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ABSTRACT 

Purpose - The purpose of this paper is to study the complex aerosol dynamic processes by using this 

newly developed stochastically weighted operator splitting Monte Carlo (SWOSMC) method. 

Design/methodology/approach – Stochastic weighted particle method and operator splitting method 

are coupled to formulate the SWOSMC method for the numerical simulation of particle-fluid systems 

undergoing the complex simultaneous processes.  

Findings - This SWOSMC method is first validated by comparing its numerical simulation results of 

constant rate coagulation and linear rate condensation with the corresponding analytical solutions. 

Coagulation and nucleation cases are further studied whose results are compared with the sectional 

method in excellent agreement. This SWOSMC method has also demonstrated its high numerical 

simulation capability when used to deal with simultaneous aerosol dynamic processes including 

coagulation, nucleation and condensation. 

Originality/value –There always exists conflict and tradeoffs between computational cost and 

accuracy for Monte Carlo based methods for the numerical simulation of aerosol dynamics. Operator 

splitting method has been widely used in solving complex partial differential equations while stochastic 

weighted particle method has been commonly used in numerical simulation of aerosol dynamics. 

However, the integration of these two methods has not been well investigated. 
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1. Introduction

Numerical simulation has gained increasing attention in dealing with comprehensive engineering and 

scientific problems which are governed by the aerosol dynamics e.g. the production of industrial 

nanoparticles (Chamkha and Rashad, 2012; Hao et al., 2013; Tu and Zhang, 2014) and the control of 

aircraft particulate emission (Vacassel et al., 2014). Aerosol dynamics involves complex physical or 

chemical processes such as coagulation, nucleation and condensation (Zhang et al., 1999) and surface 

reactions (Frenklach and Wang, 1991). Various numerical methods are thus developed to deal with 

these complex aerosol dynamic processes (Efendiev, 2004; Yu et al., 2009; Chan et al., 2010; Zhou 

and Chan, 2011; Geng et al., 2013; Yin and Liu, 2013; Zhou and Chan, 2014; Yu and Chan, 2015; 

Fede et al., 2015; Zhang and You, 2015). Reducing the modelling complexity and improving numerical 

simulation accuracy have always been the research focus of aerosol dynamics (Kumar et al., 2011). 

Monte Carlo based methods offer an option to solve the particle General Dynamics Equation (GDE) 

through the stochastic probability events (Gillespie, 1972; Debry et al., 2003; Zhou and He, 2014; Xu 

et al., 2015) and obtain the evolution history of particles. Generally, no input information of initial 

particle size distribution shape is required for Monte Carlo simulation except for some special 

problems. Another advantage of Monte Carlo based methods lies in that any number of particle 

properties can be described as a combination between Lagrangian transport, particle interaction due to 

coagulation and individual particle events (Kruis et al., 2012). However, high computational cost and

limited accuracy have been the major shortcomings of Monte Carlo based methods (Liffman, 1992; 

Wei and Kruis, 2013) since the computational accuracy of Monte Carlo based methods is highly 

dependent on the number of numerical particles that are used. It also implies that a large number of 

numerical particles is required for obtaining high computational accuracy. Instead of selecting all 

aerosol dynamic processes (i.e. nucleation, condensation and coagulation) randomly at a time as in 

traditional Monte Carlo simulation, the operator splitting concept is used in recently developed 

methods (Patterson et al. 2006 and Zhou et al. 2014). The main idea of operator splitting method is to 

separately deal with coagulation and other deterministic processes such as nucleation with different 

methods, respectively. Additionally, the weighting particles are also used for the numerical simulation 

of spatially resolved particle-fluid systems. In contrast to the fixed and unique weights of numerical 

particles in conventional Monte Carlo based methods, different and variable weights are introduced to 

numerical particles in weighted Monte Carlo based methods to reduce the numerical diffusion caused 
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by the spatial inhomogeneity or wide spectrum of particle size distribution (Rjasanow and Wagner, 

1996; Zhao et al., 2009; Patterson et al., 2011). A new Stochastically Weighted Operator Splitting 

Monte Carlo (SWOSMC) method is proposed in the present study to solve the complex aerosol 

dynamics with high computational efficiency and accuracy. This new SWOSMC method is first 

validated by both analytical solutions and sectional method (Prakash et al., 2003) and then is applied to 

typical cases study including simultaneous coagulation, nucleation and condensation processes. 

