the bottleneck in solving the 

governing differential equations for high-order modes, and then creates a sophisticated local 

coordinate systems-based method that can overcome the bottleneck to accomplish high-order 

mode shapes of an n-step Timoshenko beam. The proposed method uses a set of local 

coordinate systems in place of the conventional global coordinate system to characterize the 

transverse vibration of a n-step Timoshenko beam. With the method, these local coordinate 

systems can simplify the frequency equation for the n-step Timoshenko beam's vibration, 

making it possible to obtain high-order modes of the beam. The accuracy, capacity, and 

efficiency of the local coordinate systems-based method in acquiring high-order modes are 

corroborated using the well-known exact dynamic stiffness method underpinned by the 

Wittrick-Williams algorithm as a reference. The removal of the bottlenecks in solving the 

governing differential equations for high-order modes usefully contributes to the completeness 

of the stepped Timoshenko beam theory. 

Keywords: stepped Timoshenko beam; high-order mode; governing differential equation; 

modal frequency; mode shape; local coordinate system; exact dynamic stiffness; 

Wittrick-Williams algorithm 
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1 Introduction 

Timoshenko beam theory is a classical engineering beam theory that is superior to 

Euler-Bernoulli beam theory in portraying shear deformation and rotary inertia (Timoshenko, 

1922; Han et al., 1999; Majkut, 2009). The inclusion of shear deformation and rotary inertia 

renders that Timoshenko beam theory provides a theoretical basis for characterizing 

high-frequency transverse vibration (besides low-frequency transverse vibration) of beams, 

where the shear deformation and rotary inertia are significant and should be considered in 

vibration analysis. A generalized version of a Timoshenko beam is a stepped Timoshenko beam 

that consists of a group of uniform beam segments joined at the cross-section step. A stepped 

Timoshenko beam with carefully arranged material and/or geometrical properties for each 

beam segment is able to represent a uniform beam, a beam of gradually changed cross-sections, 

a cracked beam, and their combinations (Failla, 2011; Park and Stallings, 2003; Park and 

Stallings, 2005). 

  Although the low-frequency transverse vibration of a stepped Timoshenko beam has been 

extensively investigated by various approaches, the high-frequency transverse vibration is still 

an active research focus due to more complexity and challenges (Hsu et al., 2007; Wu and 

Thompson, 1999). The core of high-frequency transverse vibration analysis is the high-order 

modal analysis, from which the superposition of high-order modes forms the transverse 

vibration responses. In existing work, the high-order modes of a stepped Timoshenko beam are 

primarily studied by three categories of methods: finite element (FE) method, exact dynamic 

stiffness (EDS) scheme, and governing equation-solving (GES) method. The basic 

functionality of these methods to analyze high-order modes of a stepped Timoshenko beam are 

briefed as follows. 

  FE method: the FE method uses frequency-independent polynomial shape functions to 

simulate the vibration deformation of discrete elements jointed at nodes (Kapur, 1966; Dawe, 
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1978). To characterize the high-order modes, the refinement of FE meshes is required to make 

the polynomial shape function reasonably approximate the element deformation. In essence, 

the polynomial shape functions cannot exactly portray the complex shape of high-order modes, 

so the FE method can only provide approximate solutions to the high-order modes. Moreover, 

use of the FE method to obtain high-order modes is seriously hindered by the huge 

computation cost when extremely fine FE meshes are needed to describe the intricate shape of 

high-order modes (Wei et al., 2002). Therefore, it is generally acknowledged that the FE 

method is not an efficient tool to obtain high-order modes of a stepped Timoshenko beam. 

  EDS scheme: the EDS method underpinned by the sophisticated Wittrick-Williams (W-W) 

algorithm (Williams and Wittrick, 1970; Wittrick and Williams, 1971; Williams and Wittrick, 

1983; Williams and Kennedy, 2010) functions as a robust scheme to obtain solutions of 

high-order modes of discontinuous or stepped Timoshenko beams (Howson and Williams, 

1973; Pilkey and Kitis, 1994; Banerjee and Williams, 1996; Banerjee, 1997; Banerjee, 2001; 

Banerjee, 2003; Yuan et al., 2007; Li et al., 2008; Yu and Roesset, 2011; Greco and Pau, 2012): 

(i) With the EDS method, the EDS matrix of a beam member is formulated using 

frequency-dependent exact dynamic shape functions derived from general wave solutions of 

the Timoshenko's beam equations for the beam member. As the exact dynamic shape functions 

can readily capture all necessary high-frequency wave modes of interest, extremely highly 

accurate solutions can be characterized with no need for refined meshes for a beam member 

(Howson and Williams, 1973; Yuan et al., 2007). The EDS matrices of beam members are 

assembled to form the global EDS matrix for the stepped beam. (ii) With the W-W algorithm, 

the global EDS matrix is processed by counting the number of modal frequencies exceeded by 

a given frequency, rather than directly calculating modal frequencies from the global EDS 

matrix, to give modal frequencies (Williams and Wittrick, 1970; Wittrick and Williams, 1971; 

Williams and Wittrick, 1983; Williams and Kennedy, 2010; Howson and Williams, 1973; 
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Pilkey and Kitis, 1994; Banerjee and Williams, 1996; Banerjee, 1997; Banerjee, 2001; 

Banerjee, 2003; Yuan et al., 2007; Li et al., 2008; Yu and Roesset, 2011; Greco and Pau, 2012). 

In principle, the EDS method involves some similar steps to those of the FE method: formation 

of element stiffness matrix, assembly to form global stiffness matrix, introduction of boundary 

conditions, evaluation of nodes' displacement variables, etc. However, the EDS method has a 

distinct feature from the conventional FE method: it uses frequency-dependent exact dynamic 

shape functions to arrive at the solutions of high-order modes, with no need for solving the 

governing differential equations of a stepped Timoshenko beam. 

