
Adhesive nonlinearity in Lamb-wave-based structural

health monitoring systems

Shengbo Shan, Li Cheng and Peng Li

Department of mechanical engineering, The Hong Kong Polytechnic University, Kowloon,

Hong Kong.

E-mail: li.cheng@polyu.edu.hk

Abstract

Structural health monitoring (SHM) techniques with nonlinear Lamb waves have gained wide

popularity due to their high sensitivity to microstructural changes for the detection of damage

precursors. Despite the significant progress made, various unavoidable nonlinear sources in a

practical SHM system, as well as their impact on the detection, have not been fully assessed

and understood. For the real-time and online monitoring, transducers are usually permanently

bonded on the structure under inspection. In this case, the inherent material nonlinear

properties of the bonding layer, referred to as adhesive nonlinearity (AN), may create

undesired interference to the SHM system, or even jeopardize the damage diagnosis if they

become serious. In this paper, a nonlinear theoretical framework is developed, covering the

process of wave generation, propagation and sensing, with the aim of investigating the

mechanism and characteristics of AN-induced Lamb waves in plates, which potentially allows

for further system optimization to minimize the influence of AN. The model shows that an

equivalent nonlinear normal stress is generated in the bonding layer due to its nonlinear

material behavior, which, through its coupling with the system, is responsible for the

generation of second harmonic Lamb waves in the plate, subsequently resulting in the

nonlinear responses in the captured signals. With the aid of the finite element (FE) modeling

This is the Accepted Manuscript version of an article accepted for publication in Smart Materials and Structures. IOP Publishing Ltd is not 
responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available 
online at https://doi.org/10.1088/1361-665X/26/2/025019. 
This manuscript version is made available under the CC-BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

This is the Pre-Published Version.



and a superposition method for nonlinear feature extraction, the theoretical model is validated

in terms of generation mechanism of the AN-induced wave components as well as their

propagating characteristics. Meanwhile, the influence of the AN is evaluated by comparing

the AN-induced nonlinear responses with those caused by the material nonlinearity of the

plate, showing that AN should be considered as a non-negligible nonlinear source in a typical

nonlinear Lamb-wave-based SHM system. In addition, the theoretical model is also

experimentally validated in terms of the frequency tuning characteristics of the AN-induced

wave components. A fairly good agreement is found among theoretical model, FE model and

the experiments, thus confirming the theoretically predicted AN-induced wave generation

mechanism and their characteristics.
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1. Introduction

The presence of the damage in engineering structures, in whatever form it is manifested, can

significantly jeopardize their operation and safety without timely awareness. Therefore, early

detection of the initial damage in real time becomes important to enhance the safety and

extend the residual lifetime of structures in service, as well as to effectively drive down the

exorbitant maintenance cost [1]. This urgent need hatches out the concept of structural health

monitoring (SHM), which aims at the online damage diagnosis with built-in transducers [1-3].

Among various SHM approaches, the one based on guided waves is probably one of the most

popular methods due to its appealing features like low energy consumption, far-reaching

detection area and high sensitivity to damage [1, 3-6].

Conventional solutions based on guided waves focus on the damage scattering properties

of the waves, which are classified in the category of linear SHM methods [7]. It is widely

accepted that linear features of the guided waves are good indicators for macro-scale defects,

typically in the order of millimeter range [8, 9]. For practical applications, however, the

appearance of the macro-scale damage may lead to rapid disruption of the structure. Therefore,

early detection of small and incipient changes is highly desirable, which linear solutions can



hardly cope with. In this context, nonlinear guided waves, which exhibit higher sensitivity to

microstructural changes through the exploration of the second harmonic generation, started to

attract more and more attentions in recent years [10-12].

Generally speaking, the second harmonic guided waves (Lamb waves of our specific

interest) can be generated by both crack-induced nonlinearity [13, 14] and material

nonlinearity [15, 16]. With the main focus on the nonlinear properties of the waveguides,

theoretical basis revealing the mechanism of the generation of second harmonic Lamb waves

has been well developed [15-19]. These investigations show that two conditions are necessary

for the cumulative second harmonic generation: phase velocity matching and non-zero power

flux, resulting in a few SHM-usable mode pairs at some specific frequencies. These

theoretical findings provide the guidance for the application of the nonlinear Lamb waves in

SHM, including the selection of excitation frequencies, the design of transducers and so on

[17, 18, 20]. For example, Hong et al. [21] managed to extract the damage information of the

second-harmonic Lamb waves to locate fatigue damage at a rivet hole with surface-bonded

PZT discs (PZT denotes PbZr–TiO3). Rauter and Lammering [22] detected fatigue damage in

a composite plate using the second harmonic components of Lamb waves with piezoelectric

transducers. Those previous experiments demonstrate that the nonlinear Lamb-wave-based

SHM technique has great potential for the detection of damage precursors in many

engineering applications.

More recently, it has been reported that strong cumulative second harmonic S0 wave

components can also be generated by the primary S0 Lamb waves in plates at relatively

low-frequency range as long as the phase velocities of the primary and secondary waves

approximately match [23]. This allows the use of lower excitation frequencies for the

cumulative second harmonic generation, which is preferable in real applications because the

signal complexity and the requirements for the experimental equipment can be significantly

reduced. In addition, the condition of approximate phase velocity matching gives the

flexibility for the choice of excitation frequencies.