2. Methodology 

2.1 General dynamics equation 

The governing equation of the time dependent evolution of number density n(v,t) for a single 

component aerosol can be written as (Debry et al., 2003): 
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where K(u,v), I0(u,v) and J0(t) are the coagulation, condensation and nucleation kernels, respectively.  

Compared to the original Smoluchowski’s equation which deals only with coagulation, the extended 

Smoluchowski’s equation describes more physical processes which exchange mass between individual 

particles and the environment such as the fluid in which particles are contained and new particles are 

also introduced into the particle population (Patterson et al., 2011). 

2.2 Operator splitting 

For complex aerosol dynamic processes, the terms on the right hand side of Equation (1) may include 

terms of different physical processes besides coagulation term. Operator splitting is very efficient in 

solving such complex equation. Instead of integrating all these aerosol dynamic processes together in 

one step, the operator splitting method separates the integration into multiple steps, such as: 

( ) ( ) ( ) ( )2exp exp expd stX tX tX O t =   + 
                        (2)                                        

 ( ) ( ) ( ) ( )3exp 1/2 exp exp 1/2d s dtX tX tX O t=    + 
        (3)                                                                                                                                

( ) ( ) ( ) ( )3exp 1/2 e 2xpxp 1/e ss dtX tX tX O t=    +         (4) 

where Xd denotes nucleation and condensation processes which are solved by deterministic integration 
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method, while Xs denotes coagulation process which is solved by stochastic method (Monte Carlo 

method). Equation (2) is of first-order accuracy while Equations (3) and (4) are of second-order 

accuracy. 

2.3 Aerosol dynamics kernels 

For free molecule regime, the coagulation kernel, K(u,v) can be written as (Zhou et al., 2014): 

22 1 11 1
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 
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                   (5) 

where u and v are the volume of the spherical colliders; TK is the temperature, kB is the Boltzmann’s 

constant and ρ is the density of particles. 

In continuous regime, for spherical particles of size u and v, the coagulation kernel can be written as 

(Debry et al., 2003): 

1/3 1/3
B K air( , ) 2 / 3 [2 ( / ) ( / ) ]K u v k T v u u v= + +                (6)                                          

where air  is the viscosity of air and the other parameters have the same physical meanings as that in 

Equation (5).  

The homogeneous nucleation rate can be generally written as (Seinfeld and Pandis, 1998): 

 
*

0( ) exp( )
b

GJ t C
k T


= −                           (7) 

where *G is the free energy that is required to form a stable nucleus and C  is a constant which is 

related to vapor pressure. 

As condensation/evaporation process involves the relaxation to an equilibrium state between aerosol 

and gas phases for one chemical species, the kernels are thus proportional to the pressure difference 

between the bulk gas and the equilibrium pressure: 

0( , ) exp( )eq
I i iI v t C p p= −                         (8) 

where IC  is a constant which is related to the diffusion species and temperature, ip
and 

eq
ip  are 

the vapor pressure and the equilibrium vapor pressure of species i from the particle, respectively. 
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2.4 Non-dimensionalization 

The GDE Equation (1) is non-dimensionalized based on the relative mass density, ( ),q v t  of aerosol 

particles (Debry et al., 2003) which can be expressed as Equation (9):  
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where q(v,t) is the mass density of aerosol particles and Q0 is the total initial mass of aerosol particles.  

