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ABSTRACT: The propagation of thickness shear waves in a periodically corrugated

quartz crystal plate is investigated in the present paper using a power series expansion

technique. In the proposed simulation model, an equivalent continuity of shear stress

moment is introduced as an approximation to handle sectional interfaces with abrupt

thickness changes. The Bloch theory is applied to simulate the band structures for

three different thickness variation patterns. It is shown that the power series expansion

method exhibits good convergence and accuracy, in agreement with results by finite

element method (FEM). A broad stop band can be obtained in the power transmission

spectra owing to the trapped thickness shear modes excited by the thickness

variation, whose physical mechanism is totally different from the well-known Bragg

scattering effect and is insensitive to the structural periodicity. Based on the observed

energy trapping phenomenon, an acoustic wave filter is proposed in a quartz plate

with sectional decreasing thickness, which inhibits wave propagation in different

regions.

Keywords: phononic quartz crystal plate, thickness shear waves, power series

expansion, energy trapping, acoustic wave filter.

1. Introduction

Elastic wave propagation in periodic structures has been receiving increasing attention
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over the past decade. With multiple periodic constituents, these structures, referred to

as phononic crystals (PCs), exhibit unique physical properties such as complete band

gaps (BGs) which prohibits elastic wave propagation and the possibility for

manipulating wave traveling paths. Owing to these features, PCs are proposed as

promising candidates for conceiving acoustic devices, such as acoustic filters,

directional acoustic wave sources, silent blocks and waveguides etc [15]. Generally

speaking, two well-established physical mechanisms result in the formation of the

band gaps, known as the Bragg scattering [1, 2] and the local resonances [3, 4]. The

former is resulted from the periodicity of the structure; the latter, however, depends

less on the structural periodicity, which allows the creation of the BG which can be

almost two orders of magnitude lower than that from Bragg scattering effect.

A growing number of investigations have been carried out on the design and

application of PCs through theoretical, numerical and experimental means [1  8].

Impedance mismatch existing in the wave propagation path is the intrinsic reason

behind the formation of the BGs, which can be artificially designed by arranging and

tuning mass densities and elastic coefficients periodically in space. Besides, the

mismatched impedance can also be achieved through varying the structural shape or

geometry parameters [914]. For example, an infinite phononic crystal beam or plate

with periodic thickness variations can also give rise to BGs [15  18], whose

broadband efficiency can be controlled by adjusting thickness variation [15 17].

Meanwhile, other remarkable dispersion properties, such as zero group velocity,

negative group refraction index, bi-refraction etc., can also be found in a PC with
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one single material component [18]. Periodically corrugated structures provide a

potential substitution for wave devices, since less parameters are involved (only

thickness of unit cell). This makes the design and manufacturing extremely simple

and convenient, avoiding the requirement on multi-phase material or resonant

structures used in the conventional approach.

Material-wise, quartz is one of the most widely used crystals in acoustic

devices because of its high temperature and frequency stability. A large portion of

quartz resonant devices operate under the so-called thickness-shear vibration mode,

whose frequencies depend on thickness [19, 20]. It can be surmised that a phononic

quartz crystal plate with non-uniform thickness would greatly impact on the

propagation of thickness shear waves. Meanwhile, along with the existence of the

band gap, the energy trapping phenomenon, which is crucial to device mounting,

would also take place due to thickness variation [21, 22]. When that happens, waves

at particular frequencies cannot propagate freely. It is therefore important to

investigate the distinction and relation between the band gap and energy trapping

phenomenon in view of design of acoustic wave devices.

In the present paper, we investigate the propagation of thickness shear waves in

a periodically corrugated quartz crystal plate. A general model, along with solution

procedure, is proposed, which is capable of dealing with plate thickness changes

described by an arbitrary function. This is different from the previous work

considering either flat [16, 23, 24] or some specific thickness profiles such as

hyperbolic [21] or quadratic [24]. Based on the model, a power series expansion
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technique is proposed to obtain the semi-analytical solution, whose validity is

assessed through comparison with FEM results. Upon generating the frequency

spectra, broad stop bands caused by energy trapping phenomenon are analyzed in

detail and compared with Bragg scattering effect. At last, based on the trapped

thickness shear modes, an acoustic wave filter with frequency-dependent wave

trapping and separation capability is designed.

