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Abstract

In this paper, double-diffusive natural convection, studying Soret and Dufour
effects and viscous dissipation in a heated enclosure with an inner cold cylinder
filled with non-Newtonian Carreau fluid has been simulated by Finite Difference
Lattice Boltzmann Method (FDLBM). This study has been conducted for certain
pertinent parameters of Rayleigh number (Ra = 104 and 105), Carreau number (Cu
= 1, 10, and 20), Lewis number (Le=2.5, 5 and 10), Dufour parameter (Df=0, 1,
and 5), Soret parameter (Sr=0, 1, and 5), Eckert number (Ec=0, 1, and 10), the
Buoyancy ratio (N=-1, 0.1, 1), the radius of the inner cylinder (Rd = 0.1 L, 0.2 L,
0.3 L, and 0.4 L), the horizontal distance of the circular cylinder from the center of
the enclosure (Ω = -0.2 L, 0 and 0.2 L), the vertical distance of the circular cylinder
from the center of the enclosure (δ = -0.2 L, 0 and 0.2 L). Results indicate that the
increase in Rayleigh number enhances heat transfer for various studied parameters.
The increase in power-law index provokes heat and mass transfer to drop gradually.
The increase in the Lewis number declines the mass transfer considerably while
causes heat transfer to drop marginally. The heat transfer increases with the rise
of the Dufour parameter and the mass transfer enhances as the Soret parameter
increases for different Rayleigh numbers. The augmentation of the buoyancy ratio
number enhances heat and mass transfer. The increase in Eckert number affects heat
and mass transfer; especially, at Ra = 105. The rise of Carreau number causes heat
and mass transfer to drop gradually. The movement of the center of the cylinder
from the bottom to the top side of the enclosure vertically (δ = -0.2 L, 0 and 0.2 L)
decreases heat and mass transfer significantly while the effect of power-law index
drops. The increase in the radius of the cylinder enhances heat and mass transfer.
The alteration of the center of the cylinder horizontally (Ω) to the left and right
sides enhance heat and mass transfer although this augmentation is different in
various power-law indexes.
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dissipation

1 Introduction

Analysis of natural convection in enclosures has been extensively conducted
using different numerical techniques and experiments because of its wide appli-
cations and interest in engineering e.g. nuclear energy, double pane windows,
heating and cooling of buildings, solar collectors, electronic cooling, and so
on. The wide range of studies into this topic has led to the natural convection
in a cavity to become a common benchmark among researchers in the field
of CFD (Computational Fluid Dynamics). It consists of a two-dimensional
cavity and the temperature of the heated section on the left is maintained
at a higher temperature and the right wall is held at a lower temperature.
The horizontal walls are considered to be adiabatic and the density variation
is approximated by the standard Boussinesq model. The natural convection
flow of a Newtonian fluid has been studied numerically by de Vahl Davis [1],
Quere and de Roquefort [2], Quere [3]. Many studies have conducted the ef-
fect of the presence of isothermal bodies inside the enclosure on the natural
convection phenomena and focused on the diverse body shapes, e.g. circular,
square and triangular cylinders. Kim et al. [4] carried out numerical calcula-
tions for natural convection induced by a temperature difference between a
cold outer square enclosure and a hot inner circular cylinder. They investi-
gated the effect of the inner cylinder location on the heat transfer and fluid
flow. Further, the location of the inner circular cylinder was changed verti-
cally along the center-line of square enclosure. Mehrizi et al. [5] investigated
a numerical study for steady-state, laminar natural convection in a horizontal
annulus between a heated triangular inner cylinder and cold elliptical outer
cylinder, using lattice Boltzmann method. Both inner and outer surfaces were
maintained at the constant temperature and air was the working fluid. Park
et al. [6] studied the natural convection induced by a temperature difference
between a cold outer square enclosure and two hot inner circular cylinders.
A two-dimensional solution for natural convection in an enclosure with inner
cylinders was obtained using an accurate and efficient immersed boundary
method. The immersed boundary method based on the finite volume method
was used to handle inner cylinders located at different vertical centerline posi-
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tions of the enclosure for different Rayleigh numbers. Mehrizi and Mohamad
[7] utilized Lattice Boltzmann method to simulate steady-state, laminar, free
convection in two-dimensional annuli between a heated triangular inner cylin-
der and elliptical outer cylinder. The study was performed for different incli-
nation angles of inner triangular and outer elliptical cylinders. Mun et al. [8]
conducted two-dimensional numerical simulations to investigate the natural
convection heat transfer induced by the temperature difference between cold
walls of the tilted square enclosure and a hot inner circular cylinder for dif-
ferent prandtl numbers. Seo et al. [9] conducted two-dimensional numerical
simulations for the natural convection phenomena in a cold square enclosure
with four hot inner circular cylinders. The immersed boundary method (IBM)
was used to capture the virtual wall boundary of the four inner cylinders
based on the finite volume method (FVM). Zhang et al. [10] investigated a
numerical study for steady-state natural convection in a cold outer square
enclosure containing a hot inner elliptic cylinder using the variational multi-
scale element free Galerkin method (VMEFG). In the cited studies, the fluids
have been assumed to be Newtonian fluids while most materials demonstrates
non-Newtonian behavior. Natural convection of non-Newtonian power-law flu-
ids and Bingham fluids in an enclosure recently have been studied by some
researchers [11-21]. However, natural convection of Carreau fluids in an en-
closure have not been considered thus far. Carreau fluid is a special sub-class
of non-Newtonian fluids in which follows the Carreau model [22]. This model
was introduced in 1972 and has been applied extensively up to date. Car-
reau models have been employed to simulate various chemicals, molten plas-
tics, slurries, paints, blood, etc. Some limited isothermal and non-isotermal
problems of Carreau fluids have been studied. Shamekhi and Sadeghy [23]
analyzed Lid-driven cavity flow of a purely-viscous non-Newtonian fluid obey-
ing Carreau-Yasuda rheological model numerically using the PIM meshfree
method combined with the Characteristic-Based Split-A algorithm. Results
were reported for the velocity and pressure profiles at Reynolds numbers as
high as 1000 for a non-Newtonian fluid obeying Carreau-Yasuda rheological
model. Bouteraa et al. [24] performed a linear and weakly nonlinear analysis
of convection in a layer of shear-thinning fluids between two horizontal plates
heated from below. The shear-thinning behaviour of the fluid was described by
the Carreau model. Shahsavari and McKinley [25] studied The flow of gener-
alized Newtonian fluids with a rate-dependent viscosity through fibrous media
with a focus on developing relationships for evaluating the effective fluid mobil-
ity. They conducted a numerical solution of the Cauchy momentum equation
with the Carreau or power-law constitutive equations for pressure-driven flow
in a fiber bed consisting of a periodic array of cylindrical fibers. Pantokratoras
[26] considered the flow of a non-Newtonian, Carreau fluid, directed normally
to a horizontal, stationary, circular cylinder. The problem was investigated
numerically using the commercial code ANSYS FLUENT with a very large
calculation domain in order that the flow could be considered unbounded.
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Lattice Boltzmann method (LBM) has been demonstrated to be a very ef-
fective mesoscopic numerical method to model a broad variety of complex
fluid flow phenomena [27-42]. This is because the main equation of the LBM
is hyperbolic and can be solved locally, explicitly, and efficiently on parallel
computers. However, the specific relation between the relaxation time and
the viscosity has caused LBM not to have the considerable success in non-
Newtonian fluid especially on energy equations. In this connection, Fu et al.
[43-44] proposed a new equation for the equilibrium distribution function,
modifying the LB model. Here, this equilibrium distribution function is altered
in different directions and nodes while the relaxation time is fixed. Indepen-
dency of the method to the relaxation time in contrast with common LBM
provokes the method to solve different non-Newtonian fluid energy equations
successfully as the method protects the positive points of LBM simultane-
ously. In addition, the validation of the method and its mesh independency
demonstrates that is more capable than conventional LBM. Huilgol and Ke-
fayati [45] derived the three dimensional equations of continuum mechanics
for this method and demonstrated that the theoretical development can be
applied to all fluids, whether they be Newtonian, or power law fluids, or vis-
coelastic and viscoplastic fluids. Following the study, Huilgol and Kefayati [46]
developed this method for the cartesian, cylindrical and spherical coordinates.
Kefayati [47] simulated double-diffusive natural convection with Soret and Du-
four effects in a square cavity filled with non-Newtonian power-law fluid by
FDLBM while entropy generations through fluid friction, heat transfer, and
mass transfer were analysed. Kefayati [48-49] analysed double diffusive natu-
ral convection and entropy generation of non-Newtonian power-law fluids in
an inclined porous cavity in the presence of Soret and Dufour parameters by
FDLBM. Kefayati and Huilgol [50] conducted a two-dimensional simulation of
steady mixed convection in a square enclosure with differentially heated side-
walls when the enclosure is filled with a Bingham fluid, using FDLBM. The
problem was solved by the Bingham model without any regularisations and
also by applying the regularised Papanatasiou model. Kefayati [51] simulated
double-diffusive natural convection, studying Soret and Dufour effects and vis-
cous dissipation in a square cavity filled with Bingham fluid by FDLBM. In
addition, entropy generations through fluid friction, heat transfer, and mass
transfer were studied. The problem was solved by applying the regularised
Papanastasiou model.

