
Double-diffusive laminar natural convection

and entropy generation of Carreau fluid in a

heated enclosure with an inner circular cold

cylinder (Part II: Entropy generation)

GH. R. Kefayati ∗, H. Tang

Department of Mechanical Engineering, The Hong Kong Polytechnic University,
Kowloon, Hong Kong SAR, China

Abstract

In this paper, entropy generation of double-diffusive natural convection, studying
Soret and Dufour effects and viscous dissipation in a heated enclosure with an inner
cold cylinder filled with non-Newtonian Carreau fluid has been simulated by Finite
Difference Lattice Boltzmann Method (FDLBM). This study has been conducted
for certain pertinent parameters of Rayleigh number (Ra = 104 and 105), Carreau
number (Cu = 1, 10, and 20), Lewis number (Le=2.5, 5 and 10), Dufour parameter
(Df=0, 1, and 5), Soret parameter (Sr=0, 1, and 5), Eckert number (Ec=0, 1, and
10), the Buoyancy ratio (N=-1, 0.1, 1), the radius of the inner cylinder (Rd = 0.1
L, 0.2 L, 0.3 L, and 0.4 L), the horizontal distance of the circular cylinder from
the center of the enclosure (Ω = -0.2 L, 0 and 0.2 L), the vertical distance of the
circular cylinder from the center of the enclosure (δ = -0.2 L, 0 and 0.2 L). Re-
sults indicate that the augmentation of Rayleigh number enhances different entropy
generations and declines the average Bejan number. The increase in the power-law
index provokes various irreversibilities to drop significantly. The rise of Soret and
Dufour parameters enhance the entropy generations due to heat transfer and fluid
friction. The rise of Eckert number enhances the summation entropy generations.
The increase in Lewis number augments the total summation entropy generations
gradually. The enhancement of the buoyancy ratio causes the summation entropy
generations to increase considerably. The rise of Carreau number declines the to-
tal entropy generation gradually. The least value of the total entropy generation in
the vertical position of the cylinder occurs at δ = - 0.2 L. The increase in the size
of the cylinder augments the total entropy generation substantially. The minimum
values of the total entropy generations are observed in the center position (δ = 0)
in different horizontal positions.
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1 Introduction

Natural convection flow of a Newtonian fluid has been studied immensely by
researchers [1-3] due to its wide applications e.g. nuclear energy, double pane
windows, heating and cooling of buildings, solar collectors, electronic cooling,
etc. Many studies have conducted the effect of the presence of a hot or cold
body inside the enclosure on the natural convection phenomena and focused
on the diverse body shapes such as circular, square and triangular cylinders
[4-9]. Natural convection of non-Newtonian power-law fluids and Bingham flu-
ids recently have been studied by some researchers [10-17]. However, natural
convection of Carreau fluids in an enclosure have not been considered thus far.
Carreau fluid is a special sub-class of non-Newtonian fluids in which follows the
Carreau model [18]. This model was introduced in 1972 and is used extensively
up to date. Carreau models have been employed to simulate various chemical,
metal, molten plastics, slurries, paints, blood, etc. Some isothermal and non-
isotermal problems have been studied [19-22]. The optimal design of the cited
industries is obtained with precision calculation of entropy generation since
it clarifies energy losses in a system evidently. Entropy generation on natural
convection has been scrutinized in some researches. Ilis et al. [23] investigated
entropy generation in rectangular cavities with different aspect ratios numeri-
cally. It was demonstrated that heat transfer and fluid friction irreversibility in
a cavity vary considerably with the studied aspect ratios. In addition, the total
entropy generation in a cavity increases with Rayleigh number, however, the
rate of increase depends on the aspect ratio. El-Maghlany et al. [24] analyzed
entropy generation associated with laminar natural convection in an infinite
square cavity, subjected to an isotropic heat field with various intensities for
different Rayleigh numbers. Mun et al.[25] studied entropy generation of nat-
ural convection in square enclosure with an inner cylinder. They scrutinized
the simulations for different Rayleigh numbers, inclined angles, and Prandtl
numbers. Doo et al.[26] analyzed entropy generation of natural convection in
square enclosure with inner cylinder. They scrutinized the simulations for dif-
ferent Rayleigh numbers, the vertical position of inner cylinder, and Prandtl
numbers.

Lattice Boltzmann method (LBM) has been demonstrated to be a very ef-
fective mesoscopic numerical method to model a broad variety of complex
fluid flow phenomena [27-42]. This is because the main equation of the LBM
is hyperbolic and can be solved locally, explicitly, and efficiently on parallel
computers. However, the specific relation between the relaxation time and
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the viscosity has caused LBM not to have the considerable success in non-
Newtonian fluid especially on energy equations. In this connection, Fu et al.
[43-44] proposed a new equation for the equilibrium distribution function,
modifying the LB model. Here, this equilibrium distribution function is altered
in different directions and nodes while the relaxation time is fixed. Indepen-
dency of the method to the relaxation time in contrast with common LBM
provokes the method to solve different non-Newtonian fluid energy equations
successfully as the method protects the positive points of LBM simultane-
ously. In addition, the validation of the method and its mesh independency
demonstrates that is more capable than conventional LBM. Huilgol and Ke-
fayati [45] derived the three dimensional equations of continuum mechanics
for this method and demonstrated that the theoretical development can be
applied to all fluids, whether they be Newtonian, or power law fluids, or vis-
coelastic and viscoplastic fluids. Following the study, Huilgol and Kefayati [46]
developed this method for the cartesian, cylindrical and spherical coordinates.
Kefayati [47] simulated double-diffusive natural convection with Soret and Du-
four effects in a square cavity filled with non-Newtonian power-law fluid by
FDLBM while entropy generations through fluid friction, heat transfer, and
mass transfer were analysed. Kefayati [48-49] analysed double diffusive natu-
ral convection and entropy generation of non-Newtonian power-law fluids in
an inclined porous cavity in the presence of Soret and Dufour parameters by
FDLBM. Kefayati and Huilgol [50] conducted a two-dimensional simulation of
steady mixed convection in a square enclosure with differentially heated side-
walls when the enclosure is filled with a Bingham fluid, using FDLBM. The
problem was solved by the Bingham model without any regularisations and
also by applying the regularised Papanatasiou model. Kefayati [51] simulated
double-diffusive natural convection, studying Soret and Dufour effects and vis-
cous dissipation in a square cavity filled with Bingham fluid by FDLBM. In
addition, entropy generations through fluid friction, heat transfer, and mass
transfer were studied. The problem was solved by applying the regularised
Papanastasiou model.

The main aim of this study is to simulate entropy generation of double diffusive
natural convection of Carreau fluid in a heated enclosure with an inner cold
cylinder. The innovation of this paper is studying entropy generations in the
presence of Soret and Dufour and the viscous dissipation effect on Carreau fluid
for the first time. An innovative method based on LBM has been employed
to study the problem numerically. Moreover, it is endeavored to express the
effects of different parameters on entropy generations. The obtained results
are validated with previous numerical investigations and the effects of the
main parameters (Rayleigh number, Lewis number, buoyancy ratio number,
Eckert number, Carreau number, Soret parameter, and Dufour parameter) are
researched.

3



2 Theoretical formulation

The geometry of the present problem is shown in Fig. 1. The temperature and
concentration of the enclosure walls have been considered to be maintained at
high temperature and concentration of TH and CH as the circular cylinder is
kept at low temperature and concentration of TC and CC . The lengths of the
enclosure sidewalls are L where the inner cylinder center is defined by (xc, yc)
and the radius of the cylinder is specified by Rd. The origin of Cartesian
coordinates is located in the center of the cavity as depicted in the Fig.1.
For the concentric cases, the cylinder center is fixed at (xc = 0, yc = 0) in
the center of the cavity. For the eccentric cases, the horizontal and vertical
distances from the center are defined by Ω and δ, respectively. The cavity is
filled with a Carreau fluid. The prandtl number is fixed at Pr=0.1. The Soret,
and Dufour parameters also have been considered. There is no heat generation,
chemical reactions, and thermal radiation. The flow is incompressible, and
laminar. The density variation is approximated by the standard Boussinesq
model for both temperature and concentration. The viscous dissipation in the
energy equation has been analyzed in this study.

