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Development of a k - ω - φ - α turbulence model based on elliptic 

blending and applications for near-wall and separated flows 

A new turbulence model based on elliptic blending, termed as  −−−k  
model, 

is developed. This model uses the latest version of Wilcox’s −k  model in near 

wall region and changes gradually to the kv /BL 2− model elsewhere. The 

capabilities of present model are evaluated on near-wall and separation flows, i.e. 

the 2D fully developed channel flow, the asymmetric plane diffuser flow and the 

2D backward-facing step flow, in comparison with available DNS and 

experimental data. The computational results are compared also to those from the 

popular −kSST  model and the original kv /BL 2−  model, and present model is 

more stable than the kv /BL 2−  model in complex flows. The present model 

provides indistinguishable velocity profiles and  improved turbulent kinetic energy 

profiles compared to the kv /BL 2−  model in the channel flow, while in the 

separation flows tested herein, present model can obtain comparable results with 

the kv /BL 2−  model, and both of them show improvements in some extent 

comparing with the −kSST  model. 

Keywords: turbulence model;  −−−k model; elliptic blending; near-wall 

flow; separated flow 

Nomenclature 

Greek letters 

  Elliptic variable 

 ,  , * , '*  Turbulence model coefficients 

 ,
h  Dissipation rate and homogeneous dissipation rate 

  Specific dissipation rate 

  Von Karman constant 

 ,   Molecular dynamic and kinematic viscosity 

t , t Turbulent dynamic and kinematic viscosity 

ijΩ Vorticity rate tensor 

  Wall-normal turbulent anisotropy, kv /2=  

  Density of fluid 

d Turbulence model constant 
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k ,  ,  ,  Turbulent Prandtl numbers 

w  Wall shear stress 

Latin letters 

fC Skin-friction coefficient 

pC Pressure coefficient 

1C ,
2C , *

2C 3C ,
4C , C ,

TC , C ,
1C ,

2C Turbulence model parameters 

kD , t

kD  Turbulent diffusion of k  

cD , 'cD  Cross-diffusion terms 

E   The ‘ E ’ term 

f  Elliptic relaxation function 

bF  Blending function 

kf , f  Damping functions 

f  Additional function 

kG  Production of turbulent kinetic energy 

H  Channel height 

k   Turbulent kinetic energy 

L  Turbulence length scale 

n Turbulence model constant 

p Pressure or turbulence model constant 

HRe  Reynolds number based on H  

tRe  Turbulent Reynolds number 

Re Friction velocity based Reynolds number 

S  Magnitude of strain rate 

ijS Strain rate tensor 

t  Physical time 

T  Turbulence time scale 

iu  Instantaneous velocity vector 

bU  Mean velocity of the bulk flow 
+u  Normalized velocity by friction velocity 

u  Friction velocity,  /wu =  
2v Velocity variance scale 

x  Coordinate in the stream-wise direction 

y  Wall distance or coordinate in the wall-normal direction 
+y  Non-dimensional wall distance 



4 

 

1. Introduction 

Turbulent flows are common in engineering so that predicting turbulent information is 

important from practical and theoretical points of view. It is well known that the Navier-

Stokes (N-S) equations can describe the details of turbulent motions. Although Direct 

Numerical Simulation (DNS) can solve the N-S equations without any simplification, its 

huge computing capacity even for the simple turbulent flows prevents it from being 

applied in real engineering problems. Generally, Reynolds-Averaged N-S equations 

(corresponding to RANS method) and filtered N-S equations (corresponding to Large 

Eddy Simulation method, LES) are often utilized in practices. These two methods have 

one common characteristic that the new unknowns occurring in the averaging and 

filtering processes should be modelled. LES shows powerful ability for turbulent flows. 

However, the shortcoming of LES laying in the high resolution requirements for wall 

boundary layers limits its application range just for problems without wall effects or low 

Reynolds number wall bounded flows and limited computational domains. The RANS 

method is a feasible method for complex turbulent flows to some extent. The famous 

−k  and −k  models, and their many improved variants, have been used successfully 

for a lot of engineering applications. However, it is generally accepted that no single 

turbulence model is superiorly applicable for all kinds of turbulent flows. Many efforts 

are still in progress to improve the available turbulence models or provide new models.  

The fv −2  model, first introduced in 1991 by Durbin[1], has become increasingly 

popular due to its good performance in near wall region. This model benefits from a 

proper velocity scale, 2v instead of k , being chosen, so that the eddy viscosity in the 

near wall region can be more correctly predicted without any damping function. The 

fv −2  model has been continually improved in its accuracy and robustness and applied 

to several flows[2-7]. The evolution of fv −2 model was reviewed in details by Billard 

and Laurence[8,9]. An important conclusion was drawn that it is difficult to give 

considerations to both stability and accuracy. Billard and Laurence[8,9] developed a new 

turbulence model (denoted as kv /BL 2−  model hereafter) in which the dimensionless 

wall-normal anisotropy kv /2=  and another dimensionless parameter, , resulting from 

an elliptic equation, are used to blend the homogeneous and near-wall limiting 

expressions of f . This treatment effectively eliminates the stiffness coming from the 
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boundary condition of f . The ‘ E ’ term in the −k  model developed by Jones and 

Launder[10] is modified and reintroduced to retard turbulence growth in the buffer layer, 

and the excessive growth of the turbulent length scale in the absence of production is 

corrected. The kv /BL 2−  model has been utilized in 2D and 3D flows and proved to strike 

better balance between stability and accuracy than any of the previous variants[11]. 

