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Abstract

In this paper, a two-dimensional simulation of mixed convection in an enclosure with
differentially heated sidewalls in the presence of a uniform magnetic field has been
performed for different aspect ratios of the enclosure while the enclosure is filled with
a viscoplastic fluid. The viscoplastic fluid has been simulated by the exact Bingham
model without any regulations. Lattice Boltzmann Method (LBM) has been applied
to solve the problem. Heat transfer, fluid flow, and yielded/unyielded zones are
investigated for certain pertinent parameters of the Reynolds number (Re = 100,
500, and 1000), the Hartmann number (Ha = 0, 2, and 5), the Bingham number
(Bn = 1, 5, and 10), the aspect ratio (AR = 0.25, 1, and 4), and Eckert number
(Ec = 0, 10−4, 10−3, and 10−2) when the Grashof and prandtl numbers are fixed at
Gr = 104 and Pr = 1; respectively. Results show that the increase in the Reynolds
number augments the heat transfer and changes the extent of the unyielded section.
Furthermore, for fixed studied parameters, an increase in the Bingham number
decreases the heat transfer while enlarging the unyielded section. The rise of the
aspect ratio alters the size and position of the unyielded/yielded zones. As Hartmann
number rises, the heat transfer drops gradually and the unyielded parts increase
significantly. The change of the magnetic field angle alters the heat transfer and the
unyielded/yielded regions in the cavity. It was observed that the viscous dissipation
and the joule heating parts in the energy equation based on the practical values
of Eckret numbers have marginal effects on heat transfer and yielded/unyielded
sections.
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1 Introduction

1.1 Magnetohydrodynamics

Magnetic field is widely utilized on materials which show viscoplastic behavior
in different industries such as cement and food industries [1,2]. Magnetohy-
drodynamics (MHD) is the study of the interaction between magnetic fields
and moving, conducting fluids. Magnetic fields influence many natural and
man-made flows. They are routinely used in industry to heat, pump, stir and
levitate liquid metals. There are three types of magnetic fields; a terrestrial
magnetic field which is maintained by fluid motion in the earths core, a so-
lar magnetic field, which generates sunspots and solar flares, and a galactic
field which influences the formation of stars. When a constant current is in-
jected into a fluid under the influence of a magnetic field, the resulting Lorentz
force will, in general, produce motion. Electromagnetic pumps were one of the
earliest applications of MHD, and were routinely used in various industries
[3]. Fluid flow and heat transfer analysis in lid-driven cavities is one of the
most widely studied problems in thermo-fluids area. Numerous investigations
have been conducted in the past on lid-driven cavity flow and heat transfer
considering various combinations of the imposed temperature gradients and
cavity configurations [4–15]. This is because the driven cavity configuration
is encountered in many practical engineering and industrial applications, e.g.,
materials processing , flow and heat transfer in solar ponds , dynamics of lakes,
reservoirs and cooling ponds , crystal growing , float glass production , metal
casting, food processing, galvanizing, and metal coating, etc.

