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Abstract 

It is a longstanding notion that alloying different sized elements can cause lattice distortion 

and phase transition in chemically complex alloys. However, a quantitative understanding of 

it remains difficult for traditional alloys, and becomes even more challenging for equimolar 

multicomponent alloys, also known as “high entropy alloys”, which recently emerged as a 

promising structural/functional material and have been attracting tremendous research 

interest due to their unique properties. In this work, we carried out extensive first-principles 

calculations on a series of equimolar complex alloys with a chemically disordered crystalline 

structure, and characterized their atomic-scale lattice distortions in terms of the local 

residual strains. Albeit the confounding chemical/geometric complexities, we are able to show 

that the average attributes of such an atomic-scale distorted lattice, such as the lattice 

constant and the overall magnitude of the distortion induced residual strains, can be 

predicted very well by a simple physical model taking into account the efficient packing of 

different sized atoms interacting in an effective elastic medium. The findings of our current 

research unveils the details of locally distorted atomic packing in chemically disordered 

complex alloys, which sheds quantitative insights into the unusual strengthening mechanism 

as recently discovered in high entropy alloys. 
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1. Introduction 

Lattice distortion is a long-standing notion that can be dated back to the discovery of solid-solution 

strengthening in conventional alloys [1-3]. In principle, this strengthening effect stems from the 

interaction between dislocations and the elastic strain field induced by inhomogeneities, i.e. atomic 

size misfit and/or elastic modulus misfit, which generally result in lattice distortions[4-6]. In theory, 

such a strain field comprises both volumetric strain and shear strain, where the latter is usually 

omitted for its complexity despite its considerable strengthening effect[7]. By assuming that 

volumetric strains dominate lattice distortion in various solid solution models[4-6, 8], mean-field 

approaches, such as those based on the classic Eshelby theory [9], were widely used to calculate 

the local volumetric strain field. Such models are featured by picturing the solute atoms as an 

isolated unsheared “inclusion” embedded in an elastic “matrix” made up of the solvent atoms. The 

limitations of the mean-field approach, which usually neglects residual shear strains due to 

deformation asymmetry in a sheared elastic “matrix”, has been long recognized, however, the 

theoretical results so obtained enabled quantitative knowledge of lattice distortion in terms of the 

average volumetric strains [4-6, 8]. In physical metallurgy, such knowledge was of great 

importance, which played an essential role in the understanding and early design of the best-

performing solute-strengthened dilute alloys, such as Al alloys[10], Ti alloys[11], and Ni-based 

superalloys[12].  

In sharp contrast to the conventional alloy design paradigm, which is usually based on one 

principal element, a new alloy design strategy, known as “high entropy alloy” (HEA)[13-19], was 

recently proposed to obtain complex multicomponent alloys with outstanding properties. Unlike 
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traditional alloys, HEAs are defined comprising at least five elements mixed in an equal or near-

equal atomic fraction [14, 15]. In doing so, it was expected that the configurational entropy of 

mixing in these alloys can be maximized, thereby stabilizing a random solid solution phase against 

others, such as intermetallic compounds [13-17]. According to the recent works[20-23], many 

solid-solution HEAs display extraordinary mechanical properties unparalleled by traditional alloys, 

such as FeCoNiCrMn[21], Fe32Mn30Ni30Co6Cr2[22], Fe50Mn30Co10Cr10[20], 

Al20Li20Mg10Sc20Ti30[23]. To rationalize these findings, it was often proposed that severe lattice 

distortion might be present in the HEAs due to the mixing of numerous different sized elements, 

which leads to the impediment of dislocation movements, sluggish diffusion kinetics and 

precipitation of nano-sized coherent secondary phases[16, 17, 24, 25]. Nevertheless, it still remains 

elusive with the nature of lattice distortion in the HEAs. Unlike traditional alloys, there lacks a 

clear distinction between solvent and solute elements in these alloys; therefore, the use of the 

traditional ways, such as the Elshelby theory, to quantify the lattice distortion in HEAs could be 

questionable. More importantly, there is an increasing and open debate recently [26-29] about the 

lattice distortion experimentally detected in HEAs. Controversial results reported from different 