 

Substituting n(v,t) into Equation (1) with ( ),q v t , it can be expressed as (Debry et al., 2003): 
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2.5 Algorithm formulation 

The main idea of the present method is to introduce stochastic weights to various numerical particles 

according to the mass change caused by different aerosol dynamic processes in order to increase the 

numerical stability of Monte Carlo method. Operator splitting technique is used to treat stochastic 

process (i.e., coagulation) and deterministic processes (i.e., condensation, nucleation etc.) separately 

with corresponding methods to reduce computational time for the simulation of complex aerosol 

dynamics. The idea of using numerical particles with varying mass weights (Debry et al., 2003) is 

adopted herein, in which the i-th numerical particle is associated with a varying mass weight, wi(t) of 

real aerosol particle of size, yi(t), thus the i-th numerical particle now stands for a number of wi(t)/yi(t) 

of real aerosol particles. The introduction of such a varying mass weight to numerical particles in 

stochastic simulation of simultaneous aerosol dynamic processes is necessary and well justified. When 

mass weights are adhered to numerical particles i.e. numerical particles are connected with a certain 

mass of real aerosols, the total number of numerical particles remains constant and no re-sampling is 

needed for coagulation process (Eibeck and Wagner, 2001). This is because the total mass of real 

aerosol particles remains constant in coagulation process although the total number of real aerosol 
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particles decreases. If the numerical particles are directly connected with the number of real aerosol 

particles and no further up sampling (adding new particles to the particle-fluid system) is conducted, 

the decreasing number of numerical particles may cause severe numerical diffusion as coagulation 

converges on infinite particle number. However, for some other aerosol dynamic processes including 

nucleation, condensation, evaporation, deposition and removal, the total mass of aerosol particles in the 

particle-fluid system actually varies with time. By introducing varying mass weights to numerical 

particles, the weights, wi(t) will evolve with time for mass-varying process such as condensation and 

evaporation. In here, nucleation is conducted by creating a certain mass of new particles according to 

nucleation rate which is independent of pre-existing particles. The integration details for individual 

process will be presented below. The main algorithm of stochastically weighted operator splitting 

Monte Carlo (SWOSMC) method over a time period [0, T] is presented as follows: 

(1) Initialization: setting of the following quantities: 

( )0 0[ , ,i iwy 01,2, .. ].., i N= ; 

(2) Operator splitting over time loop [0, T]:  

Integration of Equation (10) from tk to tk+1 = tk + τk, where τk is the time step determined previously: 

(i)  Integration of coagulation based on Monte Carlo based methods (Gillespie, 1972); 

(ii) Integration of condensation using an ODE solver from (Zhou et al., 2014);  

(iii)Integration of nucleation: creation of new particles, J; 

(3) Updating the particle-fluid system; and 

(4) When t >T, STOP and averaging on the results. 

3. Numerical setup 

3.1 Time step 

According to Debry et al., (2003), the time scales for different physical processes can be calculated as 

Equations (11-13) in order to allow an accurate integration result as well as avoid too much 

computational time:  

(1) For coagulation between aerosols of size  ,  k k
i jy y : 
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To ensure an accurate integration, the time step should be less than the minimum of all the time scales 

from Equations (11) to (13) is set as the minimum time step.  

3.2 Integration details 

The system state after a time step is calculated by integrating over a time step. Noting that a varying 

mass weight is used, only condensation/evaporation processes that cause the mass change to the 

particle-fluid system will have numerical particles with varied weights.  

(1) For integration of coagulation, the collision criteria should be met. The volume of particle i after a 

splitting time step becomes the total volume of particle i and its collision partner while the weight of 

i-th numerical particle remains unchanged. For the i-th numerical particle at k-th time step, the 

integration procedure is written as: 

1/2 0 ( , ),  if 
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ki i Ji k
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where 1/2k
iy +

, 
k
iy and 

k
Jiy  are the volume size after the collision step, the volume of i-th particle and 

the volume collided with i-th particle at k-th time step, respectively. For the criterion part, r is a random 

number uniformly distributed over [0, 1], k  is the defined time step based on the minimum 

coagulation time scale, 0 ( , )k kk
Ji i Ji

kk
Ji

KQ y yw
y

  is the collision probability and c  is a constant which is 

usually equal to 0.1 (Debry et al., 2003). k  is so defined that the collison probability is within [0, 1].  
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(2) For integration of condensation, it is performed via integration using a self-adaptive fifth order 