However, in a typical nonlinear Lamb-wave-based SHM system with transducers

permanently bonded on the host structures, there might be other non-negligible nonlinear

sources apart from the nonlinearity of the waveguides, like instrument nonlinearity, that of the



transducers and the bonding layers. The influence of these undesired nonlinear sources on the

SHM method needs to be evaluated before meaningful and convincing diagnosis conclusions

can be reached. Of our specific interest, the nonlinearity associated with the bonding layers

will be investigated. Similar to the crack-induced nonlinearity and material nonlinearity of the

waveguides, two main mechanisms are responsible for the generation of the second harmonic

waves associated with bonding layers: debonding and nonlinear material properties of

bonding layers. For the former, relevant research has been carried out through both finite

element analyses and experimental investigations [24]. Results demonstrate that strong

second harmonics of Lamb waves can be generated when transducers are partially debonded.

For the latter, the material nonlinearity of the bonding layers is referred to as adhesive

nonlinearity (AN) in this paper. Although it is well accepted that the properties of the

adhesive have a significant influence on the linear Lamb-wave-based SHM methods [25-27],

the influence of the AN on the nonlinear SHM methods has not been fully investigated so far

and this motivated the current work. The evaluation of the AN is challenging mainly for

several reasons. First, it is a complex coupling problem with the transducers bonded to the

host structure, which requires appropriate assumptions in the model development. Second,

references on the acquisition of the nonlinear elastic parameters of adhesives are scarce, or

even inexistent in some aspects, in the literature due to their complex viscoelastic properties.

Third, most existing signal processing methods used in the nonlinear SHM like fast Fourier

transform [28], short time Fourier transform [21] and wavelet transform [23] are unable to

extract the original nonlinear responses in the time domain, which can hardly make the model

validation process convincing.

In this study, we propose a coupled model to investigate the mechanism of the AN and

assess the characteristics of the AN-induced second harmonic Lamb waves, which can

potentially be used for further system optimization to minimize the influence of AN. The

proposed model is inspired by some existing linear Lamb-wave-based SHM models [1,

29-31]. Particularly, the shear-lag model developed by Giurgiutu et al. is highlighted, which

has been successfully applied to predict the phenomenon of frequency tuning [31]. In the

present study, the shear-lag model is extended to form a nonlinear framework through a

perturbation method. The proposed model combines the entire process of Lamb wave



generation, propagation and sensing with the AN introduced to both actuator-plate and

sensor-plate interfaces using the nonlinear elastic properties of the adhesive. The theoretical

model allows calculating the linear and nonlinear responses in terms of the voltage output of

the PZT sensors in the time domain. Model validation is carried out using both FE and

experimental results. For FE validation, a FE model is established with the experimentally

measured nonlinear elastic parameters of the adhesive. The nonlinear responses are extracted

by the superposition method which allows separating the linear and nonlinear parts of the

response and validating the model in the perspective of propagating characteristics of

nonlinear wave components. In addition, the influence of the AN is analyzed and evaluated.

Experiments are carried out to further ascertain the frequency tuning characteristics of

nonlinear S0 Lamb wave components.

2. Theoretical model

The model consists of an infinite plate incorporating the three modules, usually present in a

typical Lamb-wave-based SHM system: wave generation, propagation and sensing, as shown

in figure 1. PZT transducers, used either as actuators or sensors, are bonded on the surface of

the plate under inspection through adhesive layers. The adhesive ensuring the PZT-plate

interactions is assumed to have nonlinear elastic properties. By contrast, the piezoelectric

transducers and the plate are considered as linear waveguides in terms of their elastic and

piezoelectric properties. For Lamb waves generated by the PZT discs, the small deformation

assumption is adopted throughout the analyses. In principle, AN exists in both the

actuator-plate and sensor-plate interfaces. The nonlinearity at the actuation area is referred to

as the actuator adhesive nonlinearity (AAN) while the one at the sensing area the sensor

adhesive nonlinearity (SAN). In addition, only the second harmonic wave components are

considered due to their extensive use in most nonlinear Lamb-wave-based SHM methods.



Figure 1. Sketch of the theoretical model.

2.1 Nonlinear material elastic properties

The nonlinear material behavior of the adhesive is first evaluated. Similar to previous relevant

studies, the constitutive equation of the adhesive is expressed with the Landau-Lifshitz model

[17]:

 2 2 2[ ] 2 [ ] [ ] 2 [ ]tr C tr Btr Btr A      T E E E I E I E E E (1)

where λ and μ are Lamé constants, while A, B, C are defined as the third-order elastic

constants (TOECs). The operation tr() denotes the trace of a matrix. T is the second

Piola-Kirchhoff stress tensor and E the Lagrangian strain tensor, whose components can be

written as
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where  TX u v is the displacement vector and D the spatial directions. By applying the small

deformation assumption, the nonlinear term k k

j i

X X
D D
 
 

in the equation which corresponds to

the geometric nonlinearity is first omitted so that the Lagrangian strains retreat to engineering

strains [32]. By the same token, the nominal stress is used instead of the second

Piola-Kirchhoff stress in the following analyses. The influence of the geometric nonlinearity

will be numerically evaluated in the subsequent section on finite element validation.