The main aim of this study is to simulate double diffusive natural convection
of Carreau fluid in a heated enclosure with an inner cold cylinder. The innova-
tion of this paper is studying heat and mass transfer in the presence of Soret
and Dufour and the viscous dissipation effect on Carreau fluid for the first
time. An innovative method based on LBM has been employed to study the
problem numerically. Moreover, it is endeavored to express the effects of differ-
ent parameters on heat and mass transfer. The obtained results are validated
with previous numerical investigations and the effects of the main parameters
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(Rayleigh number, Lewis number, buoyancy ratio number, Eckert number,
Carreau number, Soret parameter, and Dufour parameter) are researched.

2 Theoretical formulation

The geometry of the present problem is shown in Fig. 1. The temperature and
concentration of the enclosure walls have been considered to be maintained at
high temperature and concentration of TH and CH as the circular cylinder is
kept at low temperature and concentration of TC and CC . The lengths of the
enclosure sidewalls are L where the inner cylinder center is defined by (xc, yc)
and the radius of the cylinder is specified by Rd. The origin of Cartesian
coordinates is located in the center of the cavity as depicted in the Fig.1.
For the concentric cases, the cylinder center is fixed at (xc = 0, yc = 0) in
the center of the cavity. For the eccentric cases, the horizontal and vertical
distances from the center are defined by Ω and δ, respectively. The cavity is
filled with a Carreau fluid. The prandtl number is fixed at Pr=0.1. The Soret,
and Dufour parameters also have been considered. There is no heat generation,
chemical reactions, and thermal radiation. The flow is incompressible, and
laminar. The density variation is approximated by the standard Boussinesq
model for both temperature and concentration. The viscous dissipation in the
energy equation has been analyzed in this study.

2.1 Dimensional equations

Based on the above assumptions, and applying the Boussinesq approximation,
the studied equations are [47 - 57]:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (2.1)

ρ

(
∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
= −∂p̄

∂x̄
+

(
∂τ̄xx
∂x̄

+
∂τ̄xy
∂ȳ

)
, (2.2)

ρ

(
∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
= −∂p̄

∂ȳ
+

(
∂τ̄yy
∂ȳ

+
∂τ̄xy
∂x̄

)
+ gρ

[
1 + βT (T̄ − TC)− βC(C̄ − CC)

]
, (2.3)

In the above equations (u = ūi + v̄j), T̄ , and C̄, and g are the dimensional
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velocities, temperature, concentration, and gravity acceleration respectively.
βT and βC are the coefficient of thermal expansion and solutal expansion,
respectively as ρ is density. Now, let the pressure p̄ be written as the sum
p̄ = p̄s + p̄d, where the static part p̄s accounts for gravity alone, and p̄d is the
dynamic part. Thus,

−∂p̄s
∂ȳ

= ρg · (2.4)

∂T̄

∂t̄
+ū

∂T̄

∂x̄
+v̄

∂T̄

∂ȳ
= α

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2

)
+

1

ρcp

[
τ̄xx

(
∂ū

∂x̄

)
+ τ̄xy

(
∂ū

∂ȳ
+
∂v̄

∂x̄

)
+ τ̄yy

(
∂v̄

∂ȳ

)]

+KTC

(
∂2C̄

∂x̄2
+
∂2C̄

∂ȳ2

)
(2.5)

α and KTC are the thermal diffusivity and the thermodiffusion, respectively.
cp is the specific heat capacity at constant pressure.

∂C̄

∂t̄
+ ū

∂C̄

∂x̄
+ v̄

∂C̄

∂ȳ
= D

(
∂2C̄

∂x̄2
+
∂2C̄

∂ȳ2

)
+KCT

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2

)
(2.6)

D and KCT are the mass diffusivity coefficient and the diffusionthermo coef-
ficient, respectively.

The stress tensor for the incompressible Carreau fluids is as [22-26]

τ̄ij = 2 η(γ̇) Sij (2.7)

where Sij is the rate of strain tensor as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.8)

where

η(γ̇) = η∞ + (η0 − η∞)
[
1 + (λγ̇)2

](n−1)/2
, γ̇ =

√
2SijSij (2.9)

where η0 and η∞ are the viscosities corresponding to zero and infinite viscosi-
ties, λ is the time constant and n is the power-law index where the deviation of
n from unity indicates the degree of deviation from Newtonian behavior. With
n 6=1, the constitute equation represents pseudoplastic fluid (0 < n < 1) and
for (n > 1) it represents a dilatant fluid, respectively. Note that a Newtonian
fluid can be recovered as a special case of the present Carreau fluid by letting n
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= 1 and/or λ = 0, and a power-law fluid can be obtained by assuming a large
λ. The infinite shear viscosity, η∞, is generally associated with a breakdown
of the fluid, and is frequently significantly smaller (103 − 104 times smaller)
than η0, see [22, 26, 58, 59]. So, the ratio η∞/η0 has been fixed at 0.001.