Runge-Kutta method (Zhou et al., 2014) over the splitting time step of varying weight function, which 

is determined by the mechanistic rate of condensation. For the i-th numerical particle at k-th time step, 

the results obtained from the above coagulation step are used as input for this step, the integration 

procedure is written as: 

0
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where 1k
iy +

and
1/2k

iy +
 are the volume size, 

1k
iw +

and
1/2k

iw +
 are the weights, 1/2

0( , )k
kiI ty + and

0( , )iI ty are the condensation rates after the condensation step and that obtained from the previous 

coagulation step for the i-th particle and the k-th time step, respectively.  t is the integration time 

step. 

(3) For integration of nucleation, only a certain mass of new particles with the minimum nucleus 

volume 0v are created and added to the particle-fluid system. For the i-th newly created particle, it is 

defined as: 

1
0 0 0,  1,  ( )k

i c ki v m v J t ty w+ = = =                          (16) 

where 1k
iy +

 is the volume size of the i-th newly created particle, iw  is the weight of the i-th newly 

created particle, 0( )kJ t is the nucleation rate mass of of the i-th newly created particle, cm is the total 

mass of all the newly created particles within one time step and 0v is the initial volume size of the newly 

created particles. 

3.3 Initial conditions and cases with analytical solutions  

3.3.1 Initial conditions 

The initial particle number density is 1.0/m3 and initial particle dimeter is set as 1.24 nm for Case 1 

(constant rate coagulation and linear rate condensation case) and Case 2 (constant rate coagulation and 
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nucleation) so that the following simple dimensionless expressions for moments can be obtained. The 

initial conditions of the other cases in the present study can be found in Frenklach and Harris (1987).  

3.3.2 Constant rate coagulation and linear rate condensation 

Analytical solutions to the GDE Equation (1) is only available for very limited cases, among which the 

case of constant rate coagulation and linear rate condensation is selected as the first validation case. For 

constant rate coagulation and linear rate condensation, when the coagulation and condensation kernel 

are both set as unity for simplicity, the number density n(v,t) and the dimensionless zeroth moment, M0 

and first moments, M1 with respect to the particle volume can be derived as (Ramabhadran et al., 

1976): 

2
0 0

1 1
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                          (17) 

3.3.3 Constant rate coagulation and nucleation  

If the coagulation rate and nucleation rate are constant (both are set as unity for simplicity in the 

present study), an analytical solution is available to Equation (1). The analytical solutions of relative 

particle number density and relative particle volume concentration can be expressed as (Maisels et al. 

2004): 

0
0

0

1 tanh( // 2)=
tanh( / 2)

B
B

N N B 



+
+

                             (18) 

0 0=1
2

/V V B
+                                    (19) 

where V and V0 are the total volume of particles at time t and at initial time, respectively. N and N0 are 

the number density of particles at time t and at initial time, respectively. B, E and 0  are 

dimensionless parameters determined by the initial conditions and the detailed expressions can be 

found in Maisels et al. (2004). 
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3.3.4 Simulataneous coagulation, nucleation and condensation 

For simultaneous aerosol dynamic processes, if the nucleation rate, coagulation rate, condensation rate 

and monomer concentration are constant, the analytical solution to these simultaneous processes 

including coagulation, nucleation and condensation exists (Maisels et al., 2004). The analytical 

expression of relative particle number denstity is given in Equation (18) since condensation involves no 

change in the particle number. The analytical expression of the relative particle volume concentration 

for simulataneous coagulation, nucleation and condensation is written as: 

0 0
00

1 exp( ) 1 exp( )=1 [( ) 2 ln( )]
2 2 2

/V V B E E
B

 


+ − − −
+ + + +                 (20) 

where all the parameters in Equation (20) have the same physical meanings with those in Equation (18) 

and (19). More information of this case study can be found in Liu et al. (2015). 