Two typical types of material behavior are considered: uniaxial tension and pure shearing.

During the uniaxial tension process, the stress-strain relationship writes
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where E is the Young’s modulus of the material. In the pure shearing deformation in the x1-x2

plane, the nonlinear stress-strain relationship writes

3
12 12 12

(3 ) 2 6 22 2 2
(3 2 ) 2 3 2
B A B A B AT A B 

     
      

           
(4)

Detailed derivations can be found in Appendix A. It is worth noting that only the linear and

third-harmonic terms of the shear strain appear in equation (4). As the focus of this work is on

the second harmonics, the third-order term is omitted and the shear stress-strain relation can



be simplified as

12 12T  (5)

where 12 is the commonly-used engineering shear strain, which is related to the shear strain

component by 12 122  .

In the pure shearing process, equation (A.15), which represents the stress-strain relation

in the x1 direction, can be described as:

  2
12

1 2 3 1

2
( ) 2
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
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
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The above equation indicates that an equivalent second-harmonic normal stress, Te, is

generated mainly through normal strain ε1. This process is considered to be responsible for the

AN-induced second harmonic generation, to be validated in the subsequent analyses.

2.2 Wave generation

As the first module in the theoretical model, the wave generation mechanism is investigated

by extending the classic shear-lag model to the nonlinear one, named as nonlinear shear-lag

model. Previous nonlinear studies indicate the validity of the assumption that the amplitude of

the second harmonic components due to the material nonlinearity is much smaller than that of

the fundamental waves. Consequently, the problems characterized by the nonlinear shear-lag

model can be decoupled to linear and nonlinear problems through the perturbation method. In

addition, other assumptions from the classic shear-lag model are adopted in this theoretical

framework, namely, 1) The problem is treated as a one-dimensional problem, that is, only the

d31 effect of the piezoelectric element is responsible for the generation of Lamb waves. 2)

Inertial terms of the PZT, as well as these of the bonding layer and plate are neglected in the

model, thus limiting the accuracy of the model up to certain frequencies, which concurs with

our focus on the relatively low-frequency range. 3) The deformation of the bonding layer is

simplified as pure shearing in the linear case, whilst an additional equivalent normal stress is

generated in the bonding layer in the nonlinear case.

The nonlinear variables can be expressed as

( ) ( ) ( ) ( )L QV V x f t V x g t  (7)

in which V is a variable which can be u for displacement, ε and γ for normal and shear strains



or σ and τ for normal and shear stresses, respectively. The subscripts L and Q denote the linear

and quadratic terms, respectively. f (t) and g (t) are time-dependent terms. In this specific case,

as no inertial terms are considered, the two terms are related by  2( ) ( )g t f t . In the

subsequent derivation, the time-dependent terms f (t) and g (t) will be omitted for the sake of

simplicity.

The nonlinear shear-lag model is established by formulating the governing equations

including constitutive, geometric and equilibrium equations of the actuator, bonding layer and

the host structure, respectively. A sketch showing the force transmissions in the model is

given in figure 2.

Figure 2. Sketch of the wave actuating problem.

For the actuator, the three governing equations are described as

ISA( )a aL aQ a aL aQE          (8)
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where the subscript a stands for the actuator. E and t are the Young’s modulus and thickness

of the PZT actuators respectively. ISA denotes the linear piezoelectric-induced strain,

described as

31
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a in

a

d V
t

  (11)

where d31 is the piezoelectric constant and Vin the input voltage. Similarly, the governing

equations for the host structure can be written as
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where the subscript h represents the host structure. The coefficient α depends on the stress,

strain, and displacement distributions across the plate thickness. In the low-frequency range,

especially when only A0 and S0 modes of Lamb waves exist in the plate, α is set to 4 [31].

For the bonding layer, the governing equations can be expressed as
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where the subscript ba denotes the bonding layer under the actuator. G is the shear modulus of

the adhesive and TbaQ is the equivalent nonlinear normal stress on the bonding layer. The

shear stress of the bonding layer is related to that over the actuator-plate interface, given by

   
2

aL aQ hL hQ
baL baQ

   
 

  
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If admitting that the amplitude of the quadratic terms is usually much smaller than their

linear counterparts and all the quadratic terms in the governing equations being omitted, the

problem will be reduced to the classic shear-lag model. Referring to the classic shear-lag

solutions with the stress-free boundary conditions [1, 31], the linear shear stress distribution

can be obtained as:
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where a is the half length of the actuator. Parameters  a and a are defined as
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Based on equation (6), the equivalent nonlinear normal stress writes
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According to the perturbation method, the nonlinear problem can then be constructed by

eliminating all the linear terms from the governing equations from equations (8) to (18). Upon

rearranging the equations, the differential equation in terms of the variable hQ can be

written as

2 sinh(2 )hQ a hQ aR x     (23)

where R and P are two intermediate constants which can be expressed as
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As the actuator and the host structure have stress-free boundaries, the final solution to this

nonlinear problem writes

2 2
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Details of the equation derivation are provided in Appendix B.

