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Abstract 

A differentially weighted operator splitting Monte Carlo (DWOSMC) method is developed to solve complex 

aerosol dynamic processes by coupling the differentially weighted Monte Carlo method and the operator splitting 

technique. This method is validated by analytical solutions and a sectional method in different aerosol dynamic 

processes, respectively. It is firstly validated in coagulation and condensation processes, and nucleation and 

coagulation processes, and is then validated through simultaneous nucleation, coagulation and condensation 

processes. The results show that this DWOSMC method is a high computationally efficient and quantitatively 

accurate method in simulating complex aerosol dynamic processes.  

Keywords: Differentially weighted Monte Carlo, operator splitting, aerosol dynamics, particle size distribution 

Nomenclature 

d average particle diameter (m) 

D diffusion coefficient (m2/s) 

i, j particle label 

I condensation kernel (m3/s) 

J nucleation kernel (/s) 
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K coagulation kernel (m3/s) 

kB boltzmann constant (J/K) 

Kn Knudsen number 

M2 the second moment 

n number density of aerosol particles 

N particle number concentration during the simulation interval 

N0 initial particle number concentration 

Np number of simulation particles 

r random number 

t time (s) 

TK temperature (K) 

∆t time-step (s) 

δt time-step (s) 

u⃗  velocity of the gas (m/s) 

v,ṽ particle volume (m3) 

V the volume of the aerosol system in simulation; or 

total particle volume during the simulation interval (m3) 

V0 initial total volume of the aerosol particles (m3) 

wi weight of the simulation particle 

X the total process 

Xd deterministic process 

Xs stochastic process 

 

 



 

 
 

Subscripts  

coag coagulation 

cond condensation 

d deterministic 

nucl nucleation 

i, j, k section number 

i , j, m, n  index of simulation particle 

p simulation particle 

s stochastic 

Superscripts 

m step number 

Greek letters 

α correction factor 

ε relative error 

τ normalized computational time  

Abbreviations 

DWOSMC differentially weighted operator splitting Monte Carlo Method 

GDE general dynamics equation 

MC Monte Carlo 

MOM method of moment 

PBE population balance equation 

SM sectional method 



 

 
 

1. Introduction 

The problem of air pollution is increasingly severe in recent years, resulting in all kinds of acute and chronic 

diseases of human beings, i.e., lung cancer, asthma, leukemia, etc. Therefore, the study of atmospheric science 

has been more and more important. The air pollution indexes (i.e., PM1, PM2.5, PM10), refers to the diameter size 

of the particulate matters (PMs) in the air. The US Environmental Protection Agency has listed the reduction of 

PM2.5 emissions as an important item for controlling air pollution (Raman & Fox, 2016). The ultra-fine, submicron 

and fine particles suspended in the air are also called aerosols (Friedlander, 2000; Gelbard, 1979). Considering 

their impact on climate and health, it is significant to understand the evolution and distribution of aerosol particles 

(Tie, 2015). Therefore, more and more researchers have drawn their attention to the study of aerosol dynamics in 

recent decades. The research of aerosols is highly related to polymerization processes, dispersion of aerosols in 

the atmosphere, chemical reactions involving surface growth, precipitation of particles, and processes for the 

production of pharmaceuticals. (Madadi-Kandjani & Passalacqua, 2015). Besides doing experiments for 

describing the aerosol dynamics and chemical reactions, numerical modelling also becomes a very useful tool to 

predict and describe the aerosol dynamic processes including nucleation, coagulation, condensation, etc. (Chan et 

al., 2006; Liffman, 1992; Qamar & Warnecke, 2007; Zhou & Chan, 2011). In different kinds of developed 

numerical models, the most popular ones are sectional method (Dergaoui et al., 2013; Gelbard, Fitzgerald, & 

Hoppel, 1998), the method of moment (Chan, Liu, & Chan, 2010; Liu, He, & Chan, 2011; McGraw, 1997; Yu & 

Chan, 2015; Yu et al., 2015), and Monte Carlo method (Fede, Simonin, & Villedieu, 2015; He et al., 2015; Zhang 

& You, 2015). 

 

Sectional method (SM) is a kind of discrete aerosol size distribution approach. In a sectional representation, 

the size of the particles is divided into a certain number of sections and all the particles in one section have the 

same component composition (Chen, Lin, & Yu, 2014; Lu, 2005). While in the method of moments (MOM), the 

governing equation of the particles is transformed into a set of ordinary differential equations regarding the 

moments (Settumba & Garrick, 2004). Both of the SM and MOM are deterministic methods, and are effective 

tools to describe or predict the evolution of aerosol particle size distribution, and technically easy to be coupled 

with Eulerian-Eulerian models of multiphase flows (Vlieghe et al., 2016; Zhang & You, 2015). However, these 

two methods have their own advantages and disadvantages in accuracy and efficiency (Wei, 2013; Chen et al., 

2014), for example, SM tends to be more accurate, however the sectional representations may lead to complicated 

algorithms; MOM is relatively efficient, but the main difficulty is to obtain the closure of the moment equations. 

Some researchers (Lee, Chen, & Gieseke, 1984; Pratsinis, 1988) achieved the closure of the moment equations 

by making a prior assumption of the initial form of the particle size distribution (PSD), and some other researchers 

have developed different methods to realize the closure of the moment equations without prior requirement for 

PSD (Chan et al., 2010; Frenklach, 2002; Yu & Chan, 2015; Yu, Lin, & Chan, 2008).  