2.1 Dimensional equations

Based on the above assumptions, and applying the Boussinesq approximation,
the studied equations are [47 - 57]:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (2.1)

ρ

(
∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
= −∂p̄

∂x̄
+

(
∂τ̄xx
∂x̄

+
∂τ̄xy
∂ȳ

)
, (2.2)

ρ

(
∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
= −∂p̄

∂ȳ
+

(
∂τ̄yy
∂ȳ

+
∂τ̄xy
∂x̄

)
+ gρ

[
1 + βT (T̄ − TC)− βC(C̄ − CC)

]
, (2.3)

In the above equations (u = ūi + v̄j), T̄ , and C̄, and g are the dimensional
velocities, temperature, concentration, and gravity acceleration respectively.
βT and βC are the coefficient of thermal expansion and solutal expansion,
respectively as ρ is density. Now, let the pressure p̄ be written as the sum
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p̄ = p̄s + p̄d, where the static part p̄s accounts for gravity alone, and p̄d is the
dynamic part. Thus,

−∂p̄s
∂ȳ

= ρg · (2.4)

∂T̄

∂t̄
+ū

∂T̄

∂x̄
+v̄

∂T̄

∂ȳ
= α

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2

)
+

1

ρcp

[
τ̄xx

(
∂ū

∂x̄

)
+ τ̄xy

(
∂ū

∂ȳ
+
∂v̄

∂x̄

)
+ τ̄yy

(
∂v̄

∂ȳ

)]

+KTC

(
∂2C̄

∂x̄2
+
∂2C̄

∂ȳ2

)
(2.5)

α and KTC are the thermal diffusivity and the thermodiffusion, respectively.
cp is the specific heat capacity at constant pressure.

∂C̄

∂t̄
+ ū

∂C̄

∂x̄
+ v̄

∂C̄

∂ȳ
= D

(
∂2C̄

∂x̄2
+
∂2C̄

∂ȳ2

)
+KCT

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2

)
(2.6)

D and KCT are the mass diffusivity coefficient and the diffusionthermo coef-
ficient, respectively.

The stress tensor for the incompressible Carreau fluids is as [19-22]

τ̄ij = 2 η(γ̇) Sij (2.7)

where Sij is the rate of strain tensor as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.8)

where

η(γ̇) = η∞ + (η0 − η∞)
[
1 + (λγ̇)2

](n−1)/2
, γ̇ =

√
2SijSij (2.9)

where η0 and η∞ are the viscosities corresponding to zero and infinite viscosi-
ties, λ is the time constant and n is the power-law index where the deviation of
n from unity indicates the degree of deviation from Newtonian behavior. With
n 6=1, the constitute equation represents pseudoplastic fluid (0 < n < 1) and
for (n > 1) it represents a dilatant fluid, respectively. Note that a Newtonian
fluid can be recovered as a special case of the present Carreau fluid by letting n
= 1 and/or λ = 0, and a power-law fluid can be obtained by assuming a large
λ. The infinite shear viscosity, η∞, is generally associated with a breakdown

5



of the fluid, and is frequently significantly smaller (103 − 104 times smaller)
than η0, see [19-22, 58, 59]. So, the ratio η∞/η0 has been fixed at 0.001.

The flow domain is given by ω = (−L/2, L/2)× (−L/2, L/2), and the bound-
ary Γ = ∂ω. It is the union of five disjoint subsets:

Γ1 = {(x, y), x = −L/2,−L/2 ≤ y ≤ L/2} , (2.10a)

Γ2 = {(x, y), x = L/2,−L/2 ≤ y ≤ L/2} , (2.10b)

Γ3 = {(x, y),−L/2 ≤ x ≤ L/2, y = −L/2} , (2.11a)

Γ4 = {(x, y),−L/2 ≤ x ≤ L/2, y = L/2} , (2.11b)

Γ5 =
{

(x, y), (x− xc)2 + (y − yc)2 = Rd
2.
}

(2.12)

The parameters of xc, yc, and Rd are the horizontal and vertical positions of
the cylinder center and the radius of the cylinder; respectively.

The boundary condition for the velocity is straightforward:

u|Γ1
= u|Γ2

= u|Γ3
= u|Γ4

= u|Γ5
= 0. (2.13)

The boundary conditions for the temperature and concentration are:

T |Γ1
= T |Γ2

= T |Γ3
= T |Γ4

= TH , T |Γ5
= TC (2.14)

C|Γ1
= C|Γ2

= C|Γ3
= C|Γ4

= CH , C|Γ5
= CC (2.15)

2.2 Non-dimensional equations

In order to proceed to the numerical solution of the system, the following non
dimensional variables are introduced.

t =
t̄(

L2

α

)
Ra−0.5

, x = x̄/L, y = ȳ/L, u =
ū(

α
L

)
Ra0.5

(2.16)

v =
v̄(

α
L

)
Ra0.5

, pd =
p̄d

ρ
(
α
L

)2
Ra

, T = (T̄ − TC)/∆T (2.17)

C = (C̄ − CC)/∆C , ∆T = TH − TC ∆C = CH − CC (2.18)
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τττ =
τ̄̄τ̄τ L

η0

(
α
L

)
Ra0.5

(2.19)

By substitution of Eqs. (2.16) - (2.19) into Eqs. (2.1) - (2.6), the following
system of non-dimensional equations is derived:

∂u

∂x
+
∂v

∂y
= 0 (2.20)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂pd

∂x
+

Pr√
Ra

(
∂τxx
∂x

+
∂τxy
∂y

)
(2.21)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂pd

∂y
+

Pr√
Ra

(
∂τxy
∂x

+
∂τyy
∂y

)
+ Pr (T −N C) (2.22)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1√
Ra

[(
∂2T

∂x2
+
∂2T

∂y2

)
+Df

(
∂2C

∂x2
+
∂2C

∂y2

)]

+Pr Ec
√
Ra

[
τxx

(
∂u

∂x

)
+ τxy

(
∂u

∂y
+
∂v

∂x

)
+ τyy

(
∂v

∂y

)] (2.23)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
=

1

Le
√
Ra

[(
∂2C

∂x2
+
∂2C

∂y2

)
+ Sr

(
∂2T

∂x2
+
∂2T

∂y2

)]
(2.24)

The non-dimensional apparent viscosity is given by [21]

η(γ̇) =
η∞
η0

+ (1− η∞
η0

)
[
1 + (Cuγ̇)2

](n−1)/2
(2.25)

γ̇ =

2

(∂u
∂x

)2

+

(
∂v

∂y

)2
+

(
∂v

∂x
+
∂u

∂y

)2


1
2

(2.26)

Hence, the stresses are:

τxx = 2η(γ̇)

(
∂u

∂x

)
τyy = 2η(γ̇)

(
∂v

∂y

)
τxy = η(γ̇)

(
∂u

∂y
+
∂v

∂x

)
(2.27)
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The non-dimensional parameters for the problem are as follows:

Thermal Rayleigh number:

Ra =
ρ βT gL

3∆T

η0 α
(2.28)

Prandtl number:

Pr =
η0

ρα
(2.29)

Eckert number:

Ec =
(α/L)2

cp ∆T
(2.30)

Buoyancy ratio number:

N =
∆C βT D

βC ∆T α
(2.31)

Lewis number:

Le =
α

D
(2.32)

Dufour parameter:

Df =
KTC ∆C

α ∆T
(2.33)

Soret parameter:

Sr =
KCT ∆T

D ∆C
(2.34)

Carreau number:

Cu =
λ(

L2

α

)
Ra−0.5

(2.35)

3 Entropy generation

3.1 Dimensional equations

In the studied problem, the irreversibility is generated through heat transfer,
fluid friction and mass transfer. As a result, the total entropy is the sum of the
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irreversibilities due to thermal gradients, viscous dissipation and concentration
gradients as follows [23-24, 47-49, 51]:

S̄S = S̄F + S̄T + S̄D . (3.1)

Where the entropy generations due to fluid friction (S̄F ), heat transfer (S̄T ),
and mass transfer (S̄D) is calculated as follows [23-24, 47-49, 51]:

S̄F =
η(γ̇)

T0

2

(
∂ū

∂x̄

)2

+ 2

(
∂v̄

∂ȳ

)2

+

(
∂ū

∂ȳ
+
∂v̄

∂x̄

)2
 . (3.2)

S̄T =
k

T 2
0

(∂T̄
∂x̄

)2

+

(
∂T̄

∂ȳ

)2
 . (3.3)

S̄D =
RD

C0

(∂C̄
∂x̄

)2

+

(
∂C̄

∂ȳ

)2
+

RD

T0

[(
∂C̄

∂x̄

) (
∂T̄

∂x̄

)
+

(
∂C̄

∂ȳ

) (
∂T̄

∂ȳ

)]
,

(3.4)
T0 and C0 are bulk temperature and bulk concentration respectively and could
be calculated as

T0 =
TH + TC

2
, C0 =

CH + CC
2

, (3.5)

An important measure of the entropy field is Bejan number (Be) which is
defined as the ratio between entropy generations due to heat and mass transfer
irreversibilities to the total entropy generation as follow

Be =
S̄T + S̄D
S̄S

. (3.6)

3.2 Non-dimensional equations

The local dimensionless entropy generations with consideration to non-dimensional
variables of Eqs. (2.16) - (2.18) can be acquired as follows [23-24, 47-49, 51]:

SS = SF + ST + SD (3.7)

SF = ΦI

2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
 , (3.8)

ST =

(∂T
∂x

)2

+

(
∂T

∂y

)2
 , (3.9)

SD = ΦII

(∂C
∂x

)2

+

(
∂C

∂y

)2
+ ΦIII

[(
∂C

∂x

) (
∂T

∂x

)
+

(
∂C

∂y

) (
∂T

∂y

)]
,

(3.10)
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ΦI =
η(γ̇)T0

k

(
α

L∆T

)2

Ra , (3.11)

Π =
T0

k

(
α

L∆T

)2

(3.12)

ΦII =
RDT0

kC0

(
∆C

∆T

)2

(3.13)

ΦIII =
RD

k

(
∆C

∆T

)
(3.14)

It should be mentioned that the variables of ΦII , ΦIII , Π is taken constant
and they are ΦII= 0.5,ΦIII= 0.01, Π = 0.001 (Please see, [23-24, 47-49, 51]).
The local non-dimensional Bejan number is calculated as follows:

Be =
ST + SD
SS

, (3.15)

The total dimensionless entropy generations are obtained by numerical inte-
gration of the local dimensionless entropy generation over the entire cavity
volume. It is given by:

SF, tot =

1/2∫
−1/2

1/2∫
−1/2

SFdxdy , ST, tot =

1/2∫
−1/2

1/2∫
−1/2

STdxdy, SD, tot =

1/2∫
−1/2

1/2∫
−1/2

SDdxdy,

(3.16)

SS, tot =

1/2∫
−1/2

1/2∫
−1/2

SSdxdy , (3.17)

Similarity, average Bejan number can be obtained as follow

Beavg =

1/2∫
−1/2

1/2∫
−1/2

Be dxdy . (3.18)

4 The numerical method

The FDLBM equations and their relationships with continuum equations have
been explained in details in Huilgol and Kefayati [45-46]. Here, just a brief
description about the main equations would be cited. In addition, the ap-
plied algorithm has been described and the studied problem equations in the
FDLBM are mentioned.
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4.1 The Continuity and Momentum equations

To have the continuity and momentum equations, a discrete particle distri-
bution function fα is defined over a D2Q9 lattice where it should satisfy an
evolution equation:

∂fα
∂t

+ ξξξα · ∇xfα − Fα = − 1

ε φ
(fα − f eqα ), (4.1)

where ε is a small parameter to be prescribed when numerical simulations are
considered. φ is the relaxation time and F is the external force.

Associated to each node is a lattice velocity vector ξξξα. It is defined as follows:

ξξξα =


(0, 0), α = 0,

σ(cos θα, sin θα) α = 1, 3, 5, 7,

σ
√

2(cos θα, sin θα), α = 2, 4, 6, 8.

(4.2)

Here, the angles θα are defined through θα = (α − 1)π/4, α = 1, · · · , 8.
The constant σ has to be chosen with care for it affects numerical stability;
its choice depends on the problem. The method for finding the parameter σ
which satisfies the Courant-Friedrichs-Lewy (CFL) condition is described in
[45-46].

The equilibrium distribution function, f eqα , is different from the conventional
ones adopted by previous researchers, who normally expand the Maxwellian
distribution function. In the present approach, we expand f eqα as a quadratic
in terms of ξξξα, using the notation of linear algebra [45-46]:

f eqα = Aα + ξξξα ·Bα + (ξξξα ⊗ ξξξα) : Cα, α = 0, 1, 2, · · · , 8. (4.3)

Here, the scalars Aα are defined through

A0 = ρ− 2p

σ2
− ρ|u|2

σ2
+
τxx + τyy

σ2
, Aα = 0, α = 1, 2, · · · , 8. (4.4)

The vectors Bα are given by

B1 =
ρu

2σ2
= Bα, α = 1, 3, 5, 7; Bα = 0, α = 0, 2, 4, 6, 8. (4.5)

Next, the matrices Cα are such that C0 = 0; C1 = Cα, α = 1, 3, 5, 7; C2 =
Cα, α = 2, 4, 6, 8, where
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C1 =

C11 0

0 C22

 , C11 =
1

2σ4
(p+ρu2−τxx), C22 =

1

2σ4
(p+ρv2−τyy), (4.6)

C2 =

 0 C12

C21 0

 , C12 = C21 =
1

8σ4
(ρuv − τxy). (4.7)

In order to derive the macroscopic equations for an incompressible continuous
medium in the presence of a body force, it has been shown that the functions
Fα in (3.1) must be such that

8∑
α=0

Fα = 0. (4.8)

In turn, this guarantees that the conservation of mass equation is satisfied.
Next, one requires that

8∑
α=0

Fαξξξα = ρb, (4.9)

where ρb is the body force. Thus, one choice for the set of Fα is:

F0 = 0, F1 =
1

2σ2
ρb · ξξξ1, F3 =

1

2σ2
ρb · ξξξ3, (4.10a)

F5 =
1

2σ2
ρb · ξξξ5, F7 =

1

2σ2
ρb · ξξξ7. (4.10b)

Fα = 0, α = 2, 4, 6, 8. (4.10c)

One notes that F1 = −F5, F3 = −F7.

In this problem, the non-dimensional body force is as follows:

ρb =
Pr (T −N C)

2σ2
j (4.11)

4.2 The Energy Equation

In order to obtain the energy equation, an internal energy distribution function
gα is introduced and it is assumed to satisfy an evolution equation similar to
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that for fα. Thus,

∂gα
∂t

+ ξξξα · ∇xgα −Gα = − 1

εφ
(gα − geqα ). (4.12)

Gα refers to the external supply e.g. radiation in the energy equation. Here,
geqα has a monomial expansion:

geqα = Dα + ξξξα · Eα, (4.13)

One way of satisfying the above is to assume, as before, that the scalars are
given by Dα = D1, α = 1, 3, 5, 7, and Dα = D2, α = 2, 4, 6, 8,. In this problem,
the non-dimensional parameters are obtained as follows:

D0 = T, D1 = 0, D2 = 0. (4.14)

Regarding the vectors, it is assumed that E0 = 0, Eα = E1, α = 1, 3, 5, 7; Eα =
E2, α = 2, 4, 6, 8, where

E1 =

(
uT + Pr Ec

√
Ra ((u τxx + v τxy) + (u τyx + v τyy))− 1√

Ra

(
∂T
∂x

+ Df
∂C
∂x

))
2σ2

.

(4.15)
Finally, Gα = 0.

