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Abstract 

Pseudo-excitation (PE) approach is a recently developed vibration based damage 

detection method, exhibiting some appealing features for structural health monitoring 

applications. However, two main bottlenecking problems, i.e. dense measurement points 

and venerable noise immunity, hamper its use in practical applications. This paper 

tackles these problems by proposing a novel method based on sparse virtual element 

boundary measurement (VEBM) using metal-core piezoelectric fiber (MPF) sensors. 

Different from the local “point-by-point” interrogation modality used in the original PE 

approach, the proposed method divides the entire structure into several virtual elements 

(VE) to construct a damage location index, describing the damage-induced dynamic 

perturbation in the corresponding VE. To avoid the high-order derivative calculation, 

which is mainly responsible to the low noise robustness of the original PE approach, 

MPF sensors are used to directly measure the surface strains, but only at the VE 

boundaries, leading to a significantly reduced number of measurement points. 

Experiment is designed and carried out using a cantilever beam, in which a ten-MPF 

sensor array is embedded in the structure. Along with the sparse laser Doppler 

vibrometer (LDV) measurement, a normalized damage location index is constructed. 

Results demonstrate that the proposed method not only enhances the noise robustness, 



but also allows a significant reduction in the number of measurement points. 
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1. Introduction 

As one of the most studied techniques, vibration based damage detection examines 

the changes in structural vibration signatures to detect the damages1-4. Vibration-based 

techniques are shown to exhibit some appealing features, including low cost and 

potential to be used for on-line structural health monitoring (SHM). Among existing 

methods, various vibration signatures have been used to construct the damage index, 

such as mode shapes5, 6, eigen-frequencies7, transfer matrices8, electro-mechanical 

impedances9, modal curvatures10, 11 and nonlinear characteristics12 etc.. Notably, 

“Pseudo-excitation” (PE) approach is recently developed to detect the structural damage 

by examining the damage-induced perturbation to the local equation of motion13-15. 

Compared with other vibration based damage detection methods, PE approach requires 

no prior knowledge on the baseline signals, overall structural model or boundary 

conditions and so on. Furthermore, due to its “point-by-point” local interrogation nature, 

the PE approach can be applied to a complex system16, through the interrogation of its 

components like beams, plates and shells etc.. 

 

The original version of the PE approach defines the damage location index by a 

“strong” formulation based on the local equation of motion. Its effectiveness suffers 



from two main bottlenecking problems: a). High-order derivative terms over 

displacement are involved. For example, d4w(x)/dx4 is used in the damage detection of a 

beam element (where w(x) is the flexural vibration displacement at the position x). For 

implementation, this high-order derivative is achieved by the finite difference 

calculation, which makes the method venerable to the measurement noise. b). The 

“point-by-point” inspection strategy and the finite difference calculation require a large 

number of measurement points, increasing the processing difficulty and hampering 

system integration as smart structures having self-detecting capability . 

 

To address these problems, a sparse virtual element boundary measurement 

(VEBM) based “weak” formulation is proposed in this paper. The so-called “weak” 

formulation uses the weighted integration of the damage location index in the “strong” 

formulation to quantify the damage within a small region. By doing so, the inspection 

strategy is shifted from “point-by-point” to “region-by-region”. The previous work has 

proven that the noise immunity of PE approach can be improved from “strong” to 

“weak” modality17. However, it still requires the calculation of the fourth-order 

derivative over the displacement and dense measurement points. As a further 

improvement, sparse VEBM based “weak” formulation divides the entire structure into 



several virtual elements (VE). By selecting a suitable excitation frequency, the final 

form of the damage location index only requires the evaluation of a few physical 

quantities at the boundaries of the VEs, thus significantly reducing the number of the 

measurement points. Furthermore, to avoid the calculation of high-order terms, a 

distributed metal-core piezoelectric fiber18 (MPF) array is used for direct strain 

measurement. As a smart material with small size, MPF is suitable to measure the 

surface strain in a wide frequency band19. For improving the effectiveness of the MPF, a 

ten-MPF smart layer is packaged according to the experimental requirements. With the 

measurement data obtained by the MPFs and the displacements at VE boundaries 

captured by a laser Doppler vibrometer (LDV), a satisfactory detection is achieved 

through sparse measurement. Compared with the “strong” formulation, the noise 

immunity capacity is also greatly enhanced. 