 

Besides MOM and SM, Monte Carlo (MC) method arises remarkably because of its advantage of stochastic 

characteristics (Hussain, Kumar, & Tsotsas, 2015; Kruis et al., 2012; Sun, Axelbaum, & Huertas, 2004). MC 



 

 
 

method is a stochastic algorithm which is based on probabilities of different outcomes in a process which could 

not be easily predicted because of its randomness. Instead of solving directly the general dynamic equation, MC 

method imitates the formation, movement and dynamic behaviors of simulation particles based on the happening 

probabilities of these behaviors (Bird, 1976; Liu & Chan, 2016).  

 

Metropolis and Ulam (1949) first proposed MC method applying the laws of probability and statistics to the 

natural sciences. Bird (Bird, 1963, 1976, 1994) developed the direct simulation Monte Carlo (DSMC) method for 

modeling rarefied gas flows. Different MC methods have been proposed to study the aerosol dynamics, which can 

be generally classified into time-driven MC method (Liffman, 1992; Liu & Chan, 2017b) and event-driven MC 

method (Mendoza-Coto, Díaz-Méndez, & Pupillo, 2016; Zhao & Zheng, 2009) with respect to the advancement 

method of the algorithm, or constant-number MC method (Lin, Lee, & Matsoukas, 2002; Liu & Chan, 2016) and 

constant-volume MC method (Yamakov, 2016; Zhao & Zheng, 2009) with respect to the variation of 

computational domain. Kostoglou and Konstandopoulos (2001) identified the characteristics of different MC 

approaches and classifications. Weighted MC methods (Boyd, 1996; Liu & Chan, 2017a; Zhao, Kruis, & Zheng, 

2010) have also been proposed to increase the resolution and efficiency of MC method. 

 

Since MC methods simulate directly the dynamic behavior of particles, it can approximate the population 

balance equation (PBE) solution through a large number of random samplings from the particle system. The 

stochastic nature of the MC method adapts itself naturally to the stochastic processes. It is also relatively simple 

to implement MC algorithm in multi-dimensional, multi-scale, and polydispersed systems (Xu et al., 2014). 

Kostoglou & Konstandopoulos (2001) and Kostoglou, Konstandopoulos & Friedlander (2006) successfully used 

MC method in solving bivariate coagulation equation. Generally, a classical MC simulation consists of the 

following steps： 

1. Define a probabilistic process which can describe the studied problem; 

2. Generate inputs randomly from the known probability distribution over the computational domain; 

3. Perform computation on the established model to get the random solutions; and 

4. Repeat the simulation and average the results. 

 

Compared with other methods, MC methods are becoming more and more preferred, because of the 

following advantages (Wei & Kruis, 2013): 

a).  The stochastic nature of MC makes it ideally suitable to deal with the stochastic event; 

b).  MC method can solve the closure problem of general dynamic equation (GDE); 

c).   Each simulation particle can have its unique size, composition and morphology, i.e., any information 

about the particles can be obtained; and 

d).  It is simple and robust to code numerically. 

 



 

 
 

In MC methods, simulation particles are used to represent the large number of real particles, and thus 

introducing the notion of “weighted simulation particles”. In previous studies, the same weight for different 

simulation particles was used (Boyd, 1996; Liffman, 1992; Fox, 2003; Smith & Matsoukas, 1998; Zhao, Kruis, & 

Zheng, 2010). In order to reduce the statistical noise, Zhao et al. (Zhao & Zheng, 2011; Zhao, Zheng, & Xu, 2005b) 

developed a differentially weighted Monte Carlo method, which proves to be efficient and practical for simulating 

the coagulation process of aerosol particles. While deterministic method is more efficient for simulating the 

nucleation and condensation processes, in order to take advantage of both stochastic and deterministic methods, 

Zhou et al. (2014) and Liu and Chan (2017a) have successfully combined stochastic and deterministic methods 

by adopting the operator splitting technique. In the present study, a differentially weighted operator splitting Monte 

Carlo (DWOSMC) method coupling the operator splitting technique and the differentially weighted Monte Carlo 

method is proposed and validated through complex aerosol dynamic processes. 

2. Methodology 

2.1 General Dynamics Equation 

In the past several decades, many researchers in aerosol science have introduced all kinds of ideas and 

concepts to describe the behavior of aerosol particles. The dynamic behaviors and the properties of the aerosol 

particles are usually described by a population balance equation (PBE) (Housiadas & Drossinos, 2005), which is 

also known as the general dynamic equation (GDE) (Friedlander, 2000), as is expressed in Eq. (1), 

∂n
∂t

+∇∙nu⃗ =∇∙D∇n+ [
∂n
∂t
]

nuc1
+ [

∂n
∂t
]

coag
+ [

∂n
∂t
]

cond
 (1) 

where n is the size distribution function of the particles, u⃗   is the velocity of the gas, and D is the diffusion 

coefficient. 

 

If the effects of convection and diffusion are not considered, Eq. (1) becomes, 

∂n
∂t

= [
∂n
∂t
]

nuc1
+ [

∂n
∂t
]

coag
+ [

∂n
∂t
]

cond
 (2) 

 

2.1.1 Nucleation 

Nucleation process refers to the process that the saturated vapours convert into particles of a critical size, v0. 

Thus the number density of other particles (volume larger than v0) does not change due to the nucleation process, 

and the nucleation process contributes to the variation of particle number concentration and the total particle 

volume fraction due to the production of new particles. The particle number concentration change due to 

nucleation is (Kalani & Christofides, 2002), 

[
∂n
∂t
]

nuc1
= 𝛿v0(v)J0(t) (3) 

 



 

 
 

The nucleation kernel, J0(t) describes the rate of formation of particles with volume, v0. The 𝛿v0(v) is the 

standard Dirac function, 𝛿v0(v) = 0, (v ≠ v0). 