The flow domain is given by ω = (−L/2, L/2)× (−L/2, L/2), and the bound-
ary Γ = ∂ω. It is the union of five disjoint subsets:

Γ1 = {(x, y), x = −L/2,−L/2 ≤ y ≤ L/2} , (2.10a)

Γ2 = {(x, y), x = L/2,−L/2 ≤ y ≤ L/2} , (2.10b)

Γ3 = {(x, y),−L/2 ≤ x ≤ L/2, y = −L/2} , (2.11a)

Γ4 = {(x, y),−L/2 ≤ x ≤ L/2, y = L/2} , (2.11b)

Γ5 =
{

(x, y), (x− xc)2 + (y − yc)2 = Rd
2.
}

(2.12)

The parameters of xc, yc, and Rd are the horizontal and vertical positions of
the cylinder center and the radius of the cylinder; respectively.

The boundary condition for the velocity is straightforward:

u|Γ1
= u|Γ2

= u|Γ3
= u|Γ4

= u|Γ5
= 0. (2.13)

The boundary conditions for the temperature and concentration are:

T |Γ1
= T |Γ2

= T |Γ3
= T |Γ4

= TH , T |Γ5
= TC (2.14)

C|Γ1
= C|Γ2

= C|Γ3
= C|Γ4

= CH , C|Γ5
= CC (2.15)

2.2 Non-dimensional equations

In order to proceed to the numerical solution of the system, the following non
dimensional variables are introduced.

t =
t̄(

L2

α

)
Ra−0.5

, x = x̄/L, y = ȳ/L, u =
ū(

α
L

)
Ra0.5

(2.16)

v =
v̄(

α
L

)
Ra0.5

, pd =
p̄d

ρ
(
α
L

)2
Ra

, T = (T̄ − TC)/∆T (2.17)

C = (C̄ − CC)/∆C , ∆T = TH − TC ∆C = CH − CC (2.18)
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τττ =
τ̄̄τ̄τ L

η0

(
α
L

)
Ra0.5

(2.19)

By substitution of Eqs. (2.16) - (2.19) into Eqs. (2.1) - (2.6), the following
system of non-dimensional equations is derived:

∂u

∂x
+
∂v

∂y
= 0 (2.20)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂pd

∂x
+

Pr√
Ra

(
∂τxx
∂x

+
∂τxy
∂y

)
(2.21)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂pd

∂y
+

Pr√
Ra

(
∂τxy
∂x

+
∂τyy
∂y

)
+ Pr (T −N C) (2.22)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1√
Ra

[(
∂2T

∂x2
+
∂2T

∂y2

)
+Df

(
∂2C

∂x2
+
∂2C

∂y2

)]

+Pr Ec
√
Ra

[
τxx

(
∂u

∂x

)
+ τxy

(
∂u

∂y
+
∂v

∂x

)
+ τyy

(
∂v

∂y

)] (2.23)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
=

1

Le
√
Ra

[(
∂2C

∂x2
+
∂2C

∂y2

)
+ Sr

(
∂2T

∂x2
+
∂2T

∂y2

)]
(2.24)

The non-dimensional apparent viscosity is given by [22]

η(γ̇) =
η∞
η0

+ (1− η∞
η0

)
[
1 + (Cuγ̇)2

](n−1)/2
(2.25)

γ̇ =

2

(∂u
∂x

)2

+

(
∂v

∂y

)2
+

(
∂v

∂x
+
∂u

∂y

)2


1
2

(2.26)

Hence, the stresses are:

τxx = 2η(γ̇)

(
∂u

∂x

)
τyy = 2η(γ̇)

(
∂v

∂y

)
τxy = η(γ̇)

(
∂u

∂y
+
∂v

∂x

)
(2.27)
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The non-dimensional parameters for the problem are as follows:

Thermal Rayleigh number:

Ra =
ρ βT gL

3∆T

η0 α
(2.28)

Prandtl number:
Pr =

η0

ρα
(2.29)

Eckert number:

Ec =
(α/L)2

cp ∆T
(2.30)

Buoyancy ratio number:

N =
∆C βT D

βC ∆T α
(2.31)

Lewis number:
Le =

α

D
(2.32)

Dufour parameter:

Df =
KTC ∆C

α ∆T
(2.33)

Soret parameter:

Sr =
KCT ∆T

D ∆C
(2.34)

Carreau number:

Cu =
λ(

L2

α

)
Ra−0.5

(2.35)

The local and the average Nusselt and Sherwood numbers at the cavity sides
are as

Nu =

(
−∂T
∂r

)
r=0

+ Df

(
−∂C
∂r

)
r=0

(2.36a)

Sh =

(
−∂C
∂r

)
r=0

+ Sr

(
−∂T
∂r

)
r=0

(2.36b)

Nuavg =

1/2∫
−1/2

Nuds, Shavg =

1/2∫
−1/2

Sh ds (2.36c)

where r denotes the unit normal direction on a specific side wall s.
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The total average Nusselt and Sherwood numbers are as

Nutotavg = NuLavg +NuRavg +NuBavg +NuT avg (2.37a)

Shtotavg = ShLavg + ShRavg + ShBavg + ShT avg (2.37b)

In the Eqs.2.37, the subscribes of tot, L, R, B, T , avg means total, the left
wall of the cavity, the right wall of the cavity, the bottom wall of the cavity,
the top wall of the cavity, and average; respectively.

3 The numerical method

The FDLBM equations and their relationships with continuum equations have
been explained in details in Huilgol and Kefayati [45-46]. Here, just a brief
description about the main equations would be cited. In addition, the ap-
plied algorithm has been described and the studied problem equations in the
FDLBM are mentioned.

3.1 The Continuity and Momentum equations

To have the continuity and momentum equations, a discrete particle distri-
bution function fα is defined over a D2Q9 lattice where it should satisfy an
evolution equation:

∂fα
∂t

+ ξξξα · ∇xfα − Fα = − 1

ε φ
(fα − f eqα ), (3.1)

where ε is a small parameter to be prescribed when numerical simulations are
considered. φ is the relaxation time and F is the external force.

Associated to each node is a lattice velocity vector ξξξα. It is defined as follows:

ξξξα =


(0, 0), α = 0,

σ(cos θα, sin θα) α = 1, 3, 5, 7,

σ
√

2(cos θα, sin θα), α = 2, 4, 6, 8.

(3.2)

Here, the angles θα are defined through θα = (α − 1)π/4, α = 1, · · · , 8.
The constant σ has to be chosen with care for it affects numerical stability;
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its choice depends on the problem. The method for finding the parameter σ
which satisfies the Courant-Friedrichs-Lewy (CFL) condition is described in
[45-46].

The equilibrium distribution function, f eqα , is different from the conventional
ones adopted by previous researchers, who normally expand the Maxwellian
distribution function. In the present approach, we expand f eqα as a quadratic
in terms of ξξξα, using the notation of linear algebra [45-46]:

f eqα = Aα + ξξξα ·Bα + (ξξξα ⊗ ξξξα) : Cα, α = 0, 1, 2, · · · , 8. (3.3)

Here, the scalars Aα are defined through

A0 = ρ− 2p

σ2
− ρ|u|2

σ2
+
τxx + τyy

σ2
, Aα = 0, α = 1, 2, · · · , 8. (3.4)

The vectors Bα are given by

B1 =
ρu

2σ2
= Bα, α = 1, 3, 5, 7; Bα = 0, α = 0, 2, 4, 6, 8. (3.5)

Next, the matrices Cα are such that C0 = 0; C1 = Cα, α = 1, 3, 5, 7; C2 =
Cα, α = 2, 4, 6, 8, where

C1 =

C11 0

0 C22

 , C11 =
1

2σ4
(p+ρu2−τxx), C22 =

1

2σ4
(p+ρv2−τyy), (3.6)

C2 =

 0 C12

C21 0

 , C12 = C21 =
1

8σ4
(ρuv − τxy). (3.7)

In order to derive the macroscopic equations for an incompressible continuous
medium in the presence of a body force, it has been shown that the functions
Fα in (3.1) must be such that

8∑
α=0

Fα = 0. (3.8)

In turn, this guarantees that the conservation of mass equation is satisfied.
Next, one requires that
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8∑
α=0

Fαξξξα = ρb, (3.9)

where ρb is the body force. Thus, one choice for the set of Fα is:

F0 = 0, F1 =
1

2σ2
ρb · ξξξ1, F3 =

1

2σ2
ρb · ξξξ3, (3.10a)

F5 =
1

2σ2
ρb · ξξξ5, F7 =

1

2σ2
ρb · ξξξ7. (3.10b)

Fα = 0, α = 2, 4, 6, 8. (3.10c)

One notes that F1 = −F5, F3 = −F7.