  GES method: the GES method solves the governing differential equations of a stepped 

Timoshenko beam to acquire its high-order modes. Solving Timoshenko beam equations has 

been an active research topic after the proposition of the equations by Timoshenko 

(Timoshenko, 1922; Huang, 1961). The governing differential equation for a stepped 

Timoshenko beam has widely appeared in the literature (Tong et al., 1995; Dong et al., 2005; 

Zhang et al., 2014): it comprises a group of differential equations for uniform beam segments 

along with continuity conditions at the cross-section steps and boundary conditions at the ends 

(Dong et al., 2005). Up to date, GES methods to obtain low-order modes for stepped beams, 

typically stepped Timoshenko beams, have been investigated in various studies (Tong et al., 

1995; Dong et al., 2005; Zhang et al., 2014; Ju et al., 1994; Lee and Ng, 1994; Lu et al., 2009; 

Lee et al., 2009; Gupta and Sharma, 1998; Suddoung, 2013; Kisa and Arif Gurel, 2007; 

Naguleswaran, 2002); however, GES methods to attain high-order modes of a stepped 

Timoshenko beam has not been resolved well (Wu and Thompson, 1999; Kapur, 1996; Yuan et 

al., 2007). 

  The difficulties in solving the governing differential equations of a stepped Timoshenko 

beam to obtain its high-order modes are described as follows. The frequency equation of an 

n-step Timoshenko beam commonly contains numerous multiplied hyperbolic functions
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sinh ka  and/or cosh ka  (Horr, 1995), such that it can be only tackled by the digital 

computer-aided methods (Low, 1993). Unfortunately, existing digital computer-aided methods 

allow determination of only a small quantity of low-order modes from the frequency equation 

(Low, 1993; Tang, 2003; Goncalves, 2007; Xu et al., 2014), within the capacity of digital 

computer. When high-order modes are attacked, an unexpected computational error occurs as a 

result of the immense value present in evaluation of the frequency equation, exceeding the 

limit capacity of digital computers (Tang, 2003; Goncalves, 2007; Xu et al., 2014), leaving a 

computational bottleneck for high-order modes of a stepped Timoshenko beam. 

  This computational bottleneck appears as a common instance when solving the governing 

differential equations containing hyperbolic functions for an arbitrary beam (Low, 1993; Tang, 

2003; Goncalves, 2007; Xu et al., 2014). By way of illustration, the loosest computational 

bottleneck for a zero-step (uniform) Timoshenko beam is exhibited in Figure 1. Figure 1(a) 

presents the profile of frequency determinant
 

( )D 
 
versus frequency  , of which valid 

zero-crossings specify the modal frequency i . Clearly, the modal frequencies up to 12  can 

be determined from the profile, but the higher-order modal frequencies cannot be identified due 

to the abnormality of the profile over that frequency scope. To gain a better insight into this 

occurrence, modal analysis is performed  with the given results (Figure 1(b)): the 11th mode 

shape runs stably and normally, but the 12th mode shape behaves a little irregularly in the 

vicinity of 0 =  and 1 = , as labeled by the ellipses, where   is the dimensionless 

coordinate of beam length. This instance specifies the 12th-mode bottleneck for a zero-step 

Timoshenko beam. In common, kth-mode (k<12) bottlenecks exist for i-step (i>0) Timoshenko 

beams.  



7 
 

 

(a)                                    (b) 

  Figure 1. 12th-mode bottleneck in acquisition of high-order modes by solving zero-step (uniform) 

Timoshenko beam frequency equation. (a) Profile of frequency determinant versus frequency; (b) 11th 

and 12th mode shapes.   

 

  To address the computational bottleneck, this study creates a new method for solving the 

governing differential equations of a stepped Timoshenko beam to yield its high-order modes. 

This method is formulated using a set of local coordinate systems (LCSs) in place of the 

conventional single global coordinate system (GCS) to reformat the governing differential 

equations of a stepped Timoshenko beam. The frequency equation derived from the 

reformatted governing differential equations is significantly simplified such that it allows 

determination of high-order modes. The accuracy, capacity, and efficiency of the proposed 

methods are sufficiently corroborated by the EDS scheme with the W-W algorithm capturing 

modal frequencies reliably (Williams and Wittrick, 1970; Wittrick and Williams, 1971; 

Williams and Wittrick, 1983; Williams and Wittrick, 1983; Williams and Kennedy, 2010; 

Howson and Williams, 1973; Pilkey and Kitis, 1994; Banerjee and Williams, 1996; Banerjee, 

1997; Banerjee, 2001; Banerjee, 2003; Yuan et al., 2007; Li et al., 2008; Yu and Roesset, 2011; 

Greco and Pau, 2012).  
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2 Problem formulation 

2.1 Transverse vibration model 

The basic procedure for building a transverse vibration model of an n-step Timoshenko beam 

(Tong et al., 1995) is illustrated on a two-step cantilever beam with the ith step in the 

cross-section identified by the distance ,  1 3iL i = − , from the clamped end in a GCS of the 

origin at the clamped end (Figure 2). Using Timoshenko beam theory (Timoshenko, 1922), the 

governing differential equations for free flexural transverse vibration of each segment are 

expressed as 

2 2

2 2

( , ) ( , ) ( , )
( , ) 0,i i i

i i i i i i i i

x t w x t x t
E I k G A x t I

x x t

 
 

   
+ − − = 

   
          (1.1) 

2 2

2 2

( , ) ( , ) ( , )
0,i i i

i i i

w x t x t w x t
k G

x x t




   
− − = 

   
               (1.2) 

where ( , )iw x t  is the transverse deflection, ( , )i x t  the rotational angle due to bending, iE  

the modulus of elasticity, iG  the shear modulus, iI  the area moment of inertia, i  the mass 

density of the material, iA  the cross-sectional area, and i  the shear coefficient for the 

cross-section.  

 

Figure 2. Two-step cantilever beam in GCS. 