 

In the present study, the new generated particles have the same volume of v0, which is the initial volume of 

the particles, and are sorted into the weight of the corresponding simulation particle i which represents the real 

particles with volume v0, 

wi
'  = wi + J0(t)δt (4) 

where wi
'  and  wi  represent the weight of simulation particle, i, after and before the nucleation event, 

respectively, δt refers to one time-step. The definition of  wi is described in Section 2.3. 

2.1.2 Coagulation 

Coagulation process refers to that two particles collide and combine with each other to form a new bigger 

particle, it is described by the famous Smoluchowski’s equation, which includes two terms and is expressed as 

Eq. (5) (Seigneur et al., 1986; Wei, 2016). The coagulation kernel, K(v, ṽ) describes the rate of particles with 

volume, v coagulating with particles with volume, ṽ. In different aerosol regimes, K(v, ṽ) can be a constant value 

or a value that is dependent on the volume of particles.  

     [
∂n
∂t
]

coag
=

1
2
∫ K

v

0
(v,ṽ)n(ṽ)n(v-ṽ)dṽ−∫ K

∞

0
(v,ṽ)n(ṽ)n(ṽ)dṽ (5) 

 

For the free molecule regime (where the diameter of particles is smaller than the mean free path of air), 

K(v, ṽ) is expressed as Eq. (6) (Zhou et al., 2014), 

K(v, ṽ) = (
6
π
)2/3(

πkBTK

2ρ
)
1/2

(
1
v
+

1
ṽ

)
1/2

(v1/3 + ṽ1/3)
2
 (6) 

The treatment of coagulation event in the present study is described in Section 2.3. 

 

2.1.3 Condensation 

Condensation process is the reverse process of evaporation, and the condensation rate, I0(v,t) is usually 

related to the surface area of the particles. Theoretically, the total particle number does not change due to the 

condensation process, while the size of all of the particles will be larger; therefore, the particle size distribution 

will change due to condensation process.  

The change in particle size distribution due to condensation event (Ramabhadran, Peterson, & Seinfeld, 1976) 

is, 

[
∂n(v,t)

∂t
]

cond
= −

∂(I0n)
∂v

(v,t) (7) 

 

 



 

 
 

In the treatment of condensation event in the present study, the weights of the simulation particles remain 

the same value, which means condensation event does not change the total particle number, while the volume of 

simulation particle i will change accordingly as follows, 

dvi

dt
= I(v) (8) 

where vi represents the volume of simulation particle, i. 

 

2.2 Operator splitting method 

As can be seen in Eq. (2), it is a complicated equation which contains different processes, while an applicable 

strategy to deal with such complicated problems is to “divide and conquer”. A rather successful approach in this 

spirit is an operator splitting technique. Operator splitting technique can separate the total process into multiple 

steps. It firstly solves different sub-processes and then combine the results (Carrayrou, Mosé, & Behra, 2004; 

McLachlan & Quispel, 2002), respectively. The second-order Strang splitting method (McLachlan & Quispel, 

2002) is described by Eq. (9), 

exp(δtX)=exp (
1
2

δtX2) exp(δtX1)exp (
1
2

δtX2)+𝒪(δt3) (9) 

where X refers to the total process, X1 and X2 refer to two different sub-processes respectively, δt refers to one-

time step. 

 

In the present study, X refers to the total aerosol dynamic process, X1 refers to coagulation process, which is 

modelled by the stochastic method, X2 refers to nucleation and condensation processes, which are solved by 

deterministic integration method. As X2 includes two processes (i.e., nucleation and condensation processes),     

Eq. (9) becomes, 

exp(δtX)=exp (
1
2

δtXnucl) exp (
1
2

δtXcond) exp(δtXcoag)exp (
1
2

δtXcond) exp (
1
2

δtXnucl)+𝒪(δt3) (10) 

 

2.3 Differentially weighted Monte Carlo (DWMC) scheme 

Because of its statistical character, the computational time consumption and accuracy of using Monte Carlo 

method are all related to the number of simulation particles (Filippov, Markus, & Roth, 1999; Maisels, Kruis, & 

Fissan, 2004). If high accuracy is needed for the simulation, Monte Carlo method usually has quite high 

requirement on computer memories and high computational time consumption. The concept of weight (Zhao et 

al., 2010) is widely used by Monte Carlo method to reduce the computational work and to resolve the conflict 

between the large amount of real particles and the limitation of computer capacity and central processing unit 

speed. The time-driven constant number differentially weighted Monte Carlo (DWMC) method developed by 

Zhao et al. (2005) is adopted herein. In this method, every simulation particle for calculation is weighted 

differentially with a number of real particles, which is the weight of the simulation particle, wi (i = 0, 1, 2, 3...n), 

where n is the simulation particle number.  



 

 
 

This proposed DWMC method is prominent for handling of the coagulation process. The occurrence 

probability of coagulation event on simulation particle, i within δt and V is, 

Pi = 1−exp(−VCiδt/2) (11) 

where V is the volume of simulation system, δt is one time-step and Ci is the coagulation rate of simulation 

particle, i based on the probabilistic coagulation rule, and is described as,  

Ci=
1

V2 ∑ Kij


N

j=1,j≠i

 

where N is the total number of simulation particles, and Kij
  is the normalized coagulation kernel for particle, i 

and particle, j ,  

Kij
 =2Kijwjmax(wi,wj)/(wi+wj) 

Coagulation event will take place on simulation particle, i if a generated random number from a uniform 

distribution between 0 and 1, r1 is less than Pi, and the choice of a pair particle, j is based on the acceptance-

rejection method: the coagulation partner particle, j is decided if the following condition is satisfied, 

r2≤ Kij
 /max(Kmn

 )|
∀m,∀n (12) 

where r2 is a generated random number. The condition in Eq. (12) is checked until a particle j is chosen. 