groups have been brought into question, such as those obtained from X-ray diffraction [25, 30-32], 

which are either not conclusive or usually do not agree with the transmission electron microscopy 

observations [33, 34] or atomistic simulations [29]. Therefore, despite the fundamental importance, 

the issue of lattice distortion in HEAs still remains open. In this work, through first-principle 

calculations combined with theoretical modeling, we intend to carry out a detailed investigation of 

the local strain field in equiatomic HEAs. Unlike the previous works [4-6, 8, 35], we will take into 

account not only the volumetric strains but also the shear strains, the latter of which might play a 

much more important role to the dislocation strengthening mechanisms in HEAs, as suggested in 
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Ref[7]. For this purpose, a series of equimolar  complex alloys, ranging from binary, ternary, 

quaternary to quinary alloys, with a chemically disordered face centered cubic (FCC) structure 

were constructed using the elements of Fe, Co, Ni, Cr and Mn, which were chosen as the model 

systems for a systematic study of the lattice distortion in these chemically disordered equimolar 

complex alloys. 

2. Methods: DFT Calculations 

In the present study, density functional theory (DFT) calculations are performed by using the 

Vienna ab initio simulation package (VASP)[36, 37] with the projector augmented wave (PAW) 

method[38, 39] and generalized gradient approximation (GGA) parameterized by Perdew, Burke 

and Ernzerhof (PBE)[40]. The exchange-correlation functional for elements Fe, Cr, Ni, Co, and 

Mn includes semicore p states as valence electrons. Plane-wave energy cutoff of 600 eV and 

Monkhorst–Pack k-point mesh[41] density of 0.2 Å−1 are used, which have been tested to ensure 

an energy accuracy of 1 meV/atom. The convergence of energy and force is set to 1.0×10−7 eV and 

1.0×10−3 eVÅ−1, respectively.  

To model the random solid solution and quantify the local relaxation effects, special quasi-

random structures (SQSs)[42] are generated using the mcsqs tool in the alloy theoretic automated 

toolkit (ATAT)[43]. For binary, ternary, quaternary and quinary FCC alloys, SQSs with 32, 108, 

108 and 120 atoms, respectively, are constructed. Thereafter, the structure optimization is done in 

a two-step way. Firstly, an initial calculation of the volume-energy relationship is performed for 

each alloy structure, with atomic positions and cell shape fixed. The derived volume-energy data 

are fitted by the third-order Birch-Murnaghan equation of state[44, 45] to obtain the equilibrium 

lattice constant of the pristine structure. Thereafter, a further relaxation of atomic positions, cell 

volume and shape was executed. Thereby, the residual stresses due to the atomic mismatch in 
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pristine HEAs were relieved to explore the local lattice distortion. Here, the quasi-Newton 

algorithm with a smearing parameter of 0.1 eV was adopted to relax the ions into their 

instantaneous ground state.  

Various elastic constants, including bulk modulus (B), shear modulus (G) and Poisson ratio 

(ν), can be deduced for the HEAs from our studies. The direction dependent elastic constants of 

c11 and c12 were calculated from the standard energy-strain method, in line with the previous 

investigations on HEAs [46, 47]. After that, the bulk modulus (B) was extracted from the third-

order Birch-Murnaghan equation of state and the shear modulus (G) was derived through the 

arithmetic Hill average of the Voigt and Reuss bounds [48]. The Poisson ratio (ν) was then 

computed via ν=(3B-2G)/2(3B+G). The lattice constants, elastic constants and the lattice distortion 

of distorted structures, as well as those for pristine structures, are summarized in Table 1. As our 

first attempt, non-spin polarized calculations were performed for simplicity. After that, four 

equiatomic complex alloys, including FeCoNiCrMn, FeCoNiCr, FeCoNi and FeCrNi, were 

selected to study the effect of magnetism on lattice distortion. Following Refs[35, 49], 

ferromagnetic structure was constructed for FeNiCo, and paramagnetic structures for FeCoNi, 

FeCrNi, and FeCoNiCrMn, at T = 0 K. In general, the Mn and Cr spins were set to be aligned anti-

parallel to the Fe, Co and Ni spins. 