In this problem, the non-dimensional body force is as follows:

ρb =
Pr (T −N C)

2σ2
j (3.11)

3.2 The Energy Equation

In order to obtain the energy equation, an internal energy distribution function
gα is introduced and it is assumed to satisfy an evolution equation similar to
that for fα. Thus,

∂gα
∂t

+ ξξξα · ∇xgα −Gα = − 1

εφ
(gα − geqα ). (3.12)

Gα refers to the external supply e.g. radiation in the energy equation. Here,
geqα has a monomial expansion:

geqα = Dα + ξξξα · Eα, (3.13)

One way of satisfying the above is to assume, as before, that the scalars are
given by Dα = D1, α = 1, 3, 5, 7, and Dα = D2, α = 2, 4, 6, 8,. In this problem,
the non-dimensional parameters are obtained as follows:

D0 = T, D1 = 0, D2 = 0. (3.14)

Regarding the vectors, it is assumed that E0 = 0, Eα = E1, α = 1, 3, 5, 7; Eα =
E2, α = 2, 4, 6, 8, where

E1 =

(
uT + Pr Ec

√
Ra ((u τxx + v τxy) + (u τyx + v τyy))− 1√

Ra

(
∂T
∂x

+ Df
∂C
∂x

))
2σ2

.

(3.15)
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Finally, Gα = 0.

3.3 The Concentration Equation

In order to obtain the concentration equation, an internal concentration dis-
tribution function hα is introduced and it is assumed to satisfy an evolution
equation similar to that for fα. Thus,

∂hα
∂t

+ ξξξα · ∇xhα −Hα = − 1

εφ
(hα − heqα ). (3.16)

Here, heqα has a monomial expansion:

heqα = Mα + ξξξα ·Nα, (3.17)

One way of satisfying the above is to assume, as before, that the scalars are
given by Mα = M1, α = 1, 3, 5, 7, and Mα = M2, α = 2, 4, 6, 8,. In this
problem, the non-dimensional parameters are obtained as follows:

M0 = C, M1 = 0, M2 = 0. (3.18)

Regarding the vectors, it is assumed that N0 = 0, Nα = N1, α = 1, 3, 5, 7; Nα =
N2, α = 2, 4, 6, 8, where

N1 =

(
uC − 1

Le
√
Ra

(
∂C
∂x

+ Sr
∂T
∂x

))
2σ2

(3.19)

Finally, Hα = 0.

3.4 Algorithm

The main equations of the discrete particle distribution function, the internal
energy distribution function, the internal concentration distribution function
are solved by the splitting method. Hence, the equations can be separated into
two parts. The first one is the streaming section which is written as

∂fα
∂t

+ ξξξα · ∇xfα − Fα = 0. (3.20)

∂gα
∂t

+ ξξξα · ∇xgα = 0. (3.21)
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∂hα
∂t

+ ξξξα · ∇xhα = 0. (3.22)

Eqs.(3.20), (3.21), and (3.22) have been solved with FDM and the following
equations are used.

fn+1
α (i, j) = fnα (i, j)− ∆t

2∆x
ξα (i) [fnα (i+ 1, j)− fnα (i− 1, j)]

− ∆t

2∆y
ξα (j) [fnα (i, j + 1)− fnα (i, j − 1)] +

∆t2

2∆x2
ξα

2 (i) [fnα (i+ 1, j)− 2fnα (i, j) + fnα (i− 1, j)] + Fα(i)∆t+

∆t2

2∆y2
ξα

2 (j) [fnα (i, j + 1)− 2fnα (i, j) + fnα (i, j − 1)] + Fα(j)∆t , (3.23)

and

gn+1
α (i, j) = gnα (i, j)− ∆t

2∆x
ξα (i) [gnα (i+ 1, j)− gnα (i− 1, j)]

− ∆t

2∆y
ξα (j) [gnα (i, j + 1)− gnα (i, j − 1)] +

∆t2

2∆x2
ξα

2 (i) [gnα (i+ 1, j)− 2gnα (i, j) + gnα (i− 1, j)] +

∆t2

2∆y2
ξα

2 (j) [gnα (i, j + 1)− 2gnα (i, j) + gnα (i, j − 1)] (3.24)

and

hn+1
α (i, j) = hnα (i, j)− ∆t

2∆x
ξα (i) [hnα (i+ 1, j)− hnα (i− 1, j)]

− ∆t

2∆y
ξα (j) [hnα (i, j + 1)− hnα (i, j − 1)] +

∆t2

2∆x2
ξα

2 (i) [hnα (i+ 1, j)− 2hnα (i, j) + hnα (i− 1, j)] +

∆t2

2∆y2
ξα

2 (j) [hnα (i, j + 1)− 2hnα (i, j) + hnα (i, j − 1)] (3.25)

In Eqs.(3.23), (3.24), and (3.25), we have put
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ξα(i) = ξξξα · i, ξα(j) = ξξξα · j, Fα(i) = Fα · i, Fα(j) = Fα · j. (3.26)

The second part is the collision section which is as follows:

∂fα
∂t

= −1

φ
(fα(x, t)− f eqα (x, t)), (3.27)

∂gα
∂t

= −1

φ
(gα(x, t)− geqα (x, t)). (3.28)

∂hα
∂t

= −1

φ
(hα(x, t)− heqα (x, t)). (3.29)

Eqs.(3.27), (3.28), and (3.29) can be solved by using the Euler method and
the choice of φ is taken as the time step (∆t). That is

fα(x, t+ ∆t)− fα(x, t)

∆t
= −1

φ
(fα(x, t)− f eqα (x, t)), (3.30)

gα(x, t+ ∆t)− gα(x, t)

∆t
= −1

φ
(gα(x, t)− geqα (x, t)), (3.31)

hα(x, t+ ∆t)− hα(x, t)

∆t
= −1

φ
(hα(x, t)− heqα (x, t)), (3.32)

from which one obtains

fα(x, t+ ∆t) = f eqα (x, t), (3.33)

and
gα(x, t+ ∆t) = geqα (x, t). (3.34)

hα(x, t+ ∆t) = heqα (x, t). (3.35)

The numerical procedures are summarised below.

Initial stage

(a) Initial conditions for all macroscopic quantities including the boundary
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points are given. The initial values of f 0, eq
α , g0, eq

α , and h0, eq
α including the

boundary points are determined. These are used as initial values to start the
calculation.