2.3 Wave propagation

The second module in the model is the wave propagation. In this work, only A0 and S0 modes

of Lamb waves which propagate in a linear isotropic aluminum plate will be considered in the

low-frequency range. Once the shear stress distributions are obtained, the corresponding

strains of Lamb waves subjected to a harmonic excitation can be obtained as [1]
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where ξ denotes the wave number for either A0 and S0 Lamb wave modes and Gh is the shear

modulus of the host structure. Expressions for intermediate variables, NA, NS, DA and DS are:
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where ω is the excitation frequency and cP and cS the wave speeds for the pressure wave and

the shear wave, respectively. d is the half thickness of the plate. h is the Fourier transform

of the shear stress distribution on the top surface of the host structure for either linear or

nonlinear terms, which can be calculated by:
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From equation (26), the linear and quadratic responses in the frequency domain can be

determined. It is worth noting that the calculation of the nonlinear response is based on the

assumption that the AAN-induced second-harmonic Lamb waves propagate independently of

the primary Lamb waves at their respective velocities.

In most SHM applications, tone-burst excitations are preferred as they can provide

sufficient temporal information for damage diagnosis. Thus, the time-domain responses need

to be calculated. Given a certain position x0, the frequency response function, denoted by

G(ω), can be obtained from equation (26). Subjected to an excitation signal fe(t), the time

domain response in terms of the normal strain can be calculated as

 0( , ) IF F ( ) ( )ex t f t G     (34)

where F() and IF() represent the direct and inverse Fourier transform, respectively. Finally, the

temporal signals of the strains at any position can be obtained as hRL for the linear response

and hRQ for the ANN-induced nonlinear response.

2.4 Wave Sensing

At the last module in the model, the propagating Lamb waves are captured and converted to



voltage signals by the surface-bonded piezoelectric sensor. Previous work showed that the

sensor itself has negligible influence on the propagation the of Lamb waves [33]. This is used

here as an additional assumption. Similar to the wave generation module, the output signal

includes both linear and nonlinear components according to the perturbation method. More

specifically, the nonlinear response will include both AAN-induced and SAN-induced

components, presumably captured by the sensor independently. Physically, the former

propagates at different speeds before reaching the sensor at different time instants, whilst the

latter is mainly generated by the linear Lamb wave at the sensor position. Thus the wave

sensing process can be divided into three individual problems: linear Lamb wave sensing

(using notations with the subscribe L in the following analysis), linear wave sensing of

AAN-induced wave components (with the subscript Q1) and nonlinear wave sensing of

SAN-induced wave components (with the subscript Q2), as shown in figure 3.

Figure 3. Sketch of the wave sensing problem.

As to the linear wave sensing part, the equilibrium equations of the piezoelectric sensor

and the bonding layer can be written as

0s s sL sLt E     (35)

sL hL bsL    (36)

where the subscripts s and bs stand for the sensor and bonding layer under the sensor,

respectively. The constitutive and geometric equations of the sensor and bonding layer are

analogous to those in the wave actuation case. The only difference lies in the absence of the

piezoelectric term in the constitutive equation of the sensor, as

sL s sLE  (37)

As the normal strain of the host structure is a known variable, the differential equation with

respect to the normal strain of the sensor can be obtained by substituting the geometric and



constitutive equations of the bonding layer into equation (35) as

2 2
sL sL hRLK K      (38)

where
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G
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Since the sensor has two stress-free ends, the boundary conditions can be constructed as
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(40)

where x1, x2 are the positions of the two ends of the sensor. By putting equation (37) into

equation (40), the final solution to equation (38) yields
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Once the normal strains of the sensor are obtained, the final linear voltage output of the sensor

can be determined as [29]

 
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l e d E
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

 (43)

where d31s, ls, and e33σ are the piezoelectric constant, length and the dielectric constant of the

sensor, respectively.

As the wave components related to the AAN are linearly captured by the sensor, we can

follow the same process as the linear wave sensing problem. The corresponding nonlinear

strain of the sensor can be determined with respect to the AAN-induced normal strain of the

host structure as

 
1

1 3 4 ( ) sinh ( ) d
xKx Kx

sQ hRQx
C e C e K K x         (44)

where
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Thus, the voltage output corresponding to AAN will be calculated as VoutQ1 according to



equation (43).

Due to the material nonlinearity of the adhesive, an additional equivalent nonlinear

normal stress, responsible for the SAN, is generated across the thickness of the bonding layer

(shown in figure 3), written as

21 (2 )
4bsQ bsLT B A    (46)

where bsL can be obtained by combining equation (35) and the constitutive equation of the

bonding layer. As the SAN shares the same mechanism with AAN, the governing equations

for the nonlinear wave sensing problem are identical to those in the nonlinear wave actuating

process, with different subscripts used for the corresponding elements. Upon rearranging the

terms, the differential equation with respect to 2sQ can be obtained
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Similarly, the sensor and host structure have stress-free boundaries and the differential

equation can be solved as
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and
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Detailed derivations can be found in Appendix C. Once obtaining the shear stress distribution

on the lower surface of the sensor, the normal strain related to the SAN can be further

calculated according to the equilibrium equation of the sensor as

1

2
2 d

x sQ
sQ x

s s

x
t E


   (54)

Finally, the corresponding voltage output will be obtained as VoutQ1 according to equation (43).