 

When two simulation particles, i and j, have been selected to coagulate with each other, the previous particles 

are substituted by two new weighted simulation particles, which are also denoted as i and j, while the properties 

of these particles are changed. The calculations are formulated as the following equations (Zhao, Kruis, &Zheng, 

2009): 

If wi=wj, {
wi

' = wi 2;vi
' =vi+vj;⁄

wj
' = wj 2;⁄ vj

' =vi+vj;
 (13a)  

If wi≠wj, {
wi

' =max(wi,wj)-min(wi,wj);vi
'=vm|wm=max(wi,wj)⁡

;

wj
' =min(wi,wj);vj

'=vi+vj;                                       
 (13b) 

where wi
' ,  wj

' , vi
'  and vj

'  represent the weight or the volume of the new created simulation particles, i and j after 

the coagulation event.  

 

2.4 Differentially weighted operator splitting Monte Carlo (DWOSMC) method 

In the present study, a differentially weighted operator splitting Monte Carlo (DWOSMC) method is 

proposed and developed, using operator splitting technique to combine stochastic and deterministic methods, 

which makes the calculation more flexible and efficient. In this DWOSMC method, the stochastic Monte Carlo 

method is used for handling the coagulation process, while the deterministic integration method is utilised for 

deterministic processes (i.e., nucleation and condensation, etc.). 



 

 
 

 

Fig. 1  Flowchart of DWOSMC algorithm (Liu & Chan, 2016).  

Fig. 1 shows the flowchart of the full algorithm of DWOSMC method. The second order operator splitting 

in Eq. (10) is shown. Specifically, the full algorithm is as follows: 
 

Step 1.  Initialization. At the very beginning of the numerical simulation, i.e. when the integration time t=0, 

the properties (volume, diameter, weight, and number density etc.) of the simulation particles are initialized and 

stored in arrays.  
 

Step 2.  Generating time-step, δt. In the simulation process, the choice of an appropriate time step is vital. 

It is expected to be small enough to ensure that the successively happened coagulation events are uncoupled and 

that the integration of other physical processes is accurate. The time scale for different aerosol dynamic processes 

can be determined as the following: 
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Nucleating particles (δt/2) 

Condensation surface reaction (δt/2) 

Coagulation simulation  

Time-step δt 

Nucleating particles (δt/2) 
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End 

Adjust δt 

Xd 

Updating particle properties 

using DWMC method (δt) 
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(i) Coagulation 

For all of the simulation particles in the system, the time-step for the coagulation event should be determined 

as (Zhao et al., 2010), 

∆tcoag = min(V/∑ ∑ Kij


N

j=1, j≠i

N

i=1

) 

where V is the volume of simulation system, N is the total number of simulation particles, , and Kij
  is the 

normalized coagulation kernel for particle, i and particle, j,  

Kij
  = 2Kijwjmax(wi,wj)/(wi+wj) 

(ii) Nucleation 

The time-step for the nucleation event should be determined by, 

∆tnucl = 1/(v0J0(t)) 

where J0(t) is the nucleation kernel. v0 is the volume of the new created particles. 

(iii) Condensation 

The time-step for the condensation event should be determined by (Debry, Sportisse, & Jourdain, 2003;     

Liu & Chan, 2017a), 

∆tcond= vi/I0(v,t) 

where vi is the volume of the particle, i, I0(v,t) is the condensation kernel. 

 
In order to ensure the accuracy of the numerical simulation, the adopted time-step value, δt should be smaller 

than the minimum value of all the above time scales (Debry et al., 2003). δt is calculated as follows, 

δt = α min(∆tcoag, ∆tnucl, ∆tcond) 

where α is constant with value of 0.01(Xu, Zhao, & Zheng, 2014; Zhao et al., 2009) during the calculation in order 

to ensure an accurate integration of all aerosol dynamic processes. 
 

Step 3.  Handling the aerosol dynamic processes. The second-order Strang splitting method is used herein. 

For nucleation and condensation processes, splitting the time-step into two parts, the simulation for nucleation 

and condensation processes is firstly calculated within the first δt/2, and then handling the coagulation process 

for the time-step, δt. At last, nucleation and condensation processes are then calculated within the second δt/2. 

The integration procedure in Eq. (10) from tm-1 to tm (t is the total calculation time, m is the step number, and tm = 

tm-1+δt) is as follows,  

(i) Integration of nucleation based on Eq. (4) for a time period of δt/2; 

(ii) Integration of condensation based on Eq.(8) for a time period of δt/2; 

(iii) Integration of coagulation based on Eqs. (11) to (13) for a time period of δt; 

(iv) Integration of condensation based on Eq. (8) for a time period of δt/2; and 

(v) Integration of nucleation based on Eq. (4) for a time period of δt/2;  



 

 
 

Step 4.  Updating the properties of the simulation particles, and obtain the information of the particles at 

time, tm. 
 

Step 5.  Repeating Steps 2 to 4 if the accumulated simulation time, tm is smaller than tstop, otherwise, the 

current Monte Carlo simulation is finished and the next Monte Carlo simulation is then started. Eight Monte Carlo 

repetitions are used and the average results are obtained to reduce the stochastic errors. 