 

We assume that solutions of equations (1.1) and (1.2) consist of spatial and temporal parts 

expressed as 
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( , ) ( ) ,j t

i iw x t R x e =  ( , ) ( ) ,j t

i ix t x e  =                  (2) 

where iR  and i  are spatial variables, i.e., the amplitudes of transverse deflection and 

rotational angle, respectively, and   is the circular frequency. Substitution of equation (2) 

into equation (1), together with employment of the coordinate variables: 

,
x

L
 =  ,i

i

R
W

L
=  ;

t

L
 =   

and geometrical and material variables:  

,i
i

L
l

L
=  ,i

i

i i

E

k G
 =  2

1
,i

i

r
A L

=  ,i i is r=  
4 2 ,i i

i

i i

A
L

E I


 =  

( )
,

2

i i i

i

r s


+
=  ( -1),i i i i i= r s    

yields the coupled equations with respect to iW
 
and i

 
(Huang, 1961): 

4 2

4 2
( ) 2 ( ) ( ) 0,i i i i i

d d
W W W

d d
    

 
+ + =                   (3.1) 

4 2

4 2
( ) 2 ( ) ( ) 0.i i i i i

d d

d d
       

 
+ + =                   (3.2) 

Let 2 1/2

,1 ( ) ,i i i i   = − −  2 1/2

,2 ( ) ,i i i i   = − +  
2

,1

,1

,1

,
i i i

i

i

s
m

 



+
=  

2

,2

,2

,2

i i i

i

i

s
m

 



−
=  and the general 

solutions for iW  and i  are (Lin, 2004; Khaji et al., 2009; Caliὸ and Greco, 2012) 

,1 ,1 ,2 ,2 1( ) cosh sinh cos sin , ,i i i i i i i i i i iW A B C D   l l         −= + + +            (4.1)
  

,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2 1( ) sinh cosh sin cos , ,i i i i i i i i i i i i i i iA m B m C m D m   l l          −= + + −  
    (4.2) 

with their derivatives ' ( )iW   and ' ( )i  : 

'

,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2 1( ) sinh cosh sin cos , ,i i i i i i i i i i i i i i iW A B C D   l l             −= + − +     (4.3) 

'

,1 ,1 ,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2 ,2 ,2 1( ) cosh sinh cos sin , ,i i i i i i i i i i i i i i i i i i iA m B m C m D m   l l             −= + + +  ψ   (4.4) 

In equations (3) and (4), ,  1, 2,3i iA D i− =  are arbitrary constants to be determined by the 

continuity conditions at the steps of cross-section and boundary conditions at the beam ends. 

The continuity conditions at 1l =  are  
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1 1

1 1

' '

1 2 1 2

' ' ' '

1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ( ) ( )) ( ( ) ( )) ,

l l

l l

W W                W W  

E I E I   k G A W k G A W

 

 

   

         

= =

= =

= =

= − = −
   (5.1) 

and those at 2l =  are

 

2 2

2 2

' '

2 3 2 3

' ' ' '

2 2 2 2 3 3 2 2 2 2 2 3 3 3 3 3

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ( ) ( )) ( ( ) ( )) .

l l

l l

W W                  W W  

E I E I   k G A W k G A W

 

 

   

         

= =

= =

= =

= − = −
  (5.2) 

The boundary conditions at 0 =  and 1 =  are specified by
 

' '

1 0 1 0 2 1 2 2 1( ) 0, ( ) 0, ( ) 0, ( ( ) ( )) 0.W       W          = = = == = = − =            (5.3) 

Substituting equation (4) into equation (5), we obtain a group of simultaneous equations: 

( ) 0, =D C                              (6) 

where C  is a coefficient vector of i iA D− , i=1-3, and ( )D  is the characteristic matrix 

(12×12) with its entries containing the unknown  . The frequency determinant ( )D   

associated with the characteristic matrix is 

1(2 4) (2 4) (2 4)

1(4 4) 1(4 4) (4 4)

(4 4) (4 4) (4 4)

(2 4) (2 4) (2 4)

( .

0 0

0

)

0

0 0

P

O

P Q

D

Q

O



    

      

      

    

  

 

=

 

  

                     (7) 

with sub-blocks O1, O2, P1, P2, Q1, and Q2 detailed by 

  1

1,1 1,2

1 0 1 0
,

0 0
O

m m

 
=  

− 
                                                  

  
1 1 2 2

1,1 1 1,1 1 1,2 2 1,2 2

1

1,1 1,1 1 1,1 1,1 1 1,2 1,2 2 1,2 1,2 2

1,1 1,1 1 1,1 1,1 1 1,2 1,2 2 1,2 1,2 2

cosh sinh cos sin

sinh cosh sin cos
,

cosh sinh cos sin

( )sinh ( )cosh ( )sin ( ) cos

a a a a

a a a a
P

m a m a m a m a

m a m a m a m a

   

   

   

 
 

− =
 
  − − − + + 
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3 3 4 4

2,1 3 2,1 3 2,2 4 2,2 4

1

1 2,1 2,1 3 1 2,1 2,1 3 1 2,2 2,2 4 1 2,2 2,2 4

1 2,1 2,1 3 1 2,1 2,1 3 1 2,2 2,2 4 1 2

cosh sinh cos sin

sinh cosh sin cos

cosh sinh cos sin

( )sinh ( )cosh ( )sin (

a a a a

a a a a
Q

F m a F m a F m a F m a

K m a K m a K m a K

   

   

   

− − − −

− − −
=

− − − −

− − − − + − ,2 2,2 4

,

) cosm a

 
 
 
 
  + 

 

  

5 5 6 6

2,1 5 2,1 5 2,2 6 2,2 6

2

2,1 2,1 5 2,1 2,1 5 2,2 2,2 6 2,2 2,2 6

2,1 2,1 5 2,1 2,1 5 2,2 2,2 6 2,2 2,2 6

cosh sinh cos sin

sinh cosh sin cos
,

cosh sinh cos sin

( )sinh ( )cosh ( )sin ( ) cos

a a a a

a a a a
P

m a m a m a m a

m a m a m a m a

   

   

   

 
 

− =
 
  − − − + + 

 

  

7 7 8 8

3,1 7 3,1 7 3,2 8 3,2 8

2

2 3,1 3,1 7 2 3,1 3,1 7 2 3,2 3,2 8 2 3,2 3,2 8

2 3,1 3,1 7 2 3,1 3,1 7 2 3,2 3,2 8 2 3

cosh sinh cos sin

sinh cosh sin cos

cosh sinh cos sin

( )sinh ( )cosh ( )sin (

a a a a

a a a a
Q

F m a F m a F m a F m a

K m a K m a K m a K

   

   

   

− − − −

− − −
=

− − − −

− − − − + − ,2 3,2 8

,

) cosm a

 
 
 
 
  +   

  
3,1 3,1 9 3,1 3,1 9 3,2 3,2 10 3,1 3,2 10

2

3,1 3,1 9 3,1 3,1 9 3,2 3,2 10 3,2 3,2 10

cosh sinh cos sin
,

( )sinh ( )cosh ( )sin ( )cos

m a m a m a m a
O

m a m a m a m a

   