Streaming stage

(b) With fα, gα, and hα at time t (including the boundary points) known,
intermediate values f Iα, gIα, and hIα are calculated by solving Eqs.(3.23), (3.24),
and (3.25) respectively.
(c) Using these f Iα, gIα, and hIα, the corresponding macroscopic quantities
(uI , vI , pI , TI , CI) for all interior grid points are calculated.
(d) The boundary conditions for the macroscopic level are then set as in any
finite difference method.
(e) Using the macroscopic quantities thus determined over the complete do-
main including the boundary points, the corresponding f I, eqα , gI, eqα , and hI, eqα

are obtained, including all of the boundary points.

Collision stage

(f) Due to Eqs.(3.33), (3.34), and (3.35) the collision step is completed by
setting the new value at time t+ ∆t. Since each set of macroscopic quantities
will map uniquely to an equilibrium distribution function and vice versa, the
macroscopic quantities thus obtained are, in fact, the values at time t+ ∆t,
i.e., (u, v, p, T, C)t+∆t = (uI , vI , pI , TI , CI).

(g) Time marching proceeds by repeating steps (b)-(f).

4 Code validation and grid independence

Finite Difference Lattice Boltzmann Method (FDLBM) scheme is utilized to
simulate laminar double diffusive natural convection in a heated enclosure
with an inner cold cylinder that is filled with a Carreau fluid in the presence
of Soret and Dufour parameters and the viscous dissipation in the energy
equation. The prandtl number is fixed at Pr=0.1. This problem is investigated
at different Rayleigh numbers of (Ra = 104 and 105), Carreau number (Cu =
1, 10, and 20), buoyancy ratio number (N = 0.1, 1, and -1), Lewis number
(Le = 2.5, 5, and 10), power-law index (n = 0.2 - 1.8), Eckert number (Ec
= 0, 1, and 10), the radius of the inner cylinder (Rd = 0.1 L, 0.2 L, 0.3 L,
and 0.4 L), Soret parameter (Sr = 0, 1, 5), and Dufour parameter (Df =
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0, 1, 5). An extensive mesh testing procedure was conducted to guarantee a
grid independent solution. Seven different mesh combinations were explored
for the case of Ra = 105, Cu = 1, N = 0.1, Le = 2.5, n = 1.4, Ec = 0, Rd =
0.2 L, Df = 0 and Sr = 0. The average Nusselt and Sherwood numbers on
the hot wall have been studied. It was confirmed that the grid size (200*200)
ensures a grid independent solution as portrayed by Table.1. The running
time for the grid size (200*200) is 3851 seconds. The applied code for the fluid
flow and heat transfer is validated by the study of Zhang et al. [10] in the
Fig.2 at Ra=105 and Pr = 0.71 for the case of cooled enclosure with a heated
cylinder in the center of the cavity. FDLBM is applied for double diffusive
natural convection of power-law and Bingham fluids recently [47-51] which
demonstrates the accuracy of the utilized code for different non-Newtonian
fluids properly.

5 Results and discussion

5.1 Effects of Rayleigh number, and Power-law index on fluid flow, heat and
mass transfer

Fig.3 illustrates the isotherms, isoconcentrations and streamlines for different
Rayleigh numbers at Cu = 1, N = 0.1, n = 1, Le = 2.5, Ec = 0, Rd = 0.2 L,
Df = 0, and Sr = 0. As the Rayleigh number increases, the movements of the
isotherms between the cold cylinders and hot walls ameliorate significantly
and they become progressively curved. Moreover, the gradient of temperature
on the hot wall augments with the rise of Rayleigh number. In fact, it oc-
curs while the thermal boundary layer thickness on the side walls decreases
with increasing Rayleigh number. The streamlines exhibit that the convection
process has been enhanced by the growth of Rayleigh numbers as the second
circulations at the bottom of the cavity at Ra = 104, which makes the main
circulation weak, is removed at Ra = 105. The isoconcentration demonstrates
a different manner where the increase in Rayleigh number drops the gradi-
ent of isoconcentrations on the hot walls. It depicts that mass transfer drops
significantly with the rise of Rayleigh number.

Fig.4 shows the isotherms, isoconcentrations and streamlines for different
power-law indexes at Cu = 1, N = 0.1, Ra = 105, Le = 2.5, Ec = 0, Rd = 0.2
L, Df = 0, and Sr = 0. As the power-law index increases, the movements of
the isotherms between the cold cylinders and hot walls declines significantly.
Moreover, the gradient of temperature on the hot wall augments with the
drop of power-law index. In fact, it occurs while the thermal boundary layer
thickness on the side walls decreases with the drop of the power-law index.
The streamlines exhibit that the convection process has been enhanced by the
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decrease of power-law index. The isoconcentration shows that the increase in
power-law index drops the isoconcentration movement between the hot walls
and the cold cylinder. It depicts that mass transfer drops substantially with
the rise of power-law index.

Fig.5 indicates the vertical velocity, the local Nusselt and sherwood numbers
on the left wall have been studied for different power-law indexes at Cu =
1, Ra = 105, N = 0.1, Le = 2.5, Ec = 0, Rd = 0.2 L, Df =0, and Sr=0.
Generally, it displays that the vertical velocity for different power-law indexes
has the maximum values close to the sidewalls while the minimum magnitudes
are observed close to the clod cylinder. The vertical velocity component is
essentially negligible in the presence of the cold cylinder. The amplitudes of
the vertical velocity magnitude on the top and bottom sides of the cavity
do indeed drop with augmentation of power-law index regularly. The local
Nusselt and sherwood numbers on the hot wall show sinuously behavior. They
demonstrate that the maximum Nusselt and Sherwood numbers appear at Y
= 0.2. Further, the increase in power-law index declines the local Nusselt
and sherwood numbers at Y < 0.5 while they enhance due to the rise of the
power-law index at Y > 0.5.

Fig.6 indicates the average Nusselt and Sherwood numbers for different power-
law indexes and Rayleigh numbers at Cu = 1, N = 0.1, Le = 2.5, Ec = 0, Rd

= 0.2 L, Df = 0, and Sr = 0. It demonstrates that the average Nusselt num-
bers drop significantly as the power-law index enhances gradually in different
Rayleigh numbers. In addition, it shows that the rise of Rayleigh number
in various power-law indexes enhances the average Nusselt number, although
this enhancement drops noticeably with the increase in the power-law index.
The average Sherwood number declines due to the rise of power-law index for
different power-law indexes. It shows that the average sherwood number at
Ra=105 for n=0.2 and 0.4 is higher than Ra = 104, but at n¿0.6 the average
Sherwood number is higher at Ra = 104 compared to the Ra = 105 and this
trend strengthens with the rise of power-law index steadily.

5.2 Effects of Lewis number on fluid flow, heat and mass transfer

Fig.7 illustrates the isoconcentrations for different Lewis numbers and Rayleigh
numbers at Cu = 1, n = 1, N = 0.1, Le = 2.5, Ec = 0, Rd = 0.2 L, Df = 0,
and Sr = 0. The contours exhibit that the movement of the isoconcentrations
from the cold cylinder to the hot walls diminish with the increase in Lewis
numbers for multifarious Rayleigh numbers. The pattern confirms that mass
transfer declines with the rise of Lewis number considerably. Table.2 demon-
strates that the average Nusselt number decreases slightly with the rise of
Lewis number in the both studied Rayleigh numbers. In addition, the aver-
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age Sherwood number falls considerably when the Lewis number enhances in
various Rayleigh numbers.