2. Modelling of the thickness shear waves in a periodic quartz crystal plate

A periodically corrugated AT-cut quartz plate occupying the region 30 x D  ,

shown in Fig.1(a), is considered. The plate is subject to a thickness (x2 direction) shear

waves coming from x3<0. The widely used AT-cut quartz plate is a special case of the

rotated Y-cut quartz plate that is effectively monoclinic. The corrugated plate is

composed of a series of unit cells with a length L shown in Fig.1(b), whose thickness

variation can be described by a slowly varying function h=h(x3). h(x3) can either be a

known function for a given profile or an unknown function to be determined in order

to obtain the desired wave-stop effect. It is obvious that the corrugation leads to

mismatched acoustic impedance, similar in effect but different in mechanism from the

staggered arrangement in mass densities or elastic coefficients.

Because of the complexity associated with the material anisotropy of the quartz

and thickness variation, exact solution of the thickness shear waves can hardly be

obtained. For AT-cut quartz plates, however, the only one dominating displacement
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component 1 1 2 3( , , )u u x x t controlling the anti-plane vibration can be approximated

as the sum of different anti-symmetric modes in x2 direction as [16, 2326]

( ) 2
2 3 1 1 2 3 3

1,3,5 3

0, ( , , ) ( , )sin
2 ( )

n

n

n xu u u u x x t U x t
h x




     (1)

where, ui (i =1, 2, 3) stands for the particle displacement; t is the time and 2h(x3) the

thickness of quartz plate. n = 1 represents the fundamental family of modes, and n>1

belongs to the case of overtone modes. For crystal resonators and filters, u1 is

anti-symmetric about the plate middle plane at x2 = 0, due to the fact that anti-plane

vibration is the predominant component that can be excited by an electric field along

the plate thickness direction. Based on the assumption that the unit cell has a slow

varying contour, the governing equation in terms of ( )nU can be written as [26, 21]

2 ( ) 2 2 2 ( )
( )

55 662 2 2
3 3

0
4 ( )

n n
nU n Uc c U

x h x t
  

  
 

(2)

where c55 and 66c are the effective elastic parameters and  the mass density of the

quartz plate. In this particular case, c55=68.81GPa and
2 2
26 26

66 66 2
22

81e kc c
 

  
    

  
.

Here, e26,  22 and 2
26k are respectively piezoelectric and dielectric constants and

mechanical-electrical coupling factor of quartz plate [21, 23, 26]. The detailed

derivation process of Eq. (2) can be found in the work by Tiersten [23, 26], in which

weak piezoelectric coupling and small unimportant elastic constants (c14, c25 and c56)

have been ignored for simplification. In harmonic regime,

( ) ( )
3 3( , ) ( ) exp( )n nU x t U x i t  . Eq. (2) retreats to:
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 

(3)
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h(x3) can be expressed in terms of power function using Taylor’s series

expansion, so that

2 2 3
3 0

0,1,2,

( )
m

m
m

xh x h H
L





   
 

 (4)

where h0 is the half thickness at x3=0; and Hm the coefficients determining h(x3).

Similarly, Eq. (3) can be solved by seeking approximate solutions through polynomial

expansion as [2729]

( ) ( ) 3
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 (5)

where ( )n
mA is the unknown coefficient to be determined. Substituting Eqs. (4) and (5)

into Eq. (3) yields:
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By equating the coefficients of 3
mx

L
 
 
 

in above equation to zero, one obtains:
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Eq. (7) describes a series of linear recursive relations for ( )n
mA with m changing from

zero to infinity, which provides much convenience for the numerical calculation. In an

explicit form:
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where
s




 with 66

02s
cn

h



 being the cut-off frequency (to be explained in

detail below). It can be seen from Eq. (8) that the first two coefficients ( )
0
nA and

( )
1
nA are to be determined first, after which ( )n

mA with m>1 can be successively

obtained using Eq. (7).

For a unit cell in a periodic quartz plate, shown in Fig. 1(b), the mismatched

thickness at x3 = 0 and L leads to the difficulty of satisfying the exact displacement

and stress continuity. Instead, we impose the continuity of the moment of shear stress

at the interface as an approximation [16]. Meanwhile, the Bloch theorem is applied

for the boundary conditions at x3= 0 and L:
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(9)

where K is the wavenumber, real in certain frequency ranges and strictly imaginary in

others, whose value is restricted within the first Brillouin zone. In general, K can be

written as K=Real(K)+iImag(K). If K is real with its value changing in the half of the

first Brillouin zone region [0, L/], displacement and stress at positions x3=0 and x3=L

differ only by a phase factor eiReal(K)L. This indicates that waves can travel, thus

forming frequency pass bands. On the contrary, if K is imaginary, i.e., there will be a

spatial exponential attenuation in magnitude of displacement and stress when waves

propagate across the unit. As a result, waves in these frequency ranges are effectively
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prohibited from traveling to long distance, thus forming frequency stop bands.