   

 
=  

− − − + + 
 

where  

1 1,1 1 2 1,2 1 3 2,1 1 4 2,2 1 5 2,1 2

6 2,2 2 7 3,1 2 8 3,2 2 9 3,1 3 10 3,2 3

,   ,   ,   ,   ,

,   ,   ,   ,   ,  

a l a l a l a l a l

a l a l a l a l a l

    

    

= = = = =

= = = = =
          (8) 

and  

3 3 3 3 32 2 2 2 2
1 1 2 2

1 1 1 1 1 2 2 2 2 2

,   ,   ,   .
E I k G AE I k G A

F K F K
E I k G A E I k G A

= = = =              (9) 

In ( )D  , the sub-blocks 1O  and 2O  group the elements related to the boundary conditions 

at ends 0 =  and 3l = ; the sub-blocks 1P  and 1Q  group the elements related to the 

continuity conditions at the first step of cross-section 1l = ; the sub-blocks 2P  and 2Q  

group the elements related to the continuity conditions at the second step of cross-section
 

2l = , respectively. 

  Setting the frequency determinant
 

( )D   to zero yields the frequency equation:  

( ) 0.D  =                              (10) 
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Ideally, solving equation (10) can produce a series of modal frequencies j . Provided with 

j , the coefficient vector C  in equation (6) can be solved. Substitution of j  and C  into 

equations (4.1) yields the mode shape j

iW . Unfortunately, it is extremely intractable to solve 

equation (10) due to its tremendous complexity. 

2.2 Problem description 

The frequency equation ( )D  =0 is a higher-order transcendental function with a large number 

of terms, each containing multiple multiplied hyperbolic functions
 

sinh ka  and/or cosh ka  

(Low, 1993). This feature makes analytical solution of the frequency equation intractable, so 

that digital computer-aided methods are required to tackle the equation. Among available 

digital computer-aided methods, the direct determinant evaluation (DDE) method is most 

promising due to its flexibility (Low, 1993). The basics of the DDE method are: at a given 

value of  , evaluate every entry of ( )D  , in turn yielding the estimate of ( )D   using 

algebraic operation of entries. Provided with a sequence of  , a profile of ( )D   versus   

can be produced, of which the zero-crossings specify the solutions of ( )D  =0 .  

  However, when we use the DDE method to deal with the frequency equation ( ) 0D  = , the 

resultant profile of ( )D   versus   exhibits some abnormalities when   exceeds a certain 

value, as illustrated in Figure 3 for Model I with the geometrical and material parameters listed 

in Table 1 and Table 2, respectively. Figure 3(a) shows the profile of ( )Y   versus   as an 

alternative profile of ( )D   versus   for clear presentation of frequency scope (0,1000)  

rad/s. The relation between ( )D   and ( )Y   is given as  

-1 2( ) sinh ( ( )) ln( ( ) ( ) 1).Y D D D   = = + +                (11) 

 

Table 1. Geometrical parameters of stepped Timoshenko beam models 
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Model 
Length  

(
i

L [m]) 

Cross-section area 

 (
i

A [10-4 m2] ) 

Moment of inertia  

(
i

I [8.33×10-10 m4] ) 

I 0.4, 0.3, 0.3 1, 1.21, 1 1, 1.331, 1 

II 0.25, 0.3, 0.4, 0.25 1, 1.44, 1, 1 1, 1.728, 1, 1 

III 0.2, 0.3, 0.2, 0.25, 0.3 1, 1.21, 1, 1.44, 1 1, 1.331, 1, 1.728, 1 

IV 0.3, 0.2, 0.3, 0.4, 0.3, 0.2 1, 1.44, 1, 1.21, 1, 1.44 1, 1.728, 1, 1.31, 1, 1.728 

V 0.2, 0.2, 0.3, 0.3 1, 1, 1.21, 1 1, 1, 1.331, 1 

 

Table 2. Material parameters of stepped Timoshenko beam models 

Model 
Elastic modulus  

( iE [109 Kgm-1s-2] ) 

Shear modulus  

(
i

G [3.8×108Kgm-1s-2] ) 

Density 

(
i

 [104 Kgm-3] ) 

Shear coefficient 

( ik ) 

I 1, 0.8, 0.6 1, 0.8, 0.6 1, 0.7, 0.5 0.8864 

II 0.5, 0.6, 0.4, 0.3 0.5, 0.6, 0.4, 0.3 0.8, 0.7, 0.7, 0.8 0.8864 

III 0.6, 0.8, 0.6, 0.8, 0.6 0.6, 0.8, 0.6, 0.8, 0.6 0.5, 0.8, 0.7, 0.6, 0.8 0.8864 

IV 07, 0.6, 0.7, 0.6, 0.7, 0.6 07, 0.6, 0.7, 0.6, 0.7, 0.6 0.8, 0.7, 0.8, 0.7, 0.6, 0.7 0.8864 

V 1, 1, 0.8, 0.6 1, 1, 0.8, 0.6 1, 1, 0.7, 0.5 0.8864 

 

 

  In Figure 3(a), the portion of the profile over the frequency interval [0, 535] rad/s behaves 

stably and regularly, from which the modal frequencies up to 8  can be basically determined, 

whereas the portion going beyond the frequency 535 rad/s acts erratically and irregularly, 

delivering no any information as to modal frequency. To provide a better insight into this 

phenomenon, the critical 7th and 8th mode shapes are explored (Figure 3(b)) with the yielded 

results: the 7th mode shape runs stably and normally, whereas the 8th mode shape behaves a 

little irregularly in the vicinity of 1 = , as labeled by the ellipse. This irregularity can 

ultimately be attributed to a slight deviation of estimated 8  from the exact value. The 

abnormality of the profile of ( )Y   versus   around 8  coincides with the irregularity of 

the 8th mode shape, demonstrating the 8th-mode bottleneck problem in solving its governing 

differential equations to acquire high-order modes of Mode I.  

  In essence, this bottleneck problem is attributed to the immense complexity of the 

transcendental frequency equation ( )D  =0. That being the case, this type of bottleneck 

problem is a basic characteristic of stepped Timoshenko beams.  
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                    (a)                                   (b) 

Figure 3. 8th-mode bottleneck in acquisition of high-order modes by solving two-step Timoshenko 

beam frequency equation (Model 1). (a) Profile of frequency determinant ( )D 
 
versus frequency 

 ; (b) 11th and 12th mode shapes.
 