 

3. Description of the studied cases 

This developed DWOSMC method is validated by both corresponding analytical solutions (Maisels et al., 

2004; Palaniswaamy & Loyalka, 2008; Ramabhadran et al., 1976) and a sectional method (Prakash, Bapat, & 

Zachariah, 2003), and three different test problems are considered in the present study, i.e., simultaneous 

coagulation and condensation processes, simultaneous nucleation and coagulation processes, and simultaneous 

nucleation, coagulation and condensation processes. For every test problem, the DWOSMC method is initially 

validated by the corresponding analytical solutions, and then the results obtained from DWOSMC method are 

compared with the sectional method for more complex studied cases. The studied cases are described as the 

following Sections 3.1 to 3.3. 

 

In the present study, the sectional method adopted for the validation of DWOSMC which was developed by 

Prakash et al. (2003) based on the sectional method developed by Gelbard et al. (1980) and the coagulation nodal 

method developed by Lehtinen and Zachariah (2001). In this sectional method, particles only exit at discretized 

nodes, and by limiting the number of the particle parameters, this model makes the computational work quite 

simple and computational time-saving. 

Specifically, the GDE at node k is given by, 

∂nk

∂t
= [

∂nk

∂t
]

nuc1
+ [

∂nk

∂t
]

coag
+ [

∂nk

∂t
]

cond
 (14) 

The population change due to nucleation, coagulation and condensation are respectively given by, 

[
∂nk

∂t
]

nuc1
= ξkJk(t) (15) 

[
∂nk

∂t
]

coag
=

1
2
∑ χijk
i=2
j=2

Ki,jninj−nk∑Ki,k
i=2

ni (16) 

[
∂nk

∂t
]

cond
=

v1

vk − vk-1
K1,k-1(n1 − n1,k-1

s )nk-1 −
v1

vk+1 − vk
K1,k(n1 − n1,k

s )nk (17) 

 
where ξk and χijk are expressed as, 



 

 
 

ξk =

{
 
 

 
 

v0

vk
;        if  vk-1 ≤ v0 ≤ vk ,

v0

v2
;        if  v0 ≤ v1,             

0;           otherwise.          

 χijk =

{
 
 

 
 

vk+1 − (vi + vj)

vk+1 − vk
;       if vk ≤ vi + vj ≤ vk+1 ,

(vi + vj) − vk-1

vk − vk-1
;       if vk-1 ≤ vi + vj ≤ vk ,

0;                                otherwise.

 

 

More detailed information about this method could be referred to Prakash et al. (2003). In the present study, 

50 nodes are used in the programming. 

3.1 Simultaneous coagulation and condensation processes 

3.1.1  Constant rate coagulation and linear rate condensation case 

For constant rate coagulation and linear rate condensation processes, the analytical solution (Ramabhadran 

et al., 1976) is available, and the parameters and initial conditions given by Palaniswaamy and Loyalka (2008) 

are selected as Case I for the numerical validation. When the coagulation kernel, K and the condensation kernel, 

I are given by K = K0 and I = σ1v, respectively, the analytical solutions of the particle number concentration, 

N(t) and the total particle volume concentration, ∅(t) are derived as, 

N(t) =
N0

1 + K0N0t/2
 (18) 

∅(t) = ∅0[exp(σ1t)] (19) 

where N0 represent the initial particle number concentration, and ∅0  represent the initial total volume 

concentration of the particles.Specifically, K0 and σ1 are set as 5×10−6 m3/s and 2×10−2/s, respectively. 

 

3.1.2  Free molecule regime rate coagulation and linear rate condensation case 

Case II considers simultaneous free molecule regime rate coagulation and linear rate condensation process, 

where the coagulation kernel is given by Eq. (6) and condensation kernel is given by I = σ1v (σ1 = 10). The 

solutions of a sectional method from (Prakash et al., 2003) are also given to validate this DWOSMC method. 

 

3.2 Simultaneous Nucleation and Coagulation Processes 

3.2.1  Constant rate coagulation and constant rate nucleation case 

For constant rate nucleation and constant rate coagulation processes, the analytical solution (Maisels et al., 

2004) is available, and the parameters and initial conditions given by Maiselset al. (2004) are selected as Case III 

for the numerical validation. When the coagulation kernel, K and nucleation kernels, J are given by K = A and 

J= J0, respectively, the analytical solutions of N/N0 and V/V0 are derived as, 

N
N0

=B
1+B tanh(τ 2⁄ )

tanh(τ 2⁄ ) +B
 (20) 



 

 
 

V
V0

=1+
1
2

Bτ (21) 

where 02 = t AJ , 0 01/ 2 /=B N J A .Specifically, A and J0are set as 4×10−28 m3/s and 1.91×1028/s, respectively. 

 

3.2.2  Free molecule regime rate coagulation and constant rate nucleation case 

Case IV considers free molecule regime rate coagulation and constant rate nucleation processes, where the 

coagulation kernel is given by Eq. (6) and the nucleation kernel is given by J = J0 (J0 = 1×1020/s). The solutions 

of the sectional method (Prakash et al., 2003) are also given to validate this DWOSMC method. 

 

3.3 Simultaneous Nucleation, Coagulation and Condensation Processes 

3.3.1  Constant rate nucleation, constant rate coagulation and constant rate condensation case 

For constant rate nucleation, constant rate coagulation and constant rate condensation processes, the 

analytical solution is available, and the parameters and initial conditions given by Maiselset et al. (2004) are 

selected as Case V for the numerical validation. When the nucleation, coagulation and condensation kernels, J, K 

and I are given by J= J0, K = A and I=D, respectively, the analytical solutions of N/N0 and V/V0 are derived as, 

   
N
N0

=B
1+B tanh(τ 2⁄ )

tanh(τ 2⁄ )+B
 (22) 

V
V0

=1+(
1
2

B+E)τ+2Eln(
1+exp(-τ)

2
+

1-exp(-τ)
2B

) (23) 

where τ = t√2AJ0 , B = 1/N0√2J0/A , E = DC0/AN0 . Specifically, A , J0, C0 and D are set as 4×10−28 m3/s, 

1.91×1028/s, 1.91×1028/s and 2×10−28 m3/s, respectively. 
 

