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Modal-based acoustoelastic formulation is regarded as the cornerstone of vibro-acoustics and has

been widely used for coupling analyses of structure-cavity systems. The controversy and the skepti-

cism surrounding the acoustic velocity continuity with the surrounding vibrating structures have

been persistent, calling for a systematic investigation and clarification. This fundamental issue of

significant relevance is addressed in this paper. Through numerical analyses and comparisons with

wave-based exact solution, an oscillating convergence pattern of the calculated acoustic velocity is

revealed. Normalization of the results leads to a unified series truncation criterion allowing minimal

prediction error, which is verified in three-dimensional cases. The paper establishes the fact that the

modal based decomposition method definitely allows correct prediction of both the acoustic pres-

sure and the velocity inside an acoustic cavity covered by a flexural structure upon using appropri-

ate series truncation criteria. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4977751]

[NX] Pages: 2137–2142

I. INTRODUCTION

The panel-cavity system, comprising a parallelepiped

acoustic cavity with a rectangular flexible panel subjected to

external excitations, has been used as a benchmark problem

for studying the fundamental problems in a vibro-acoustic

system for more than half a century. The issue of the pressure

and velocity continuity at the structure-cavity interface using

modal-based method has been arousing persistent interest and

long-lasting debate among researchers. This paper intends to

clarify this issue of fundamental importance.

The vibration response of a cavity-backed rectangular

panel was first investigated by Dowell and Voss.1 Since

then, there has been a continuous effort in improving the

modeling of such system as well as its physical understand-

ing, exemplified by the work of Pretlove,2,3 Pretlove and

Craggs,4 Guy and Bhattacharya,5 and Guy6 mainly focusing

on quantities like the panel vibration, acoustic pressure,

acoustic velocity, and the reverberant time inside the cavity,

etc. Without any doubt, the most convenient and presumably

the most commonly used method is the modal-based

approach using acoustic pressure (or potential) decomposi-

tion over acoustic modes of the rigid-walled cavity. Its gen-

eral framework, also referred to as acoustoelasticity theory,

was elegantly summarized by Dowell et al.7 and Fahy.8 This

approach, however, suffers from the seemingly “flaw” in

that the velocity continuity over the panel cannot be mathe-

matically satisfied due to the use of the rigid-walled acoustic

modes, expressed in Cosine functions in the case of parallel-

epiped cavity.9 This problem arouses continuous interest and

endless debate in the vibro-acoustic community, even up to

now. The advocators of the method argue that the method

allows accurate acoustic pressure and reasonable acoustic

velocity prediction if a sufficient number of acoustic modes

are used. Nevertheless, there are no ruling conclusions due

to the lack of quantified assessment and criteria. Various

techniques were also developed in an attempt to increase the

calculation accuracy such as the use of extended mode shape

functions for a single cavity or the coupling between two

overlapped adjacent sub-cavities.10 Meanwhile, the skepti-

cism on the modal-based method has always been persistent

as evidenced by some recent papers. For example, the defi-

ciencies of the method based on rigid-walled modes were

reiterated by Ginsberg,11 who employed an extension of Ritz

series method to the problem, and the modified formulation

is found to be accurate above the fundamental rigid-cavity

resonance frequency for light fluid loading. More recently,

various series expressions with added terms were also pro-

posed to accommodate the velocity continuity.12,13

Modal-based acoustoelastic formulation allows elegant

and clear physical representation and, to the eye of many, is

the cornerstone of the vibroacoustics in dealing with structure-

cavity coupling problems. As originally formulated and the

way it has been used in the literature, the theory applies to light

fluid, leading to a weak fluid-structural coupling. The contro-

versy and the skepticisms surrounding the velocity continuity

call for a systematic investigation and clarification, which con-

stitutes the main motivation of the present work. This issue is

addressed in this paper by investigating both acoustic pressure

and particle velocity predictions through comparisons between

the modal-based approach and the exact solutions using a sys-

tem of simple rectangular geometry. For the particle velocitya)Electronic mail: li.cheng@polyu.edu.hk
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prediction in the vicinity of the panel, an oscillating conver-

gence pattern is observed when the number of acoustic modes

increases. Normalization of the results leads to a unified crite-

rion allowing minimization of the prediction error, which is

then verified in three-dimensional (3D) cases.