2.3 Root cause analysis 

The root cause of the bottleneck problem in solving governing differential equations to acquire 

high-order modes of stepped Timoshenko beam lies in the conflict between the huge capacity 

demand in evaluating the frequency determinant and the limited capacity of a digital computer.  

  As per equations (7)-(10), the hyperbolic functions sinh ia  and cosh ia , ia  increasing 

with  , are two essential constituent components of the terms of the frequency equation 

( ) 0D  = . Each term of the frequency equation is constituted by multiple multiplied elements 

of sinh ia  and/or cosh ia . Among all the terms, the particular term consisting of the 

highest-order product of hyperbolic functions is called the dominant-term. In view of either 

sinh ia  or cosh ia  being an exponentially-increasing unbounded function, the dominant-term 

has the greatest possibility of arriving quickly at infinity with the increase of ia  ( ), posing 
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an immense capacity requirement for digital computers to properly process such a term. 

  Moreover, a digital computer has a limit to the precision of floating-point representation for 

a numerical quantity. For a common double-precision binary floating-point computer, that limit 

is 532 , determined by the maximum significance digit according to the standard (IEEE, 2008). 

If the dominant-term exceeds 532 , round-off errors in floating-point math occur. That being 

the case, the critical value 532 of the dominant-term determines the upper bound of variable ia  

in sinh ia  and cosh ia , in turn specifying the upper bound of variable  , notated by T . On 

the other hand, once   exceeds T , round-off errors occur, and the profile of ( )Y   versus 

  behaves unreasonably, provoking the bottleneck problems as illustrated in Figure 3, so that 

  is confined to a bounded frequency range. 

  The above analysis identifies the root cause of the bottleneck problems in acquiring 

high-order modes of a stepped Timoshenko beam by solving its governing differential 

equations. 

3 Problem-solving method 

3.1 LCS method 

A LCS-based method (LCS method) is created to tackle the bottleneck problem. The LCS 

method uses a set of LCSs in place of GCS to provide alternative mathematical 

characterization of transverse vibration of a stepped Timoshenko beam. Use of this method to 

describe transverse vibration is illustrated on the preceding two-step Timoshenko beam (Figure 

1): three LCSs 1 1( , )x u , 2 2( , )x u , and 3 3( , )x u  (Figure 4) are introduced as an alternative to 

the GCS ( , )x w  as shown in Figure 1. In the ith LCS, the length of each segment is identified 

by the abscissa value iS , which is related to the abscissa value
 iL  in the GCS by 

1,    1, 2,3.i i iS L L i−= − =                         (12) 
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Figure 4. Two-step cantilever beam in LCS. 

 

  Within the LCSs, the transverse vibration of the ith segment of beam can be expressed by  

2 2

2 2

( , ) ( , ) ( , )
( , ) 0, 0 ,i i i i i i

i i i i i i i i i i i

i i

v x t u x t v x t
E I k G A v x t I    x S

x x t


   
+ − − =   

     

    (13.1) 

2 2

2 2

( , ) ( , ) ( , )
0, 0 ,i i i i i i

i i i i i

i i

u x t v x t u x t
k G     x S

x x t


   
− − =   

   
           (13.2) 

where the local coordinate ix  is related to the global coordinate x by 1i ix x L −= − . Like 

x L = , ix  is dimensionalized by i ix L = . Using the separation-of-variable method, the 

solutions of equations (13.1) and (13.2) can be represented by 

( , ) ( ) ,j t

i i i iu x t LU x e =   ( , ) ( ) .j t

i i i iv x t V x e =                  (14) 

where iU  and iV  are the spatial solutions for the transverse deflection and rotational angle, 

respectively.  

  As the transverse vibration of every point in a beam is physically unique and independent of 

coordinate systems, the spatial solutions derived by the GCS and LCSs are identical: 

( ) ( ),i i iW =U   ( ) ( ).i i i=V                           (15) 

Using equation (14), equation (3) can be converted into: 

4 2

4 2
( ) 2 ( ) ( ) 0,i i i i i i i i

i i

d d
U U U

d d
    

 
+ + =                  (16.1) 
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4 2

4 2
( ) 2 ( ) ( ) 0.i i i i i i i i

i i

d d
V V V

d d
    

 
+ + =                   (16.2) 

The general solutions for equation (16) can be expressed as 

* * * *

,1 ,1 ,2 ,2( ) cosh sinh cos sin ,i i i i i i i i i i i i i iU A B C D        = + + +           (17.1) 

* * * *

,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2( ) sinh cosh sin cos .i i i i i i i i i i i i i i i i i iV A m B m C m D m        = + + −       (17.2) 

  Using i i ix S = , *

,1 ,1i i iS L = , *

,2 ,2i i iS L = , ( )i iU   and ( )i iV  can be further 

represented in the local coordinate system: 

* * * * * * * *

,1 ,1 ,2 ,2( ) cosh sinh cos sin 0 1,i i i i i i i i i i i i i i iU A B C D ,          = + + +             (18.1)
 

* * * * * * * *

,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2( ) sinh cosh sin cos , 1.i i i i i i i i i i i i i i i i i i iV A m B m C m D m         = + + −          (18.2) 

and their derivatives ' ( )i iU   and ' ( )i iV   are 

' * * * * * * * *

,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2( ) sinh cosh sin cos , 0 1,i i i i i i i i i i i i i i i i i i iU A B C D               = + − +      (18.3) 

' * * * * * * * *

,1 ,1 ,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2 ,2 ,2( ) cosh sinh cos sin , 0 1,i i i i i i i i i i i i i i i i i i i i i i iV A m B m C m D m               = + + +    (18.4) 

where * *, 1,2,3i iA D i− = , are constants to be determined by the continuity and boundary 

conditions. The continuity conditions of the displacement, slope, moment, and shear force at 

the junctions

 

of adjacent beam segments are 

1 1

1 1

1 1 1 0 1 1 1 0

' ' ' '

1 1 1 1 1 0 1 1 1 1 1 1 1 1 0

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ( ) ( )) ( ( ) ( )) ,

i i i i

i i i i

i i i i i i i i

i i i i i i i i i i i i i i i i i i i i i i

U U                    V V

E I V E I V   k G A U V k G A U V

   