So far, most of the fv −2  models stem from the −k  model. They have a major 

drawback associated with the wall boundary condition of  . In practice, the value of   

on wall is generally calculated based on the value of k  at the first cell adjacent to the 

wall, namely, 2

1/ ykw  = . During iterations, changing of w  (with changing of k ) could 

cause numerical difficulties. For example, applying appropriate initial value of k  is 

difficult for complex turbulent flows, so that unreasonable value of k  resulting in 

unphysical w , further leading to divergence of solution. 

To tackle this problem, the fv −2 models based on the −k  model are developed 

by a few researchers. The value of   on wall is infinite and independent on k . This 

feature has been shown to have a numerical stabilizing effect. Additionally, since the   

equation does not dependent on k , a non-zero solution for   can be obtained even when 

k  tends to zero, thus preventing spurious relaminarization problems. The first fv −2

model based on −k  model we found in literatures was developed by Jones in 

2003[12].This model stems from the fvk −−− 2  model by using the expression of 

( ) n
n vk

−

=
1

2* . It has been applied for fully developed channel flow, backward-facing 

step flow, cavity flow and coaxial jet flow and obtained good results. Unfortunately, 

detailed formulations were not given and it is difficult to be followed. Taha[13] developed 

a fvk −−− 2  model from the standard −k  model of Wilcox[14] and the fv −2  model 

of Lien and Kalitzin[15]. The model was applied to fully developed channel flow and the 

asymmetric plane diffuser flow. The results seem too rough in both flows and should be 

further improved. The same model was used to simulate the unsteady flows around bluff 

bodies by Nazari et al.[16]. It was found that this model can predict good results in 

unsteady flows with vortex shedding but produce poor results in steady computations. 

This model was also applied to evaluate the convective heat transfer around two side by 

side square cylinders by Mirzaei and Sohankar[17] and comparable results with 

experiments were obtained. Recently, Khalaji et al.[18] developed a new fvk −−− 2
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model based on the latest version −k  model of Wilcox[19]. This model was used for 

simulation of the 2D impinging jet flow and acceptable results were obtained. 

So far, the fv −2  models based on −k  model are indeed underdeveloped. In 

present paper, a new turbulence model (denoted as  −−−k  model later), is developed 

based on two latest advanced models (latest version of Wilcox’s −k  model[19] and 

kv /BL 2− model[8,9]). This model is validated by 2D fully developed channel flow and 

separation flows in comparison with DNS and experimental data. It is found that present 

model is more insensitive to initial conditions and more stable to disturbance. As 

compared with the SST −k and kv /BL 2−  model, results show that in channel flow the 

predictions from present model are improved in some respects, and in separation flows, 

the results are as accurate as those from kv /BL 2− model. 

2. Formulation of the present model 

The present  −−−k  turbulence model is developed based on the latest version of 

Low Reynolds Number Wilcox’s −k  model[19] (denoted as LRN −k model 

hereafter) and the kv /BL 2−  model. The basic idea is that the k - and  - equations retain 

the formulations of the LRN −k model in the near wall region, and take the formulations 

transformed from kv /BL 2−  model elsewhere. The  - and  - equations are taken 

directly from the kv /BL 2−  model. The model is described in the following. 

The k - and the  -equation of the kv /BL 2−  model read: 
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where 2SG tk = , ijijSSS 2= , )(5.0 ,, ijjiij uuS += . The ‘ E ’ term  

( )
2
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3 12
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where 




















=

j

tk

j

t

k
x

k

x
D  1 . 

Letting  k*= , the k -equation becomes 
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Combining Eqn. (5) and letting 1)( *
11 −= TC   , ***

21 ]1)([   −= TC ,   =1 ,the  -

equation can be transformed to  -equation 
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where the cross-diffusion term
jj
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represents the turbulent diffusion of the turbulence kinetic energy, as a source term 

occurring in the  -equation. For simplicity, this term can be neglected under the remedy 

of re-adjusting some parameters, just as the baseline and SST −k  model[20]. However, 

in present model, this term is kept in order to avoid adjusting many more parameters. This 

term will not increase any complexity of the model because its treatment is similar to that 

of the term t

kD  in definition of *
2C , which is important to enhance the performance of the 

model in defect layer. 

Similar to the kv /BL 2−  model, the ‘ E ’term can be moved to the k -equation after 

multiplied by a factor of /k−  and combined with the existing ‘ E ’ term. This treatment 

does not induce any change of the form of the k -equation, but the corresponding 

parameter, 3C , should be re-calibrated. Using  k*= , the ‘ E ’ term becomes  
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The transformed  - and  -equations from the kv /BL 2−  model read (just simply 

replacing   by  k* ): 
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where 
2
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kTCt  =                                                                                         (12) 

The k - and  -equations of the LRN −k model are 
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where  f02 = , ( ) ( )  1001851 ++=f , ( )3* kijkij SΩΩ= , )(5.0 ,, ijjiij uuΩ −= . 