5.3 Effects of Buoyancy ratio on fluid flow, heat and mass transfer

Fig.8 displays the isotherms, streamlines and the isoconcentrations for differ-
ent buoyancy ratios at Ra = 105, n = 1, Le = 2.5, Ec = 0, Rd = 0.2 L, Df =
0, and Sr = 0. The comparison between the isotherms demonstrates the rise
of the buoyancy ratio from N = -1 to 1 causes the gradient of the isotherms
increase significantly. Hence, the pattern clarifies that the augmentation of
buoyancy ratio enhances heat transfer. Moreover, the trend is observed in iso-
concentrations as they incline to the hot wall and their gradient augments
noticeably. As a result, mass transfer similar to heat transfer is improved by
the increase in buoyancy ratio. The shapes of the streamlines in different buoy-
ancy ratios can prove the cited result in the isotherms and isoconcentrations
properly. At N = -1, a secondary vortex close to the cold cylinder is observed
and moreover another core circulation in the streamline is generated at N=-1.
In addition, it is evident that the second core circulation and the secondary
circulation close to the cold cylinder disappears as buoyancy ratio enhances
from N = -1 to 0.1. The main circulation becomes stronger when the buoy-
ancy ratio increases from N = 0.1 to 1. Table.3 demonstrates that the average
Nusselt and Sherwood numbers augment considerably with the enhancement
of the buoyancy ratio.

5.4 Effects of Soret parameter on fluid flow, heat and mass transfer

Fig.9 presents the Soret effects on the isotherms, streamlines and the isocon-
centrations at Ra = 105, n = 1, Le = 2.5, Rd = 0.2 L, Ec = 0, and Df = 0. It
is clear that there is no considerable alteration into isotherms with the addi-
tion of the Soret parameter. In fact, the marginal alteration as a result of the
soret parameter on the temperature and increasing it provokes the buoyancy
force to rise and augment vortexes. The phenomenon is utterly understand-
able while the Soret parameter is added to the concentration equations and
affects this part significantly. The isoconcentrations confirm the issue properly
where they change noticeably as the Soret parameter increases from Sr = 0 to
1. In fact, the isoconcentrations become more comfortable and the gradients
of them in the cavity augment vastly. As the main force term with the alter-
ation of concentration can influence streamlines, it is evident that the vortexes
expand due to the growth of the Soret parameter. Table.4 clarifies the influ-
ence of the Soret parameter on the average Nusselt and Sherwood numbers
for different Soret parameters at Ra = 105, n = 1, Le = 2.5, Rd = 0.2 L, Ec =
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0, and Df = 0. It displays that the average Nusselt number increases slightly
with the enhancement of the Soret parameter in different Rayleigh numbers.
The average Sherwood number increases considerably when the Soret number
rises for various Rayleigh numbers.

5.5 Effects of Dufour parameter on fluid flow, heat and mass transfer

Fig.10 presents the Dufour effects on the isotherms, streamlines and the iso-
concentrations at Ra = 105, n = 1, Le = 2.5, Ec = 0, Rd = 0.2 L,and Sr
= 0. The addition of the Dufour parameter to the energy equation causes
the isotherms to change considerably and the gradient of temperatures on
the vertical walls rises. As the Dufour parameter increases from Df = 0 to
1, two main circulations of isotherms with the values of T = 0 close to the
cold cylinder are generated. The isotherms exhibit that the gradient of tem-
perature and therefore heat transfer augments significantly with the presence
of the Dufour parameter. This trends continue on the isotherms at Df = 5
where a circulation of the isotherm of T = 1.1 is generated on the bottom of
the cavity and the maximum value of T = 1.2 is appeared in the isotherms.
Two secondary circulations are generated in the bottom of the cavity are gen-
erated as the Dufour number increases from Df = 0 to 1. The rise of Dufour
from Df = 1 to 5, the secondary circulation becomes stronger and third and
fourth circulations in the corners and the bottom of the cavity, respectively
are created due to the rise of Dufour parameter. The isoconcentrations show
that the convection of mass transfer strengthens with the augmentation of the
Dufour parameter. In fact, the gradient of isoconcentrations enhances as the
Dufour number rises. Table.5 clarifies the influence of the Dufour parameter
on the average Nusselt and Sherwood numbers for different Rayleigh numbers
at n = 1, N = 0.1, Le = 2.5, Ec = 0, Rd = 0.2 L and Sr = 0. It is clear that
the average Nusselt number rockets up for different Rayleigh numbers as the
Dufour parameter enhances. Further, the average sherwood number increases
gradually with the rise of the Dufour parameter.

5.6 Effects of Carreau number (Cu) on fluid flow, heat and mass transfer

Fig.11 illustrates the Carreau number effects on the isotherms, streamlines
and the isoconcentrations at Ra = 105, n = 1.4, Le = 2.5, Ec = 0, N =
0.1, Rd = 0.2 L, and Sr = Df = 0. The increase in the Carreau number
causes the isotherms to change slightly and the gradient of temperatures to
drop. As the Carreau number increases from Cu = 1 to 10, the core of the
streamline circulation is broken two cores and demonstrates the drop of the
convection process. This trend continues at Cu = 20, where the streamline
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weakens. The isoconcentrations show that the convection of mass transfer
becomes weak with the augmentation of the Carreau number. In fact, the
gradient of isoconcentrations declines as the Carreau number rises. Table.6
clarifies the influence of the Carreau number on the total average Nusselt and
Sherwood numbers for different Rayleigh numbers at n = 1.4, N = 0.1, Le =
2.5, Ec = 0, and Sr = Df = 0. It is clear that the average Nusselt number
decreases marginally for different Rayleigh numbers as the Carreau number
enhances. Further, the average sherwood number drops gradually with the rise
of the Carreau number.

5.7 Effects of Eckert number on fluid flow, heat and mass transfer

Fig.12 shows the Eckert number effects on the isotherms, streamlines, and
isoconcentrations at Ra = 105, n = 1, Le = 2.5, N = 0.1, Rd = 0.2 L, Df = 0,
and Sr = 0. It demonstrates that the curve shape of the isotherms increases
slightly as the Eckert number increases from Ec = 0 to 1 and therefore it re-
sults in increase of heat transfer. When the Eckert number increases from Ec =
1 to 10, two main circulations close to sidewalls are generated in the isotherms
withe values of T = 1 and 1.1 which demonstrates the rise of heat transfer con-
siderably. The effect of Eckert number on the streamline was demonstrated
by the form and the strength of the streamlines central circulation. As the
Eckert number increases, the maximum value of the streamline enhances and
the width of the streamline to improves by increasing in the Eckert number.
The figure shows that the isoconcentrations display different behavior where
moves toward the heated walls in a slower trend as the Eckert number en-
hances. Table.7 exhibits that the influence of the Eckert number on the total
average Nusselt and Sherwood numbers for different Rayleigh numbers at n
= 1, N = 0.1, Le = 2.5, Ec = 0, and Sr = Df = 0. It is clear that the average
Nusselt number rises marginally at Ra = 104, but it augments considerably at
Ra = 105. The average sherwood number increases barely due to the increase
in the Eckert number at Ra = 104, but; it declines substantially at Ra = 105.