4.3 The Concentration Equation

In order to obtain the concentration equation, an internal concentration dis-
tribution function hα is introduced and it is assumed to satisfy an evolution
equation similar to that for fα. Thus,

∂hα
∂t

+ ξξξα · ∇xhα −Hα = − 1

εφ
(hα − heqα ). (4.16)

Here, heqα has a monomial expansion:

heqα = Mα + ξξξα ·Nα, (4.17)

One way of satisfying the above is to assume, as before, that the scalars are
given by Mα = M1, α = 1, 3, 5, 7, and Mα = M2, α = 2, 4, 6, 8,. In this
problem, the non-dimensional parameters are obtained as follows:

M0 = C, M1 = 0, M2 = 0. (4.18)
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Regarding the vectors, it is assumed that N0 = 0, Nα = N1, α = 1, 3, 5, 7; Nα =
N2, α = 2, 4, 6, 8, where

N1 =

(
uC − 1

Le
√
Ra

(
∂C
∂x

+ Sr
∂T
∂x

))
2σ2

(4.19)

Finally, Hα = 0.

4.4 Algorithm

The main equations of the discrete particle distribution function, the internal
energy distribution function, the internal concentration distribution function
are solved by the splitting method. Hence, the equations can be separated into
two parts. The first one is the streaming section which is written as

∂fα
∂t

+ ξξξα · ∇xfα − Fα = 0. (4.20)

∂gα
∂t

+ ξξξα · ∇xgα = 0. (4.21)

∂hα
∂t

+ ξξξα · ∇xhα = 0. (4.22)

Eqs.(4.20), (4.21), and (4.22) have been solved with FDM and the following
equations are used.

fn+1
α (i, j) = fnα (i, j)− ∆t

2∆x
ξα (i) [fnα (i+ 1, j)− fnα (i− 1, j)]

− ∆t

2∆y
ξα (j) [fnα (i, j + 1)− fnα (i, j − 1)] +

∆t2

2∆x2
ξα

2 (i) [fnα (i+ 1, j)− 2fnα (i, j) + fnα (i− 1, j)] + Fα(i)∆t+

∆t2

2∆y2
ξα

2 (j) [fnα (i, j + 1)− 2fnα (i, j) + fnα (i, j − 1)] + Fα(j)∆t , (4.23)

and
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gn+1
α (i, j) = gnα (i, j)− ∆t

2∆x
ξα (i) [gnα (i+ 1, j)− gnα (i− 1, j)]

− ∆t

2∆y
ξα (j) [gnα (i, j + 1)− gnα (i, j − 1)] +

∆t2

2∆x2
ξα

2 (i) [gnα (i+ 1, j)− 2gnα (i, j) + gnα (i− 1, j)] +

∆t2

2∆y2
ξα

2 (j) [gnα (i, j + 1)− 2gnα (i, j) + gnα (i, j − 1)] (4.24)

and

hn+1
α (i, j) = hnα (i, j)− ∆t

2∆x
ξα (i) [hnα (i+ 1, j)− hnα (i− 1, j)]

− ∆t

2∆y
ξα (j) [hnα (i, j + 1)− hnα (i, j − 1)] +

∆t2

2∆x2
ξα

2 (i) [hnα (i+ 1, j)− 2hnα (i, j) + hnα (i− 1, j)] +

∆t2

2∆y2
ξα

2 (j) [hnα (i, j + 1)− 2hnα (i, j) + hnα (i, j − 1)] (4.25)

In Eqs.(4.23), (4.24), and (4.25), we have put

ξα(i) = ξξξα · i, ξα(j) = ξξξα · j, Fα(i) = Fα · i, Fα(j) = Fα · j. (4.26)

The second part is the collision section which is as follows:

∂fα
∂t

= −1

φ
(fα(x, t)− f eqα (x, t)), (4.27)

∂gα
∂t

= −1

φ
(gα(x, t)− geqα (x, t)). (4.28)

∂hα
∂t

= −1

φ
(hα(x, t)− heqα (x, t)). (4.29)

Eqs.(4.27), (4.28), and (4.29) can be solved by using the Euler method and
the choice of φ is taken as the time step (∆t). That is
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fα(x, t+ ∆t)− fα(x, t)

∆t
= −1

φ
(fα(x, t)− f eqα (x, t)), (4.30)

gα(x, t+ ∆t)− gα(x, t)

∆t
= −1

φ
(gα(x, t)− geqα (x, t)), (4.31)

hα(x, t+ ∆t)− hα(x, t)

∆t
= −1

φ
(hα(x, t)− heqα (x, t)), (4.32)

from which one obtains

fα(x, t+ ∆t) = f eqα (x, t), (4.33)

and

gα(x, t+ ∆t) = geqα (x, t). (4.34)

hα(x, t+ ∆t) = heqα (x, t). (4.35)

The numerical procedures are summarised below.

Initial stage

(a) Initial conditions for all macroscopic quantities including the boundary
points are given. The initial values of f 0, eq

α , g0, eq
α , and h0, eq

α including the
boundary points are determined. These are used as initial values to start the
calculation.

Streaming stage

(b) With fα, gα, and hα at time t (including the boundary points) known,
intermediate values f Iα, gIα, and hIα are calculated by solving Eqs.(4.23), (4.24),
and (4.25) respectively.
(c) Using these f Iα, gIα, and hIα, the corresponding macroscopic quantities
(uI , vI , pI , TI , CI) for all interior grid points are calculated.
(d) The boundary conditions for the macroscopic level are then set as in any
finite difference method.
(e) Using the macroscopic quantities thus determined over the complete do-
main including the boundary points, the corresponding f I, eqα , gI, eqα , and hI, eqα

are obtained, including all of the boundary points.
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Collision stage

(f) Due to Eqs.(4.33), (4.34), and (4.35) the collision step is completed by
setting the new value at time t+ ∆t. Since each set of macroscopic quantities
will map uniquely to an equilibrium distribution function and vice versa, the
macroscopic quantities thus obtained are, in fact, the values at time t+ ∆t,
i.e., (u, v, p, T, C)t+∆t = (uI , vI , pI , TI , CI).

(g) Time marching proceeds by repeating steps (b)-(f).

5 Code validation and grid independence

Finite Difference Lattice Boltzmann Method (FDLBM) scheme is utilized to
simulate entropy generation of laminar double diffusive natural convection in a
heated enclosure with an inner cold cylinder that is filled with a Carreau fluid
in the presence of Soret and Dufour parameters and the viscous dissipation in
the energy equation. The Prandtl number is fixed at Pr=0.1. This problem is
investigated at different parameters of Rayleigh number (Ra = 104 and 105),
Carreau number (Cu = 1, 10, and 20), Lewis number (Le=2.5, 5 and 10),
Dufour parameter (Df=0, 1, and 5), Soret parameter (Sr=0, 1, and 5), Eckert
number (Ec=0, 1, and 10), the Buoyancy ratio (N=-1, 0.1, 1), the radius of
the inner cylinder (Rd = 0.1 L, 0.2 L, 0.3 L, and 0.4 L), the horizontal distance
of the circular cylinder from the center of the enclosure (Ω = -0.2 L, 0 and
0.2 L), the vertical distance of the circular cylinder from the center of the
enclosure (δ = -0.2 L, 0 and 0.2 L). An extensive mesh testing procedure
was conducted to guarantee a grid independent solution. Seven different mesh
combinations were explored for the case of Ra= 105, Cu=1, N=0.1, Le=2.5,
n=1.4, Rd = 0.2 L, Ec=0, Df=0 and Sr=0. The total summation of entropy
generations and the average Bejan number have been studied. It was confirmed
that the grid size (200*200) ensures a grid independent solution as portrayed
by Table.1. For the validation of the entropy generation study in Fig.2, the
local summation entropy generation (SS) for the case of Ra=105 and Pr=0.71
has been compared with the study of Mun et al. [25] which demonstrates
a good agreement. FDLBM is applied for double diffusive natural convection
and entropy generation of power-law and Bingham fluids recently [47-51] which
demonstrates the accuracy of the utilized code for the problem properly.
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6 Results and discussion