 The decision of using LRN −k model in the near wall region is mainly based on 

two reasons. One is that the LRN model can indeed predict the turbulence quantities better 

than High Reynolds Number (HRN) −k model in the near wall region. This feature has 

been shown in details by Wilcox[19]. Another reason is the requirement in the 

Kolmogorov time scale and length scale, which are respectively used in turbulent time 

scale,T , and length scale, L . In HRN −k  model,  k*=  is very small in the near wall 

region, this will result in unphysical large Kolmogorov time scale and length scale. In 

LRN −k model, this problem can be mostly eliminated because the value of k  

increases significantly.  

In kv /BL 2−  model, in order to improve the capability of the model, the   has 

been replaced by 2kh + , this results in the molecular diffusion in all corresponding 

terms being halved. For consistency, the same treatment is performed in the LRN k-ω 

model. Namely, the dissipation term in the k - equation is replaced by 2* kk + . As 

predicted by Jakirlic and Hanhalic[21], after neglecting high order terms, the unique 

modification is that the molecular diffusion effect in all corresponding terms (in the k -

and  - equations and for the value of   at wall boundary) are halved. The final form of 

the LRN k-ω model reads 
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The two ‘damping functions’ are  

( )  ( ) 44

0 8/Re18/Re27.0/ ttkf ++=                                                    (17) 

( ) ( )61.2/Re161.2/Re9/1 ttf ++=                                                     (18) 

with )/(Re kt = . 

The ‘damping function’ for turbulent viscosity in the LRN −k  model is not used 

in present model because the turbulent viscosity has been reduced when it is calculated 

by Eqn. (12). Additionally, f  has been modified accordingly. 

Now, the transformed k - and  - equations (Eqn. (5) and Eqn. (6)) are multiplied 

by a blending function, bF , and those in the LRN −k  model (Eqn. (15) and Eqn. (16)) 

are multiplied by )1( bF− , then they are added together respectively to give the new k - and 

 - equations: 
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where the new cross-diffusion term is 

( )



































−+
















+= 0.0,max1

2

2
' 1

jj

db

jj

tbc
xx

k
F

xx

k

k
FD












                  (21) 

It should be noted that the ‘ E ’ term is not multiplied by blending function because 

this term is actually an appendix to enhance the model performance in buffer layer. For 

the cross-diffusion term, there are two different opinions. Some researchers considered 

that the cross-diffusion term should be only activated when it is positive[19]. However, 

others considered that the cross-diffusion term is important even though it is negative[22]. 

In present model, the cross-diffusion term is divided into two parts. In the near wall 

region, the same treatment as Wilcox[19] is adopted, namely, the cross-diffusion term is 

contributed only when it is positive. It is found that such treatment is advantageous to 
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stability of the model. In other regions, the cross-diffusion term holds the same 

formulation transformed from the kv /BL 2−  model directly. 

Let   represents the five new model parameters ( '* , k ,  ,   and  ),  1  and 

2  represent corresponding parameters in the transformed −k model and the LRN −k  

model, then the relation between them is  

21 )1(  bb FF −+=                                                        (22) 

The parameters used in present model are listed in table 1. 

The blending function should be equal to zero in the near wall region but goes to 

one elsewhere. It is found that p  just satisfies this requirement. In fact, this function has 

been used in the  - equation to ensure correct near wall balance. Therefore, p
bF =  is 

selected in present model. Although the characteristic of the blending function used in 

present model is opposite to that of Menter’s −kSST  model, the same purpose (the 

−k  model is active in the near wall region) is achieved. It is not strange because in 

present model the −k  model is multiplied by )1( bF−  but in the Menter’s −kSST  

model the −k  model is multiplied by bF . It should be noted that the actuating range of 

the −k  model is different in present model and the Menter’s −kSST  model. In the 

former, the −k  model is just activated in the near wall region, but in the latter, the −k  

model is contributed in the whole boundary layer. 

 There are a few model parameters that should be modified or re-calibrated. 

Throughout this research ‘trial-and-error’ efforts were made. Most of modifications are 

based on the model performance in 2D fully developed channel flow with different 

Reynolds numbers because this flow is very simple and typical in wall-bounded flows, 

additionally, there are a lot of available DNS and experimental data that can be used as 

reference. Other modifications are based on relative complex flows, such as 2D 

asymmetric diffuser flow and 2D backward-facing step flow. The authors find that one 

of the important constants is the exponent in the tanh function in *

2C  definition (1.5 is 

used in the kv /BL 2−  model). After recalibration, it was observed that setting this 

exponent to be equal to 1.0 in present model would yield better velocity profiles in the 

defect layer of channel flow (see Section 4.1). At the same time, we found that the 

argument of the tanh function should be modified. If the absolute value of )/( *  kDt

k  is 

used, just as the same as kv /BL 2−  model, the reattachment in the 2D diffuser flow will 

be delayed considerably. Scrutinizing the term )/( *  kD t

k  we found that it has very large 
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negative value near the wall before the reattachment point, this will lead to *

2C decrease 

significantly in the near wall region (see Section 4.2). Apparently, this behavior of *

2C  is 

unwanted. Consequently, the )/( *  kDt
k is replaced by ]0.0),/(max[ *  kDt

k  in present 

model and it can predict reattachment point more accurately. Namely, the final definition 

of *

2C  is  

( )







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


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


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



−+= 0,maxtanh

*242

*

2


 
k

D
CCCC

t

kp
                                    (23) 

More attention should be paid to the exponent p , which occurs in the  -equation, 

the ‘ E ’ term, the blending function bF  and coefficient *
2C . The value of p  in the  -

equation has been investigated by several contributors to the elliptic blending models. 