5.8 Effects of the vertical distance of the cylinder from the center on fluid
flow, heat and mass transfer

Fig.13 shows the vertical distance of the cylinder from the center (δ) on the
isotherms, streamlines, and isoconcentrations at Ra = 105, n= 1, Le = 2.5, Rd

= 0.2 L, Ec = 0, N = 0.1, Df = 0, and Sr = 0. It demonstrates that the curve
shape of the isotherms increases significantly as the cylinder position changes
from δ =0 to -0.2 L and therefore it results in increase of heat transfer. But,
the gradient of isotherms declines slightly from δ =0 to 0.2 L. The effect of
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the vertical position on the streamline was demonstrated by the form and
the strength of the streamlines circulations. As the cylinder moves toward the
bottom side of the enclosure, another small circulation close to the bottom
wall is generated in the same direction of the main vortex. Hence, this second
small circulation improve the convection process. The figure shows that the
isoconcentrations behave the same pattern as the isotherms move toward the
heated walls in a slower trend as the δ enhances. Table.8 exhibits that the
influence of the vertical position on the total average Nusselt and Sherwood
numbers for Ra=105 at n = 1, N = 0.1, Le = 2.5, Ec = 0, and Sr = Df = 0. It
is clear that the average Nusselt and sherwood numbers drop substantially as
the vertical position increases from δ = -0.2 L to 0.2 L. This table also indi-
cates that the increase in the power-law index causes the average Nusselt and
Sherwood numbers to drop in different positions; however, the effect of power-
law index is different in various vertical positions. In fact, it demonstrates
that the influence of power-law index on the average Nusselt and Sherwood
numbers drops gradually when the cylinder moves from δ = -0.2 L to 0.2 L.

5.9 Effects of the radius of the inner cylinder on fluid flow, heat and mass
transfer

Fig.14 shows the radius of the inner cylinder (Rd) on the isotherms, stream-
lines, and isoconcentrations at Ra = 105, n = 1, Le = 2.5, Ec = 0, N = 0.1,
Df = 0, and Sr = 0. It demonstrates that the gradient of isotherms on the
cylinder increases considerably as the radius of the cylinder augments. This
trend confirms that the the convection process improves as the radius of the
cylinder rises. When the radius increases from Rd = 0.1 L to 0.3 L, two main
circulations in the core of the main vortex are generated in the streamlines
which demonstrates the rise of the convection considerably. The figure shows
that the isoconcentrations concentrations augment considerably with the rise
of the cylinder radius. Table.9 exhibits that the effect of the cylinder radius
on the total average Nusselt and Sherwood numbers at Ra = 105, n = 1, N
= 0.1, Le = 2.5, Ec = 0, and Sr = Df = 0. It is clear that the average Nus-
selt and Sherwood numbers enhance significantly as the radius of the cylinder
augments in different power-law indexes. For different radii, the increase in
power-law index declines the average Nusselt and Sherwood numbers steadily.

5.10 Effects of the horizontal distance of the cylinder on fluid flow, heat and
mass transfer

Fig.15 shows the horizontal distance of the cylinder from the center (Ω) on
the isotherms, streamlines, and isoconcentrations at Ra = 105, n = 1, Le =
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2.5, Ec = 0, N = 0.1, Rd = 0.2 L, Df = 0, and Sr = 0. It demonstrates that
the gradient of isotherms on the cylinder increases when the cylinder moves
to the left and right sides horizontally. The streamlines demonstrate that two
small circulations in the corners in the opposite directions of the main vortex
are generated. The figure displays that the isoconcentrations shows the same
behavior as the isotherms where their concentration on the cylinder augments
with the movement of the cylinder horizontally. Table.10 exhibits that the
influence of the horizontal position on the total average Nusselt and Sherwood
numbers for Ra=105 at n=1, N=0.1, Le=2.5, Ec=0, and Sr = Df = 0. It is
clear that the average Nusselt and sherwood numbers drop as the horizontal
position moves from the center. This table also indicates that the increase
in the power-law index causes the average Nusselt and Sherwood numbers to
drop in different positions. In addition, the highest effect of the power-law
index among the studied cases in the horizontal distances is observed at Ω =
0.

6 Concluding Remarks

Double diffusive natural convection of Carreau fluid in a heated enclosure with
an inner cold cylinder in the presence of Soret and Dufour parameters as well
as viscous dissipation has been analyzed by Finite Difference Lattice Boltz-
mann method (FDLBM). This study has been conducted for the pertinent
parameters in the following ranges: Rayleigh number (Ra = 104 and 105),
Carreau number (Cu = 1, 10, and 20), Lewis number (Le=2.5, 5 and 10),
Dufour parameter (Df=0, 1, and 5), Soret parameter (Sr=0, 1, and 5), Eckert
number (Ec=0, 1, and 10), the Buoyancy ratio (N=-1, 0.1, 1), the radius of
the inner cylinder (Rd = 0.1 L, 0.2 L, 0.3 L, and 0.4 L), the horizontal distance
of the circular cylinder from the center of the enclosure (Ω = -0.2 L, 0 and
0.2 L), and the vertical distance of the circular cylinder from the center of
the enclosure (δ = -0.2 L, 0 and 0.2 L). The main conclusions of the present
investigation can be summarized as follows:

• Heat and mass transfer enhances with augmentation of Rayleigh number in
different studied parameters.
• The average Nusselt and Sherwood numbers demonstrate that the heat and

mass transfer decline with the rise of the power-law index in various studied
parameters.
• The increase in Rayleigh number causes the effect of power-law index to

decline.
• It was found that the rise of Lewis number declines the mass transfer sub-

stantially, but provokes the heat transfer to drop marginally.
• The enhancement of the buoyancy ratio increases heat and mass transfer

considerably.
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• Generally, the heat transfer increases with the rise of the Dufour parameter
significantly while the mass transfer rises marginally.
• The mass transfer enhances substantially as the Soret parameter increases

for different Rayleigh numbers.
• The enhancement of the Carreau number declines heat and mass transfer

slightly.
• The Eckert number has a marginal effect on Ra = 104 while the rise of

Eckert number at Ra = 105 declines heat and mass transfer steadily.
• The vertical movement of the cylinder from the bottom of the cavity to the

top side declines heat and mass transfer.
• It was found that the effect of power-law index drops gradually as the ver-

tical position rises from δ = -0.2 L to 0.2 L.
• The enhancement of the cylinder radius increases heat and mass transfer

considerably.
• It was observed that the highest effect of power-law index occurs at Rd =