Substituting Eq. (5) into the boundary condition above yields two linear,

homogeneous algebraic equations in terms of ( )
0
nA and ( )

1
nA , i.e.,

 
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   




(10)

Non-trivial solutions exist only when the determinant of the coefficient matrix of Eq.

(10) is equal to zero, from which we can get the dispersion curve for the infinite

periodic quartz crystal plate.

3. Numerical simulations on periodic quartz crystal plates

Eq. (10) is a transcendental equation wherein the wavenumber K and non-dimensional

frequency  cannot be obtained directly using an explicit expression. Therefore, a

suitable computation method should be developed to solve the problem. For a given ,

the roots of Eq. (10), i.e., the values of K locating in the region of [0, L/], are to be

determined. The K-space, whose real and imaginary parts are respectively limited in

the region of [ , +L/] and [ , +L/] (with  being a real positive number,

standing for the decaying rate of amplitude), is divided into finite meshes by a small

step, and each cross point possesses individual K value. Here, the solving area has

been enlarged by a small amount  in order to account for the case of K=0 and K=L/.

Then, we calculate the determinant value of Eq. (10) in every cross point for each

given frequency . Any point whose absolute value of determinant is smaller than the
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other eight ones in the neighborhood will be considered as the final root. In the

present case, the evanescent wave caused by Bragg scattering effect is of interest,

which has the weakest attenuation during its propagation. Hence,  should be chosen

appropriately during every iteration process so that there is only one root in the

targeted solving region.

The convergence of the power series method is first examined, by setting

2h0=5mm and L=20mm for one unit, with n=1. For verification and comparison

purposes, we consider three cases corresponding to three different thickness profiles,

respectively: linear, quadratic and stepped functions, defined as:

Case 1: 3 3

0

( ) 11
2

h x x
h L

    
 

(11a)

Case 2:
2

3 3 3

0

( ) 1 31
8 8

h x x x
h L L

        
   

(11b)

Case 3: 33

30

1.0, 0 0.5( )
0.5, 0.5

x Lh x
L x Lh

 
   

(11c)

Note that the thickness of all unit cells at x3=L equals to h0, shown in Fig. 2. It is

relevant to note that, for Case 3, two individual power series should be used

separately for 30 0.5x L  and 30.5L x L  , to ensure the corresponding

displacement and shear stress moment continuity at the interface x3=0.5L. Tables I, II

and III show the convergence of the calculation for the three cases, with different

truncations used in the power function expansion, respectively. It can be seen that the

convergence is achieved in each case, but convergence feature is closely related to the

frequency and thickness variation pattern. More terms are required for linear and

quadratic profiles than the stepped function case, especially for the higher frequencies.
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Based on this, 40 terms are deemed sufficient to achieve acceptable accuracy for the

stepped variation pattern and 80 terms will be used for the linear and quadratic

variation functions in the following simulations.

The frequency spectrum calculated from Eq. (10) for the three cases is shown in

Fig. 3. Meanwhile, results using Finite Element Method with periodic boundary

conditions using Comsol Multiphysics software are also given, denoted by black

circles. The abscissa is the non-dimensional wave number KL/, ranging from 0 to 1,

representing the first Brillouin zone (the region [1, 0] is symmetric with that of [0,

1]). Results from the power function expansion technique are largely in good

agreement with the FEM ones, thus validating the established model and numerical

procedure to some extent. Discrepancies are also noticeable, especially for Case 3,

due to the use of approximate boundary condition, i.e., the second equation in Eq. (9)

in the theoretical model. The equivalent continuity of shear stress moment obviously

affects the region 0 2 0h h x h   . Nevertheless, the agreement between the two

sets of results is still acceptable.