3. Results of DFT Calculations 

To model a random solid solution structure, the special quasi-random structure (SQS) approach, 

which was well established for simulating chemically disordered structures[42, 50], was employed 

in our first-principles calculations based on density-functional-theory (DFT).  First, a pristine 

structure with an ideal FCC symmetry was constructed, of which the lattice constant was 

determined at the local energy minimum that corresponded to an ideal or un-distorted random 
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solid-solution configuration. Subsequently, the pristine FCC structure was energetically relaxed 

by allowing the atoms to stray away from their ideal positions in the pristine FCC lattice. As a 

result, this generated local atomic strains and a more energetically favorable but distorted random 

solid solution structure (see Section 2). During the DFT calculations, the temperature was set at 0 

K to eliminate the effect of thermal fluctuation on lattice distortion. As an example, Figs. 1 (a)-(b) 

show the simulated results for the 3-D atomic configurations of the FeCoNiCr alloy before and 

after the local distortion. Remarkably, the local distortions are discernible at various sites, as 

marked in Figs. 1(a)-(b), in the distorted atomic structure with comparison to the pristine lattice 

without local shear deformation. Furthermore, we calculated the X-ray diffraction (XRD) spectra 

of the pristine and distorted atomic structure. As shown in Fig. 1(c), the pristine structure exhibits 

sharp diffraction peaks, conforming to ideal FCC structure as one expects. By comparison, the 

distorted structure displays similar FCC diffraction peaks; however, the peak profiles are seen 

widening, notable at the high diffraction angles but insignificant at the low diffraction angles. 

Interestingly, splitting of the (311) peak can be observed in the distorted structure. On average, the 

lattice constant decreases from 3.4998 Ᾰ to 3.4984 Ᾰ as a result of the lattice distortion. However, 

no peak splitting can be observed on the simulated XRD pattern of the individual element (see 

Figs. 2(a)-(e)). Similar results were also obtained for other alloys, as seen in Supplementary Figs. 

S2-11. In the HEA literatures [28, 51], a similar phenomenon of peak splitting was reported based 

on the experimental data obtained from apparent single phased alloys, which was then attributed 

to either lattice distortion or the emergence of a secondary phase. Based on our current work, in 

which the alloys retained the single-phase FCC structure throughout the simulations, we conclude 

that the peak splitting we observed is due to the lattice distortion rather than the formation of a 

secondary phase.  
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 To further characterize the local lattice distortions, we calculated the density distribution 

of the valence electrons with the partial electron density (PED) function. In theory, PED is derived 

by transforming the eigenfunctions with an energy window just below the Fermi level (energy 

level ranging from -1 eV up to the Fermi energy)[52], which provides the detailed information 

about the shape of frontier orbitals in real space. A denser k point sampling (k spacing of 0.14 Å−1) 

were used for the calculation of PED. The contour plots of PED in the (001) plane of FeCoNiCr 

are shown in Fig. 3(a)-(b). Through the PEDs, one can see that chemical bonding is anisotropic 

and asymmetric in the pristine structure, the intensity of which becomes even stronger after the 

distortion, as highlighted in Fig. 3(b). Similar results can be found in Supplementary Figs. S2-11 

for other alloys. This is in sharp contrast to the chemical bonding in pure metals, which exhibits a 

perfect 4-fold symmetry in 2D (see Supplementary Fig. S1).  

To quantitatively characterize the local lattice distortions, here we calculated the local 

strain tensor around each atom. Following the previous work [53], the local deformation gradient 

tensor for each atom can be calculated via 
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between atom j and i with j being one of the neighboring atom of the central atom i; Ni
0 is the total 

number of the nearest neighbors of atom i and superscript “0” means the reference or un-distorted 

configuration (see Appendix A). Fig. 4(a)-(d) show the contour plots of the components of the 

strain tensor in the basal plane of (001) for FeCoNiCr. In addition to the shear strains, we also 

computed the local atomic hydrostatic strain via ( )3
6

1
−= i

T

i

m

i Tr JJ  [53, 54]. As we can see in Fig. 