The overall output voltage of the sensor is the superposition of the linear, ANN-induced

and can SAN-induced signals, as

1 2out outL outQ outQV V V V   (55)

3. Finite element (FE) validations

FE method is first adopted to verify the theoretical model. The physical parameters of the

adhesive which are used in both theoretical and FE models are obtained through experimental

measurements. In the FE model, both AN and material nonlinearity of plate can be separately

introduced to the relevant parts. Analysis focuses on four issues. First, the nonlinear feature

extraction methods, crucial to the subsequent analyses, are highlighted and evaluated. Second,

the theoretically predicted mechanism of the AN-induced nonlinear waves is validated,

allowing a better understanding of the underlying phenomena. Third, the propagating

characteristics of the AN-induced wave components are investigated, providing guidance for

the following experimental characterization of the adhesive nonlinearity. Finally, the influence

of the AN is assessed, justifying the practical need of considering AN effect in SHM

applications.

3.1 Parameter justifications

The material parameters of the piezoelectric material [34] (PZT-C6 manufactured by Fuji

Ceramics in the present case) and those of the aluminum [35] are readily available. However,

the material parameters of the adhesive, especially its TOECs, are seldom provided in the

existing literature. In this study, a tensile test was carried out to estimate the Young’s modulus

and TOECs of the adhesive.



Tensile tests were conducted with three samples made of UHU plus 2-component epoxy

adhesive. The experiment was carried out at the room temperature with the tensile rate of 0.2

mm/s. The experimental set-up and the test specimens are illustrated in figure 4.

Figure 4. Experimental setup and specimens for measuring the elastic parameters of the

adhesive.

The stress-strain curves from three tested specimens are shown in figure 5(a), which

show fairly consistent results. Curve fitting was performed using the experimental results of

sample 2# with a quadratic function, as
2T E    (56)

The fitted curve shown in figure 5(b) gives the parameters in terms of the Young’s modulus

( 1.310GPaE  ) and the nonlinear elastic parameter ( 37.09GPa    ). In order to estimate the

TOECs of the adhesive, a proportion method is adopted here. The   of the aluminum can be

firstly calculated with its TOECs by comparing equation (3) and equation (56). Then, we

calculate the ratio between experimentally obtained   of the adhesive and theoretical   of the

aluminum. Finally, the TOECs of the adhesive can be determined by the calculated ratio, with

results tabulated in table 1. In addition, all the parameters used in the FE model and

theoretical model are listed in table 2.



(a) (b)

Figure 5. (a) Experimental results of the stress-strain curves of three samples. (b) curve fitting

results with the experimental result of specimen 2#.

Table 1. Proportional method to estimate the TOECs of adhesive

A B C �'

Aluminum -702.4 Gpa -280.8 Gpa -205.6 Gpa -1248 Gpa

Adhesive -20.9 Gpa -8.3Gpa -6.1 Gpa -37.09 Gpa

Table 2. Parameters used in the theoretical and FE models.

PZT C6

Width Thickness E v d31 e33σ

8mm 0.3mm 62 Gpa 0.32 -210 pm/V 18.9 nF/m

Bonding layer

Thickness E v a A B C

0.03mm 1.31Gpa 0.4 -20.9 Gpa -8.3Gpa -6.1 Gpa

Aluminum plate b

Thickness E v A B C

2mm 69.56 Gpa 0.34 -702.4 Gpa -280.8 Gpa -205.6 Gpa

a The Poisson’s ratio of the adhesive is assumed to be 0.4 which is the same as in [36].

b The TOECs of the aluminum are only used in the FE model to compare the influence of adhesive



nonlinearity and that of material nonlinearity of the plate.

3.2 FE model description

A 2-D FE model is established using ABAQUS, as sketched in figure 6. Two identical

piezoelectric transducers, used as actuator and sensor respectively, are glued to an aluminum

plate. For simplicity, their corresponding bonding layers are also assumed to have the same

dimensions and material properties. Tie constraints are applied to model the interactions

between individual parts, thus assuring the displacement continuity between the pairs of tied

surfaces. Plane strain elements are attributed to all the parts with fine meshes whose size is

smaller than 10% of the shortest wavelength of interest. In order to strike a balance between

the signal complexity resulting from the boundary reflections and the calculation cost, the

total length of the plate is set to 1000mm and the distance between the actuator and the sensor

is 200mm. Geometric nonlinearity can either be included or excluded so that its influence can

be evaluated. In this model, the piezoelectric material is assumed to have linear elastic and

electric properties while the adhesive and the plate can be linear or nonlinear in elasticity as

needed. The nonlinear material behavior is programmed with the ABAQUS UMAT user

subroutine according to the Landau-Lifshitz model. As a typical example, the excitation for

both the theoretical and FE models is chosen as a 5-cycle tone-burst signal with an amplitude

of 160V and a center frequency of 60 kHz. In this case, only S0 and A0 mode Lamb waves can

be generated in the plate based on their dispersion curves (not shown here).

Figure 6. Sketch of the FE model.



3.3 Nonlinear feature extraction

In order to validate the theoretical model, the nonlinear features in the FE results need to be

extracted. Two possible methods can potentially be used. The first one is the baseline method,

in which the baseline signal needs to be obtained in advance in the absence of any nonlinear

sources in the system. The nonlinear features can then be extracted by subtracting the baseline

signal from the overall system response signal. Though accurate in principle, the method is

not feasible to use in practice since the purely linear baseline can hardly be obtained. The

second method is referred to as the superposition method, originally reported by Kim [37].