II. THEORY AND ANALYSES

Consider a parallelepiped acoustic cavity with one of

the walls covered by a vibrating plate, as shown in Fig. 1.

The plate, simply supported along all four edges, is sub-

jected to a prescribed sound pressure excitation. The rest of

the cavity walls are assumed to be acoustically rigid. The

acoustic field inside the cavity is described by the

Helmholtz equations whereas the flexural motion of the

plate is governed by the Kirchhoff equation and the damp-

ing is introduced in the model by considering complex

Young’s modulus and complex acoustic velocity, for the

plate and the cavity, respectively.

The system is modeled using two approaches, which are

briefly described below and subsequently compared and

investigated through numerical analyses. Under the modal

expansion framework,7 the acoustic pressure inside the cav-

ity p and the transversal displacement of the panel w are

decomposed over the rigid-walled acoustic modes of the

cavity and the in vacuo plate modes, respectively, namely,

p ¼ +Pnmpunmp and w ¼ +Wrswrs, where Pnmp and unmp

are, respectively, the modal amplitude and the pressure

mode shape of the cavity; Wrs and wrs are the modal ampli-

tude and displacement mode shape of the plate, respectively.

unmp and wrs write

unmp ¼ cos
npx

Lx

� �
cos

mpy

Ly

� �
cos

ppz

Lz

� �
; (1)

wrs ¼ sin
rpx

Lx

� �
sin

spx

Ly

� �
; (2)

in which n, m, and p¼ 0, 1, 2,… and r and s¼ 1, 2,….

Applying the decomposition expressions in the equations of

motion of the plate-cavity system and using the orthogonal-

ity property of the mode shapes, a set of linear equations

with the modal amplitudes as unknowns are obtained as

€Pnmp þ jgaxnmp
_Pnmp þ x2

nmpPnmp ¼ �
AF

V

X
r;s

Lnm;rs
€Wrs;

(3)

Mrs
€Wrs þ jgpxrs

_Wrs þ x2
rsWrs

h i

¼ q0c2
0AF

X
n;m;p

Pnmp
Lnm;rs

Mnmp
þ QE

rs; (4)

where V is the volume of the cavity; AF the area of the vibrat-

ing panel; ga and gp the damping loss factor of the air and

vibrating panel, respectively; xnmp and xrs the natural fre-

quencies of the nmp acoustic mode and the rs panel mode,

respectively; Mnmp and Mrs the generalized acoustic and panel

modal mass, respectively; and QE
rs the generalized excitation

force which can either be a point force or distributed pressure.

Lnm;rs is the modal coupling coefficient between the rs panel

mode and the nmp cavity acoustic mode, defined as

Lnm;rs ¼ ð1=AFÞ
Ð
unmpwrsdV. The index p is eliminated in the

present configuration since the integral is calculated over the

panel surface with z¼ 0. Detailed expressions of these quanti-

ties can be found in Ref. 7.

For comparisons, the same problem is also modeled to

get the exact solution of the problem, referred to as wave

approach, in which the acoustic modes used in the modal

decomposition approach is replaced by

unm ¼ cos
npx

Lx

� �
cos

mpy

Ly

� �
hnm zð Þ; (5)

where hnmðzÞ ¼ a coshðlnmzÞ þ b sinhðlnmzÞ: Note that the

last term represents any wave propagating back and forth

along the z direction, perpendicular to the panel. By satisfy-

ing the boundary conditions at z¼ 0 and z¼ Lz, a, b, and lnm

can be determined. Different strategies are implemented to

solve this equation set, which have been extensively dis-

cussed in literatures5,6 so that they are not detailed here.

Note that in the z direction, an imaginary wavenumber may

exist. This corresponds to waves which decay exponentially

along the z direction, known as evanescent waves.

In the following numerical investigations, the dimension

of the cavity is set to be 0.2 m � 0.2 m � 0.5 m. A simply sup-

ported brass panel is 1.5 mm thick, located at z¼ 0. The air

density is 1.29 kg/m3; the sound speed is 343 m/s; the Young’s

modules of the panel is 110 � 109Pa; the panel’s Poisson’s

ratio is 0.357; the panel density is 8.9 � 103kg/m3; ga and gp

are set to 0.001 and 0.01, respectively. A harmonic acoustic

excitation is uniformly impinging on the flexible panel along

the z direction. The purpose of using normal incident excitationFIG. 1. The cavity-panel configuration and coordinate system.
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is to simplify the modal response within the panel-cavity sys-

tem, while retaining its internal physical characteristics.