The non-linear profile of the curves in Fig. 3 shows the dispersive feature of the

wave. Frequencies corresponding to real-valued wavenumbers are associated with the

pass-band modes, and frequencies matching complex or pure imaginary wavenumbers

are associated with stop-band modes. Some complete band gaps caused by the

thickness changes appear in different cases, which can be seen in Fig. 3. The

beginning and termination of the pass-bands or stop-bands all initiate at the edge of

the first Brillouin zone, i.e., KL/  = 0 or 1. It can be surmised that the stepped
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variation pattern is more beneficial for the formation of complete band gap compared

with the linear and quadratic functions. This is understandable since an abrupt

thickness variation generates more significant impedance mismatch at interfaces, thus

creating more complex wave reflections and interactions. On the other hand, some flat

modes emerge in Fig. 3, for instance, the first three modes with  < 2 in Case 3,

corresponding to quasi-zero group or energy velocity of the waves. As a result, energy

is trapped in some regions of the unit cell. Generally speaking, a relative larger band

gap with  >2, caused by Bragg scattering effect, can be obtained by adjusting the

material or structural parameters of a unit cell, such as the mass density, elastic

coefficient, variation function of thickness, the length of unit cell and so on. In what

follows, we will focus on the physical explanation about these flat modes with  <2

and explore application potentials.

To further demonstrate the existence of the frequency band gaps opened by

corrugation, the reflection and transmission power spectra through a finite structure

comprising ten unit cells with different thickness variations are calculated, i.e., N = 10

in Fig. 1(a). The transfer matrix method is adopted here to calculate the transmission

properties. In the region x3<0,  (1)
3 0 3 0 3( , ) 1exp( ) exp( ) exp( )U x t ik x r ik x i t    for

a given incident wave of amplitude 1. r then stands for the amplitude of reflected

wave, and k0 is the wavenumber, which can be calculated from Eq. (3). The power

series are used to describe the solution for every unit cell in the region of 0<x3<D.

After ten unit cells, the displacement field writes (1)
3 0 3( , ) exp( ) exp( )U x t t ik x i t 

with t being the amplitude of transmitted wave. By utilizing the continuity of
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displacement and the moment of shear stress at the interfaces between adjacent units,

the relationship about undetermined coefficients can be numerically established.

Finally, r and t can be solved through the established transfer matrix model. Hence,

the reflection and transmission coefficients can be respectively defined as the energy

ratios of the reflected and transmitted waves to the incident wave by 2r and 2t . By

varying the excitation frequency of the incident wave, the reflection and transmission

spectra can be obtained for the three cases above, shown in Fig. 4. The principle of

energy conservation stipulates 2 2 1r t  , which also provides the verification of

the numerical results. 2 1r  or 2 0t  represents the location of stop bands, which

match very well with the results predicted using power series expansion method in

Fig. 3 when the thickness of the unit cell changes either linearly or quadratically, even

though the transmitted energy of the the first mode for Case 1 is rather low. However,

for Case 3 with abrupt thickness change, the first three modes cannot be obtained

from the reflection and transmission spectra. 2 0t  and 2 1r  in Fig. 4(c) when

2  indicate the first three modes cannot propagate through the structure with

energy totally reflected.

To further explain the disappearance of the first three modes in the reflection and

transmission spectra, we calculated the corresponding displacement field of

eigenmodes exported by Comsol Multiphysics at several gap-edge frequencies

marked in Fig. 3, with results shown in Fig. 5. It can be seen that, Cases 1 and 2 have

similar displacement field. The energy mainly focuses on the thicker region of the unit

cell for the first mode, gradually extends towards to the thinner region for higher
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modes. For Case 3, the phenomenon of energy concentration is the most evident. For

modes with 2  , the energy in the thicker part is larger than that in the thinner one,

especially for the lowest mode. For modes D and E, the vibration is mainly

concentrated at the thinner part rather than the thicker one. With the increasing

resonance frequency, the energy of higher modes is spread out over the entire unit.

The displacement component of the plate with uniform thickness can be obtained

from Eq. (3) as:

 (1)
3 3 3( , ) exp( ) exp( ) exp( )U x t A ik x B ik x i t       (12)

with
2

266 0
2

0 552
c hk

h c h
 

 
    

representing the wavenumber. A and B correspond

to the waves propagating in the positive and negative directions of x3-axis,

respectively. The cut-off frequency, c or s, can be deduced when the wavenumber

k = 0. For example, c=2 when h=0.5h0. If the frequency of incident wave is larger

than  c, the wavenumber is real meaning that the wave can propagate freely.

Otherwise, k  will become pure imaginary, which leads to the decaying wave

amplitude and finally lower the energy transmitted. This results in the energy trapping

phenomenon, observed in Fig. 4(c). Larger absolute value of pure imaginary k makes

the energy trapping phenomenon more evident, which can be used to explain the

vibration energy concentration comparison marked by A, B and C in Fig. 5(c).