1.2 MHD on natural and mixed convection of Newtonian fluids

MHD natural and mixed convection of Newtonian fluids in a cavity with differ-
ent boundary conditions have been studied widely by researchers. Sathiyamoor-
thy and Chamkha [16] have done a numerical study for natural convection flow
of electrically conducting liquid gallium in a square cavity whereas the bottom
wall is uniformly heated and the left and right vertical wall is linearly heated
while the top wall kept thermally insulated. They exhibited that the mag-
netic field with inclined angle has effects on the flow and heat transfer rates
in the cavity. Number of investigators which effects of MHD mixed convec-
tion in lid-driven cavities is very limited. Sivasankaran et al. [17] investigated
mixed convection in a square cavity of sinusoidal boundary temperatures at
the sidewalls in the presence of magnetic field numerically. Rahman et al. [18]
studied the development of magnetic field effect on mixed convective flow in
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a horizontal channel with a bottom heated open enclosure. Their results indi-
cate that various Hartmann, Rayleigh and Reynolds numbers strongly affect
the flow phenomenon and temperature field inside the cavity whereas in the
channel these effects are less significant. Oztop et al. [19] considered lami-
nar mixed convection flow in the presence of magnetic field in a top sided
lid-driven cavity heated by a corner heater. They exhibited heat transfer de-
creases with increasing of Hartmann number. Nasrin and Parvin [20] made a
numerical work on Hydromagnetic effect on mixed convection in a lid-driven
cavity with sinusoidal corrugated bottom surface. They indicated that the av-
erage Nusselt number at the heated surface increases with an increase of the
number of waves as well as the Reynolds number, while decreases with incre-
ment of Hartmann number. Kefayati et al. [21] simulated mixed convection
of MHD in a lid-driven cavity by a linearly heated wall, using LBM. They
studied different parameters of Hartmann numbers, Richardson numbers, and
the inclinations of the magnetic field. Effects of a magnetic field on mixed
convection flow in a two–sided lid–driven cavity were analyzed, using Lattice
Boltzmann method (LBM) by Sajjadi et al. [22]. Results demonstrated that
the heat transfer augmented with an increment of the Richardson number for
different Hartmann numbers. In addition, the heat transfer declined with the
growth of the magnetic field for various Richardson numbers. Sajjadi et al. [23]
used the lattice Boltzmann method to solve the turbulent and laminar MHD
natural convection in a square cavity. In this paper a fluid with Pr = 6.2 and
different Rayleigh numbers for laminar and turbulent flows in the presence
of a magnetic field was investigated. Ashorynejad et al. [24] presented a nu-
merical study about the effect of a uniform magnetic field on free convection
in a horizontal cylindrical annulus using the lattice Boltzmann method. The
inner and outer cylinders were maintained at uniform temperatures and it
was assumed the walls were insulating with a magnetic field. Detailed numer-
ical results of heat transfer rate, temperature, and velocity fields were pre-
sented for studied parameters. Ashorynejad et al. [25] investigated the effect
of static radial magnetic field on natural convection heat transfer in a hor-
izontal cylindrical annulus enclosure filled with nanofluid numerically using
the Lattice Boltzmann method (LBM). The inner and outer cylinder surfaces
were maintained at the different uniform temperatures. The surfaces were
non-magnetic material. The investigation was carried out for different gov-
erning parameters namely, Hartmann number, nanoparticle volume fraction
and Rayleigh number. Yousofvand et al. [26] analyzed MHD mixed convection
inside an electromagnetic pump, with Cu-water nanofluid as the working fluid
numerically. To find the best heat transfer and pumping performance, an in-
house parallel lattice Boltzmann code was developed to solve the problem in
a 3D domain. The study was conducted for the certain pertinent parameters
of Rayleigh number, magnetic field strength, electric field strength and the
nanoparticle volume fraction. Mehryan et al. [27] investigated numerically the
problem of unsteady natural convection inside a square cavity partitioned by
a flexible impermeable membrane. The finite element method with the arbi-
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trary Lagrangian-Eulerian (ALE) technique was used to model the interaction
of the fluid and the membrane. The horizontal walls of the cavity were kept
adiabatic while the vertical walls were kept isothermal at different temper-
atures. A uniform magnetic field was applied onto the cavity with different
orientations. The cavity was provided by two eyelets to compensate volume
changes due the movement of the flexible membrane. Ghalambaz et al. [28]
studied the MHD phase change heat transfer of a phase change substance
in the presence of a uniform magnetic field theoretically in a cavity. A fixed
grid method associated with the enthalpyporosity method was utilized. The
governing equations were transformed into a non-dimensional form and solved
using the finite element method. The impacts of the crucial parameters such
as the Hartmann number and the inclination angle on the phase change pro-
cess were investigated. Selimefendigil and Oztop [29] performed a numerical
study of MHD mixed convection nanofluid filled lid driven square enclosure.
The bottom wall of the cavity was heated and the top wall was kept at con-
stant temperature lower than that of the heater. Other walls of the square
enclosure and cylinder surface were assumed to be adiabatic. The governing
equations were solved with finite element method. Selimefendigil and Oztop
[30] investigated natural convection in a CuO-water nanofluid filled horizon-
tal partitioned annulus formed by two isothermal surfaces under the influence
of an inclined magnetic field was numerically. A conductive partition with
varying thickness and thermal conductivity was placed within the annulus.
Finite element method was utilized to solve the governing equations. Bon-
dareva and Sheremet [31] studied natural convective heat transfer combined
with melting in a cubical cavity filled with a pure gallium under the effects
of inclined uniform magnetic field and local heater numerically. The domain
of interest was an enclosure bounded by two isothermal opposite vertical sur-
faces of low constant temperature and adiabatic other walls. A heat source
of constant temperature was located on the bottom wall. Gibanov et al. [32]
analysed MHD mixed convection in a lid-driven cavity with partially filled
with a porous medium saturated with a ferrofluid numerically. The domain of
interest consists of a bottom porous layer and a nanofluid layer over the porous
one with a heated motionless bottom wall and cooled upper moved wall. The
governing partial differential equations formulated on the basis of a single-
phase model for nanofluid, Brinkman-extended Darcy model for porous layer
and Boussinesq approximation for buoyancy force solved by finite difference
method of the second-order accuracy. Son and Park et al. [33], numerically,
investigated the two-dimensional laminar natural convection in a differently
heated rectangular enclosure with an insulated square block, in the presence of
a uniform magnetic field applied in the horizontal direction. Numerical simu-
lations were performed for the conditions of different Rayleigh and Hartmann
numbers with a fixed Prandtl number. Hatami et al. [34] studied the effect
of a variable magnetic field (VMF) on the natural convection heat transfer
of Fe3O4-water nanofluid in a half-annulus cavity by finite element method
using FlexPDE commercial code. After deriving the governing equations and
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solving the problem by defined boundary conditions, the effects of three main
parameters (Hartmann number, nanoparticles volume fraction and Rayleigh
number) on the local and average Nusselt numbers of inner wall were investi-
gated. Some other studies in this area can be observed in [35–42].