The second harmonic nonlinear part is extracted by superposing two response signals

resulting from the excitations which are opposite in phase. Through this method, the linear

and odd harmonic components are eliminated in principle. In addition, the method allows

obtaining the nonlinear information in time domain which includes amplitude, temporal and

phase. In the present case, an evaluation is carried out to demonstrate its validity for the

nonlinear feature extraction, which was lacking in the original work of Kim.

As a comparison, results from FE simulation are treated by the baseline method and the

superposition method, respectively, with results being plotted together in figure 7(a) to

validate the superposition method. Noticeable differences between the two methods can be

observed. By carrying out the FFT to the windowed signals, it becomes clear that the

observed differences are due to the presence of the linear and the odd harmonic responses,

which is consistent with the above analyses (shown in figure 7(b)). This suggests that the

superposition method is feasible to extract all the even harmonic nonlinear responses.

Moreover, it is able to preserve their amplitude, temporal and phase information. These

features make the superposition method attractive for real applications.



(a) (b)

Figure 7. (a) Comparison of the nonlinear responses obtained with baseline method and

superposition method and (b) the FFT results of the nonlinear responses.

3.4 Demonstration of the mechanism of AN

The established theoretical model reveals that the AAN-induced second harmonic response

results from an equivalent nonlinear normal stress exerting over the thickness-through cross

section of the bonding layer and its induced second harmonic normal strain. To verify this

theoretically predicted mechanism, the averaged nonlinear normal strain of one element in the

bonding layer is extracted using the superposition method, as shown in figure 8. It can be seen

that the nonlinear response mainly contains the 120kHz wave component, which

demonstrates the second-harmonic normal strain is indeed generated in the bonding layer.

Through its coupling with the host structure, the second-harmonic Lamb waves is further

generated in the host structure, which is consistent with the theoretical prediction.

Figure 8. Nonlinear normal strain at the edge of the bonding layer at the actuator-plate

interaction.



Furthermore, the linear, AAN-induced and SAN-induced voltage responses, predicted by

the model, are also compared with the FE results in figure 9. The agreement between the

theoretical results and FE ones in terms of both temporal and phase is obvious in both linear

and nonlinear responses despite some noticeable differences in the signal amplitude. This

difference may be attributed to the assumptions used in the theoretical model like the 1-D

assumption, omission of the inertial terms, ignorance of the influence of the sensor on the

propagating waves and so on. Same as the linear model [31], the model developed here is not

intended to reproduce every single detail of the signal, especially in terms of amplitude, but to

reveal the higher-order wave generation mechanism and characteristics of AN. In that

perspective, the agreement between the two sets of results is deemed acceptable, able to

validate the model as well as the AN-related wave generation mechanism of AN from the

model. The temporal and phase information will be further utilized to investigate the

propagating characteristics of the AN-induced wave components.

(a) (b) (c)

Figure 9. Comparison of the linear and nonlinear results between the theoretical and FE

models: (a) linear responses with 60kHz excitation; (b) AAN-induced responses with 60kHz

excitation; (c) SAN-induced responses with 60kHz excitation.

3.5 Propagating characteristics of AN-induced wave components

Upon obtaining the linear, AAN-induced and SAN-induced responses, the propagating

characteristics of the AN-induced wave components can be investigated according to the

temporal and phase information of the responses. Owing to their agreement with the FE

results, only results from the established model, shown in figure 10, are used in this section.

As the group velocity of the A0 mode Lamb waves at 120kHz is different from, and much

higher than that at 60kHz, figure 10(a) shows that the AAN-induced wave components



propagate independently at their respective velocities, as evidenced by the difference in their

respective arrival time. In contrast, the SAN-induced waves is captured simultaneously with

the linear wave component, as shown in figure 10(b). The difference between the propagating

characteristics of the AAN-induced and SAN-induced wave components can provide

guidance for the further identification of these two nonlinear sources in the experiments.

(a) (b)

Figure10. (a) Theoretical linear and AAN-induced responses with 60 kHz excitation; (b)

Theoretical linear and SAN-induced responses with 60 kHz excitation.

3.6 Evaluation of the influence of AN

As both AN and material nonlinearity can be separately introduced to the FE model, the

influence of the AN can be quantitatively evaluated. Four cases are considered in the FE

simulations: with only linear properties, only geometric nonlinearity (GN), material

nonlinearity of the plate (MNP) and adhesive nonlinearity (AN) containing both AAN and

SAN in the system. The effect of the geometric nonlinearity is included in the MNP and AN

cases. The nonlinear responses with different nonlinear sources are shown in figure 11. The

pure linear case is shown in figure 11(a), exhibiting no nonlinear feature in the signal as

expected. When GN, MNP or AN is introduced to the system, the nonlinear responses can be

captured through the superposition method. Compared with that of the MNP and the AN, the

influence of the GN is indeed negligible, as reflected by its small amplitude of nonlinear

response (figure 11(a)). In addition, the amplitude of the nonlinear response in the case of the

AN is much larger than that of the MNP. It can be concluded from the above analyses that,

adhesive non-linearity (AN) is a non-negligible nonlinear source in a typical nonlinear

Lamb-wave-based SHM system. Without its proper consideration, conventional nonlinear



acousto-guided wave based SHM methods could be compromised.