Billard and Laurence [8,9] predicted that p  should at least be equal to 3 in the kv /BL 2−  

model. Mancean [23] analysed the effect of p  on the simulated channel flow results. It 

was found that 1=p  does not produce satisfactory results and 3=p  yields better results 

than 2=p . In present model, we found that a value at least being equal to 4 is needed not 

only in the  -equation, but also in other parts, to ensure its robustness (please refer to 

Section 4.2 for details). Therefore, the choice of 4=p  is used throughout the model.  

Another modification is made on the parameter 1C , which affects significantly the 

shear layer spreading rate. Wilcox[19] showed that in log-layer the relation of  

( )  // **2 −=  should be hold in −k model. For present  −−−k  model, in 

log-layer the transformed kv /BL 2−  model retains, and the Kolmogorov time scale is 

inactive, so that 1* =T , 2

*

2  CC = , and then 1/ 2

* −=  C , 11 −=  C , 1  = , 

consequently, ( ) 112

*2 /   CC −= . Using 41.0= and the same values as kv /BL 2−  

model for other constants, 456.11 =C  is obtained. 

Other constants, C , LC , C , 3C , are retuned to provide good overall performance 

for near-wall and separation flows. The final values adopted in present model (most of 

them are extracted directly from the kv /BL 2−  and LRN −k  models) are listed in Table 

2 for reference. 
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3 Solution procedure 

3.1 Numerical method 

Both the present  −−−k  model and the kv /BL 2−  model were implemented in the 

FLUENT CFD code assisted by the User-Defined Function (UDF) functionality. The 

pressure-based segregated algorithm was used to solve the governing equations. The 

second order upwind scheme was applied to the convective terms in the momentum and 

turbulence equations. The SIMPLEC algorithm was used to deal with the velocity-

pressure coupling. The least squares cell-based method was adopted to evaluate the 

gradients and derivatives. To facilitate convergence, the under-relaxation equations were 

used to control the update of computed variables at each iteration by setting appropriate 

under-relaxation factors. For the pressure and velocities, the default under-relaxation 

factors were adopted. For each variable in turbulence model, under-relaxation factor is 

set to 0.5. 

3.2 Boundary conditions on solid wall 

On solid wall, the no-slip condition is used, namely, 0=iu , 0=k , 0= , 0= . For   in 

kv /BL 2−  model, 
2

1ykw  =  with 1y  representing the distance from the wall to the 

center of the first cell adjacent to the wall. For   in present model, because the molecular 

diffusion has been halved, )(3
2

12 yw  =  is used. This is according to that used in the 

Meter’s −kSST model[20], in which )(6
2

12 yw  = . Wilcox[19] suggested that the 

values of   at 7-10 levels of grid points close to the wall should be specified to eliminate 

the sensitivity of the solutions on the mesh. However, it is found that this treatment is not 

needed in present model. The solution is not sensitive as long as 1+y  is ensured at the 

first grid point. The reason may be that in present model the eddy viscosity is not 

dependent on   directly. 

3.3 Initial conditions 

One of the attractive features for present  −−−k  model is its weak dependence on 

the initial conditions. Though this model does not demand elaborately designed initial 

conditions to some degree, a relative larger initial value of   is suggested to ensure the 

solution more stable. Additionally, initial values of 5.0=  and 0.1= are appropriate 
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and recommended for general problems. For the kv /BL 2−  model, the initial conditions 

given by Billard[8] are applied. The default values in Fluent code are adopted for the 

−kSST  model. 

4 Results and discussion 

The present  −−−k  turbulence model is evaluated and compared with the kv /BL 2−  

model and the popular Meter’s −kSST  model for three different test cases: the 2D 

fully developed turbulent channel flow, the 2D asymmetric diffuser flow and the 2D 

backward-facing step flow. For all simulations, the condition of 1+y  at the first grid 

point is guaranteed.  

4.1  Fully developed channel flow 

The fully developed turbulent channel flow has been widely investigated using DNS 

method by many researchers. Many published DNS data are available for scrutinizing the 

behaviours of turbulence models in such simple wall-bounded flow. Lee and Moser[24] 

performed DNS for channel flow with friction Reynolds number ( Re ) up to 5200, and 

the statistical data from their simulations are available online at 

http://turbulence.ices.utexas.edu. Four cases with different Re  (550, 1000, 2000 and 

5200) are selected to validate the present turbulence model, and the calculated results 

using the kv /BL 2−  and the −kSST  models are also included for comparison. 