 

This paper is organized as follows. First, the VEBM based “weak” formulation is 

derived. Second, numerical simulations are carried out to validate the proposed method. 

Third, a ten-MPF sensor array is designed, manufactured and embedded into a test beam. 

Experiments are then carried out to calibrate the MPFs, followed by damage detection 

validations. Compared with its “strong” formulation counterpart, the superiority of the 



proposed technique is demonstrated. 

 

2. Damage Detection Algorithm 

2.1 Principle 

For illustrating the principle of the PE approach, an Euler-Bernoulli beam 

component with homogeneous isotropic material properties is taken as an example. As 

shown by Case 1 in Figure 1, the basic idea of the PE approach is to examine the 

equation of motion governing the vibration of the structural component13. A damage 

location index in such a one-dimensional structural component, denoted by DLI(x), can 

be defined by calculating the damage-induced perturbation as 
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where w(x) is the steady vibration displacement of the beam at the position x; E, I, , S 

are the modulus of elasticity, cross-sectional moment of inertia, density of material and 

cross sectional area of the beam in healthy situation, respectively; ω is the angular 

vibration frequency of the excitation. Considering a local area in the beam component 

without any external excitation, DLI(x) = 0 in the intact region, but different from zero 

within the damage zone that corresponds to a pseudo excitation induced by the damage. 



DLI(x), in its primary form defined by Eq. (1) is called “strong” formulation, which 

evaluates the damage at each point on the beam component. By scanning the whole 

structure, the damage position can be identified where unexpected peaks appear in the 

curve of DLI(x). However, due to the 4th-order derivative over the vibration 

displacement, which is numerically obtained through the finite difference calculation 

scheme, the evaluation of DLI(x) requires very dense measurement and leads to low 

noise immunity when applied in practice. 
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Figure 1. Schematic diagram illustrating the principle of PE approach. 

 

In order to enhance the robustness against measurement noise and uncertainty of 



the PE approach, a “weak” formulation17 is developed by integrating the damage 

location index of the “strong” formulation within an interval [xc-τ/2, xc+τ/2], as 
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where DLI  is the damage location index of the “weak” formulation; xc and τ are the 

center position and the length of the interval; η(x) is a weight function, which in 

principle can take an arbitrary form. In practice, the choice of η(x) should accommodate 

the inspection strategies based on different variants of the “weak” formulation, to be 

detailed at a later stage. As illustrating by Case 2 in Figure 1, DLI  quantifies the 

damage-induced perturbation within a small region instead of a particular point. By 

scanning the center position xc along the beam component, ( ),DLI x   can detect the 

damage position. 

 

To take a step further, the 4th-order derivative of w(x) in Eq. (2) can be gradually 

transferred to the weight function η(x) by integration by part, as 
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where fve(x) is the virtual force applied on the corresponding interval which is called VE 

and BC(xc, τ) is the boundary terms of the VE, as 
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In the above expressions, the VE shares the same material properties as the real beam 

element and has a length τ. From Eq.(4), η(x) can be regarded as the displacement under 

the virtual force fve(x). The boundary terms BC(xc, τ) is the sum of a series of products 

of w(x) and η(x) of different derivative orders. The derivative orders are denoted by the 

superscript (i) in Eq. (5). For further removing w(x) and avoid w(1) and w(3) in Eq. (3), 

η(x) should satisfy the following conditions: 
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The above set of equations and the boundary conditions state that η(x) can be regarded 

as the free vibration response of the corresponding VE, which is a simply-supported 

beam at both ends. Thus, when the excitation frequency equals to the i-th natural 

frequency of the VE, as 
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the normalized damage location index of the “weak” formulation can be simplified as 
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where η(x) is the i-th mode shape, as 
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Taking the first natural frequency of the VE as an example, NDLI  can be 

expressed as 

 ( ) ( ) ( )c c c, / 2 / 2NDLI x x x    = − + +   (12) 

where 
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As a special case of DLI  at the natural frequency of the VE, NDLI  only uses a few 

physical quantities at the boundaries of the VE to identify the damage instead of 

measuring the displacement w(x) along the entire beam component, significantly 

reducing the number of the measurement points. 

 

According to Eq. (12), although NDLI  seems to be free of any structural 



parameters such as E, I, ρ, S, they are in fact implicitly required to determine the 

excitation frequency. Therefore, a fast frequency sweeping of the excitation can be 

carried out to accurately determine the excitation frequency, at which the distance 

between the adjacent vibration nodes should be equal to the length of the VE. It should 

also be mentioned that the normalized damage location index in Eq. (10) can be 

regarded as an average value of the damage location index in Eq. (1) within the VE. 