4(a)-(d), although their averages are small, the local value of each strain component is highly 

fluctuating and varies from one atom to another, breaking the symmetry and smoothness of a 

regular strain field one could obtain for a dilute solution. As a result, the local strain components 



8 
 

around the individual atoms depend strongly on the local packing environment, not just determined 

by the species of the chemical elements alone. According to the distribution of each strain 

component as shown in Fig. 5(a)-(d), the average residual volumetric strain is finite while the 

average residual shear strain approaches zero. By comparison, the fluctuation of the residual shear 

strains is prominent, ranging from -0.01 to 0.01.  

4. Theoretical Modeling 

In general, local lattice distortion generates both volumetric and shear residual strains, which raises 

the elastic energy stored in the alloys. For the volumetric strain, the elastic energy density is given 
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  is the von Mises equivalent atomic shear strain, Fi is the local Lagrangian 

strain tensor at atom i and I is the identity strain tensor [53, 54] (see Appendix A).  Since the 
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von Mises strain [54], we here define an effective strain 
eq

i for atom i to quantify the local effect 

of the lattice distortion, which can be expressed as: 
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is the average equivalent strain (see Appendix A). As demonstrated in 

Fig. 6(a), in the pristine structure, there is no local distortion and hence 0=eq

i everywhere in the 

lattice. After the distortion, local shear and volumetric strains are developed around the individual 

atoms. As seen in Fig. 6(b), the magnitude of 
eq

i  mainly ranges from 0.01 and 0.025 on the (001) 

plane, suggestive of highly fluctuating local lattice distortions. For the whole alloy, we compute 

an average equivalent strain ( ) n
ni

eq

i
=

=
,1

2
 , to quantify the overall lattice distortion. 

Table 1 lists the important properties and attributes of the pristine and distorted structure 

extracted from our DFT simulations for the 11 types of FCC equimolar alloys. These include the 

simulated lattice constants aDFT of the pristine and distorted structures, and the simulated 

equivalent strain γDFT in the distorted structures. To understand these results in a quantitative 

manner, we herein develop a simple physical model, which takes into account the efficient packing 

of different sized atoms interacting through an effective elastic medium. The basic idea can be 

illustrated in Fig. 7. From a thermodynamic viewpoint, the pristine structure corresponds to a 

fictitious mean lattice at the local energy minimum E1 in the energy well without any local 

distortions; while the distorted structure corresponds to the local energy minimum E2 in the energy 

well that allows both dilatations and shear distortions. Following the method in Froyen’s work [55], 

the fictitious pristine lattice can act as a reference lattice, from which atomic displacements can 

result. In theory, lattice distortion is energetically favorable only when E = E2 – E1< 0. For the 
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simulated atomic configurations, E is mainly due to the change in the elastic energy storage. 

From a structural perspective, this is only possible if local shearing can relax part of the radial 

strains developed around the individual atoms in the pristine structure, due to the atomic size misfit 

as seen in Fig. 7. According to Ref. [26], the elastic energy stored per unit volume in the pristine 

structure can be expressed as ( )( )2

12111 2
2

3 flucCCu +=   (see Appendix A), while that in the 

distorted structure can be derived as ( )( ) p

fluc uCCu ++=
2*

12112 2
2

3
  (see Appendix A), where

f luc  

and
*f luc denote the standard deviation of the residual radial strains in the pristine and distorted 

structure, respectively; up denotes the additional energy increase due to the lattice distortion. Thus, 

the driving force 12Δ uuu −= for the distortion can be expressed as: 
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Eq. (3) is important and provides the critical condition under which distortion becomes 

energetically favorable. Here, we further propose that, among all admissible distorted lattice 
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configurations as predicted by Eq. (3), the real distorted lattice should take on the configuration 

that maximizes the overall atomic displacement or the effective average strain . This is consistent 

with the idea that lattice distortion is generally in favor of phase transition [9]. Following the above 

thinking that γ should be maximized, we have 0= αγ which yields ( ) ( )12111211 22 CCCC +−= . For 

an isotropic system, 
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 , in which ν is the Poisson’s ratio. Substituting this 

expression into Eq. (3), we thereby obtain the critical equivalent strain 
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= (see 

Appendix A).  