 Figure 1 shows the comparisons of normalized mean streamwise velocity profiles(

uuu /=+ ). Apparently, The results from present  −−−k  model and the kv /BL 2−  

model are almost indistinguishable and both of them yield predictions in excellent 

agreement with the DNS data. It is not surprise because the model coefficients in both 

models are carefully calibrated based on this flow. The −kSST  model under-predicts 

the velocity in the buffer layer and defect layer in all cases. 

Figure 2 shows the comparisons of normalized turbulent kinetic energy profiles(

2/ ukk =+ ). It can be found that all turbulence models under-predict +k  in the viscous 

sub-layer. At 550Re = , the largest value of +k  from the  −−−k  model is 

comparable with the DNS result but the −kSST  model and the kv /BL 2−  model have 

http://turbulence.ices.utexas.edu/
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lower values. At higher Re , all models under-predict +k . As a whole, the  −−−k  

model yields better results.  

The normalized turbulent viscosity profiles(  /t=+ ) are shown in Figure 3. It 

is obvious that the −kSST  model over-predicts the turbulent viscosity in the central 

region of the channel. Both the  −−−k  model and the kv /BL 2−  model yield more 

reasonable turbulent viscosity profiles in the central region, thus leading to improved 

velocity profiles.  From Figure 3, one can find that the kv /BL 2−  model predicts larger 

+  than the  −−−k  model in all cases. Generally speaking, the  −−−k  model 

yields better +  in log-layer, while the kv /BL 2−  model predicts better in defect layer. 

Additionally, the results from  −−−k  model are better in cases with small Re  and 

the results from kv /BL 2−  model are better in cases with higher Re . It is interesting that 

the  −−−k  model and the kv /BL 2−  model yield almost indistinguishable velocity 

profiles despite turbulent viscosity profiles being slightly different. It is not surprising 

because the velocity is an integral quantity. The velocity profile depends on the global 

feature of the turbulent viscosity rather than the local value. 

Figure 4 shows the comparisons of normalized Reynolds stress profiles (

2/'''' uvuvu −=−
+

). It can be found that all turbulence models predict good Reynolds stress 

profiles compared to DNS data for all Re  cases. 

In the kv /BL 2−  model, a functional *

2C  coefficient, instead of a constant, is 

adopted (Eqn.(4)). This modification enables the *

2C  to take a smaller value where the 

ratio t
kD  is significant (for example, in the defect layer of channel flow), thus 

improving the turbulent viscosity and velocity predictions(see Figure 3 and Figure 1). In 

the definition of *

2C , a tanh function is used. The exponent of the variable (i.e. t
kD  ) for 

the tanh function affects variation of *

2C  significantly, further affecting other quantities. 

The *

2C  profiles computed using present  −−−k  model with different exponents 

(1.0 and 1.5) for channel flow at 550Re =  are illustrated in Figure 5(a). As a reference, 

the result from the kv /BL 2−  model is also included. Meanwhile, the corresponding 

velocity profiles are compared in Figure 5(b). Clearly, the  −−−k  model with 

exponent of 1.5 yields similar *

2C  to the kv /BL 2−  model. However, it under-predicts the 
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velocity in defect layer apparently. For the  −−−k  model with exponent of 1.0, the 

*

2C  begins to decrease earlier, but the velocity in the defect layer is improved. 

4.2  2D asymmetric diffuser flow 

The 2D asymmetric diffuser flow (denoted as diffuser flow hereafter) has several 

desirable features which make it a good test case for validation of turbulence models. 

This problem was studied experimentally by Buice and Eaton[25,26],and being an issue 

of the 8th ERCOFTAC/IAHR/COST Workshop on Refined Turbulence modelling. The 

available experimental data can be obtained directly from the Web[27]. 

Kaltenbach et al.[28] simulated this flow using LES. Apsley and Leschziner[29] 

calculated this flow using different advanced RANS turbulence models. Laurence et 

al.[30] studied this flow using their robust fv −2 model. Iaccarino[31] presented a 

detailed and careful comparison of the simulations performed using different commercial 

CFD codes. It has been shown that this flow can be simulated well by LES, but it is 

particularly challenging for RANS models. 

The detailed geometry of the diffuser can be found in several references[25,26,29] 

and here only a sketch is shown in Figure 6. The −x axis takes the stream-wise direction 

and the origin of the −x axis is located at the intersection of the tangents to the straight 

and inclined walls. The computational domain ranges from Hx 11−=  to Hx 77= . The 

boundary conditions are also shown in Figure 5. On all walls, no-slip boundary condition 

is used. On the outlet, the pressure outlet condition is adopted. On the inlet, conditions 

obtained from a separate simulation of fully developed 2D channel flow using the same 

geometry and turbulence model, are applied. The Reynolds number of the flow, HRe , 

based on the centreline velocity in the inlet channel and the channel height H , is 20000. 

After a mesh sensitivity research, the total number of computational cells of 169600 is 

used because it can be considered fine enough to obtain grid independent solutions 

(halving the grid cell size leading to 2% of enlargement of the recirculation zone). 

It should be noted that the distributions of the physical quantities (velocity, 

turbulent kinetic energy, Reynolds stress, et al.) at inlet may be different for different 

turbulent models although keeping the same Reynolds number. These quantities at inlet 

are shown in Figure 7 (show only one half due to symmetry). Because the inlet profiles 

are extracted from fully developed channel flow, the comparisons among these three 

models are similar to the results in previous section. For example, the inlet velocity 
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profiles are very similar for the  −−−k  model and the kv /BL 2−  model, but the 

turbulent kinetic energy profiles are different. The −kSST under-predicts the velocity 

near the center of the channel. 