3.3.2  Constant rate nucleation, and free molecule regime rate coagulation and linear rate condensation case 

Case VI considers constant rate nucleation, and free molecule regime rate coagulation and linear rate 

condensation.The coagulation kernel is given by Eq. (6), the nucleation kernel is given by J = J0 = 1×1020/s, and 

condensation kernel is given by I = σ1v (σ1= 0.5). The solutions of the sectional method (Prakash et al., 2003) 

are also given to validate this DWOSMC method. The present studied cases are summarized in Table 1. 

 

 

 

 

 

 

 

 



 

 
 

Table 1  A summary of the present studied cases. 
 

Aerosol Dynamic Processes Cases Details 

Coagulation + condensation 

I 
Constant rate coagulation K = K0; 

and linear rate condensation I = σ1v 

II 
Free molecule regime rate coagulation Eq. (6); 

and linear rate condensation I = σ1v 

Nucleation + coagulation 

III 
Constant rate nucleation J = J0; 

and constant rate coagulation K = A 

IV 
Constant rate nucleation J = J0;  

Free molecule regime rate coagulation Eq. (6) 

and constant rate nucleation J = J0 

Nucleation + coagulation + 

condensation 

V 

Constant rate nucleation J= J0;  

constant rate coagulation K = A; 

 and constant rate condensation I=D 

VI 

Constant rate nucleation J = J0;  

free molecule regime rate coagulation Eq. (6); 

 and linear rate condensation I = σ1v 

 

3.4 Assessment of the numerical simulation results 

To assess the accuracy of this proposed and developed DWOSMC method, the relative error ε is utilized in 

the analysis of the simulation results. where ε is expressed as Eq. (24): 

ε=|A(t)-A0(t)|/A0(t) (24) 

where A(t) and A0(t) are the values obtained via the DWOSMC method and corresponding reference method at 

time t, respectively. The maximum relative error εmax is calculated by taking the maximum value of the relative 

error in Eq. (24) 

4. Results and Discussion 

4.1 Simultaneous Coagulation and Condensation Processes 

4.1.1  Constant rate coagulation and linear rate condensation case 

For studied Case I, the initial particle number concentration, N0 and initial total particle volume, V0 are     

105 and 10−17 m3, respectively. The simulation time for Case I is tstop = 200 s. Different numbers of simulation 

particles (i.e., Np = 100, 500, 1000 and 2000) are used for the numerical simulation (the same simulation particles 

are used for the following studied Cases II to VI in the Sections 4.1.2 to 4.3.2). 

 

In Case I, a non-weighted MC method (Liffman, 1992; Zhao et al., 2010) is used to show the computational 

efficiency and accuracy of this DWOSMC method. Generally speaking, the particle number concentration, N0 



 

 
 

decreases over time while the total particle volume concentration, V0 increases over time for coagulation and 

condensation processes occurring simultaneously (Palaniswaamy & Loyalka, 2008), as is shown in Fig. 2(a) and 

2(b). From Eqs. (18) and (19), it can be known that the particle number concentration changes due to the 

coagulation process, while the total particle volume changes due to the condensation process. Fig. 2(a) and 2(b) 

show that the simulation results obtained from DWOSMC method have excellent agreement with the analytical 

solutions even when only 100 simulation particles are used.  

  

(a) (b) 

Fig. 2  Evolution of (a) the particle number concentration, N and (b) the total particle volume, V from 
non-weighted MC method, DWOSMC method and analytical solutions (Ramabhadran et al., 1976) for 
simultaneous constant rate coagulation and linear rate condensation in studied Case I. 
 

In Fig. 3, the relative error (%) of the particle number concentration and the normalized computational time, 

τ = t/t100, where t100 is the computational time when 100 simulation particles are used for Case I. It can be found 

that with the increase of the number of simulation particles, the relative error of the simulation results obtained 

from the DWOSMC method decreases. When the number of simulation particles reaches 1000, the relative error 

is basically within 1%, and the relative error obtained from the DWOSMC is much smaller with more even 

distribution than the non-weighted MC method. More importantly, the computational time of this proposed 

DWOSMC method is much smaller than the non-weighted MC method. When 1000 simulation particles are used, 

the computational time of DWOSMC method is less than one fifth of the non-weighted MC method. 



 

 
 

 

Fig. 3  Evolution of the relative error (%) for the particle number concentration, N obtained from the non-
weighted MC method and DWOSMC method when compared with analytical solution (Ramabhadran et 
al., 1976) for studied Case I, and corresponding normalized computational time, τ. 

 

A very satisfactory agreement on the variation of particle diameter distribution with time obtained from 

DWOSMC (i.e., Np = 2000) and the sectional method (Prakash et al., 2003) for Case I is shown in  

Fig. 4. At the beginning of the numerical calculation, the initial diameter of all the particles is set to be the 

same value. It can be seen from  

Fig. 4 that the distribution function approximately evolves into a lognormal form and the result obtained 

from DWOSMC is consistent with the sectional method. 

 

 

 

 

 

 

 
Fig. 4  Evolution of the particle diameter distribution obtained from DWOSMC method (scattered points) 
and sectional method (Prakash et al., 2003) (solid line) for simultaneous constant rate coagulation and 
linear rate condensation case processes in the studied Case I. 
 