(a) (b)

Figure 11. Comparison of nonlinear responses in the (a) Linear case and nonlinear case with

geometric nonlinearity; (b) nonlinear case with AN and MNP when the exciting frequency is

60 kHz.

4. Experimental validations

Experiments were carried out to further validate the model mainly in terms of the frequency

tuning characteristics of AN-induced waves. In the following, the basic characteristics of the

nonlinear response in the experiment are first discussed. After that, the frequency tuning

curves from the theoretical model and the experiments are compared to validate the model.

4.1 Experimental setup

The experimental set-up is illustrated in figure 12. Two rectangular piezoelectric transducers

(30mm*8mm*0.3mm) were bonded on an aluminum plate (400mm*400mm*2mm) with the

epoxy adhesive tested in Section 3.1. The distance between the two transducers was 200mm

and the thickness of the bonding layer was approximately 30μm which was measured by

Mitutoyo’s micrometer. The whole system works as follow: the controller commands the

NI-PXI5412 signal generation module to output a tone burst exciting signal. The low-voltage

signal then passes through the Ciprian US-TXP-3 power amplifier and the amplified output is

applied to the piezoelectric transducer to generate Lamb waves in the plate. Responses of

Lamb waves are then acquired by the NI-PXI5105 data acquisition module, stored and

processed by the controller.



Figure12. Experimental set-up.

4.2 Analysis of the nonlinear response

In the experiment, a pair of five-cycle tone burst signals at the central frequency of 60kHz

with reversed phase were separately used as the excitation of Lamb waves. Setting the

amplitude of the excitation to 160V, the responses to the pair of excitations are shown in

figure13(a). The superposition method was used again, allowing obtaining the corresponding

nonlinear response which is about 2% in the amplitude of the primary wave components in

amplitude, as shown in figure 13(b). As the instruments have low nonlinearity according to

the manufacturers [38-40] and the influence of the material nonlinearity of the plate in this

specific configuration is weak, as evidenced by the previous FE results, it is believed that the

captured nonlinear response is mainly associated with AN.

The normalized nonlinear response is compared with the theoretical one which combines

both AAN and SAN effects, as illustrated in figure 13(c). The agreement between the two sets

of results demonstrates again the propagating characteristics of the AN-induced nonlinear

wave components. In light of the propagating characterizes analyzed before, the

SAN-generated nonlinear A0 mode wave should only appear at the time when primary A0

mode wave reaches the sensing position. It can be seen from figure 13(b), however, that part

of the nonlinear signal is weak, thus suggesting the weak nonlinearity induced by SAN, in

agreement with the theoretical results predicted by the established model (figure 10(a) and

figure 10 (b)). The plausible explanation is that, while all the input energy passes through the

actuator-plate interface, only part of it flows across the sensor-plate bonding layer so that



adhesive over the sensor-plate interface undergoes smaller deformation as its counterparts at

actuation does.

(a) (b) (c)

Figure13. (a) Responses to the opposed excitations at 60kHz; (b) response to the positive

excitation at 60kHz and extracted nonlinear responses with the superposition method; (c) the

normalized theoretical and experimental nonlinear responses.

4.3 Frequency tuning characteristics of the nonlinear wave components

Guided by the previous linear work [31], the nonlinear frequency tuning characteristics of the

system are experimentally investigated to further validate the theoretical model. The focus is

put on the S0 mode Lamb waves since they show the promising cumulative effect on one hand

and can be easily identified from the temporal responses as the first arrival wave package on

the other hand, both being conducive to SHM applications. In the experiments, the excitation

frequency range was chosen from 60kHz to 300kHz. Take 200kHz excitation as an example.

the acquired sensor signal is first treated using superposition method, giving nonlinear

response signal depicted in figure 14(a). The complex Morlet wavelet transform is then

applied to extract the amplitude of the signal. Detailed signal processing procedure can be

found in our previous work [6]. Results in terms of the modulus of the wavelet coefficients at

400kHz are shown in figure 14(b), from which we can precisely obtain the amplitude value of

the nonlinear second-harmonic S0 mode responses. The same wavelet transform is also

applied to the nonlinear responses from the theoretical model to keep the consistency of the

analysis. This results in the normalized frequency tuning curves of the nonlinear S0 mode

Lamb waves, plotted in figure 15. It can be seen that both sets of results show a very similar

tendency, which again validates the frequency tuning characteristics revealed by the

theoretical model. For further application, the frequency tuning characteristics can be

exploited and utilized for optimizing the system configuration to minimize the adverse



influence of AN in an SHM system.

(a) (b)

Figure14. (a) Nonlinear responses extracted by the superposition method with an excitation at

200kHz; (b) the modulus of the wavelet coefficients at 400kHz.

Figure15. Normalized frequency tuning curves of the nonlinear S0 mode Lamb waves

obtained in the theoretical model and the experiments.