In Figure 8 computed skin friction coefficients (defined as )/(2 2
bwf UC = along the 

top and bottom walls are compared against the experimental data[27]. It can be found that 

on the bottom wall, the  −−−k  model can obtain better result than the other two, and 

on the top wall, the kv /BL 2−  model obtains better prediction. The points with 0=fC  on 

the bottom wall represent the separation and reattachment points, which are given in 

Table 3. It is demonstrated that the −kSST  model predicts a far too early separation 

point. This is consistent with the results obtained by other researchers[8,9,29,31]. The 

kv /BL 2−  model predicts both the separation and reattachment points slightly later and 

the  −−−k  model predicts the best separation and reattachment points compared 

with experiment.  

The distributions of the pressure coefficients )/()(2 2

brefp UppC −=  on the top and 

bottom walls are almost identical. Therefore, only the comparison of the computational 

and experimental pC  along the bottom wall is shown in Figure 9. It is illustrated that all 

the three turbulence models overestimate pC  in redeveloping zone and the  −−−k  

model predicts the largest one. The differences between the  −−−k  model and the 

kv /BL 2−  model are not significant. 

Figure 10 predicts the normalized streamwise velocity profiles at different 

sections. Overall, the −kSST  model gives better results in the recirculation region. It 

should be noted that the  −−−k  model and the kv /BL 2−  model obtain similar 

results on the whole. Both models under-predict the velocity in the region near the top 

wall. As noted by Laurence et al. that the pressure field is very sensitive to the 

recirculation bubble and affects the bulk of the flow[30].It can be seen that the better the 

pressure prediction, the better the velocity profiles in this region. In the redeveloping 

region, the differences among three models are very slight. 

As mentioned in Section 2, the exponent p  in present model is a vital factor. 

Inappropriate value will lead to divergent solution and ultimately blow up. To show the 

effect of p  on the model performance, five cases with different p  value are tested, while 

keeping the same meshes, boundary conditions and initial conditions. The detailed 

information of each case and the testing results are listed in Table 4. The exponent p  
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appears in the  -equation, the ‘ E ’ term, the blending function bF  and coefficient *
2C . In 

each case, 3=p  is assigned to one equation while 4=p  is assigned to other three 

equations. Results show that 4=p  is needed in the  -equation, the ‘ E ’ term and the 

blending function bF . The requirement of p  in coefficient *
2C  is not so rigorous. For the 

 -equation, 3=p  works well in the kv /BL 2−  model but fails in present  −−−k  

model. The reason may be that these two models predict turbulent dissipation rate 

differently, especially in the near wall region, thus changing the behaviour of   and 

resulting in larger p  required to ensure the homogeneous term  of   vanishing in the near 

wall balance. In the kv /BL 2−  model, the main purpose of moving the ‘ E ’ term from the 

 -equation to the k -equation is to tackle the numerical problem caused by handling this 

term explicitly in the  -equation. However, after being transformed to the   form, this 

benefit seems vanish. It is obviously that this term will be handled explicitly in the k -

equation again (see Eqn. (7)). In fact, convergence problem is indeed encountered (in 

Case 2). Increasing the exponent p  in this term can tackle this problem in some degree. 

In the ‘ E ’ term a factor p)1( − is invoked to restrict this term to be active only in the near 

wall region. In flows with separation, small p may not entirely prevent this term into the 

recirculation zone and leads to numerical difficulty. Actually, during the simulations 

performed on the 2D validation cases in present study, this term did not raise any 

numerical problem when 4=p  is used. The requirement of 4=p  in the blending function 

bF  is due to the cross-diffusion term (Eqn. (21)), in which p
bF =  is used to ensure the 

−k model to be active in near wall region and the kv /BL 2−  model to be active 

elsewhere. In the −k  model used in present  −−−k  model, the cross-diffusion 

term is active only when it is positive; in the kv /BL 2−  model, the cross-diffusion term is 

always active. Negative value of the cross-diffusion term in the near wall region may 

result in numerical difficulties. The value of p  in coefficient *
2C  has less effect on the 

model. This is because in *
2C , p  is used to ensure that the *

2C  does not decrease 

considerably near the wall. Virtually, *
2C  cannot decrease dramatically because t

kD  is 

very small near the wall after the max function in *
2C  being used. Therefore, the impact 

of p  in this term is weak. 

Figure 11 shows the *
2C  contours and streamlines computed from present model 

with different definitions of *
2C . One uses ]0.0),/(max[ *  kD t

k in the argument of the 



18 

 

tanh function (Eqn.(23)), another uses )/( *  kDt
k . The results computed from the 

kv /BL 2−  model are included for reference. It can be seen that the argument 

]0.0),/(max[ *  kD t

k can yield results close to those from the kv /BL 2−  model. However, 

the argument )/( *  kDt
k  results in excessive decrease of *

2C  near the bottom wall, thus 

inducing much larger recirculation bubble and delaying the flow reattachment 

significantly. 