1.3 Viscoplastic fluids

Fluids, which are used in different engineering applications, can be classified
into two groups namely Newtonian and non-Newtonian depending on their
behavior under shear stress. The example of non-Newtonian fluids is abun-
dant in nature, biological as well as man-made systems. Common examples
can be found in petroleum and chemical industries, food processing, mate-
rial and polymer fabrication and bio medical applications. Several idealized
mathematical models have been proposed to represent the behavior of non-
Newtonian fluids. Power law model is generally used to represent a class of
non-Newtonian fluids which are inelastic and exhibit time independent shear
stress. Another main class of non-Newtonian fluid is visco-plastic liquids which
due to the ability of them to sustain a certain external load without significant
deformations in contrast with common fluids is an important and challeng-
ing problem. In fact, below a certain stress yield, the medium enjoys rigidity;
above this yield the medium behaves like an incompressible viscous fluid. The
direct consequence of this property is that the flow field is divided into two
regions: the unyielded and the yielded zone. A profound knowledge of the lo-
cation and shape of the yield surface, i.e. the interface between these two sets,
is essential in solving the flow problems of such fluids. Some popular materi-
als which show this behavior are fresh concrete, cement, mayonnaise, tortilla
dough, fruits-syrup mixtures, blood in the capillaries, muds used in drilling
technologies and tooth pastes [43].

1.4 Viscoplastic fluids in an isothermal lid-driven cavity

The visco-plastic fluids have been simulated in an isothermal lid-driven cavity
with different methods and regularizations. Sanchez [44] applied a first-order
operator splitting method for modeling of a Bingham visco-plastic medium
in a lid-driven cavity. Dean and Glowinski [45] discussed a computational
method for the numerical simulation of unsteady Bingham visco-plastic fluid
based on time-discretization by operator splitting method. Moreover, they
illustrated the result of the method for the Bingham visco-plastic fluid in a
lid-driven cavity. Mitsoulis and Zisis [46] studied Bingham visco-plastic fluid in
a lid-driven cavity using the Papanastasiou modification to the ideal Bingham
model. Neofytou [47] simulated Bingham flows in a lid-driven cavity, utilizing
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Papanastasiou model. They exhibited streamlines and velocities in the middle
of cavity in the investigation. Vola et al. [48] proposed a numerical method to
calculate unsteady flows of Bingham fluids without any regularization of the
constitutive law. They illustrated the applied numerical strategy through two
well-known problems, namely the hydrodynamic benchmark of the lid-driven
cavity and the natural convection benchmark of the differentially heated cav-
ity. Huilgol and You [49] reviewed a summary of the development of the consti-
tutive equation for an incompressible Bingham fluid, the variational inequality
and an operator-splitting numerical method for the solution of isothermal flow
problems. Santos et al. [50] studied flow of viscoplastic fluids in a lid-driven
cavity numerically as the viscoplastic material behavior was described by the
model introduced by de Souza Mendes and Dutra. The influence of inertia
and rheological parameters on the morphology of the material yield surfaces
was analyzed and discussed. Syrakos et al. [51] investigated the capabilities
and limitations of the popular finite volume/SIMPLE method coupled with
the Papanastasiou regularization, by applying it to the simulation of Bingham
flow in a lid driven cavity.