6.1 Effects of Rayleigh number on entropy generation

Fig.3 displays the Rayleigh number effects on entropy generations due to heat
transfer (ST ), fluid friction (SF ), mass transfer (SD),summation entropy gen-
eration (SS), and the local Bejan number (Be) at n=0.2, Le=2.5, Rd = 0.2 L,
Cu=1, Ec=0, N=0.1, Df =0, and Sr=0. It demonstrates that ST increases gen-
erally, but this augmentation is not uniform in the cavity nad in some places
we face a decrease in the ST . For example, it is observed that minor values are
appeared the bottom side of the cold cylinder. However, some places e.g. the
bottom side of the cavity shows the ST augments in a higher rate compared
other parts. However, the minimum values of ST are observed in both studied
Rayleigh numbers in the corners of the enclosure. The SF demonstrates that
the high values are observed on the sidewalls and the surface of the cylinder
in both Rayleigh numbers. Generally, the SF increases considerably with the
rise of Rayleigh number where the minimum value bottom of the cylinder be-
comes smaller due to the increase in Rayleigh number. In fact, high values are
replaced with the low values at Ra = 105 close to the cylinder on the bot-
tom section of the cavity. The entropy generation due to mass transfer (SD)
enhances generally with the rise of Rayleigh number; although, this augmenta-
tion is less than SF . It shows the gradient of SD on the cylinder enhances with
the rise of Rayleigh number. In addition, the entropy generation due to mass
transfer in bottom of the cylinder diminishes as Rayleigh number enhances
while close to the bottom wall of the enclosure a high value is generated at
Ra = 105. Interestingly, the increase in Rayleigh number, causes a low value
section of SD is generated on the top section of the enclosure which proves that
the rise of Rayleigh number decreases the irreversibility due to mass transfer.
The contour of the total entropy generations exhibits that the high values are
concentrated around the cylinder and sections which are immensely close to
the sidewalls. At Ra = 104, the high values of SS form a mushroom shape
while at Ra = 105, the bottom side of the cylinder has a low value. However,
two small slices of high values on the bottom side of the cavity are obtained
at Ra = 105. In addition, the rise of Rayleigh number does not affect the total
entropy generation significantly where the values of SS = 5 has covered the
top side at Ra = 105. However, two small stuck parts on the top side of the
enclosure is present at Ra = 105. Table. 2 shows that the entropy generations
due to fluid friction and heat and mass transfer increases as Rayleigh num-
ber rises. The highest rate of the increase in the entropy generations due to
the increase in Rayleigh number is observed in the SF where this augmenta-
tion was approximately 33 times. But, the total entropy generation enhances
nearly three times as the Rayleigh number increase from Ra = 104 to 105. The
average Bejan number decreases significantly by 50 percent with the rise of

18



Rayleigh number.

6.2 Effects of power-law index on entropy generation

Fig.4 displays the power-law index effects on entropy generations due to heat
transfer (ST ), fluid friction (SF ), and mass transfer (SD) at Ra = 105, Le=2.5,
Cu=1, Rd = 0.2 L, Ec=0, N=0.1, Df =0, and Sr=0. It shows that the ST
becomes weak slightly as the power-law index increases. The bottom side of
the enclosure can demonstrate the effect of power-law index on the ST clearly
where the high values of ST=20 and 40 at n=0.2 disappears at n=1.8. However,
the increase in power-law index does not influence the top section of cylinder
in ST . Table 2 confirms the trend of the contours of ST where shows the
ST declines gradually for the both studied Rayleigh numbers with the rise
of power-law index. The enhancement of power-law index from n = 0.2 to 1
enhances the values in the contours of SF marginally where the SF = 20 can
distinguish this pattern. But, the values of SF declines from n = 1 to 1.8.
Table 2 also demonstrates that the SF at Ra = 105 increases from n = 0.2 to
1, but it drops from n = 1 to 1.8. Table 2 shows the SF at Ra= 104 exhibits a
different manner where decreases gradually as the power-law index enhances.
It displays that the values i the contours of SD weakens steadily as the power-
law index enhances. The bottom wall of the enclosure demonstrates that the
SD = 10 and 20 disappear with the rise of power-law index. It should also be
noted that the low value on the top of the enclosure is not affected by the
change of the power-law index. Table 2 shows that the SD declines gradually
with the rise of power-law index in the both studied Rayleigh numbers.

Fig.5 displays the power-law index effects on entropy generations due to sum-
mation entropy generation (SS), and the local Bejan number (Be)at Ra = 105,
Le=2.5, Cu=1, Ec=0, Rd = 0.2 L, N=0.1, Df =0, and Sr=0. The contours of
the total entropy generation show that the values of SS declines slightly as the
power-law index enhances. Table 2 indicates that the total summation of en-
tropy generation decreases gradually when the power-law index enhances. The
local Bejan number clarifies that the sections of high values enlarges slightly.
Table 2 confirms this trend at Ra = 105 where the average Bejan number
rises as the power-law index increases. The same pattern for the average Be-
jan number at Ra = 104 where the average Bejan number drops due to the
increase in the power-law index.

6.3 Effects of Lewis number on entropy generation

Fig.6 displays the Lewis number effects on entropy generations due to heat
transfer (ST ), fluid friction (SF ), mass transfer (SD),summation entropy gen-
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eration (SS), and the local Bejan number (Be) at n=1, Ra = 105, Cu=1,
Ec=0, Rd = 0.2 L, N=0.1, Df =0, and Sr=0. It demonstrates that the local
entropy generation due to heat transfer and fluid friction do not affect con-
siderably as the Lewis number enhances. But, the local entropy generation
due to mass transfer shows a different distribution with the rise of the Lewis
number where the gradient and values of SD around the cylinders increase
considerably. In addition, the summation of entropy generation (SS) shows
a marginal increase in values as the Lewis number enhances. The local Be-
jan number shows a marginal changes with the rise of Lewis number where
the maximum values in the bottom of the cavity diminishes due to the in-
creases in the entropy generation of mass transfer. Table 3 shows that the
increase in Lewis number declines the ST and SF slightly while the SD in-
creases considerably with the enhancement of Lewis number. The summation
entropy generation enhances gradually with the rise of Lewis number in both
Rayleigh numbers. In addition, the augmentation of Lewis number causes the
average Bejan number marginally to drop and increase at Ra = 104 and 105,
respectively.

6.4 Effects of Buoyancy ratio on entropy generation

Fig.7 displays the Buoyancy ratio effects on entropy generations due to heat
transfer (ST ), fluid friction (SF ), mass transfer (SD),summation entropy gen-
eration (SS), and the local Bejan number (Be) at n=1, Ra = 105, Cu=1, Rd

= 0.2 L, Ec=0, Le = 2.5, Df =0, and Sr=0. It demonstrates that the local
entropy generation due to heat transfer changes considerably as the buoy-
ancy ratio increases from N=-1 to 0.1 where the values augment considerably
and the values of ST and their gradients around cylinder augments and two
sections of high values are observed on the bottom side of the cavity. The
augmentation of ST continues from N = 0.1 to 10, but the shape is the same
as N=0.1. Table 4 demonstrates that the ST increases gradually as the buoy-
ancy ratio enhances from N = -1 to 1. The local entropy generation due to
fluid friction has changed utterly as the buoyancy ratio increases from N =
-1 to 0.1 where the maximum values are formed close to the cylinder at N =
1. The SF augments considerably in the contours at N= 1. Table 4 shows the
average entropy generation due to fluid friction increases substantially when
the buoyancy ratio rises from N=-1 to 1. The local entropy generation due
to mass transfer strengthens as the buoyancy ratio increases where the values
of SD in bottom side of the cavity can distinguish the enhancement clearly.
Table 4 indicates that the SD enhances in the both studied Rayleigh numbers
with the rise of the buoyancy ratio from N =-1 to 1. The local contours of
the summation entropy generation demonstrates that the increase in buoy-
ancy ratio augments the values around the cylinder although small sections
with low values bottom of the cylinder are generated. Table 4; clearly, shows
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that the SS increases significantly as the buoyancy ratio enhances. The local
Bejan number displays that the rise of buoyancy ratio from N = -1 to 0.1
diminishes the high values in the middle of the cavity considerably. The de-
creases in the local Bejan number continues at N=1; although, this reduction
is not extensive. Table 4 confirms this results where the average Bejan number
decreases considerably at Ra = 105. In addition, the average Bejan number
in the Rayleigh number of Ra = 104 drops slightly as the buoyancy ration
enhances from N = -1 to 1.