A. Sound pressure

The sound pressure level (SPL) at a receiving point

inside the cavity is calculated, with the external excitation

pressure pi fixed to 1 Pa. To ensure a fair comparison

between the modal approach and the wave approach, the

number of modes used in the transverse directions x and y
are kept identical. The frequency band of interest is [0,

1000] Hz. It is well accepted that in order to ensure the cor-

rect sound pressure calculation, the truncated modal series

should contain all these modes, for both the cavity and the

panel, with their natural frequencies below afmax, where

a> 1 is a margin coefficient (typically, a¼ 1.5 or a¼ 2)

where fmax is the highest frequency under investigation

(1000 Hz in the present case). This rule, in which a is equal

to 2, is referred to as the pressure criterion in this paper. It

should be pointed out that this pressure convergence crite-

rion (even by including all lower-order modes) is not a uni-

versally accepted robust one. In some cases, especially at

frequencies where the system is not very dynamic, like the

anti-resonance regions between two well-separated modes,

more terms may be needed. In the modal-based and wave

methods used in the analyses here, the mode indices are cho-

sen up to n¼m¼ p¼ 8 and r¼ s¼ 8, which satisfy the pres-

sure criterion. The first few lower order modes of the

uncoupled cavity and the plate are tabulated in Table I. A

receiving point is randomly chosen at (0.04, 0.17, 0.01) m.

The SPL results are given in Fig. 2, in which the exact solu-

tion (named wave method in this paper) and the one from

the modal method are compared. It can be seen that, upon

using the pressure criterion, the pressure predictions by the

two methods agree well, although slight differences are

observable at some anti-resonance frequencies. Should the

SPL be averaged within the entire cavity, these differences

should disappear (not shown here). Similar observations

were observed at other points inside the cavity, including

those close to the vibrating panel (not shown here).

Therefore, it is verified that the modal method can provide

sufficient accuracy for acoustic pressure predictions every-

where throughout the cavity by using the well-established

pressure criterion.

B. Velocity

As the main focus of the paper, the prediction accuracy

of the particle velocity using the modal method is

investigated. The receiving point and all other physical

parameters are kept the same as in the previous pressure cal-

culation. Since more expansion terms would be needed in

the velocity calculation,14 the number of modes used in the

modal method are varied. Note that the mode variation only

applies to the cavity depth direction, z, while the mode terms

used in the x and y directions are kept the same. Three

modal-based calculations use p up to 10, 20, and 40, respec-

tively. Acoustic velocity u in the normal direction is

obtained from �jxq0u ¼ ð@p=@zÞ and the results are shown

in Fig. 3, in comparison with the reference result obtained

from the wave method. Compared with the reference result,

it can be seen that the accuracy of the velocity prediction of

the modal-based method improves as the number of modes

in the z direction increases. It is not surprising that at cavity

resonance frequencies, 340 and 680 Hz, the convergence is

quickly achieved due to the dominating role of the corre-

sponding rigid cavity mode at these frequencies. For the

other frequencies, however, the convergence speed is slower

than the case of pressure prediction (see Fig. 2 where only

TABLE I. Uncoupled resonance frequency of the system.

Plate in-vacuo resonance Cavity resonance

r s frs (Hz) n m p fnmp (Hz)

1 1 128 —

1 2 319.9 0 0 1 340

2 2 512 0 0 2 680

1 3 640 1 0 0 850

2 3 832 2 0 0 915.5

FIG. 2. (Color online) SPL predictions at point (0.04, 0.17, 0.01) m.

FIG. 3. (Color online) Particle velocity predictions by the wave method and

modal based method: Different z-direction terms are used in the modal

method.
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eight z-direction terms were used). Nevertheless, upon

increasing the decomposition terms, sufficient accuracy can

still be achieved.

To further quantify this observation, a term describing the

velocity prediction error, is defined as DV ¼ Vmodal � Vwave in

dB, calculated and shown in Fig. 4, in terms of different trun-

cated series in the z direction at an arbitrarily chosen frequency

of 210 Hz. It can be observed that the modal-based method

quickly approaches the exact result with a relatively small but

increasing number of terms, overshoots and then converges to

the exact solution. The convergence, however, is not monoto-

nous with the number of terms used, but in an oscillating

manner.