1.5 Viscoplastic fluids on natural convection in a cavity

Natural convection of viscoplastic fluids in an enclosure has been considered
during the last decade by researchers. Turan et al. [52] conducted a study
into the simulations of natural convection in square enclosures filled with an
incompressible Bingham fluid. The considered flow was laminar and steady.
The commercial package FLUENT was utilised to solve the problem. In this
study, a second-order central differencing scheme was used for the diffusive
terms and a second order up-wind scheme for the convective terms. Coupling
of the pressure and velocity fields was achieved using the SIMPLE algorithm.
It should be noted that the default Bingham model in FLUENT is a bi viscos-
ity model. Turan et al. [53] continued their studies with analysing the effect
of different aspect ratios (the ratio of the height to the length) of the cav-
ity, adding to their previous results that the average Nusselt number follows a
non-monotonic pattern with the aspect ratio for specific values of the Rayleigh
and Prandtl numbers for both Newtonian and Bingham fluids. At small aspect
ratios, the conduction is dominant whereas convection remains predominantly
responsible for the heat transfer for large values of aspect ratios. In addition,
it was found that the conduction dominated regime occurred at higher val-
ues of the Bingham numbers for increasing values of the aspect ratio for a
given value of the Rayleigh number. Turan et al. [54] scrutinised the lam-
inar Rayleigh-Bnard convection of yield stress fluids in a square enclosure.
The applied method and the achieved results were similar to the two previ-
ous studies. Huilgol and Kefayati [55] studied natural convection in a square
cavity with differentially heated vertical sides and filled with a Bingham fluid
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without any regularisation. The finite element method (FEM) based on the
operator splitting method was utilised to solve the problem. It was observed
that for specific Rayleigh and Prandtl numbers, the increase in the Bingham
number decreases the heat transfer. Furthermore, it was found that the growth
of the Bingham number expands the unyielded sections in the cavity. Finally,
they mentioned that for fixed Rayleigh and Bingham numbers, the unyielded
regions grow with the augmentation of the Prandtl number. Karimfazli et
al. [56] explored the feasibility of a novel method for the regulation of heat
transfer across a cavity. They used computational simulations to resolve the
Navier-Stokes and energy equations for different yield stresses. Baranwal and
Chhabra [57] studied laminar natural convection heat transfer to Bingham
plastic fluids from two differentially heated isothermal cylinders confined in
a square enclosure. They utilized regularization approaches of biviscosity and
the Bercovier and Engelman models. They used the finite element method-
based solver, COMSOL Multiphysics (version 4.3a) to solve the governing
equations. Dutta et al. [58] investigated the effects of tilt angle and fluid yield
stress on the laminar natural convection from an isothermal square bar cylin-
der in a Bingham plastic fluid confined in a square duct. They also applied the
same regularization approaches of biviscosity and the Bercovier and Engelman
models. They also applied the finite element method-based solver, COMSOL
Multiphysics (version 4.3a) to solve the governing equations. Kefayati [59] sim-
ulated double-diffusive natural convection, studying Soret and Dufour effects
and viscous dissipation in a square cavity filled with Bingham fluid by Finite
Difference Lattice Boltzmann Method (FDLBM). In addition, entropy genera-
tions through fluid friction, heat transfer, and mass transfer were studied. The
problem was solved by applying the regularised Papanastasiou model. Kefayati
and Tang [60] studied double-diffusive natural convection of viscoplastic fluids
in an open cavity by Lattice Boltzmann Method. In addition, entropy genera-
tions through fluid friction, heat transfer, and mass transfer were studied. The
problem was solved by applying the regularised Papanastasiou model and the
exact Bingham model. Kefayati and Tang [61–63] simulated natural convec-
tion in an inclined heated cavity with inner cold circular/elliptical cylinders
filled with viscoplastic fluids by Lattice Boltzmann Method (LBM) in three
parts (Part I: one cylinder, Part II: two cylinders, Part III: four cylinders).
In this study, the Bingham model without any regularization was studied and
moreover viscous dissipation effect also was analyzed. Fluid flow, heat transfer,
and yielded/unyielded parts were conducted for certain pertinent parameters.