Thus, the measurement noise can be partly suppressed20. However, the damage-induced 

perturbation in damage location index is also averaged, which reduces the sensitivity of 

detecting small damage. To solve this problem, smaller length of VEs should be used, 

leading to more measurement points and high excitation frequency. 

 

From Case 1 to 3, the deriving procedure is based on the Bernoulli-Euler beam 

model. However, the same derivation can be extended to a plate structural component, 

in which the full field displacement measurement can be reduced to the displacement 

and strain measurements at VE edges as discussed in [20]. For a more general structure 

with complex equation of motion, a calibration procedure is needed to model the 

structural vibration. 

 



2.2 Numerical simulations 

Considering an Euler-Bernoulli cantilever beam as shown in Figure 2, the elastic 

modulus E is 68.9 GPa and the density  is 2700 kg/m3. A damage, with a width of 2 

mm and a depth of 2 mm, is located at x = 225 mm (referring to Figure 2 for the 

coordinate system). For validating the VEBM based “weak” formulation, the length of 

VE is set as 60 mm. A harmonic point-excitation force is applied at x = 601 mm and the 

excitation frequency is 3180 Hz, corresponding to the first natural frequency of the VE, 

estimated using Eq. (9). The flexural displacement w(x) can be obtained through the 

finite element simulation using the commercial FE code ABAQUS. The structure is 

modelled by the beam element with the size of 1 mm, amounting to a total of 605 

elements. The steady vibration displacement w(x) at each element node is shown in 

Figure 3. 

 

Figure 2. Schematic of a cantilever beam with an artificial damage. 
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Figure 3. Steady vibration displacement obtained by the FE method. 

 

Taking the same inspection strategy as DLI , NDLI  can also be obtained by 

scanning the inspection region to identify the damage location as shown by Case 2 in 

Figure 1. With w(x) in Figure 3, κ(x) and ( ),NDLI x   can be calculated as shown in 

Figure 4 and 5, where τ equals to 60 mm. It is apparent that NDLI  is zero in the intact 

region, corresponding to κ(x) satisfying the condition: 

 ( ) ( )/ 2 / 2 0x x   − + + =   (14) 

Eq. (14) demonstrates that κ(x) is a periodic function of the position x and the 

wavelength of the function κ(x) equals to twice the length of VE in the healthy beam 

region. On the contrary, when the interval [x-τ/2, x+τ/2] includes damage, in addition to 

the abrupt changes in NDLI , the wavelength of κ(x) is also altered. Therefore the 
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wavelength perturbation of κ(x) induced by the damage can also be used as an 

indication of the existing damage. It should be mentioned that w(x) and w(2)(x) at the 

damage position are used to calculate NDLI  at x = 194 mm and x = 256 mm, resulting 

in two sharp peaks at the boundaries of the damage region in Figure 5. 

 

 

Figure 4. κ(x) calculated by w(x) in the FE method. 
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Figure 5. NDLI  based damage detection using scanning region strategy. 

 

For reducing the measurement points, a sparse VEBM based damage detection 

method using NDLI  is carried out by discretizing the VEs as shown by Case 3 in 

Figure 1. The detailed implementation is as follows. 

(1) Depending on the inspection accuracy, the beam component can be divided into 

several VEs, of equal length τ. In the present simulation, the inspection region [30, 

570] is discretized into nine VEs. 

(2) The displacements and their 2nd-order derivatives at the boundaries of the VEs 

should be measured under the steady excitation at the excitation frequency 

calculated by Eq. (9). 

(3) NDLI  of the corresponding VE is constructed using Eq. (12) as shown in 
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Figure 6. It can be seen that the damage occurrence generates an abrupt change in 

NDLI  in the corresponding damaged VE segment. 
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Figure 6. NDLI  based damage detection using VEBM strategy. 

 

3. MPF-based smart layer 

For implementation of the VEBM based damage detection, both the displacements 

and the strains at the boundaries of the VEs should be measured under the steady 

vibration. In order to achieve a better spatial resolution of the damage detection, the 

VEs with small length are required, at the expenses increasing the excitation frequency. 

Therefore, MPFs are subsequently integrated with the structure to directly measure the 

surface strains at high frequencies. 