3.4 Calculation of maximum relative quadratic error 

The maximum relative quadratic error used to evaluate the numerical simulation results is defined as: 

2
0 0 max{ [( ( ) ( ))/ ( )] }X t X t X t = −                           (21) 

where is the maximum relative error, ( )X t is the numerical simulation results obtained with the 

proposed SWOSMC method, and 0( )X t is the reference value for comparison. 

4. Results and discussion 

4.1 Initial validation 

The SWOSMC method is first validated for constant rate coagulation and linear rate condensation 

processes. The dimensionless zeroth moment, M0 which is proportional to the number density of 

particles, is shown in Figure 1. An increasing number of numerical particles are used for the numerical 

simulation. It can be seen that the numerical simulation results agree well with the analytical solution 

when only 1000 numerical particles are used, which shows the good capability of the SWOSMC 

method in dealing with simultaneous coagulation and condensation processes.  
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Figure 1. Zeroth moment, M0 under coagulation and condensation processes for SWOSMC versus 
analytical solution (Ramabhadran et al., 1976) (N is the number of numerical particles (used in each 
simulation run).  
 

An excellent agreement between the dimensionless first moment, M1 obained by the SWOSMC method 

and analytical solution is also observed is Figure 2. The exponentially increasing M1 with respect to 

simulation time represents the rapid increase of the total volume of particles in the numerical 

simulation particle-fluid system due to condensation.  

 
 

Figure 2. First moment, M1 under coagulation and condensation processes for SWOSMC versus 
analytical solution (Ramabhadran et al., 1976) (The number of numerical particles used in each 
simulation run is 1000). 
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Figure 3. Particle number density under free molecule regime coagulation for SWOSMC versus 
sectional method (Prakash et al., 2003) (The number of numerical particles used in each simulation run 
is 1000 ). 

Figure 3 shows another application of the SWOSMC method to free molecule regime coagulation  

and the numerical simulation results is validated by comparing to the sectional method (Prakash et al., 

2003). Excellent agreement can be also observed between the particle number density obtained by 

these two methods with the maximum relative quadratic error (taking the sectional method as reference) 

less than 1% during the whole simulation time.  

4.2 Constant rate coagulation and nucleation  

For constant rate coagulation and nucleation, an increasing number of numerical particles are used in 

the SWOSMC method. Figure 4 shows the relative particle number density N/N0  obtained via the 

SWOSMC method and the analytical solution (Maisels et al., 2004), respectively. It can be seen that 

the SWOSMC method agrees well with the analytical solution with the increase of the number of 

numerical particles. The increasing relative particle number density implies the nucleation is dominant 

within the simulation time. This is because the initial particle number density is set as low as 1.0 /m3 

for simplicity of the validation. As the simulation proceeds, some statistical fluctuations can be 

observed, but the maximum relative quadratic error compared with the analytical solution remains less 

than 2% during the whole simulation time, which also proves the reliability of this newly proposed 

SWOSMC method. 
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Figure 4. Relative particle number density, N/N0 under constant rate coagulation and nucleation 
processes for SWOSMC versus the analytical solution (Maisels et al., 2004) (N is the number of 
numerical particles used in each simulation run).  
 

 

Figure 5. Relative particle volume concentration, V/V0 under constant rate coagulation and nucleation 
processes for SWOSMC versus the analytical solution (Maisels et al., 2004) ) (N is the number of 
numerical particles used in each simulation run). 
 

The relative particle volume concentration, V/V0 under the constant rate coagulation and nucleation is 

shown in Figure 5. The agreement between the SWOSMC method and the anlytical solution is so 

excellent that even for 1000 numerical particles, the maximum relative quadratic error is less than 1%. 

The linear increase in relative particle volume concentration can be well explained by the constant rate 
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has demonstrated the ability to reach high numerical simulation accuracy with acceptable number of 

numerical particles. 