1.6 Viscoplastic fluids on mixed convection

Mukherjee et al. [64] investigated the effects of the power-law and Bingham
plastic viscosity on the flow and heat transfer characteristics of laminar forced
convection through non-circular ducts of a range of cross-sections numerically
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over the wide ranges of Peclet number, and Bingham number. Gupta and
Chhabra [65] studied laminar mixed convection from an isothermal spheroidal
particle immersed in a Bingham plastic fluid numerically in the buoyancy-
assisted regime. The results reported over the wide ranges of Reynolds num-
ber, Prandtl number, Bingham number, Richardson number, and aspect ratio
of the spheroid. Raja et al. [66] investigated the steady flow of a Bingham
plastic fluid past a two-dimensional heated flat plate. The governing partial
differential equations (continuity, momentum and thermal energy) were solved
numerically over the range of conditions. Kefayati and Huilgol [67] utilized the
mesoscopic method to conduct a two-dimensional simulation of steady mixed
convection in a square enclosure with differentially heated sidewalls when the
enclosure is filled with a Bingham fluid. The problem was solved by the Bing-
ham model without any regularisations and also by applying the regularised
Papanatasiou model.

1.7 The applied Numerical method

Lattice Boltzmann method (LBM) has been demonstrated to be a very ef-
fective mesoscopic numerical method to model a broad variety of complex
fluid flow phenomena [68–76]. This is because the main equation of the LBM
is hyperbolic and can be solved locally, explicitly, and efficiently on parallel
computers. However, the specific relation between the relaxation time and
the viscosity has caused LBM not to have the considerable success in non-
Newtonian fluid especially on energy equations. In this connection, Fu et al.
[77] proposed a new equation for the equilibrium distribution function, mod-
ifying the LB model. Here, this equilibrium distribution function is altered
in different directions and nodes while the relaxation time is fixed. Indepen-
dency of the method to the relaxation time in contrast with common LBM
provokes the method to solve different non-Newtonian fluid energy equations
successfully as the method protects the positive points of LBM simultane-
ously. In addition, the validation of the method and its mesh independency
demonstrates that is more capable than conventional LBM. Huilgol and Ke-
fayati [78] explained and derived the two and three dimensional equations of
continuum mechanics for this method and demonstrated that the theoreti-
cal development can be applied to all fluids, whether they be Newtonian, or
power law fluids, or viscoelastic and viscoplastic fluids. Following the previ-
ous study, Huilgol and Kefayati [79] derived the two and three dimensional
equations of this method for the cylindrical and spherical coordinates. Vali-
dation results obtained through the modelling of a mixed convection flow of a
Bingham fluid in a lid-driven square cavity, and the steady flow of a Bingham
fluid in a pipe of square cross-section. Next, using the cylindrical coordinate
version of the evolution equations, numerical modelling of the steady flow of
a Bingham fluid and the Herschel–Bulkley fluid in a pipe of circular cross-
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section have been performed and compared with the simulation results using
the augmented Lagrangian method as well as the analytical solutions for the
velocity field and the flow rate. Kefayati and Huilgol [80] applied this method
to simulate the steady flow in a pipe of square cross-section when the pipe was
filled with a Bingham fluid. The problem was solved employing the Bingham
model without any regularisation.

1.8 The objectives

The main aim of this study is to simulate laminar Magnetohydrodynamic
(MHD) mixed convection of viscoplastic fluids in a lid-driven cavity with differ-
ent aspect ratios as the yielded/unyielded sections have been displayed. In this
study, the viscoplastic fluid has been analysed by the Bingham model without
any regularization. Lattice Boltzmann method (LBM) has been employed to
study the problem numerically and therefore the study is also interesting nu-
merically. So, it is endeavoured to express the effects of different parameters
(Rayleigh number, Aspect ratio, Reynolds number, Bingham number, Eckert
number, Hartmann number, Joule heating parameter) on heat transfer, fluid
flow as well as yielded/unyielded zones are studied.