3.1 MPF transducers 

MPFs were firstly fabricated using the extrusion method in 200321. A single MPF 

includes three parts: metal (Pt) core, surface electrode and piezoelectric ceramic fiber, 

as shown in Figure 7(a). With the metal core inside the piezoelectric ceramic fiber, the 

MPF overcomes the brittleness of the conventional piezoelectric fibers and can be used 

as a sensor or actuator conveniently with two electrodes: the metal core and surface 

electrode. Compared with the strain gauges, the MPF inherits the advantages of the 

piezoelectric material that creates direct conversion of mechanical energy into electric 

energy without the need for the complex signal conditioners or the Wheatstone bridges. 

Therefore, the MPF can be used to measure the surface strain, especially for high 

frequency vibration application. 

 

Piezoelectric 

Ceramic Fiber

Surface 

Electrode
Metal 

Core (Pt)

Voltage Longitude Strain

   

(a) (b) (c) 

Figure 7. Single MPF details: (a) schematic diagram, (b) side view, (c) sectional view. 

 



Considering that the length of the MPF used in this paper is 10 mm as shown in 

Figure 7(b), the diameter of the MPF can be ignored, which varies from 300 – 400 μm 

as illustrated in Figure 7(c). Therefore, the response voltage of the MPF, only related 

with the surface strain along the sensor length direction, can be expressed as22 
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where Rm and Rc are the radii of the metal core and the piezoelectric fiber, respectively. 

d31 is the piezoelectric coefficient, ε33 is the dielectric coefficient, s11 is the elastic 

coefficient and S11 is the average surface strain. The subscript 1 represents the length 

direction of the MPF and the polarization direction 3 is the radius direction of the MPF. 

According to Eq. (15), the response voltage is proportional to the average strain along 

the MPF length direction. Notably, if the MPF is used to measure the surface strain of 

an Euler-Bernoulli beam, the corresponding 2nd-order derivative of the displacement 

can be calculated as 

 ( ) ( )2 112S V
w x

h k
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where h is the thickness of the beam and k is the sensitivity, relating the response 

voltage with w(2), expressed as 
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3.2 Package processing 

According to the principle of the VEBM based “weak” formulation, a series of w(2) 

located at distributed positions with the same distance τ are required to construct the 

normalized damage location index. In order to simplify the process of installing the 

MPFs onto the structure one by one and improve the integrity of the structure to be 

monitored, a MPF sensor array is designed and fabricated by packing the MPFs to form 

a smart layer. This packaging process is widely used in Lamb wave-based SHM 

techniques23, 24. As shown in Figure 8, the primary constituents of the smart layer 

include polyimide film, MPFs and the flexible printed circuit. The distance between the 

adjacent MPFs is fixed by the flexible printed circuit. In this paper, ten MPFs are used, 

directly placed onto the structure by pasting the smart layer with the epoxy adhesive. 

The ten response signals can be obtained through a standard 20-pins port. 

 

 

Figure 8. Schematic of a ten-MPFs based smart layer. 



4. Experimental validations 

4.1 Experimental setup 

Experimental validation is subsequently carried out to identify the artificial 

damage (2 mm in depth and 2 mm in width at x = 225 mm) in a cantilever beam that is 

made of aluminum 6061. The dimensions and physical parameters of the beam are the 

same as the ones used in the numerical simulation as shown in Figure 2. The beam is 

fixed on a testing table (NEWPORT ST-UT2) as shown in Figure 9. The excitation 

signal is magnified through a power amplifier (B&K 2718) and then applied to an 

electromechanical shaker (B&K 4809) to provide a harmonic point-force excitation to 

the structure at x = 601 mm. Considering that the length of the VE is 60 mm that is the 

interval of the adjacent MPFs, the excitation frequency is set as 3180 Hz, corresponding 

to the 1st natural frequency of the VE. Two measurement systems are used in this 

experiment, including a scanning LDV (Polytec PSV-400B) to measure the 

out-of-plane displacement and MPFs to obtain the 2nd-order derivatives of the 

displacement, both only at the VE boundaries. The response voltages of the MPFs are 

amplified through a voltage amplifier and acquired by a multi-channels oscilloscope. 

 



 

Figure 9. Experimental setup. 