4.3 Free molecule regime coagulation and constant rate nucleation  

Figure 6 shows the evolution history of particle number density of simultaneous free molecule regime 

coagulation and constant rate nucleation obtained via the SWOSMC method and the sectional method 

(Prakash et al., 2003). A very satifactory agreement can be found between the two methods for even 

100 numerical particles used for the SWOSMC method, which demonstrates the good applicability and 

computational efficency of the SWOSMC method in solving simultaneous free molecule regime 

coagulation and constant nucleation problem. As the number of numerical particles increases from 100 

to 2000, the maximum relative quadratic error between the two methods remains basically the same, 

which implies that 100 numerical particles is already enough to reach very high computational 

accuracy when compared with the sectional method. Some fluctuations can be found for numerical 

simulation with different number of numerical particles e.g. the simulation results with 500 numerical 

particles are closer to the results via the sectional method than that using 1000 particles at the initial 

stage of simulation, specifically before 210-3s. This may be explained by the statistical unstability of 

the particle-fluid system at the initial stage. Similar fluctuations can also be found in Figure 7. 

 

 

Figure 6. Particle number density under free molecule regime coagulation and constant rate nucleation 
for SWOSMC versus sectional method (Prakash et al., 2003) (N is the number of numerical particles 
used in each simulation run). 
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The evolution history of number average diameter of particles, dave are tracked and shown in Figure 7. 

An increasing number of numerical particles from 100 to 2000 are used in the SWOSMC simulation. 

The number average diameter of particles shows good agreement between the SWOSMC method and 

the sectional method. A rapid increase of the average diameter is observed duet to nucleation and 

coagulation.  With the increase of the number of numerical particles, the maximum relative error 

between the two methods signifcantly decreases, reaching far less than 1% when only 500 numerical 

particles are used.  

 

Figure 7. Average diameter of the numerical particles, dave under free molecule regime coagulation and 
constant rate nucleation via SWOSMC and the sectional method (Prakash et al., 2003) (N is the 
number of numerical particles particles used in each simulation run). 
 

The second moment, M2 with respect to the particle size distribution (PSD) is shown in Figure 8. As 

particles are continually created by nucleation process, the second moment shows rapid increase once 

the nucleation process begins. With the increase of the number of numerical particles, the maximum 

relative quadratic error relative to the sectional method (Prakash et al., 2003) decreases rapidly to less 

than 1% when only 500 numerical particles are used. However, no significant improvement is achieved 

with the number numerical particles increasing from 500 to 2000. It indciates that 500 numerical 

particles are enough to obtain as high computational accuracy as that via the sectional method (Prakash 

et al., 2003). It can be seen from Figure 8 that the SWOSMC method is promising to capture the 

evolution of high-order moments with relatively low computational cost.  
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Figure 8.  Second moment, M2 of the particles under free molecule regime coagulation and constant 

rate nucleation processes for SWOSMC versus sectional method (Prakash et al., 2003) (N is the 
number of numerical particles used in each simulation run). 

4.4 Simultaneous coagulation, nucleation and condensation processes 

The details of this case study can be found in Liu et al. (2015). The particle volume concentration, V/V0 

of simultaneous aerosol dynamic processes is shown in Figure 9 and is validated with the analytical 

solution obtained from Maisels et al. (2004). Coagulation, nucleation and condensation processes are 

simulated simultaneously. It can be seen that the numerical simulation results fit very well with the 

analytical solution for the selected case. The particle volume concentration increases linearly with the 

dimensionless time, which is also consistent with the theoretical expression given in Equation (20). As 

the simulation time is very short, the nonlinear term in the theoretical expression in Equation (20) can 

be neglected, which yields a linear relationship between the particle volume concentration and 

dimensionless time, as shown in Figure 9.  
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Figure 9.  Particle volume concentration, V/V0 under simultaneous aerosol dynamic processes for 
SWOSMC versus analytical solution from Maisels et al. (2004) (The number of numerical particles, N 
used in each simulation run is 4000). 