4.3  2D backward-facing step flow 

The backward-facing step flow (abbreviated as step flow later) is another case most 

frequently selected as a test case for turbulence model validation due to its geometrical 

simplicity and abundant flow behaviours, such as strong flow separation, recirculation 

and reattachment[22,32,33]. The experiment of Jovic and Drive[34,35] is most frequently 

used as reference. In their experiment, the expansion ratio is 1.2 and the Reynolds 

number, HRe , based on the step height and mean bulk velocity of the inlet channel, is 

5000. Following this experiment, Le et al.[36] performed a DNS research with 

5100Re =H . Even though the HRe is different slightly, good agreements were achieved. 

Following the schematic of the wind tunnel used in the experiment of Jovic and 

Drive[32], the backward-facing step configuration is symmetric about the centreline of 

the channel, so that only half of the tunnel is employed as the computational domain. The 

sketch of the geometry and boundary conditions of the backward-facing step model is 

shown in Figure 12. The step height is H , and the channel height is H5  in the inlet 

section and H6  after the step, yielding an expansion ratio of 1.2. The overall 

computational domain ranges from Hx 10−= to Hx 20= , with the step located at 0=x . 

The symmetry boundary condition is used at the centreline of the channel. On walls, no-

slip boundary condition is employed. On the outlet, the pressure outlet condition is 

adopted. On inlet, some researchers used either the DNS data[32] or the experimental 

data[33] in their simulations. For present model, the DNS and experimental data cannot 

be directly used because the profile of   cannot be properly extracted from DNS or 

experimental data. Consequently the quantities extracted from a separate simulation of 

fully developed 2D channel flow using the same geometry and turbulence model are 

applied. A grid dependency study was performed to ensure mesh independent solutions 

being obtained. The total number of computational cells finally used is 118400. 
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The inlet profiles are shown in Figure 13. The same characteristics as that in the 

diffuser flow can be found. 

The calculated skin friction coefficient fC  along the bottom wall is compared 

against the experimental result of Jovic and Drive[34] in Figure 14. It can be found that 

the  −−−k  model and the kv /BL 2−  model can  yield better fC  than −kSST  

model. As the whole, the difference between the  −−−k  model and kv /BL 2−  model 

is insignificant. An interesting feature is that the  −−−k  model can predict the best 

peak value of fC  in the recirculation zone. The location of reattachment point is usually 

used to justify the ability of turbulence model for this type flow. The  −−−k  model, 

the kv /BL 2−  model and the −kSST  model give H68.6 , H56.6 and H0.7  

respectively. They are all larger than the experimental result of H0.6  and DNS result of 

H23.6 . On the whole, the departure of the −kSST  model is the largest.  

Figure 15 illustrates the pressure coefficient ( pC ) distribution along the wall. It is 

demonstrated that all three model under-predict pC  in the upstream channel but over-

predict pC  in the re-developing zone. An interesting feature is that the results predicted 

by  −−−k  model and kv /BL 2−  model are almost undistinguishable. The result of 

−kSST  model has larger deviation.  

The predictions of the normalized streamwise velocity profiles at locations of 

H12.3− , H4 , H6 , H10 , H15 and H19 are shown in Figure 16. Generally speaking, 

results from three turbulence models are in good agreement with experimental data. 

Again, the results predicted by present  −−−k  model and the kv /BL 2−  model are 

almost undistinguishable.  

To investigate the influence of initial condition on the model performance, the 

permitted maximum under relaxation factor of turbulent quantities for solution 

convergence is studied based on backward-facing step flow. In all cases tested here, 

uniform distribution of initial physical quantities is adopted. The computational meshes, 

the boundary conditions, the discrete schemes, the initial values of turbulent quantities 

and the under relaxation factor for pressure and momentum are the same and only the 

initial velocity and the under relaxation factor for turbulent quantities could be changed. 

The initial pressure is set to zero and the initial values of turbulent quantities are computed 

from the area-weighted average values at inlet. Four different initial velocities, 0, 0.25Ui, 

0.5Ui and Ui (where Ui represents the area-weighted average velocity at inlet) are 
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considered. In each case, computation begins with under relaxation factor (same factors 

are used for all turbulent quantities) of 0.9. If solution diverges, the under relaxation factor 

decreases with interval of 0.1 and computation is re-initialized and begins again. This 

cycle continues until the solution converges. The permitted maximum under relaxation 

factor in each case is tabulated in Table 5.  It can be found that both the  −−−k  

model and the kv /BL 2−  model can yield convergent solution when the initial value of 

velocity is 0 and the maximum under relaxation factor permitted is 0.7 and 0.5 

respectively. When the initial velocity is set to be 0.25Ui, the maximum under relaxation 

factor permitted is 0.2 for the kv /BL 2−  model and 0.7 for the  −−−k  model. When 

the initial velocity is set to be 0.5Ui or Ui, convergent solution can not be obtained with 

the kv /BL 2−  model even the under relaxation factor decreases to 0.1(smaller values are 

not tried further). However, for present  −−−k  model, convergent solution can be 

achieved with relatively large under relaxation factor of 0.8. These results show that 

present  −−−k  model is more insensitive to initial conditions. 