0.2 L while the least impact is obtained at Rd = 0.4 L.
• The movement of the cylinder horizontally in the positive and negative

directions enhance heat and mass transfer. It was observed that the positive
and negative horizontal movement in the same distance (Ω = -0.2 L and 0.2
L) has nearly the same effect on heat and mass transfer.
• The heat and mass transfer declines gradually as the power-law index en-

hances for different horizontal positions. However, it shows that the highest
effect of the power-law indexes on heat and mass transfer is obtained in the
center of the enclosure compared to other horizontal positions.
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Nomenclature

b Body force
C Concentration
c Lattice speed
cp Specific heat capacity at constant pressure
Cu Carreau number
D Mass diffusivity
Df Dufour parameter
E Eckert number
F External forces
fα Density distribution functions for the specific node of α
f eqα Equilibrium density distribution functions for the specific node of α
gα Internal energy distribution functions for the specific node of α
geqα Equilibrium internal energy distribution functions for the specific node
of α
g Gravity
hα Internal concentration distribution functions for the specific node of α
heqα Equilibrium internal concentration distribution functions for the spe-
cific node of α
k Thermal conductivity
KTC Thermodiffusion coefficient
KCT Diffusionthermo coefficient
L Length of the cavity
Le Lewis number
n Power-law index
N Buoyancy ratio
Nu Nusselt number
p Pressure
Pr Prandtl number
R Gas constant
Ra Rayleigh number
Rd Radius of the inner circular cylinder
S Rate of strain tensor
Sh Sherwood number
Sr Soret parameter
T Temperature
t Time
x, y Cartesian coordinates
xc, yc The horizental and vertical positions of the cylinder center
u Velocity in x direction
v Velocity in y direction
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Greek letters

βT Thermal expansion coefficient
βC Solutal expansion coefficient
φ Relaxation time
τ Shear stress
ξ Discrete particle speeds
∆x Lattice spacing
∆t Time increment
α Thermal diffusivity
ρ Density of fluid
η Dynamic viscosity
η0 Zero shear viscosity
η∞ Infinite shear viscosity
ψ Stream function value
λ Time constant

Subscripts

avg Average
B Bottom
C Cold
c Center
d Dynamic
H Hot
L Left
x, y Cartesian coordinates
α Specific node
R Right
s Static
T Thermal, Top
tot Total
D Solutal

31



Table 1
Grid independence study at Ra = 105, Ec=0, Le = 2.5, Cu = 1, n=1.4, Rd = 0.2
L, Sr=Df=0, and N=0.1

Mesh size Nuavg Shavg

150*150 7.25302 5.25061

160*160 6.98147 5.0261

170*170 6.83729 4.92607

180*180 6.53107 4.82507

190*190 6.48082 4.68931

200*200 6.46430 4.65322

210*210 6.46430 4.65322
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Table 2
Effects of the Lewis number (Le) in different Rayleigh numbers on the average
Nusselt and Sherwood numbers at Ec=0, Rd = 0.2 L, n = 1, Sr = Df = 0, and N
= 0.1

Le = 2.5 Le = 5 Le = 10

Ra = 104

Nuavg 6.32672 6.32557 6.32372

Shavg 6.12838 4.71141 2.40221

Ra = 105

Nuavg 6.74342 6.69025 6.631487

Shavg 5.22323 2.90277 0.84160
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Table 3
Effects of the Buoyancy ratio (N) on Nusselt and Sherwood numbers at Ec = 0, Rd
= 0.2 L, n = 1, Sr = Df = 0, and Le = 2.5

N = -1 N = 0.1 N = 1

Ra = 104

Nuavg 6.24547 6.32672 6.50048

Shavg 5.70908 6.12838 6.95650

Ra = 105

Nuavg 5.26790 6.74342 8.42131

Shavg 2.12484 5.22323 9.06288
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Table 4
Effects of the Soret Parameter (Sr) in different Rayleigh numbers on the average
Nusselt and Sherwood numbers at Ec = 0, n = 1, Rd = 0.2 L, Df = 0, Le = 2.5
and N = 0.1

Sr = 0 Sr = 1 Sr = 5

Ra = 104

Nuavg 6.32672 6.32715 6.32907

Shavg 6.12838 12.5888 38.41383

Ra = 105

Nuavg 6.74342 6.77066 6.885083

Shavg 5.22323 13.04610 44.45110
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Table 5
Effects of the Dufour Parameter (Df ) in different Rayleigh numbers on the average
Nusselt and Sherwood numbers at Ec = 0, n = 1, Rd = 0.2 L, Sr = 0, Le = 2.5 and
N = 0.1

Df = 0 Df = 1 Df = 5

Ra = 104

Nuavg 6.32672 12.7761 38.1211

Shavg 6.12838 6.2104 7.18031

Ra = 105

Nuavg 6.74342 15.6556 64.2592

Shavg 5.22323 7.002 9.7643
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Table 6
Effects of the Carreau number (Cu) in different Rayleigh numbers on the average
Nusselt and Sherwood numbers at n = 1,Df = Sr = 0, Rd = 0.2 L, Le = 2.5 and
N = 0.1

Cu = 1 Cu = 10 Cu = 20

Ra = 104

Nuavg 6.3136 6.2747 6.2661

Shavg 6.0684 5.8736 5.82703

Ra = 105

Nuavg 6.4643 5.9135 5.7678

Shavg 4.65322 3.5135 3.2108
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Table 7
Effects of the Eckert number (Ec) in different Rayleigh numbers on the average
Nusselt and Sherwood numbers at n = 1,Df= Sr = 0, Rd = 0.2 L, Le = 2.5 and N
= 0.1

Ec = 0 Ec = 1 Ec = 10

Ra = 104

Nuavg 6.32672 6.32613 6.32311

Shavg 6.12838 6.12871 6.13194

Ra = 105

Nuavg 6.74342 6.7993 7.77011

Shavg 5.22323 5.18179 4.9484
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Table 8
Effects of the vertical distance of the cylinder from the center (δ) in different
Rayleigh numbers on the average Nusselt and Sherwood numbers at Ra = 105,
Ec = 0, n = 1, Rd = 0.2 L, Df = Sr = 0, Le = 2.5 and N = 0.1

δ = -0.2 L δ = 0 δ = 0.2 L

Nuavg

n = 0.2 9.5758 7.6841 6.7109

n = 1 8.7147 6.7434 6.4147

n = 1.8 8.2681 6.2813 6.3089

Shavg

n = 0.2 11.8797 7.3928 3.5086

n = 1 9.7887 5.2232 3.3512

n = 1.8 8.6585 4.2871 3.3308
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Table 9
Effect of the radius of the cylinder (Rd) on the isotherms, isoconcentrations, and
streamlines at Ra = 105, Ec = 0, n = 1, Df = Sr = 0, Le = 2.5 and N = 0.1

Rd = 0.1 L Rd = 0.2 L Rd = 0.3 L Rd = 0.4 L

Nuavg

n = 0.2 4.6290 7.6841 11.6423 21.0487

n = 1 3.9883 6.7434 10.9166 20.9642

n = 1.8 3.5541 6.2813 10.7467 20.9260

Shavg

n = 0.2 4.0953 7.3928 11.4780 21.2673

n = 1 3.0081 5.2232 9.4212 20.9494

n = 1.8 2.3491 4.2871 8.9834 20.7817
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Table 10
Effects of the horizontal distance of the cylinder from the center (Ω) in different
Rayleigh numbers on the average Nusselt and Sherwood numbers at Ra = 105, Ec
= 0, n = 1, Df = Sr = 0, Rd = 0.2 L, Le = 2.5 and N = 0.1

Ω = -0.2 L Ω = 0 Ω = 0.2 L

Nuavg

n = 0.2 8.6068 7.6841 8.5912

n = 1 8.1150 6.7434 8.1148

n = 1.8 7.7990 6.2813 7.8024

Shavg

n = 0.2 7.8309 7.3928 7.8179

n = 1 7.0087 5.2232 7.0157

n = 1.8 6.5602 4.2871 6.5678
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