6.5 Effects of Soret parameter on entropy generation

Fig.8 displays the Soret parameter effects on entropy generations due to heat
transfer (ST ), fluid friction (SF ), mass transfer (SD),summation entropy gener-
ation (SS), and the local Bejan number (Be) at n=1, Ra = 105, Cu=1, N=0.1,
Rd = 0.2 L, Ec=0, Le = 2.5, and Df =0. It shows that the local entropy
generation due to heat transfer becomes stronger around the cylinder as the
Soret parameter increases. However, it demonstrates that the ST in the bottom
and top side of the enclosure does not alter significantly. The local entropy
generation due to fluid friction increases slightly when the Soret parameter
enhances. The highest impact of the soret parameter is observed on the SD
where the distribution of the entropy generation alters completely. In fact, the
high values around the cylinders changes to low magnitudes. In addition, the
maximum values of the SD drops considerably; however, the size of sections
with the average values of SD = 15 to 20 enlarge significantly. In addition,
the total entropy generation contours demonstrate the low values of SS on the
top of the cavity diminishes and replaced with higher magnitudes. Hence, it
is observed the SS strengthens with the rise of Soret parameter generally. The
local Bejan number demonstrates that the increase in Soret parameter causes
the sections with high values in the center of the cavity to expand. The main
reason for the enhancement of the local Bejan number around the cylinders
is the drop of the SD as the Soret parameter increases. Table 5 shows that
the entropy generations due to heat and fluid flow augment slightly as the
Soret parameter increases. In addition, the table displays that the SD and SS
decreases as the Soret parameter rises from Sr =0 to 1, but drops from Sr
= 1 to 5. The average Bejan number also augments as the Soret parameter
enhances.

6.6 Effects of Dufour parameter on entropy generation

Fig.9 displays the Dufour parameter effects on entropy generations due to
heat transfer (ST ), fluid friction (SF ), mass transfer (SD),summation entropy
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generation (SS), and the local Bejan number (Be) at n=1, Ra = 105, Cu=1,
Rd = 0.2 L, Ec=0, Le = 2.5, and Sr=0. It demonstrates that the ST enhances
considerably with the rise of Dufour number where the maximum values were
observed on the top and bottom of the cylinders and close to the sidewalls.
However, it shows the low values of ST are obtained in the corners of the
enclosure same as the absence of Dufour number. The contour of SF shows a
substantial increase as the Dufour parameter enhances. In addition, the dis-
tribution of the irreversibility due to fluid friction changes where the left and
right sides of the cylinder have low values in contrast with the Df = 0. Fur-
ther, two sections with high values on the top and bottom side of the enclosure
are generated at Df = 5 while low values are observed at Df = 0. The con-
tour of SD demonstrates that a big section of low value in the bottom of the
enclosure is generated with the rise of Dufour parameter. In addition, a high
value section which is stick to the bottom of cylinder is generated by the rise
of Dufour parameter. The contours of total summation of entropy generation
in different Dufour parameters exhibits that iireversibility augments consider-
ably. In addition, the uniform shape of the entropy changes to discrete parts
with the enhancement of Dufour numbers. It shows that the increase in Du-
four parameter enhances the maximum parts of the local Bejan number. The
main reason of the trend is because of the enhancement of entropy generation
due to heat transfer considerably. Table 6 indicates that different entropy gen-
erations and the average Bejan number enhance slightly with the increase in
Soret parameter in various Rayleigh numbers. Table 6 reveals that different
entropy generations; especially entropy generation due to heat transfer, rise
significantly. Moreover, the average Bejan number increases when the Dufour
parameter enhances.

6.7 Effects of Eckert number on entropy generation

Fig.10 displays the Eckert number effects on entropy generations due to heat
transfer (ST ), fluid friction (SF ), mass transfer (SD),summation entropy gen-
eration (SS), and the local Bejan number (Be) at n=1, Ra = 105, Cu=1, Ec=0,
Rd = 0.2 L, Le = 2.5, Df =0, and Sr=0. As it was predicted, the main effect of
Eckert number was observed in the entropy generation due to heat transfer. It
can be seen that the two maximum value sections of ST close to the cylinder
are generated by the rise of Eckert number. However, two low values parts
next to the cylinder is created. Moreover, the ST strengthens in sidewalls of
the enclosure as the Eckert number rises. The contour of SF displays that the
high values sections next to the cylinders and the sidewalls become stronger
when the Eckert numbers rises. However, the SD weakens slightly due to the
increase of Eckert number. The Fig exhibits that the rise of Eckert number
enhances the summation of entropy generation moderately. It was found from
the obtained contours that the local Bejan number declines slightly in the
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presence of the Eckert number. Table 7 demonstrates that the Eckret number
has a minor influence on entropy generations. However, the trend of the table
shows that the total entropy generations of heat transfer enhance gradually
for the both studied Rayleigh numbers as the Eckert number enhances. In
addition the entropy generation due to the fluid friction and the summation
entropy generation at Ec = 10 are more than the Eckert number Ec = 10;
although drops slightly from Ec =0 to 1.

6.8 Effects of Carreau number on entropy generation

Fig.11 displays the Carreau number effects on entropy generations due to
heat transfer (ST ), fluid friction (SF ), mass transfer (SD),summation entropy
generation (SS), and the local Bejan number (Be) at n=1.4, Ra = 105, Ec=0,
Rd = 0.2 L, Le = 2.5, Df =0, and Sr=0. The local entropy generations due to
heat transfer demonstrates that the ST weakens slightly as the Carreau number
rises. But the contour of SF becomes weak significantly in the presence of the
Carreau number.On the other hand, the local entropy generation due to mass
transfer drops marginally due to the enhancement of the Carreau number. It
was observed that the summation of entropy generations especially around
the cylinder drop as the Carreau number enhances. It was also found that
the local Bejan number with high values expand in the result of the increase
in the Carreau number. The main reason of the pattern is the decline of the
local entropy generation due to the fluid friction. Table 8 shows that the total
entropy generation due to fluid friction declines substantially as the Carreau
number rises. In addition, other entropy generations icluding the summation of
entropy generations decrease moderately. However, the average Bejan number
enhances gradually with the rise of the Carreau parameter.

6.9 Effects of the vertical distance of the cylinder from the center on entropy
generation

Fig.12 displays the vertical distance of the cylinder from the center (δ) effects
on entropy generations due to heat transfer (ST ), fluid friction (SF ), mass
transfer (SD),summation entropy generation (SS), and the local Bejan num-
ber (Be) at n=1, Ra = 105, Cu=1, Rd = 0.2 L, Ec=0, Le = 2.5, Df =0, and
Sr=0. It demonstrates that the entropy generation due to heat transfer drops
considerably as the location moves from δ = -0.2 L to 0. But, the movement
of the cylinder to the top side enhances ST significantly. Moreover, it was
observed that at δ =-0.2 L, the half of the enclosure has a low value of ST
=1 which is the main reason for the low entropy generation of heat transfer.
The same trend occurs at SF where the local entropy due to fluid friction
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strengthens substantially when the cylinder moves from the bottom side to
the center. This pattern can be seen clearly at SF = 20 as it enlarges consid-
erably from δ = -0.2 L to 0. However, the SF declines slightly from δ = 0 to
0.2 L; especially, the bottom side of the cylinder. The local entropy genera-
tion due to mass transfer demonstrates evidently that the movement of the
cylinder from bottom side to the center declines slightly, but rises marginally
in the top side. The local summation entropy generation exhibits that the
values enhance when the cylinder moves from the bottom to the top side.It
shows that the distribution of the entropy generation alters utterly with the
change of the cylinder position. However, it clarifies that the highest values
are observed around the cylinder and close to the side walls. The local Be-
jan number demonstrates that at δ = -0.2 L, the top half section includes low
values because the entropy generations due to heat and mass transfer are min-
imum. Generally,it was found, the highest values of the local Bejan number
are around the cylinder. Table 9 indicates that various entropy generations
declines gradually as the power-law indexes enhance while the average Bejan
number increases in different vertical positions. It can be seen that at n=0.2,
the total entropy generation (SS) drops with the rise of the cylinder center.
But, the total entropy generation (SS) enhances slightly when the cylinder
moves from bottom to the top side of the enclosure. It was also observed the
highest average Bejan number is observed in the center position.