   

   

     

+ +

+ +

= + + = = + + =

= + + + + = = + + + + + + + =

= =

= − = −

 (19)  

and the boundary conditions at the ends of the entire beam are 

1 11 1 0 1 1 0( ) 0,       ( ) 0,       U V  = == =
3 3

' '

3 3 1 3 3 3 3 1( ) 0,       ( ( ) ( )) 0.V U V   = == − =    (20) 

Substituting equation (18) into equations (19) and (20) yields a linear algebraic homogeneous 

system
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* *( ) 0. =D C                              (21) 

where superscript * indicates quantities for LCSs, similarly hereinafter. The frequency 

determinant 
*( )D   of the characteristic matrix D* is 

*

1

* *

1 1

*

* *

2 2

*

2

(2 4) (2 4) (2 4)

(4 4) (4 4) (4 4)

(4 4) (4 4) (4 4)

(2 4) (2 4) (2 4)

,

0 0

0

( )

0

0 0

P

P

O

Q

D

Q

O



  

  

  

  

  

 

=

 

  

                    (22) 

with the non-zero sub-blocks *

1O , 
*

2O , 
*

1P , 
*

2P , 
*

1Q , and 
*

2Q  given by 

*

1

1,1 1,2

1 0 1 0
,

0 0
O

m m

 
=  

− 
   

* * * *

1,1 1,1 1,2 1,2

* * * *

1,1 1,1 1,1 1,1 1,2 1,2 1,2 1,2*

1 * * * *

1,1 1,1 1,1 1,1 1,1 1,1 1,2 1,2 1,2 1,2 1,2 1,2

* *

1,1 1,1 1,1 1,1 1,1 1,1 1,

cosh sinh cos sin

sinh cosh sin cos

cosh sinh cos sin

( )sinh ( )cosh (

P
m m m m

m m

   

       

       

    

−
=

− − − * *

2 1,2 2,1 1,2 1,2 1,2

,

) sin ( )cosm m  

 
 
 
 
 
 + + 

   

2,1 2,2*

1

1 2,1 2,1 1 2,2 2,2

1 2,1 2,1 1 2,2 2,2

1 0 1 0

0 0
,

0 0

0 ( ) 0 ( )

Q
F m F m

K m K m

 

 

 

− − 
 

− =
 − −
  − − − + 

 

* * * *

2,1 2,1 2,2 2,2

* * * *

2,1 2,1 2,1 2,1 2,2 2,2 2,2 2,2*

2 * * * *

2,1 2,1 2,1 2,1 2,1 2,1 2,2 2,2 2,2 2,2 2,2 2,2

* *

2,1 2,1 2,1 2,1 2,1 2,1 2,

cosh sinh cos sin

sinh cosh sin cos

cosh sinh cos sin

( )sinh ( )cosh (

P
m m m m

m m

   

       

       

    

−
=

− − − * *

2 2,2 2,2 2,2 2,2 2,2

,

) sin ( )cosm m  

 
 
 
 
 
 + +   

3,1 3,2*

2

2 3,1 3,1 2 3,2 3,2

2 3,1 3,1 2 3,2 3,2

1 0 1 0

0 0
,

0 0

0 ( ) 0 ( )

Q
F m F m

K m K m

 

 

 

− − 
 

− − =
 − −
  − − − +   

* * * *

3,1 3,1 3,1 3,1 3,1 3,1 3,2 3,2 3,2 3,2 3,2 3,2*

2 * * * *

3,1 3,1 3,1 3,1 3,1 3,1 3,2 3,2 3,2 3,2 3,2 3,2

cosh sinh cos sin
.

( )sinh ( )cosh ( )sin ( )cos

m m m m
O

m m m m

       

       

 
=   − − − + +   
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Setting the frequency determinant to zero yields the frequency equation: 

* 0.( )D  =                               (23) 

Solving equation (23) can produce a series of modal frequencies  j . Provided with  j , the 

coefficient vector 
*

C  in equation (21) can be derived. Substituting  j  and 
*

C  into 

equations (18), the mode shape j

iU  can be obtained. 

3.2. Features of 
*( )D   

The LCS method endows the frequency determinant *( )D   with two distinctive features: a 

simplified structure and lower magnitude for entries in *( )D  . 

(1) Simplified structure 

Notably, the representation of continuity conditions in LCSs (equation (19) is significantly 

different from that in a GCS (equation (5). Compared to equation (5), equation (19) contains 

more elements specified by the local abscissa as zero. These elements induce more occurrences 

of zero or unity for 
*

,1sinh i , 
*

,2sinh i , 
*

,1cosh i , and 
*

,2cosh i , causing the 
*

1Q  and 
*

2Q  of 

*( )D   to be constant sub-blocks, notated by X1 and X2. As shown in equation (24), X1 and X2 

can largely reduce the dimensionality of *( )D  , lower than that of ( )D   in the GCS with 

the counterparts of 1Q  and 2Q  containing numerous instances of sinh ia  and cosh ia . 

Clearly, X1 and X2 evoke a simpler dominant-term of frequency equation *( )D  =0, allowing 

a greater T  to be determined by the limit capability (253) of a double-precision binary 

floating-point computer. 
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*

1

*

1 1

*

*

2 2

*

2

(2 4) (2 4) (2 4)

(4 4) (4 4) (4 4)

(4 4) (4 4) (4 4)

(2 4) (2 4) (2 4)

.

0 0

0

( )

0

0 0

P

P

O

D

O



  

  

  

  

  

 

=

 

  

X

X

                     (24) 

(2) Lower magnitude for elements in *( )D   

Aside from the simplified structure, the magnitude of the any hyperbolic function in *( )D   is 

lower than or equal to that of its counterpart in ( )D . This feature can be attributed to the 

facts that:  

*

,1 ,1 ,1 ,1 ,i i
i i i i i

S L
l

L L
   =  =  *

,2 ,2 ,2 ,2 ,i i
i i i i i

S L
l

L L
   =  =              (25) 

caused by 1 1S L= , 2 2S L , 3 3.S L  

  Equation (25) draws on the relations between the corresponding elements in *( )D   and 

( ) :D  *

,1 ,1sinh( ) sinh( )i i il   and 
*

,1 ,1cosh( ) cosh( )i i il  , resulting in the top-term of *( )D   

being remote from the critical value 253, thus realizing greater T .   