To verify the above analyses, we calculated γth
 for the pristine structures of the 11 FCC 

equimolar alloys with 
f luc  determined via the method detailed in Ref. [26]. Afterwards we 

compared them with the DFT derived ones, which can be computed via ( ) n
ni

eq

i

DFT 
=

=
,1

2
 . As 

shown in Fig. 8(a), one can see a general trend that γDFT correlates well with γth. This delivers a 

clear message that our theoretical model captures the equivalent strain γ very well. Based on the 

above results, we can further derive that the elastic driving force to be ( ) 2

1211
2

3
CCu −−=  with 

flucflucflucfluc εεεε
2

1

2

1* =−= . According to Eq. (2), one can infer that the change in the elastic 

energies should be ( ) ( ) ( ) 22*

1211 2
2

3 flucflucCCu  −+=   in the presence of only atomic 

contraction and expansion. Therefore, our results indicate that, in order to offset the elastic energy 

resulting from lattice distortion, a maximum of 75% of the elastic energy stored in the pristine 

structure could be released out. More importantly, one can infer from the data, as shown in Fig. 

8(a), that the lattice distortion does not generally follow the proposition that lattice distortion 
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would increase with the number of elements, as early proposed in the HEA literature [26]. Since 

f luc  is correlated with the atomic size difference ( ) = =
−=

n

i

n

j jjii rcrc
1

2

1
1  [16] and 

97.0f lucε   [26, 56], the equivalent strain γ can be expressed as ( ) f=  , where 
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485.0
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+
=f  . The above expression suggests that the lattice distortion induced 

residual strain in the chemically complex alloys depends on not only the atomic size misfit, as 

quantified by , but also on the  attribute of the chemical bonding reflected by the Poisson’s ratio. 

As shown in Fig. 8(b), by mixing different sized elements in a multicomponent alloy, such as 

FeCoNiCr or FeCoNiCrMn, one can reduce the atomic size difference without significantly 

altering the Poisson ratio, and thus partly relax the elastic energy induced by the large lattice 

distortion in the binary system being composed of the largest and smallest elements, such as FeCr. 

Furthermore, we evaluated the lattice constants of the pristine and distorted structures for 

the equimolar alloys we considered. In general,  the lattice constant of an alloy can be expressed 

as[26]: ( ) =
+=

n

i iii εaca
1

1 , where ai is the lattice constant of the FCC lattice made up of only the 

ith element. On the basis of our theoretical model (Eqs. (2) - (3)), it can be shown that a complete 

set of equations can be developed to solve for the radial strains iε around the constituent elements 

in the pristine and distorted structures (see Appendix B). As a result, we obtained the lattice 

constant ath of the alloys in their pristine and distorted structures respectively, as tabulated in Table 

1. Evidently, shear distortion does not significantly change the lattice constant of the alloys, which 

is within our expectation because of the decoupling between shear and volumetric strains. To 

justify our theoretical results, we compare the lattice constant aDFT derived from the DFT 

calculations with the theoretical value ath. As seen in Fig. 9 and the inset, the theoretical predictions 
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agree remarkably well with the DFT calculations.  

5. Discussions 

5.1 Solid solution strengthening 

As noted in the recent works[35, 57], the fluctuation of local residual strains is important to the 

mechanical properties of equimolar complex alloys or HEAs even though the average residual 

strain in them may be small.  According to the solid-solution strengthening model [4, 6, 7], the 

critical shear stress ( ) 34

0 ~0 pEKT = ,  where ΔEp is the binding energy of a dislocation to a 

local region which can be associated with the standard deviation of the energy difference when a 

dislocation segment moves over a distance of ω. In theory, this binding energy is closely related to 

the elastic field around solute atoms [7]. In the presence of atomic size difference and lattice 

distortion, this elastic field can be intensified, thereby leading to solute strengthening [3]. 

According to Labusch [3], solute strengthening comes about owing to two types of misfit: one is 

the volumetric misfit and the other is the shear misfit. In our model, the equivalent strain 
eq

iγ  

quantifies both the volumetric and shear misfits between a central atom i and its surroundings. 