6.10 Effects of the radius of the inner cylinder from the center on entropy
generation

Fig.13 displays the radius of the cylinder (Rd) effects on entropy generations
due to heat transfer (ST ), fluid friction (SF ), mass transfer (SD),summation
entropy generation (SS), and the local Bejan number (Be) at n=1, Ra = 105,
Cu=1, Ec=0, Le = 2.5, Df =0, and Sr=0. It can be observed that the increase
in the size of the cylinder enhance the total entropy generation due to heat
transfer gradually where the low value on the top of the cavity in the size of
Rd=0.1 L is removed with the augmentation of the cylinder size. It shows that
the local entropy generation due to fluid friction becomes strong as the size of
the cylinder rises from Rd = 0.1 L to 0.3 L. But, at Rd =0.4 L,the SF declines
vastly in the local contour. The values in the local entropy generations due
to mass transfer augment gradually as the size of the cylinder rises. The local
summation entropy generation shows that the maximum values of the entropy
generations decline as the size od the cylinder enhances; however, the values
of the total entropy generation in the cavity enhance considerably. The local
Bejan number augments clearly as the size of the cylinder rises. It exhibits
that the entropy generation due to fluid friction becomes weak with the rise of
cylinder compared to entropy generations due to heat and mass transfer. Table
10 displays that the increase in the power-law index in various sizes declines
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different entropy generations. In different power-law indexes, the enhancement
of the cylinder size increases the ireversibilities due to heat and mass transfer
as well as the summation entropy generation. However, the entropy generation
due to fluid friction has a non-uniform manner against the size of the cylinder.
In addition, the highest average Bejan number is observed in the size of d=0.3
L.

6.11 Effects of the horizontal distance of the cylinder from the center on
entropy generation

Fig.14 displays the horizontal distance of the cylinder from the center (Ω)
effects on entropy generations due to heat transfer (ST ), fluid friction (SF ),
mass transfer (SD),summation entropy generation (SS), and the local Bejan
number (Be) at n=1, Ra = 105, Cu=1, Ec=0, Rd = 0.2 L, Le = 2.5, Df

=0, and Sr=0. The local entropy generations due to heat and mass transfer
drop in the center compared to the sidewall positions of the cylinder. But, the
local entropy generation due to fluid friction strengthens considerably in the
center position compared to the sidewall positions. The local total entropy
generation demonstrates that the highest entropy generation is observed in
the center position. The local Bejan number demonstrates that the high rate
of the average Bejan number is present around the cylinder and low values
are far from the cylinder. Table 11 shows that the lowest entropy generations
are observed at n=1.8. In different power-law indexes, the highest different
entropy generations are observed in the center position; although, the lowest
average Bejan number is in this position.

7 Concluding Remarks

Entropy generation of double diffusive natural convection of Carreau fluid in
a cavity in the presence of Soret and Dufour parameters as well as viscous
dissipation has been analyzed by Finite Difference Lattice Boltzmann method
(FDLBM). This study has been conducted for the pertinent parameters in the
following ranges: Rayleigh number (Ra = 104 and 105), Carreau number (Cu
= 1, 10, and 20), Lewis number (Le=2.5, 5 and 10), Dufour parameter (Df=0,
1, and 5), Soret parameter (Sr=0, 1, and 5), Eckert number (Ec=0, 1, and
10), the Buoyancy ratio (N=-1, 0.1, 1), the radius of the inner cylinder (Rd =
0.1 L, 0.2 L, 0.3 L, and 0.4 L), the horizontal distance of the circular cylinder
from the center of the enclosure (Ω = -0.2 L, 0 and 0.2 L), the vertical distance
of the circular cylinder from the center of the enclosure (δ = -0.2 L, 0 and 0.2
L). The main conclusions of the present investigation can be summarized as
follows:
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• The enhancement of Rayleigh number augments different irreversibilities
and the highest level of growth is observed at the entropy generation due
to fluid friction.
• Bejan number declines significantly with the augmentation of Rayleigh num-

ber which demonstrates a jump in the irreversibility due to fluid friction.
• The enhancement of power-law index declines different entropy generations

steadily while the average Bejan number rises gradually.
• The increase in the buoyancy ratio enhances the entropy generations due to

heat and mass transfer, fluid friction and causes the average Bejan number
to augment.
• The rise of Lewis number enhances the entropy generation due to mass

transfer for different studied parameters whereas the entropy generations
due to heat transfer and fluid friction decrease by the growth of the Lewis
number.
• The average Bejan number decreases and enhances when the Lewis number

increases at Ra = 104, and 105; respectively.
• In the absence of the Soret and Dufour parameters (Sr = Df = 0), the

entropy generations due to heat and mass transfer as well as the summation
of entropy generation decrease slightly as the power-law index enhances for
multifarious Rayleigh numbers.
• In the absence of the Soret and Dufour parameters (Sr = Df = 0), the in-

crease in the power-law index enhances the average Bejan number gradually
in various Rayleigh numbers.
• The addition of Dufour parameter enhances different total entropy genera-

tions; especially the fluid friction, for the studied Rayleigh numbers.
• The total summation of entropy generation enhances with the augmentation

of the Dufour parameter while the average Bejan number drops at Ra =
104 and enhances at Ra = 105 with the rise of the Dufour parameter.
• The addition of Soret parameter augments the total entropy generation

due to fluid friction and heat transfer. Further, the average Bejan number
decreases with the increase in Soret parameter in various Rayleigh numbers.
• The addition of Eckert number in a low value (Ec =1) decrease the to-

tal summation entropy generation slightly, but at high values (Ec=10) can
result in the enhancement of the total entropy generations considerably.
• The addition of Carreau number causes the total entropy generation to drop

gradually.
• It was found the lowest entropy generation in the vertical positions is in

the close position to the bottom side (δ=-0.2L) in the power-law index of
n=1 and 1.8. But, the entropy generations at n=0.2 are nearly the same for
δ=-0.2L and 0.
• I was observed the increase in the size of the cylinder enhances the total

entropy generations gradually.
• The highest entropy generations in the studied horizontal positions was

observed in the center position in various power-law indexes.
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Table 1
Grid independence study at Ra = 105, Ec=0, Rd = 0.2 L, Le = 2.5, Cu = 1, n=1.4,
Sr=Df=0, and N=0.1

Mesh size SS Beavg

150*150 28.1504 0.5181

160*160 27.9025 0.5021

170*170 27.6393 0.4951

180*180 27.4158 0.4881

190*190 27.3908 0.4680

200*200 27.3472 0.4501

210*210 27.3472 0.4501
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Table 2
Different entropy generations in various Rayleigh numbers and power-law indexes
at Ec = 0,Df= Sr=0, Rd = 0.2 L, Le=2.5 and N=0.1

ST SF SD SS Beavg

Ra = 104

n=0.2 6.3671 0.7639 3.5322 10.6632 0.7809

n=0.4 6.3357 0.6744 3.4703 10.4804 0.7922

n=0.6 6.3152 0.5968 3.4283 10.3404 0.8031

n=0.8 6.3010 0.5267 3.3984 10.2261 0.8131

n=1 6.2907 0.4637 3.3760 10.1305 0.8223

n=1.2 6.2828 0.4076 3.3587 10.0491 0.8304

n=1.4 6.2767 0.3577 3.3449 9.9792 0.8376

n=1.6 6.2717 0.3134 3.3335 9.9187 0.8439

n=1.8 6.2676 0.2743 3.3240 9.8659 0.8495

Ra = 105

n=0.2 8.4255 13.3706 6.2282 28.0243 0.3869

n=0.4 8.2489 14.1741 6.0354 28.4584 0.3926

n=0.6 8.0654 14.8410 5.8313 28.7378 0.3997

n=0.8 7.8845 15.2706 5.6267 28.7817 0.4088

n=1 7.7186 15.3824 5.43603 28.5370 0.4203

n=1.2 7.5744 15.1942 5.2682 28.0368 0.4342

n=1.4 7.4527 14.7695 5.1250 27.3472 0.4501

n=1.6 7.3513 14.1738 5.0044 26.5296 0.4674

n=1.8 7.2669 13.4616 4.9030 25.6315 0.4858
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Table 3
Effects of the Lewis number (Le) on different entropy generations in different
Rayleigh numbers at Ec=0, Rd = 0.2 L, n = 1, Sr=Df=0, and N=0.1