 



 

 
 

 

4.1.2  Free molecule regime rate coagulation and linear rate condensation case 

For studied Case II, the initial particle number concentration, N0 and initial total particle volume, V0 are 

1×1018 and 1.77×10−9 m3, respectively. The simulation time for Case II is tstop = 10 ms. The evolutions of particle 

number concentration, N, particle average diameter, d, total particle volume concentration, V, and the second 

moment, M2, as a function of time for studied Case II are shown in Fig. 5(a) to 5(d), respectively, for simultaneous 

free molecule regime rate coagulation and linear rate condensation processes. The simulation results of a sectional 

method (Prakash et al., 2003) are used as a reference.  

 

  

(a) (b) 

  

(c) (d) 

Fig. 5  Evolutions of (a) the particle number concentration, N, (b) the average particle diameter, d, (c) the 
total particle volume concentration, V, and(d) the second moment, M2 obtained from DWOSMC method 
and sectional method (Prakash et al., 2003) for simultaneous free molecule regime rate coagulation and 
linear rate condensation processes in studied Case II.  
 

From Fig. 5(a), it can be found that the particle number concentration decreases over time. It is 

because that the coagulation process makes the number of particles less, while the condensation process 

does not change the number of the particles. The numerical simulation results obtained from DWOSMC 



 

 
 

method agree well with the sectional method even when only 100 simulation particles are used. For the 

evolutions of average particle diameter and the total particle volume, there are significant differences 

between the simulation results of DWOSMC and sectional method when only 100 simulation particles are 

used as shown in Fig. 5(b) and 5(c), respectively. While when the simulation particle number reaches 500 

or 1000, the simulation results of DWOSMC method have good agreement with the sectional method. As 

the coagulation process does not change the total particle volume, the total particle volume shows 

approximate linear relationship over time because the condensation kernel is linear rate. As both of the 

coagulation and condensation processes contribute to the increase of the particle diameter, the average 

particle diameter increases quite fast and nonlinearly over time. For the evolutions of the second moment, 

there are relatively larger errors than other parameters. But it can be found that as the number of simulation 

particles increases, the relative error reduces. The relative error is rather small when 2000 simulation 

particles are used.  
 

4.2 Simultaneous Nucleation and Coagulation Processes 

4.2.1  Constant rate nucleation and constant rate coagulation case 

For studied Case III, the initial particle number concentration, N0 and initial total particle volume, V0 are 

1.91×1023 and 10−4 m3, respectively. The simulation time for Case III is tstop = 45 ms. The numerical simulation 

results of N/N0 and V/V0 are shown in Fig. 6(a) and 6(b), respectively. It can be found that the results show 

approximately linear relationship within a short period of time. The numerical simulation results obtained from 

DWOSMC method are consistent with the analytical solutions. When the simulation particle number reaches 500, 

both of the evolutions for the particle number concentration and the total particle volume show very few 

fluctuations and relative errors. 

 

  

(a) (b) 

Fig. 6  Evolutions of (a) N/N0 and (b) V/V0 obtained from DWOSMC method and analytical solutions 
(Maisels et al., 2004) for simultaneous constant rate nucleation and constant rate coagulation processes in 
studied Case III. 



 

 
 

 

4.2.2  Free molecule regime rate coagulation and constant rate nucleation case 

For studied Case IV, the initial particle number concentration, N0 and initial total particle volume,V0 are 

1×1018 and 1.77×10−9 m3, respectively. The simulation time for Case IV is tstop = 4.5 ms. The evolutions of particle 

number concentration, N, particle average diameter, d, total particle volume concentration, V, and the second 

moment, M2, as a function of time for Case IV are shown in Fig. 7(a) to 7(d), respectively, for simultaneous free 

molecule regime rate coagulation and constant rate nucleation processes.  

 

  

(a) (b) 

  

(c) (d) 

Fig. 7  Evolutions of (a) the particle number concentration, N, (b) the particle average diameter, d, (c) the 
total particle volume concentration, V, and(d) the second moment, M2 obtained from DWOSMC method 
and sectional method (Prakash et al., 2003) for free molecule regime rate coagulation and constant rate 
nucleation processes in studied Case IV. 
 

From Fig. 7(a) and 7(b), it can be found that the coagulation process dominates the whole process, because 

the particle number concentration decreases and the average particle diameter increases over time. But for the 

nucleation process, the particle number concentration increases and the average particle diameter decreases over 

time. Hence, the coagulation process completely eliminates the effect of the nucleation process. While from Fig. 



 

 
 

7(c) and 7(d), the effect of nucleation process can be clearly found as the total particle volume and the second 

moment increase over time. From Fig. 7(a) to 7(d), it can also be found that when 1000 simulation particles are 

used, the numerical simulation results obtained from DWOSMC method agree well with the sectional method 

(Prakash et al., 2003), with very few fluctuations and errors.  
 

4.3 Simultaneous Nucleation, Coagulation and Condensation Processes 

4.3.1  Constant rate nucleation, constant rate coagulation and constant rate condensation case 

For studied Case V, the initial particle number concentration, N0 and initial total particle volume, V0 are 

1.91×1023 and 10−4 m3, respectively. The simulation time for Case V is tstop = 45 ms. The numerical simulation 

results of N/N0 and V/V0 are shown in Fig. 8(a) and 8(b), respectively. Similar to Case III, both of the evolutions 

of N/N0 and V/V0 exhibit nearly linear relationship within a very short period of time. Even when only 100 

simulation particles are used, the numerical simulation results remain very high consistency with the analytical 

solutions for constant rate nucleation, coagulation and condensation processes. 

 

  

(a) (b) 

Fig. 8   Evolutions of (a) N/N0 and (b) V/V0 obtained from DWOSMC method and analytical solutions 
(Maisels et al., 2004) for simultaneous constant rate nucleation, constant rate coagulation and constant rate 
condensation processes in studied Case V. 
 