Therefore, we may speculate that ( )( ) nccE
ni

eq

ip 
=

−
,1

2

1211  or ( ) ( )  3/22

12110 0  ccKT −= .  

To verify the above speculation, we plot 
.exp

alloy vs. ( )( )  3/22

1211

DFTcc − , where 
.exp

alloy can be 

viewed as an equivalent of 0 (T=0K) and was extracted from previous experiments [6] after 

subtraction of other strengthening effects, such as the Hall-Patch effect. Evidently, 
.exp

alloy is in a 

good linear correlation with ( )( )  3/22

1211

DFTcc −  as shown in Fig. 10. This is encouraging and 

suggests that further investigation is worthwhile to explore the strengthening mechanisms in the 

chemically complex solid-solution alloys by linking the generalized residual strain of a highly 
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fluctuation residual strain field to dislocation movements in it. 

5.2 Magnetic effect 

Before moving to the Summary, we would like to stress that all the above calculations were based 

on non-spin polarized formulation of DFT. However, some recent works [35, 49, 58] already 

showed that there might be a magnetic effect on the local lattice distortions in HEAs at a finite 

temperature. To have a further check, we performed additional DFT simulations on four equimolar 

alloys, as mentioned earlier, by switching on magnetic calculations and, compared the magnitude 

of 
eq

iγ around each atom computed before and after taking magnetism into consideration. As seen 

in Fig. 11, the distribution of 
eq

iγ  for the four model alloys only varies a little after switching on 

the magnetism option, which is consistent with the previous results [35]. To be specific, a small 

peak shift can be observed (left for FeCoNi, FeCrNi and FeCoNiCrMn, while right for FeCoNiCr) 

although the curve of the overall distribution remains almost unchanged. Such a peak shift 

indicates that magnetism could either relax or intensify the overall residual strain caused by lattice 

distortion.  

Given the results in Fig. 11, an updated γDFT is expected after considering magnetism. As 

shown in Fig. 8(a), the values of γDFT of the magnetic systems become slightly different from those 

of their non-magnetic counterparts. However, it can be clearly observed that these γDFT’s still have 

a good correlation with the theoretically predicted values [Fig. 8(a)], if the updated Poisson’s ratios 

of these magnetic systems were used in
( )

( )
fluc

mag

mag
th εγ

.

.

21

12

2

1





−

+
=  . Since γDFT is an equivalent 

strain which quantifies the lattice distortion, the relative change of γDFT, either positive or negative, 

thereby suggests that the magnetic effect is quite diversified with respect to lattice distortion and 

thus solute strengthening in different alloys. Seemingly, this may add additional difficulties for the 
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understanding of lattice distortion in a magnetic field. Nevertheless, since the magnetic effect also 

manifests itself in the alloy elastic properties, such as the Poisson’s ratio, our results suggest that 

the theoretical modeling laid out in the present work still gives a very good prediction of the lattice 

distortion with the updated elastic properties. 

 

6. Summary 

In summary, through the first-principles calculations, we reveal the details of a non-symmetric 

residual strain field with atomic scale fluctuations in a series of equimolar complex alloys, which 

results from atomic scale lattice distortion and would be impossible to study via the conventional 

experimental means. Subsequently, we develop a simple theory to quantitatively understand our 

simulation results by considering the efficient packing of different sized atoms interacting in an 

effective elastic medium. It is shown that our theory captures the general trend of the lattice 

constants and the magnitude of the distortion induced effective strain very well, either with or 

without considering the magnetism. Since dislocation strengthening in these complex alloys is 

closely related to the distribution of the residual strain field, we envision that our current findings 

should be valuable to further our understanding of plasticity enhancement in chemically complex 

alloys, such as HEAs. 
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Appendix A: The equivalent strain due to the shear induced energy penalty 