The particle number density, N/N0 of this simultaneous aerosol dynamic processes is shown in Figure 

10. For the reason of short simulation time, the theoretical expression in Equation (18) also 

approximates a linear relationship between the particle number density and the dimensionless time. 

However, even with small simulation time and only 4000 numerical particles, the results obtained via 

the SWOSMC method agree well with the analytical solution, which shows the potential of this method 

in solving simultaneous full processes in complex aerosol dynamics. 
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Figure 10. Particle number concentration, N/N0 under simultaneous aerosol dynamic processes for 
SWOSMC versus analytical solution from Maisels et al. (2004) (The number of numerical particles, N 
used in each simulation run is 4000). 

4.5 Parametric analysis of the studied cases  

All the studied cases in the present study are listed in Table 1. These cases are selected to represent the 

common aerosol dynamic processes taking place in the actual particle-fluid systems such as particulate 

emission from vehicles, aerosol formation, collodial solution, particulate emission from industrial 

boilers etc. The cases are so arranged that the complexity of simulation cases increases from Case 1 to 

Case 4, which is used for the evaluation of simulation accuracy and efficiency of the SWOSMC 

method.  

Table 1. Summary of the studied cases. 

Cases Description 

Case 1 
Constant rate coagulation and linear rate condensation for 
validation with analytical solution. (The free molecule regime 
coagulation is only shown a part of Case 1.) 

Case 2 Constant rate coagulation and constant rate nucleation. 

Case 3 Free molecule regime coagulation and constant rate nucleation.  

Case 4 
Simultaneous aerosol dynamic processes including coagulation, 
nucleation and condensation. 

 

The main simulation parameters are presented in Table 2 for evaluation purpose of this proposed new 

SWOSMC method. It can be seen that with the increase of the complexity from Case 1 to Case 4, an 

increasing computational time is needed for a fixed number of numerical  particles. However, for a 

certain case, the computational time is approximately proportional to the square root of the number of 

numerical particles, which is consistent with the results obtained by Liffman (1992) and Wei et al. 

(2013). It also suggests that further optimization of this new SWOSMC method is needed in order to 

improve the computauonal efficiency and accuracy for the complex particle-fluid systems. Compared 

with the sectional method (Prakash et al., 2003), the SWOSMC method takes shorter simulation time 

even with the largest number of numerical particles in Case 3. The SWOSMC method has 
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demonstrated its capability to obtain higher computaional accuracy with shorter simulation time than 

the sectional method for the same case.  

Table 2.  Analysis of main simulation parameters. 

Cases 
Number of 

numerical particles 
Normalized 

computational time 
Maximum relative quadratic error 

(%) 

Case 1 

50 1 11 
500 3 5 

1000 5 2 
2000 7.5 <1 

Case 2 

1000 5 3.7 

2000 7 3 
3000 9 2 
4000 11 <1 

Case 3 

100  1.5 6.5 

500 4 5.3 

1000  6 <1 

2000  9 <1 

Sectional method >100 - 

Case 4 4000 45 <1 

Note:  Cases 1, 2 and 3 are evaluated by the simulation results of zeroth moment, M0 

while the particle number concentration is considered for Case 4. The maximum relative 
error is calculated according to Equation (21). The normalized computaional time is 
defined as the ratio of any computaional time to the computational time of Case 1 with 
50 numercial particles. 

 

5. Conclusions  

The simulation results of this new Stochastically Weighted Operator Splitting Monte Carlo 

(SWOSMC) method are fully validated with corresponding analytical solution and the sectional 

method (Prakash et al., 2003) for varied aerosol dynamic processes (i.e., coagulation, condensation and 

nucleation) in different flow regimes. This SWOSMC method also offers higher numerical simulation 

capability of solving simultaneous aerosol dynamic processes occurring in complex particle-fluid 

systems. Further testing and optimization of this method will be conducted to achieve higher 

computational efficiency and accuracy in solving complex particle-fluid system problems.  
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