  The above two features of *( )D   produced by the LCSs lead to a frequency equation of 

reduced complexity, conducive to acquisition of high-order mode shapes of a stepped 

Timoshenko beam.   

4 Performance evaluation 

4.1 Comparison of LCS and GCS methods 

(1) Model I 

For brevity, the conventional GCS-based method to calculate high-order modes is termed the 

GCS method. Use of the LCS method to evaluate modes of a two-step Timoshenko beam is 
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demonstrated using Model I (Table 1 and Table 2). To present a wider frequency scope, the 

profile of *( )Y   (the superscript * labels the LCS method) versus   replaces the profile of 

*( )D   versus  , as per equation (11). From the profile of *( )Y   versus   (Figure 5), the 

first 33 modal frequencies can be properly determined, far beyond the first 8 modal frequencies 

identified by the profile of ( )Y   versus   (Figure 3(a)) from the GCS method. Therefore, 

the proposed LCS method largely overcomes the 8th-mode bottleneck for a two-step 

Timoshenko beam.  

 

Figure 5. Profile of *( )Y   versus   from the LCS method for Model I. 

 

(2) Models II-IV 

Acquisition of high-order modes for Models II-IV (Table 1 and Table 2) with more steps are 

further conducted for comprehensively assessing the performance of the LCS method. First, 

the profiles of ( )Y   versus   for Models II-IV are yielded by the GCS method, as shown in 

Figures 6 (a), 6(c), and 6(e), respectively. In the figure, only the first 5, 6, and 4 modal 

frequencies are identified, illustrating bottlenecks in the acquisition of higher-order modes of 

Models II-IV, respectively. In contrast, the profiles of *( )Y   versus   resulting from the 
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LCS method, shown in Figures 6(b), 6(d), and 6(f), allow determination of the first 44, 67, and 

42 modal frequencies for Models II-IV, respectively. Comparing the pairs of Figures. 6(a) and 

6(b), 6(c) and 6(d), and 6(e) and 6(f), one can conclude the LCS method effectively 

circumvents the bottlenecks in the acquisition of higher-order modes of stepped Timoshenko 

beams. 

 

     

    (a)                                      (b) 

     

                     (c)                                         (d) 
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(e)                                       (f) 

Figure 6. Profiles of (a), (b), and (c) ( )Y   versus   and (a), (b), and (c) *( )Y   versus   

(Models II-IV) yielded by the GCS method and the LCS method, respectively. 

4.2 Comparison of LCS and EDS methods 

The accuracy, capacity, and efficiency of the LCS method in acquiring high-order modes of a 

stepped Timoshenko beam are assessed using the well-known EDS scheme involving the W-W 

algorithm as a reference. As widely demonstrated (Howson and Williams, 1973; Pilkey and 

Kitis, 1994; Banerjee and Williams, 1996; Banerjee, 1997; Banerjee, 2001; Banerjee, 2003; 

Yuan et al., 2007; Li et al., 2008; Yu and Roesset, 2011; Greco and Pau, 2012), the EDS 

scheme is a valid method to achieve high-order modes of a stepped Timoshenko beam, with no 

need for solving the governing differential equations of the beam. 

4.2.1 Accuracy 

The accuracy comparison between the LCS method and the EDS scheme is illustrated on 

Model I with the results shown in Table 3. With the EDS scheme (Yu and Roesset, 2011), each 

beam segment of Model I is regarded as a Timoshenko beam member of 4 degrees of freedom 

(two pairs of displacement and rotation angle at two ends), from which the member's EDS 

matrix is formulated with the frequency-dependent exact shape functions. The EDS matrices of 

three members are assembled to form a global EDS matrix, on which the W-W algorithm runs 
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to yield all possible modal frequencies. The portion of modal frequencies is labeled by 'EDS' in 

Table 3, in which the 'GCS' and 'LCS' designate the modal frequencies obtained by the GCS 

and LCS methods. Clearly, the first 8 modal frequencies – within the capacity of the GCS 

method – are almost identical for GCS, LCS, and EDS methods; the modal frequencies up to 

the 33th order – within the capacity of the LCS method – are approximately identical for the 

LCS and EDS methods, with the maximum relative error  <0.1%. These small errors can be 

attributed to the extensive use of matrix manipulations in GCS, LCS, and EDS, undertaken by 

a digital computer of limited precision (Erdelyi and Hashemi, 2012). For the LCS and EDS 

methods, almost identical accuracy can be easily found for other types of stepped Timoshenko 

beams, e.g., Modes II-IV. 

 
Table 3. Modal frequencies for Model I obtained by GCS and LCS methods 

Mode GCS 

( [rad/s] ) 

LCS 

( [rad/s] ) 

EDS 

( [rad/s] ) 

Relative error  

( [%]) 

1 4.214 4.214 4.214 0.000 

2 22.980 22.980 22.979 0.004 

3 59.400 59.400 59.400 0.000 

4 117.594 117.594 117.601 0.006 

5 193.426 193.426 193.413 0.007 

6 287.277 287.276 287.246 0.010 

7 400.996 400.990 400.900 0.022 

8  533.675 533.669 0.001 

9  684.500 684.366 0.020 

10  846.888 846.888 0.000 

11  1037.264 1037.383 0.011 

12  1239.232 1238.957 0.022 

13  1452.708 1452.474 0.016 

14  1692.380 1692.702 0.019 

15  1943.103 1942.860 0.013 

16  2210.113 2209.411 0.032 

17  2486.542 2486.800 0.010 

18  2789.415 2789.658 0.009 

19  3101.337 3100.157 0.038 

20  3415.482 3415.061 0.012 

21  3763.157 3761.347 0.048 

22  4112.409 4111.233 0.029 

23  4472.721 4471.087 0.037 

24  4846.579 4847.700 0.023 

25  5237.976 5237.871 0.002 

26  5638.697 5635.894 0.050 

27  6034.027 6033.886 0.002 

28  6465.979 6467.858 0.029 

29  6894.382 6891.348 0.044 
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30  7324.726 7322.197 0.035 

31  7778.345 7779.690 0.017 

32  8232.764 8233.985 0.015 

33  8699.980 8698.093 0.022 

 

4.2.2 Capacity 

The capacity comparison between the LCS method and the EDS scheme is illustrated on 

Model V with the results shown in Figure 7 and Table 4. The EDS scheme is capable of 

achieving almost all solutions to high-order modes of a stepped Timoshenko beam. In contrast 

to this scheme, the LCS method exploits the LCSs to simplify frequency equation to 

accomplish higher-order modes. The LCS method can easily increase of its capacity to 

accommodate and acquire high-order modes by a strategy of pseudo step. A pseudo step is 

defines as a virtual step that divides a uniform beam into two sub-segments. The introduction 

of a pseudo step can increase the number of LCSs and therefore induce greater simplification 

of the frequency equation, offering larger capacity of accomplishing high-order modes.  