According to the previous works [26, 59], when incorporating different sized atoms to form an 

alloy with a simple lattice structure, the radii of the constituent elements need to be adjusted in 

order to accommodate the atomic size differences. Therefore, the resultant sizes can be very 

different from those in the corresponding simple metallic form, leading to the development of the 

intrinsic residual strain [26]. For the perfect pristine structure without any shear, all bond lengths 

are equal, and the local residual strains are purely volumetric. According to Ref. [26], in this case, 

the residual radial strain surrounding element i can be derived as
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4  , where ωij is the solid angle subtended by atom 

j around atom i; ci is the atomic fraction of element i; Ni is the coordinate number of element i; 
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in which xij = ri/rj and ri is the 

radius of element i. To compute the residual radial strains for a given alloy, one simply needs to 

know the atomic radius of the constituent element before mixing. For this purpose, we also carried 

out additional DFT simulations on the pure metals to obtain their respective radius at 0K, as listed 

in Table 1. Once εi was obtained, it can be shown that the average radial strain   is zero in absence 

of residual shear strains [26]. In such a case, the fluctuation of these local radial strains, in terms 

of the standard deviation of their distribution, can be simply computed as 2

ii

fluc c  =  . 

According to Ye et al. [26], this radial strain fluctuation is strongly correlated with the atomic size 

misfit in a multicomponent alloy, which can be used further as a metric to gage the lattice stability. 

Following the assumptions in previous works [29, 35], the above model was built without 

considering the existence of shear strains. However, recent work shows shear strains might also 



17 
 

play a very important role in solute strengthening effect[7]. Hence it is necessary for us to revisit 

the formula of residual strains. First, let’s start from a thermodynamic viewpoint. In theory, without 

outside stimuli, distortions occur only when the energy state after distortion is lower than that of 

the pristine configuration. According to Ref. [26], when applying the continuum elastic theory to 

HEAs, the strain energy density in the pristine structure can be expressed as 

( )( )2

12111 2
2

3 flucCCu +=  , in which C11 and C12 are elastic constants and 
f luc   the standard 

deviation of residual radial strains in the pristine structure. While the strain energy density in the 

distorted structure can be derived as ( )( ) p

fluc uCCu ++=
2*

12112 2
2

3
 , where up is the energy penalty 

due to the lattice distortion, 
*f luc  denote the corresponding standard deviation in the distorted 

structure, respectively. In theory, lattice distortion will cause two parts of energy penalty: one is 

the distortion induced hydrostatic strain energy uv and the other is the distortional shear strain 

energy ud. Following the previous work [53], with the relative displacements of the particle’s 

neighbors rji, where atom j is one of atoms i’s nearest neighbors, the local deformation gradient 

tensor Ji for each particle can be derived by minimizing 
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superscript “0” refers the reference configuration[53]. As the local Lagrangian strain at atom i is 

( )IJJF −= i
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, the local hydrostatic strain can be calculated via ( )i
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shear strain invariant is ( )IF
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energy density is 

( ) ( ) ( )  ( ) ( ) ( )  nCCCnCCu
ni

yz

i

xz

i

xy

i

ni

Mises

id 
==

++−−+−=
,1

222

121144

,1

2

1211 2
4

3
  , where n is 

the total number of particles. Hence the total shear induced energy penalty is: 
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 As an analogy of the definition of the equivalent Von Mises strain [54], here we define an 

equivalent strain 
eq

i  to be: 
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 Thus Eq. (A.1) can be simplified into  
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For metallic alloys, the second term in the expression of ud is relatively small compared to the first 

term, we can approximately take ( ) ( ) nCCu
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Conceptually, 
*f luc   and 

f luc   are related, the relation of which may be generally written as 

( ) f lucfluc =*
 . For a first order approximation, assuming that  −= flucfluc*  with  a 

parameter yet to be determined, Eq. (A.4) can be rewritten as 
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energy difference u requires 0= u , which yields:  
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In theory, the above expression gives all γ’s which are energetically favorable. In general, in a size-

mismatched disordered system, atoms will be driven to move away from their ideal lattice 

positions, leading to a sustainable increase of lattice distortion if there is no further energy barrier 