5. Conclusions

In this paper, a nonlinear theoretical framework is proposed to investigate the mechanism and

characteristics of the adhesive nonlinearity (AN) and its effect on a typical PZT-actuated and

nonlinear Lamb-wave-based structural health monitoring system. The proposed model

combines the entire processes of Lamb wave generation, propagation and sensing, allowing

the assessment of the contributions of various physical components involved. The model

incorporates both linear and nonlinear contributions from various parts of the system which

can be solved through the perturbation method. The reduced linear problem retreats to the



classical shear-lag solutions as a special case. The nonlinear problem is formulated to show

the existence of an equivalent nonlinear normal stress in the bonding layer, originated from

the nonlinear material behavior and responsible for the generation of non-negligible second

harmonic responses in the captured sensor signals. The model is validated with both FE and

experimental results in various aspects which are relevant to SHM applications. The

mechanism as well as the propagating characteristics of AN-induced Lamb waves is

confirmed through comparisons with FE results. Meanwhile, the influences of AN and MNP

are separated, quantified and compared. The frequency tuning characteristics of AN-induced

S0 mode Lamb waves are also validated through experiments. In particular, a superposition

method is applied to extract the nonlinear feature from the overall system responses.

Results demonstrate the non-negligible nonlinear effects of the bonding layers in a

typical PZT-actuated SHM system. The AAN-induced Lamb waves propagate independently

of the primary Lamb wave modes in the structure while the SAN-induced wave components

are captured simultaneously with the primary Lamb waves. In addition, the agreement of the

frequency tuning characteristics of S0 mode nonlinear Lamb waves from the theoretical and

experimental results proves the validity of the theoretical framework. Furthermore, both the

theoretical model and the experimental results indicate that AAN acts as a much stronger

nonlinear source with appreciable influence on the nonlinear SHM system when compared

with the SAN.

The above findings suggest the necessity of considering the adhesive as one of the

non-negligible nonlinear contributors in information processing and SHM system design in

general. In that regard, the proposed theoretical model will definitely be useful in performing

system analysis, design and eventually optimization to minimize the effect of the AN in SHM

systems. As the influence of AAN is shown to be dominant in the AN-induced nonlinear

response, the main focus of the further optimization should be on the actuator configuration.
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Appendix

Appendix A. Nonlinear material behavior under uniaxial tension and pure shearing

The Landau-Lifshitz stress-strain relation can be written in the form of individual components

as:

 
 

2 2 2 2 2 2 2
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During the uniaxial tensile process in the x1 direction, the normal strains in the three

directions are expected to have the same order of magnitude. The shear stresses and strains

should be equal to zero. Meanwhile, the normal stresses in the x2, x3 direction are also equal to

zero. The stress-strain relation can be reduced to
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Putting equation (A.8) and equation (A.9) into equation (A.7), the nonlinear stress-strain

relationship in uniaxial tension can be obtained:
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where E is the Young’s modulus which is related to the Lame constants as

   3 2 /E        .

Under pure shearing in x1-x2 plane, the shear stresses and strains in the x1-x3 plane and

x2-x3 plane are equal to zero. Meanwhile, the normal stresses are also zero. The stress-strain

relations write
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As the shear strain is a small value under the small deformation assumption, the normal

strains are in the same order of the magnitude of 2
12 from equations (A.11), (A.12) and

(A.13). In this case, the normal strains become negligible compared to 12 . Any terms in

equations from (A.11) to (A.13) with the order of magnitude higher than 3
12 can be

eliminated. The stress-strain relation can be further reduced to
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By substituting equations (A.11), (A.12) and (A.13) into equation (A.14), the nonlinear

shear-stress-strain relation can be obtained as
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Appendix B. Nonlinear shear-lag solution for wave generation



The governing equations for the nonlinear shear-lag model are summarized as follows in

terms of the constitutive equations from (B.1) to (B.3), geometric equations from (B.4) to

(B.6) and equilibrium equations from (B.7) to (B.10),
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Putting equation (22) into equation (B.8) yields
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By using the equation resulted from equation (B.7) multiplied by h ht E to subtract the equation

resulted from equation (B.10) multiplied by a at E and substituting equation (B.11) into the

resulted equation, one gets

   + sinh(2 )a a h h aQ hQ h h a a hQ h h at E t E t E t E t E C x        (B.12)

After putting equations (B.4), (B.5), (B.6) and (B.2) into equation (B.12), one has
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By further putting equation (B.11) into equation (B.9) and then substituting the result into

equation (B.13), the differential equation with the notions of equations (20) and (21) is

obtained as follows:
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The stress-free boundary conditions are given as
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Putting equation (B.1) into equation (B.6) and then into equation (B.9) and finally into

equation (B.15) leads to the following equation:
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Then, putting equation (B.11) into equation (B.16) yields
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Combining equation (B.14) and equation (B.16) leads to the final solution, expressed as
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Appendix C. Wave sensing of SAN-induced wave components

The governing equations for the nonlinear wave sensing problem are summarized as follows

in terms of the constitutive equations from equations (C.1) to (C.3), geometric equations from

equations (C.4) to (C.6) and equilibrium equations from equations (C.7) to (C.10),
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Putting equation (46) into equation (C.8) gives
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Following the same process as detailed in Appendix B, the differential equation can be

obtained as

2
2 2

1( ) ( )
2

bs
sQ s sQ

h h bs

G
D x D x

E t t


      (C.12)

The free stresses at the boundaries of the sensor and the host structure can be expressed as
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By substituting equations (C.1) to (C.6), (C.9) and (C.11) into equation (C.13), the boundary

conditions can be further written as
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Combining equation (C12) and equation (C14), the differential equation can be finally solved

as
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