A close examination of the modal expansion expression

of the particle velocity allows to better understand this and

eventually establish a convergence criterion. Derived from

the coupling Eqs. (3) and (4), the particle velocity can be

expressed as

v x;y;zð Þ¼
1

q0

X
n;m;p

Unm x;yð Þ
Mnmp �x2þx2

nmpþ jgaxxnmp

� �

�pp
Lz

sin
ppz

Lz

� �
; (6)

where n, m, and p are the modal indices corresponding to the

x, y, and z directions, respectively, and Unmðx; yÞ is the

velocity contributions related to nm cavity modes, expressed

by Wrs,

Unm x; yð Þ ¼ �jx
AF

V
cos

npx

Lx

� �
cos

mpy

Ly

� �X
r;s

Lnm;rsWrs:

(7)

Since only the z direction is our focus, upon fixing m and n,

the above expression can then be simplified to a one-

dimensional (1D) case as

v zð Þ ¼
X

p

cp xð Þsin
ppz

Lz

� �
; (8)

with

cp xð Þ ¼ 1

q0

Unm x; yð Þ
Mnmp �x2 þ x2

nmp þ jgaxxnmp

� � pp
Lz

: (9)

For a given frequency of interest, x is a constant. In order to

ensure a reasonable calculation accuracy, it is well accepted that

the modes which need to be included in the calculation should

be such that xnmp � x. Therefore, cp can be approximated by

cp xð Þ �
p!1

1

q0

Unm x; yð Þ
Mnmpx2

nmp

pp
Lz
: (10)

Moreover, when p is large (i.e., p�max[m, n]) as in this

paper, the modal frequency can be approximated by

xnmp � c0ðpp=LzÞ. Under these conditions, one has

cp xð Þ �
p!1

1

q0

Unm x; yð ÞLz

Mnmpc2
0p

1

p
: (11)

Since Mnmp is independent of p for p> 0, cpðxÞ is a decreas-

ing function of p and satisfies limp!1cp ¼ 0. Therefore,

according to Abel’s theorem, the series vðzÞ should con-

verge. Meanwhile, an oscillation behavior is expected due to

the term sin ðppz=LzÞ. Therefore, the modal method should

guarantee the required calculation accuracy of the particle

velocity prediction, at the expense of increasing the decom-

position terms up to a sufficient level, in an oscillating but

converging manner.

From the above analyses, it can be surmised that a larger

number of modes may improve the accuracy for particle

velocity, but not necessarily in a monotonous manner.

Owing to the oscillating feature of the convergence curve

shown above, it is desirable then to find the suitable number

of modes to be used, with which the prediction error can be

locally minimal. On the other hand, it goes without saying

that the so-called criterion shall also depend on the distance

of the observation point from the vibrating plate. To further

investigate this, DV is calculated for different z coordinates,

with results shown in Fig. 5. One can observe that, for all z

FIG. 4. Velocity prediction error at point (0.04, 0.17, 0.01) m with respect

to the number of modes in the z direction.

FIG. 5. (Color online) Velocity prediction error with respect to the number

of modes in the z direction.
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values, all DV curves exhibit a similar variation trend with

respect to z, as described above. However, the convergence

becomes increasingly slower as the observation point gets

closer to the vibrating plate (when z gets smaller), along

with a larger oscillation period. For the smallest z analyzed

(z¼ 0.00625 m), for example, it requires 80 z-direction

modes for DV to approach zero.

The oscillating nature of the convergence curves suggest

that, for a given distance from the panel z, it should be possible

to employ a small number of p terms to get the local minimum

DV. The so-called truncation criterion, if it exists, should

depend on the relationship between the number of modes in

the z direction p and the coordinate z. To establish this relation-

ship, a generalized mode number G is defined to connect the

wavelength of mode p, kp ¼ 2Lz=p, and the coordinate z, as

G ¼ z

kp

2

¼ pz

Lz
: (12)

Using this definition, different curves shown in Fig. 6 are

normalized with respect to G and the results are shown in

Fig. 6(a). It is clear that the normalized curves show a highly

consistent trend for all z values considered. One can observe

that DV approaches local maximum values at every integer

of G (1, 2, 3,…). The first oscillation point starts at G¼ 1.