[9]. Following this thinking, it is natural for one to assume that γ will be pushed to reach a critical 

value, where the reduced energy can no longer balance the energy penalty due to the large 

distortion. In such case, γ will be maximized requiring 0= αγ  which yields that

( ) ( )12111211 22 CCCC +−= . For an isotropic cubic system, 
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, in which ν is the 

poisson’s ratio, hence an expression of  that weakly depends on the Poisson’s ratio of an alloy 

can be thereby derived. Substituting this expression into Eq. (A.5), we thereby have the critical 

equivalent strain
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Appendix B: Residual Radial Strains in the Distorted Lattice                                            

Since the shear strain is decoupled with the volumetric strain and given that the lattice still retains 

a FCC structure after adjustment, the lattice constant can be generally expressed as: 

( ) =
+=

n

i iiiaca
1

1  , where ai is the constant of the FCC lattice made up of the pure ith element. 

According to Ref. [26], since the average residual radial strain is finite and none-zero in the 
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distorted structure, the residual radial strain of element i can be generally rewritten as: 
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In theory, by solving a complete set of Eq. (B.1) with the constraint condition
flucfluc* εε

2

1
= , one 

can mathematically work out the residual radial strain εi
*

 for each element and the equilibrium 

packing efficiency
*η in the distorted structure.  
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List of Table Captions 

Table 1 The lattice constants, elastic constants, polycrystalline Poisson’s ratio ν as well as the 

effective strain γ for the various alloys and pure elements obtained from the DFT simulations at T 

= 0 K compared with those obtained from our elastic theory. The pristine lattice refers to the ideal 

reference FCC structure without distortion while the distorted one refers to the distorted FCC 

structure after relaxation.  



25 
 

List of Figure Captions 

Figure 1. The results of the DFT simulation on the FCC FeCoNiCr alloy. (a) atoms of the pristine 

structure occupies the ideal lattice positions, which subsequently stray from their ideal positions 

after lattice distortion in (b). In the 3D configurations, white balls stand for Fe, blue ones for Co, 

red ones for Ni and yellow ones for Cr. The simulated XRD results of the pristine structure (black 

dash line) as well as the distorted structure (red solid line) are shown in (c). 

 

Figure 2. Theoretical XRD of (a) Fe (b) Cr (c) Ni (d) Co and (e) Mn with FCC structure. 

 

Figure 3. (a) and (b) show the contour plots of the partial electron density (PED) of the pristine 

structure and the distorted structure, respectively. The black circles in (b) highlight the distorted 

electron cloud frontiers. Note the colors in the center of each atom are only used to lable different 

elements, which do not provide any PED information. All are derived from the (001) plane in FCC 

FeCoNiCr. 

 

Figure 4. The contour plots of the local atomic strain tensor components derived from the (001) 

plane in the FCC FeCoNiCr. Here the contour images were plotted following the way in Ref. [60]. 

 

Figure 5. The distributions of the local atomic strain tensor components in FCC FeCoNiCr.  

 

Figure 6. (a) and (b) show the
eq

i contour map of the pristine structure and the distorted structure, 

respectively. All are derived from the (001) plane in FCC FeCoNiCr and the contour images were 

plotted following the method in Ref. [60]. 
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Figure 7. The schematics demonstrates the transition of a pristine structure to a distorted structure. 

In principle, the pristine structure corresponds to the configuration with the lowest energy state 

with local shear being prohibited. Distortion becomes energetically favorable only when local 

shear relaxes part of the radial strains developed in the pristine structure. 

 

Figure 8. (a) The equivalent strain γDFT obtained through the simulations for the distorted atomic 

structure can be well predicted by our theoretical model, with or without considering magnetism. 

(b) γDFT is in good correlation with f(ν)δ, where f(ν) is the function of Poisson’s ratio as defined in 

the main text. 

 

Figure 9. The DFT derived lattice constant can be well predicted by our theoretical model. 

 

Figure 10. The correlation between the experimentally derived lattice friction and the lattice 

distortion characterized by the product of elastic constants and equivalent strain. 

 

Figure 11. The comparison of the distribution of 
eq

iγ  around each atom with and without 

considering the magnetic effect. The solid line is the visual guide for the 
eq

iγ   distribution 

considering magnetism while the dash line is for the 
eq

iγ  distribution without considering 

magnetism. 

 