The stability of the model is also studied by introducing a disturbance to a 

converged solution, and the effect of the disturbance on the subsequent solution 

convergence is evaluated. For simplicity, the disturbance is introduced only to the 

turbulent kinetic energy by changing k  from the converged value to ik2 , ik3 , ik4 , ( ik  

represents the average k  at inlet) in whole computational domain. It is found that the 

solution diverges when k  becomes ik3  for the kv /BL 2−  model, but for the  −−−k  

model the solution begins to diverge until k  becomes ik14 . This means that the 

 −−−k  model can bear larger disturbance and has better stability. 

Conclusions 

A new  −−−k  turbulence model is developed based on elliptic blending and its 

capabilities are tested on the channel flow, the diffuser flow and the step flow. The 

calculated results are validated against available DNS and experimental data, and the 

current model is also compared with the −kSST  model and the kv /BL 2−  model. Our 

results lead to the following conclusions: 

(1) The present  −−−k  model is more insensitive to initial conditions and more 

stable than the kv /BL 2−  model.(2) The present model shows improvements on 

turbulent kinetic energy profiles in the channel flow. 
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(3) The present model yields indistinguishable velocity profiles with the kv /BL 2−  model 

in the channel flow although the turbulent viscosity profiles have difference. Both 

of the present model and the kv /BL 2−  model predict better velocity profiles and 

turbulent viscosity profiles than the −kSST  model. 

(4) The locations of separation and reattachment points both in diffuser flow and step 

flow predicted by present model and the kv /BL 2−  model are more accurate than 

those by the −kSST  model. 

(5) Generally speaking, present model can provide comparable results to the kv /BL 2−  

model in separation flows. For example, the skin friction coefficient, pressure 

coefficient and velocity profiles computed from these two models are similar.  
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Figure 1. Comparisons of normalized mean streamwise velocity profiles. (a)  550Re = ; 

(b) 1000Re = ; (c)  2000Re = ; (d) 5200Re = . 

Figure 2.  Comparisons of normalized turbulent kinetic energy profiles.(a)  550Re = ; (b) 

1000Re = ; (c)  2000Re = ; (d) 5200Re = . 

Figure 3.  Comparisons of normalized turbulent viscosity profiles. (a)  550Re = ; (b) 

1000Re = ; (c)  2000Re = ; (d) 5200Re = . 

Figure 4. Comparisons of normalized Reynolds stress. (a)  550Re = ; (b) 1000Re = ; (c)  

2000Re = ; (d) 5200Re = . 

Figure 5. Effect of the exponent in the tanh function in *
2C . (a) *

2C  profile; (b) velocity 

profile. 

Figure 6. Sketch of the geometry and boundary conditions of the diffuser flow. 

Figure 7. The inlet profiles of 2D diffuser flow. (a) velocity; (b) turbulent kinetic energy; 

(c) Reynolds stress. 

Figure 8. Skin friction coefficients on the top and bottom walls. 

Figure 9. Pressure coefficient on the bottom wall. 

Figure 10. Predictions of the streamwise velocity profiles at different sections. 

Figure 11. Contours of *
2C  and streamlines with different *

2C  definitions in the diffuser 

flow. 

Figure 12. Sketch of the geometry and boundary conditions of the 2D backward-facing 

step flow. 

Figure 13. The inlet profiles of 2D backward-facing step flow. (a) velocity; (b) turbulent 

kinetic energy; (c) Reynolds stress. 

Figure 14. Comparisons of skin friction coefficient on the wall. 

Figure 15. Comparisons of pressure coefficient on the wall. 

Figure 16. Predictions of the streamwise velocity profiles at different sections. 
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Table 1. Parameters used in present model. 

  '*  k        

1  0.09 1.0 1)( *
1 −TC   ]1)([ **

2
* −TC    0.667 

2  0.09 kf  0.6 0.52 f   f0  0.5 

 

Table 2. Model constants. 

Cε1 Cε2 Cε3 Cε4 σφ Cμ CT CL 

1.456 1.83 4.3 0.4 1.0 0.20 4 0.160 

Cη C1 C2 p σd β* β0  

65 1.7 0.9 4.0 0.125 0.09 0.0708  

 

Table 3. Locations of separation (Sep.) and reattachment (Reatt.) points in diffuser flow. 

 

Model Sep. Reatt. 

Exp. 7.34 H  28.9 H  

−kSST  2.65 H  28.6 H  

kv /BL 2−  8.86 H  29.9 H  

 −−−k  7.89 H  29.1 H  
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Table 4. Values of p in different cases. 

 

Case No. 

p  
Converge? 

 -equation ‘ E ’ term bF  *
2C  

1 3 4 4 4 No 

2 4 3 4 4 No 

3 4 4 3 4 No 

4 4 4 4 3 Yes 

5 4 4 4 4 Yes 

 

 

 

 

 

Table 5. The permitted maximum under relaxation factor in cases with different initial 

velocities. 

 

Uinitial 
Under Relaxation factor 

kv /BL 2−   −−−k  

0 0.5 0.7 

0.25 Ui 0.2 0.7 

0.5Ui <0.1 0.8 

Ui <0.1 0.8 

 

 

 

 

 

 