In order to further prove the physical mechanism of the trapped thickness shear

modes in the phononic crystal plate, the transmission power spectra of an incident

wave through a finite structure composed of stepped-changing unit cells (Case 3) is

calculated for different frequency regions, shown in Fig. 6. It is interesting to note that
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the energy of the transmitted wave is significantly reduced when  < c even though

there is only one unit cell. Apparently, the number of unit cells has no direct

relationship with the trapping phenomenon. The rate of energy decay is related to the

length of thinner part and the incident frequency. Smaller  and larger b will lead to

reduced energy transmission, in agreement with the explanation on the trapped modes

mentioned above. For comparison, we also show the transmission coefficient when

 >c in Fig. 6(b), with N being the number of unit cell defined in Fig. 1(a). In this

case, k is a real number, corresponding to wave propagation without attenuation. The

existence of band gap in this frequency region is mainly caused by Bragg scattering

effect. The frequency regions, at which the amplitude of incident wave has been

neutralized with the reflected wave, finally form the stop band. Larger number of unit

cell will promote better wave interactions, leading to more obvious stop band [30, 31],

as shown in Figs. 6(b) and 4(c).

As a partial conclusion, simulation results revealed two different kinds of

physical phenomena for thickness shear waves propagating in periodic quartz plate.

When the frequency lies in the region larger than the cut-off frequency, the formation

of the band gap is caused by Bragg scattering effect, greatly influenced by the number

of unit cells. However, below the cut-off frequency, corresponding to a pure

imaginary wavenumber and decaying amplitude, energy trapping takes place, which is

insensitive to the structural periodicity. Based on the physical mechanism of trapped

modes, we will explore its application in an acoustic wave filter in the following

discussions.
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4. Thickness shear trapped modes for acoustic wave filter design

The discovery and discussions on the trapped modes offer opportunities for designing

various acoustic devices. An example of an acoustic filter is given hereafter, with its

thickness changing sectionally along  x3 directions, as shown in Fig. 7(a). The

thickness of the plate is 2h0, 1.8h0, 1.6h0, 1.4h0, 1.2h0 and h0 at 3x b , 3 2b x b  ,

32 3b x b  , 33 4b x b  , 34 5b x b  and 3 5x b , respectively.

Correspondingly, the values of c in each sub-regions are 1, 1.111, 1.25, 1.429, 1.667

and 2. For simplification, we use Eq. (12) and the transfer matrix method during the

following numerical simulation. For FEM simulations, two additional perfect match

layers (PMLs) are applied as extended domains at the region 3 5x b to prevent

wave reflections [9, 32], shown in Fig. 7(b). We mainly focus on the energy trapping

phenomenon caused by thickness changes, so that the non-dimensional frequency will

be limited to 1 2  .

For every flat sub-section in the region of 30 5x b  , Eq. (12) is the exact

solution for the thickness shear waves. However, for the region of 3 5x b , either A

( for 3 5x b ) or B ( for 3 5x b  ) is used to describe the amplitude of the outgoing

waves. At every interface between each adjacent sub-regions, the continuity of

displacement and the moment of shear stress is adopted so that an implicit frequency

equation about  can be obtained. Figure 8 shows the variation pattern of  of

different thickness shear modes existing in the structure designed with the length
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parameter b. All these frequencies of the thickness shear vibration initiate cut-off

frequency of the unbounded quartz plate with thickness of 2h0 (c=2), and approach

the value equalling to  c=1 with the increasing b. This means the longer embed

thinner portion decreases the resonance frequency, with more modes trapped in this

region. The effect is the same as that of inertial mass layer, attached on the surface of

quartz plate [33]. On the other hand, higher modes appear periodically with the

increasing b, which can be seen from Fig. 8. For instance, the second mode appears at

b=0.26h0; the third one at b=0.45h0; the forth and fifth modes at b=0.66h0 and

b=0.85h0, respectively. The period b is about 0.19h0.