  Model V is produced by introducing a pseudo step into the first beam segment of Model I to 

form two sub-segments. The vibration of each sub-segment is accounted for by a new LCS. 

Collectively, a set of four LCSs are responsible for the vibration of all four beam segments of 

Model V. The obtained profile of *( )Y   versus   is shown in Figure 7, where the first 54 

modal frequencies are properly determined within the frequency range up to 20,000 Hz. Table 

4 presents the modal frequencies up to the 54th order by saving the first 33 modal frequencies 

(Table 3). In the table, the LCS and the EDS scheme agree with each other well, with the 

maximum relative error  <0.1%. Clearly, the strategy of pseudo step can significantly 

increase the capacity of the LCS method to approach high-order modes. With introducing more 

pseudo steps, the increasingly-sized LCSs can arrive at any high-order modes of interest. 

Therefore, the LCS method involving pseudo steps provides a tactical strategy to acquire 

high-order modes of a stepped Timoshenko beam.  
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Figure 7. Profile of *( )Y   versus   (Model V) yielded by LCS method with one pseudo step.  

 

Table 4. Modal frequencies for Model V obtained by LCS method and EDS scheme 

Mode LCS 

( [rad/s]) 

EDS 

( [rad/s]) 

Relative error   

( [%])  

34 9162.653 9163.556 0.010 

35 9656.310 9658.415 0.022 

36 10146.172 10140.508 0.056 

37 10627.394 10624.400 0.028 

38 11139.600 11144.050 0.040 

39 11648.083 11644.572 0.030 

40 12163.248 12156.238 0.058 

41 12673.578 12676.329 0.022 

42 13210.344 13212.052 0.013 

43 13746.828 13738.067 0.064 

44 14265.016 14262.225 0.020 

45 14820.597 14826.813 0.042 

46 15367.464 15361.033 0.042 

47 15914.721 15905.737 0.057 

48 16464.437 16469.361 0.030 

49 17031.078 17031.534 0.003 

50 17601.578 17589.508 0.069 

51 18147.373 18145.468 0.010 

52 18732.907 18740.361 0.040 

53 19309.500 19299.756 0.050 

54 19879.000 19866.967 0.061 

 

4.2.3 Efficiency 

As evaluating high-order modes using the EDS scheme, the W-W algorithm plays a key role of 

finding modal frequencies by processing the global EDS matrix (Williams and Wittrick, 1970; 
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Wittrick and Williams, 1971; Williams and Wittrick, 1983; Williams and Kennedy, 2010; 

Howson and Williams, 1973; Pilkey and Kitis, 1994; Banerjee and Williams, 1996; Banerjee, 

1997; Banerjee, 2001; Banerjee, 2003; Yuan et al., 2007; Li et al., 2008; Yu and Roesset, 2011; 

Greco and Pau, 2012). Compared with the W-W algorithm, the classical method, which solves 

the modal frequencies by vanishing the determinant of the global EDS matrix, would induce 

missing of roots (Howson and Zare, 2005). The W-W algorithm is essentially an indirect 

numerical method. This algorithm seizes a certain modal frequency based on calculating the 

number of modal frequencies that are below a given trial frequency value rather than directly 

evaluating the eigenvalues of the global EDS matrix. Aside from the generally stated merits 

such as great accuracy and strong reliability in capturing modal frequencies, the W-W 

algorithm can only address one modal frequency for one time, involving multiple iterations to 

converge on the modal frequency (Banerjee and Williams, 1996). That being the case, 

evaluation of a large range of modal frequencies up to a quite high order requires consecutive 

execution of the W-W algorithm as many times as the number of modal frequencies of interest, 

resulting in an impaired efficiency.   

  In contrast, the LCS method delivers high-order modal frequencies of a stepped Timoshenko 

beam by directly solving its governing differential equation. This mechanism renders the LCS 

method to produce all the modal frequencies of interest at a time as long as the pseudo steps are 

enough. Specifically, the zero-crossings of the profile of *( )Y   versus   simultaneously 

specify the modal frequencies, as displayed in Figure and 7. Moreover, the frequency 

determinant from the characteristic matrix for the LCS method commonly enjoys a super 

regularity to that from the global EDS matrix for the EDS scheme. The frequency determinant 

from the global EDS matrix (Model I) is illustrated in Figure 8, which is interior to the 

frequency determinant from the characteristic matrix for the LCS method, shown in Figure 5. 

Therefore, the lower regularity in Figure 8 offers more possibility of causing false roots and 

missing roots of modal frequency (Howson and Zare, 2005). With the super regularity of 

frequency determinant, the LCS method has higher operational efficiency than the EDS 
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scheme in accomplishing high-order modes of interest. 

 

 

Figure 8. Frequency determinant (Model I) from the global EDS matrix for the EDS scheme.  

5 Conclusions 

This study develops a new method to acquire the high-order modes of a stepped Timoshenko 

beam by solving its governing differential equations. The method exploits a set of LCSs in 

place of the conventional single GCS to reformat the governing differential equations of a 

stepped Timoshenko beam. The frequency equation arising from the reformatted governing 

differential equations can be significantly simplified by the LCSs, providing an opportunity of 

calculating high-order modal frequencies. The accuracy, capacity, and efficiency of the LCS 

method are corroborated by using the well-known EDS scheme involving the W-W algorithm 

as a reference. Differing from the EDS scheme that follows the idea of FE method to obtain the 

solutions to high-order modes, the LCS method attains high-order modes by solving the 

governing differential equations of a stepped Timoshenko beam.  
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