 

4.2 Sensor calibration 

To measure the 2nd-order derivatives of the displacement through the MPFs, a 

calibration procedure is carried out to obtain the sensitivity k in Eq. (16). Three steps are 

followed: 

(1) The displacement w(xi) at the position of the i-th MPF is firstly measured by 

LDV under the steady vibration, as well as the displacements at two positions 

adjacent to this MPF. The 2nd-order derivative of the displacement can be 

calculated by mean of the finite difference, as 
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where xi is the position of the i-th MPF, dm is the interval of the measurement 



points. 

(2) The response of the MPF in time domain is measured and the amplitude at the 

excitation frequency can be obtained through Fast Fourier Transform (FFT). 

(3) The sensitivity k of each MPF can be calibrated as the quotient of the amplitude 

divided by the w(2). 

 

Taking MPF 1 in Figure 2 as an example, the steady response at 3180 Hz is shown 

in Figure 10(a). Due to the measurement noise, the amplitude is difficult to obtain from 

the response in time domain. According to the result of the FFT in Figure 10(b), the 

amplitude at the excitation frequency can be identified as 5.2 mV. With the measured 

displacements by the LDV, w(2) at the position of MPF 1 can be calculated as a 

benchmark to calibrate the sensitivity k of MPF 1. 

 



 
(a) 

 
(b) 

Figure 10. Response of MPF 1 in (a) time domain and (b) frequency domain. 

 

4.3 Result discussion 

For validating the proposed method, the “strong” formulation is first applied to 

detect the damage in the experiment. With the displacement shown in Figure 11, DLI(x) 

fails to delineate the damage position as illustrated in Figure 12. The 4th-order 
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derivative of the displacement in Eq. (1) is calculated through the finite difference, 

expressed as 
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Note that, w(4)(x), in the absence of noise, can achieve an accurate approximation 

through the finite difference, when the measurement interval dm is small. However, Eq. 

(19) is sensitive to the measurement noise. With decreasing dm, the measurement noise 

is also enhanced, which masks the damage induced changes in DLI(x), in agreement 

with the previous analyses. 

 

 

Figure 11. Vibration displacement obtained in the experiment. 
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Figure 12. Damage detection using “strong” formulation. 

 

The beam is then segmented into nine VEs of τ = 60 mm long each, separated by 

ten MPFs. Compared with the “strong” formulation in Figure 12, the number of the 

measurement points is reduced from more than 300 to only 10 within the inspection 

range from x = 30 mm to x = 570 mm. The displacements at the VE boundaries are 

obtained through the LDV as shown in Figure 11 with the marks ‘▽’. w(2) are measured 

by the MPFs, with results tabulated in Table 1 along with w. Using Eq. (12), NDLI  is 

shown in Figure 13. A pronounced peak can be clearly observed at the damage VE 

position, thus providing enhanced noise immunity capability through sparse 

measurement points as compared to the original PE formulation. 
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Table 1. Data at VE boundaries using in VEBM based “weak” formulation 

No. 1 2 3 4 5 6 7 8 9 10 

w (×10-8 m) 5.57 -4.53 4.79 -5.81 6.40 -5.99 6.14 -6.30 6.43 -4.99 

w(2) (×10-4 m-1) -1.26 1.45 -1.51 1.37 -1.92 1.87 -1.71 1.83 -1.78 1.93 
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Figure 13. Damage detection using VEBM based “weak” formulation. 

 

5. Conclusions 

As a vibration-based damage detection method, the original “strong” formulation 

of the PE approach shows obvious drawbacks, such as high sensitivity to the 

measurement noise and the need for a large amount of the measurement points. To 

tackle these problems, a VEBM based “weak” formulation using MPFs is presented in 

this paper. The proposed method can be regarded as a retrofitted and improved version 



of the “strong” PE formulation, shifting the detection philosophy from “point-by-point” 

to “region-by-region”. By tuning the excitation frequency to the natural frequency of the 

VE, VEBM based “weak” formulation only requires the parameters at the VE 

boundaries to be evaluated, leading to a sparse measurement with much reduced 

measurement cost. By the same token, the robustness of the technique against 

measurement noise and uncertainty is greatly enhanced. As a piezoelectric strain sensor 

with small size, MPF is used to be embedded with the structure. With a high sensitivity 

over a wide frequency range, MPFs can directly measure the 2nd-order derivatives of 

the displacement at the VE boundaries with a distributed array configuration. Along 

with the displacements measured by the LDV, the proposed method is experimentally 

shown to be able to detect the damage position with a satisfactory accuracy through 

sparse measurement. 
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