Deriving from Eq. (12), this corresponds to z¼ 1/2 kp, which

is the half acoustic wavelength. The local minima of DV are

obtained roughly at the middle of two extreme values, start-

ing from G¼ 1.5, followed by 2.5, 3.5, etc. Taken the first

minima as an example, G¼ 1.5 corresponds to z¼ 3/4 kp.

Note that p is the highest mode index that is included in the

calculation. Therefore, to minimize the accurate acoustic

velocity prediction error, a rule of thumb would be to

increase the number of acoustic modes in the z direction,

until reaching the one with its 3/4 wavelength falling into z.

In another word, for a given distance from the vibrating

plate, all the lower-order modes in the cavity depth direction

whose 3/4 wavelength is larger than that distance should be

used in the series decomposition to ensure a good prediction

accuracy for the particle velocity.

Mindful of the possible dependence of the aforemen-

tioned on the frequency, the above proposed truncation crite-

rion is checked for one of the plate resonances frequencies at

128 Hz, with results shown in Fig. 6(b). Once again, the nor-

malized DV curves show an identical variation trend as the

previous non-resonance cases, which leads to exactly the

same conclusions in terms of velocity convergence criterion.

Nevertheless, it is found that the oscillation amplitude of the

DV curves at the resonance frequency is somehow smaller

than that of the non-resonance one. On all accounts, the pro-

posed criterion on oscillating convergence seems to apply to

all frequencies.

As a final check, Fig. 7 compares the velocity prediction

results using the proposed truncation criterion with G¼ 1.5

and the wave method in the 3D configuration. According to

Eq. (12), G¼ 1.5 results in 120 z-direction modes for

z¼ 0.00625 m in Fig. 7(a) and 30 z-direction modes for

z¼ 0.025 m in Fig. 7(b). While according to the pressure cri-

terion, the number of z-direction modes is 8 for both cases.

The result obtained with the pressure criterion is also added

for reference. It is worth recalling that the use of only pres-

sure criterion would not be enough to guarantee the velocity

calculation, although the use of a larger number of modes is

definitely helpful. The proposed velocity convergence crite-

rion, however, results in a significant improvement to the

particle velocity prediction. Additionally, comparisons

between Figs. 7(a) and 7(b) also show that the proposed cri-

terion holds well for different calculation point positions

with different z coordinates.

III. CONCLUDING REMARKS

The prevailing conclusion of the present paper is the

confirmation that the modal-based decomposition method, as

formulated in the classical work of Dowell and Fahy, allows

correct prediction of both the acoustic pressure and the

acoustic velocity inside an acoustic cavity covered by a flex-

ural structure upon using appropriate series truncation crite-

rion. The acoustic pressure prediction using the modal

method can be sufficiently accurate, throughout the cavity

FIG. 6. (Color online) Velocity prediction error with respect to the general-

ized mode number G: (a) Uncoupled non-resonance frequency at 210 Hz;

(b) uncoupled resonance frequency at 128 Hz.
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including vibrating interface as long as a sufficient number

of cavity modes (prescribed by the pressure convergence cri-

terion) are used, in agreement with the common understand-

ing reported in the literature. The conventionally used

pressure criterion, however, cannot guarantee the velocity

prediction accuracy, especially when the calculation point is

close to the vibrating structure, due to the inherent weakness

of the modal shape functions. Nevertheless, numerical stud-

ies reveal an oscillating convergence pattern of the particle

velocity when the decomposition terms in the cavity depth

direction increases. More specifically, for a given calculation

point, the calculated particle velocity using the modal

approach first monotonously approaches to the exact value

with a relatively small but increasing number of terms, over-

shoots and then converges to the exact solution in an oscillat-

ing manner, starting roughly from the generalized mode

number G¼ 1. For a given distance from the vibrating plate,

the modal series in the cavity depth direction should be trun-

cated up to G¼ 1.5, 2.5, 3.5,…, etc. Explained using the

series decomposition theories and verified in both 1D and

3D configurations, this so-called velocity truncation criterion

suggests to use all these lower-order modes in the cavity

depth direction, whose 3/4 wavelengths are larger than the

distance between the calculation point and the vibrating

plate, to ensure a good prediction accuracy for the particle

velocity. Therefore, when both the pressure criterion and the

proposed velocity convergence rule are satisfied, a fast con-

vergence of the particle velocity can be achieved.
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