Figure 9 gives the displacement distribution for different trapped modes, marked

from A to K in Fig. 8, along x3 direction when b=2h0. The amplitude has been

normalized such that the displacement of the left- or right-hand-side traveling wave in

the center region 3x b is equal to one. We can see the inner resonance nature of

the patterns, with the internal vibrational magnitude of higher modes larger than that

in the center region. This phenomenon is in accordance with the work by Cao et al [30]

and Hussein et al [31]. It can also be concluded from Fig. 8 that, if a thickness shear

wave is excited in the central region, i.e., 3x b , the one with higher frequency can

propagate longer distance away from the center. Taking Mode E for example, its

resonance frequency is =1.5149, which is located between the two corresponding

cut-off frequencies  c=1.4285 (i.e., the thickness is 1.4h0) and  c=1.6667 (i.e., the

thickness is 1.2h0). Hence, the wave can be viewed as a propagation wave with its

displacement represented by sine and cosine functions in the region 3 4x b .
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However, when the wave travels in the region 3 4x b , the amplitude decays

exponentially during propagation due to the imaginary wavenumber. In contrast, for

Mode A, =1.0593, which is larger than c=1 (i.e., the thickness is 2.0h0) and smaller

than  c=1.111 (i.e., the thickness is 1.8h0), the vibration is reduced evidently only

after the wave arrives at 3x b . Other waves in Fig. 9 behave similarly. The

displacements of Mode J and K do not decay to zero at 3 8x b because higher

frequencies lead to slower decaying rate, as shown in Fig. 6(a). As comparison with

Fig. 9, Fig. 10 gives the displacement distribution of different trapped modes exported

by FEM under the same condition. A slight difference in the resonance frequencies

calculated by FEM and theoretical analysis exists, which again is attributed to the

application of an equivalent continuity of shear stress moment during theoretical

treatment. Nevertheless, the energy trapping phenomenon in Fig. 10 is basically

identical as shown in Fig. 9.

It is relevant to note that, although similar phenomenon can also be achieved

through Bragg scattering effect [32], the quantitative relationship between the

frequency and various structural intrinsic parameters is difficult to established and

realized. In present case, however, the simple quantitative relation between the

frequency and thickness can be obtained through the concept of cut-off frequency

based on the proposed model.

5. Conclusions
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In this paper, thickness shear wave propagation in an inhomogeneous quartz plate

with periodically changing thickness is investigated. Through power series expansion,

a theoretical model, along with the solving procedure, is established. The proposed

model is capable of handling various thickness profiles which can be mathematically

defined. Numerical studies on typical thickness profiles allow the determination of the

dispersion curves and the disclosure of the resonant trapped modes. The trapped

modes are dominated by the plate thickness, delimited by the so-called cut-off

frequency which increases with reducing plate thickness. Two mechanisms behind the

formation of the band gap are confirmed. When the frequency of the wave exceeds the

cut-off frequency, Bragg scattering dominates the process with strong dependence on

the number of the unit cells; below the cut-off frequency, however, energy trapping

takes place, irrespective of the structural periodicity and number of cells. To explore

the phenomenon, application of the thickness shear trapped modes in an acoustic

wave filter is demonstrated, in which the waves with different frequencies can be

trapped in different regions. Results allow better understanding on the trapped

thickness shear wave behaviors, and point to the possibility of conceiving efficient

and tunable acoustic wave filters.
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Figure captions

Figure 1. Theoretical model: (a) an AT-cut corrugated quartz crystal plate; (b) a unit

cell.

Figure 2. Three thickness profiles of the quartz unit cell.

Figure 3. Frequency spectrum of an infinite periodic quartz crystal plate with the

thickness of unit cell changing in the form of: (a) Case 1; (b) Case 2; (c) Case 3.

Figure 4. Reflection and transmission spectra when an incident wave propagates

through ten unit cells with thickness changing in the form of: (a) Case 1; (b) Case 2;

(c) Case 3.

Figure 5. Displacement field of the modes labeled by capital letters in Fig. 3 for

different cases: (a) Case 1; (b) Case 2; (c) Case 3.

Figure 6. Transmission coefficient versus incident frequency for different size

composites: (a)  changing in the region [1, 2] with N=1; (b)  changing in the

region [2, 3] for different N.

Figure 7. Acoustic wave filter made of quartz plate with its thickness changing

sectionally along x3 direction: (a) theoretical results; (b) FEM results.

Figure 8. Non-dimensional frequency  of the trapped thickness shear modes for a

quartz wave filter with varying length parameter b.

Figure 9. Non-dimensional displacement distribution of different modes marked in

Fig. 8 along x3 direction (b=2h0) by the present model: (a) Modes A, B, C and D; (b)

Modes E and F; (c) Modes G, H and I; (d) Modes J and K.
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Figure 10 Non-dimensional displacement distribution of different modes along x3

direction by FEM (b=2h0): (a) =1.0645; (b) =1.2049; (c) =1.3174; (d) =1.4165;

(e)  =1.5167; (f)  =1.6028; (g)  =1.7009; (h)  =1.7755; (i)  =1.8741; (j)

=1.9511.
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