Le = 2.5 Le = 5 Le = 10

Ra = 104

ST 6.2907 6.2896 6.2877

SF 0.4637 0.4567 0.4449

SD 3.3760 3.7878 4.6837

SS 10.1305 10.5342 11.4163

Beavg 0.8223 0.8178 0.8130

Ra = 105

ST 7.7186 7.6692 7.6160

SF 15.3824 14.7758 14.2254

SD 5.43603 7.1269 9.0520

SS 28.5370 29.5719 30.8935

Beavg 0.4203 0.4222 0.4239
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Table 4
Effects of the Buoyancy ratio (N) on different entropy generations in different
Rayleigh numbers at Ec=0, n = 1, Rd = 0.2 L, Le = 2.5,Df=0, and Sr=0

N=0.1 N=1 N=-1

Ra = 104

ST 6.2907 6.4677 6.2084

SF 0.4637 1.4398 0.000812

SD 3.3760 3.7739 3.1691

SS 10.1305 11.6815 9.3783

Beavg 0.8223 0.7521 0.8846

Ra = 105

ST 7.7186 9.0314 6.2869

SF 15.3824 32.3129 0.71382

SD 5.43603 6.7836 3.6568

SS 28.5370 48.1280 10.6575

Beavg 0.4203 0.3319 0.7447
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Table 5
Effects of the Soret parameter (Sr) on different entropy generations in different
Rayleigh numbers at Ec=0, n = 1, Rd = 0.2 L, Le = 2.5, Df=0, and N=0.1

Sr = 0 Sr = 1 Sr = 5

Ra = 104

ST 6.2907 6.2910 6.2927

SF 0.4637 0.4658 0.4745

SD 3.3760 3.2484 3.3879

SS 10.1305 10.0053 10.1550

Beavg 0.8223 0.8228 0.8255

Ra = 105

ST 7.7186 7.7445 7.8532

SF 15.3824 15.7818 17.4999

SD 5.43603 4.3048 5.7688

SS 28.5370 27.8311 31.1219

Beavg 0.4203 0.4266 0.5082
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Table 6
Effects of the Dufour parameter (Df ) on different entropy generations in different
Rayleigh numbers at Ec=0, n = 1, Le = 2.5, Rd = 0.2 L, Sr=0, and N=0.1

Df=0 Df=1 Df=5

Ra = 104

ST 6.2907 6.4126 34.3796

SF 0.4637 0.5330 1.6032

SD 3.3760 3.4102 3.84970

SS 10.1305 10.3558 39.8326

Beavg 0.8223 0.8185 0.7769

Ra = 105

ST 7.7186 9.8518 118.03276

SF 15.3824 29.6132 46.1777

SD 5.43603 6.1126 7.1888

SS 28.5370 45.5776 171.3992

Beavg 0.4203 0.4335 0.5990
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Table 7
Effects of the Eckert number (Ec) on different entropy generations in different
Rayleigh numbers at Df=0, n = 1, Le = 2.5, Rd = 0.2 L, Sr=0, and N=0.1

Ec=0 Ec=1 Ec=10

Ra = 104

ST 6.2907 6.2909 6.3380

SF 0.4637 0.4640 0.4673

SD 3.3760 3.3761 3.3770

SS 10.1305 10.1311 10.1823

Beavg 0.8223 0.8218 0.8174

Ra = 105

ST 7.7186 7.7097 12.0678

SF 15.3824 15.3058 15.7789

SD 5.43603 5.4118 5.2482

SS 28.5370 28.4273 33.0949

Beavg 0.4203 0.4165 0.4213
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Table 8
Effects of the Carreau number(Cu) on different entropy generations in different
Rayleigh numbers at Ec=0, Df=0, n = 1.4, Rd = 0.2 L, Le = 2.5,Sr=0, and N=0.1

Cu=1 Cu=10 Cu=20

Ra = 104

ST 6.2767 6.2373 6.2288

SF 0.3577 0.1112 0.07186

SD 3.3449 3.2487 3.2262

SS 9.9792 9.5972 9.5269

Beavg 0.8376 0.8671 0.8731

Ra = 105

ST 7.4527 6.9121 6.7695

SF 14.7695 5.6493 3.9045

SD 5.1250 4.4753 4.2975

SS 27.3472 17.0367 14.9715

Beavg 0.4501 0.5528 0.5978
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Table 9
Effects of the vertical distance of the cylinder from the center (δ) on different entropy
generations at Ra = 105, Ec=0, Df=0, Rd = 0.2 L, n = 1, Le = 2.5,Sr=0, and N=0.1

δ=-0.2 L δ=0 δ=0.2 L

n = 0.2

ST 9.9135 8.4255 9.4128

SF 11.0906 13.3706 11.6653

SD 7.0517 6.2282 6.4258

SS 28.0559 28.0243 27.5038

Beavg 0.3036 0.3869 0.3847

n = 1

ST 9.2557 7.7186 8.9462

SF 10.4543 15.3824 13.6346

SD 6.2581 5.43603 5.8904

SS 25.9682 28.5370 28.4713

Beavg 0.3615 0.4203 0.4164

n = 1.8

ST 8.8935 7.2669 8.6196

SF 8.5386 13.4616 12.4801

SD 5.7758 4.9030 5.4598

SS 23.2080 25.6315 26.5595

Beavg 0.4699 0.4858 0.4797

40



Table 10
Effect of the radius of the inner cylinder (Rd) on different entropy generations at
Ra = 105, Ec=0, Df=0, n = 1, Rd = 0.2 L, Le = 2.5,Sr=0, and N=0.1

Rd = 0.1 L Rd = 0.2 L Rd = 0.3 L Rd = 0.4 L

n = 0.2

ST 6.0189 8.4255 11.8295 20.9512

SF 9.4786 13.3706 14.5286 8.7013

SD 4.7651 6.2282 7.4064 11.1330

SS 20.2626 28.0243 33.7646 40.7855

Beavg 0.2886 0.3869 0.4379 0.3989

n = 1

ST 5.5678 7.7186 11.1291 20.8397

SF 10.5777 15.3824 13.0013 4.6182

SD 4.3131 5.43603 6.5063 10.9538

SS 20.4586 28.5370 30.6367 36.4118

Beavg 0.3331 0.4203 0.4669 0.4293

n = 1.8

ST 5.1756 7.2669 10.9248 20.7973

SF 9.7920 13.4616 9.1324 2.9721

SD 3.8892 4.9030 6.2354 10.8634

SS 18.8568 25.6315 26.2927 34.6327

Beavg 0.4170 0.4858 0.5215 0.4516
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Table 11
Effects of the horizontal distance of the cylinder from the center (Ω) on different
entropy generations at Ra = 105, Rd = 0.2 L, Ec=0, Df=0, n = 1, Le = 2.5,Sr=0,
and N=0.1

Ω=-0.2 L Ω=0 Ω=0.2 L

n = 0.2

ST 9.7970 8.4255 9.7828

SF 9.5683 13.3706 9.5283

SD 6.5213 6.2282 6.4979

SS 25.8866 28.0243 25.8090

Beavg 0.3952 0.3869 0.3950

n = 1

ST 9.4149 7.7186 9.4142

SF 10.8030 15.3824 10.8265

SD 6.0994 5.43603 6.09417

SS 26.3173 28.5370 26.3349

Beavg 0.4456 0.4203 0.4456

n = 1.8

ST 9.0931 7.2669 9.0973

SF 10.1295 13.4616 10.1606

SD 5.7430 4.9030 5.7434

SS 24.9656 25.6315 25.0013

Beavg 0.4994 0.4858 0.4995
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