4.3.2  Constant rate nucleation, free molecule regime rate coagulation and linear rate condensation case 

For studied Case VI, the initial particle number concentration N0 and initial total particle volume V0 are 

1×1018 and 1.77×10−9 m3, respectively. The simulation time for Case VI is tstop = 3 ms. The evolutions of the 

particle number concentration, N, the average particle diameter, d, the total particle volume concentration, V, and 

the second moment, M2, as a function of time for Case VI are shown in Fig. 9(a) to 9(d), respectively, for 

simultaneous constant rate nucleation, free molecule regime rate coagulation and linear rate condensation 

processes.  

 

Fig. 9(a) to 9(d) show that for the particle number concentration, N, the average particle diameter, d, the total 



 

 
 

particle volume, V, and the second moment of particles, M2, the numerical simulation results of DWOSMC method 

agree well with the sectional method (Prakash et al., 2003) when 1000 to 2000 simulation particles are used.  

 

  

(a) (b) 

  

(c) (d) 

Fig. 9  Evolutions of (a) the particle number concentration, N, (b) the particle average diameter, d,         
(c) the total particle volume concentration, V, and (d) the second moment, M2, obtained from DWOSMC 
method and sectional method (Prakash et al., 2003) for simultaneous constant rate nucleation, free molecule 
regime rate coagulation and linear rate condensation processes in studied Case VI. 
 

4.4 Computational Efficiency and Accuracy Analysis 

To further understand the computational efficiency and accuracy of this proposed and developed DWOSMC 

method, the maximum relative error for the particle number concentration and the total particle volume for 

different studied cases are shown in Tables 2 and 3. It can be clearly shown that, for the same case, the maximum 

relative error decreases when the number of simulation particles increases. For different studied cases, the more 

complicated the case is, the higher of the maximum relative error is. For constant rates in studied Cases III and V, 

the maximum relative errors are within 1% when only 500 simulation particles are used, while for other studied 

Cases IV and VI, more simulation particles are needed to reach the same accuracy.  

 



 

 
 

 
Table 2  The maximum relative error (%) of N for different cases using DWOSMC method compared with 
the analytical solutions or the sectional method. 

 

εmax(%) for N 

 Case 

Particle number Np 

100 500 1 000 2 000 

I 5.51 2.22 1.71 0.80 

II 8.22 2.33 1.51 1.00 

III 2.31 0.15 0.16 0.03 

IV 4.12 3.11 2.20 1.22 

V 0.40 0.32 0.26 0.20 

VI 5.53 3.22 2.21 2.00 

Note: Cases I, III and V are evaluated by the analytical solutions (Ramabhadran et al., 1976 and Maisels et al., 

2004), and Cases II, IV and VI are evaluated by the sectional method (Prakash et al., 2003). The maximum 

relative error (%) is calculated according to Eq. (24). 

 

Table 3  The maximum relative error (%) of V for different cases using DWOSMC method compared with 
the analytical solutions or the sectional method. 

 

εmax(%) for V 

Case 

Particle number Np 

100 500 1 000 2 000 

I 1.51 0.22 0.20 0.08 

II 1.20 0.27 0.15 0.10 

III 2.46 0.19 0.21 0.07 

IV 3.01 0.82 0.61 0.50 

V 0.63 0.50 0.41 0.32 

VI 3.20 1.52 0.61 0.58 

Note: Cases I, III and V are evaluated by the analytical solutions (Ramabhadran et al., 1976 and Maisels et al., 

2004), and Cases II, IV and VI are evaluated by the sectional method (Prakash et al., 2003). The maximum 

relative error (%) is calculated according to Eq. (24). 

 

For Tables 2 and 3, the numerical results show that the maximum relative errors obtained from the particle 

number concentration are commonly larger than those obtained from the total particle volume. For most of the 

cases, when the number of simulation particles reaches 2000, the maximum relative errors obtained from the 

particle number concentration are within 2%, while the maximum relative errors obtained from the total particle 

volume are within 1%. It is because the evolution of the particle number concentration is mainly due to the 

stochastic coagulation process, which is calculated by Monte Carlo method, which will bring some statistical 

errors. The evolution of the total particle volume is mainly due to the nucleation and condensation processes, 



 

 
 

which are calculated by deterministic method with much smaller errors. It also indicates that for most of the 

classical and typical studied cases used in the present study, 2000 simulation particles are good enough with small 

errors, which indicates that this proposed and validated (DWOSMC) method proves very high computational 

efficiency and accuracy. 

5. Conclusions 

 
A differentially weighted operator splitting Monte Carlo (DWOSMC) method is developed and validated by 

the corresponding analytical solutions and a sectional method through different classical and typical studied cases, 

including two cases for simultaneous coagulation and condensation processes in different regimes, two cases for 

simultaneous nucleation and coagulation processes in different regimes, and two cases for different simultaneous 

nucleation, coagulation and condensation processes. For the relatively simple cases, the numerical simulation 

results of DWOSMC method show very good consistency with the analytical solutions. For the complex cases, 

the numerical simulation results of DWOSMC method are also consistent with the results obtained from the 

sectional method. In some cases, only 500 simulation particles are good enough for obtaining the maximum 

relative error within 1%. Even in the most complex case in the present study, 2000 simulation particles are good 

enough for simulating the particle number concentration, the total particle volume concentration, the average 

particle diameter and the second moment of particles. This developed and validated DWOSMC method proves to 

have very high computational efficiency and accuracy, and has high potential for solving complex aerosol 

dynamic problems. 
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