2 Theoretical formulation

2.1 Definition of the problem

The geometry of the present problem is shown in figure 1. It consists of a two-
dimensional cavity with the height H and the width L. For the present case,
aspect ratio (AR) is defined as the ratio of the height to the width (AR =
H/L). The temperature of the left wall is maintained at a higher temperature
than the right wall. The horizontal walls are adiabatic and impermeable and
the top wall is driven from the left to right at a constant speed U0. The cavity
is filled with a viscoplastic fluid. The fluid flow is incompressible, laminar, and
steady. The Grashof and prandtl numbers are kept at Gr = 104 and Pr =
1. The density variation is approximated by the standard Boussinesq model.
A uniform magnetic field with a constant magnitude is applied in different
inclinations (θ) where the horizontal direction from the left to right sides is
the inclined angle of θ =0◦. For most industrial flows involving viscoplastic
fluids e.g. liquid metal, magnetic Reynolds number is very low, usually less
than 10−2. When an external magnetic field is present, it is customary at
such low values of magnetic Reynolds number to make use an approximation.
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In this approximation, induced magnetic fluctuations are much smaller than
the applied magnetic field [81,82]. Therefore, the induced magnetic field is
neglected. Moreover, Hall effect is assumed negligible.

2.2 MHD equations

As an electrically-conducting fluid moves with velocity u through an imposed
magnetic field, their average motion gives rise to an electric current density.
The applied magnetic effect is the inclusion of the Lorentz body force to the
momentum equations as follows [16–18,10,19–29]

Fm = J×B (2.1)

According to Ohm’s law, the electric current density J is as

J = σ (E + u×B) (2.2)

σ and E are the electrical conductivity of the fluid and the electric field
strength; respectively.

Due to the uniform magnetic field flux, the irrotational electric field is formed
inside the enclosure.

∇∇∇×B = 0 (2.3)

The electric field E can be expressed as the gradient of electrical potential Φ
as follows:

E = −∇∇∇Φ (2.4)

The conservation of electric current J yields

∇∇∇ · J = 0 (2.5)

So, from the Eq.2.2 we have

∇∇∇2Φ =∇∇∇ · (u×B) (2.6)
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For a two-dimensional MHD flow, it is shown that

∇∇∇ · (u×B) = 0 (2.7)

As a result

∇∇∇2Φ = 0 (2.8)

All walls of the enclosure are electrically insulated and the viscous no-slip
boundary condition is applied on. In other words, the fluid is bounded by
perfectly conducting walls that provide a resistance-free path from induced
current. It follows that

∇∇∇Φ = 0 (2.9)

and therefore the electric field vanishes everywhere in the cavity. Finally, the
Lorentz force by the induced current and the magnetic field flux can be cal-
culated without solving the electromagnetism inside the cavity, as follows:

Fm = σ (u×B)×B (2.10)

A uniform magnetic field of B = Bxi + Byj is imposed and it makes an angle
of θ with the horizontal axis. The magnitude of the magnetic field and the
angle are

B =
√

Bx
2 + By

2 θ = tan−1

(
Bx

By

)
(2.11)

2.3 Dimensional equations

Based on the above assumptions, denoting by u = ui + vj the velocity field, ρ
the density, and T the temperature field, and applying the Boussinesq approxi-
mation, mass, momentum, and energy equations for the steady incompressible
flow are:

∂u

∂x
+
∂v

∂y
= 0, (2.12)
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ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂y

+ σB2
(
v sinθ cosθ − u sin2θ

)
,

(2.13)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+ ρg [1 + β (T − TC)]

+ σB2
(
u sinθ cosθ − v cos2θ

)
, (2.14)

Now, let the pressure p be written as the sum p = ps + pd, where the static
part ps accounts for gravity alone, and pd is the dynamic part. Thus,

−∂ps
∂y

= ρg · (2.15)

where β is the coefficient of thermal expansion with the dimension of 1/T,
where T is the absolute temperature. σ is the electrical conductivity and B is
the intensity of the external magnetic field. In addition, θ is the angle of the
external magnetic field with the horizontal direction counterclockwise.

∂T

∂t
+u

∂T

∂x
+v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+

1

ρcp

[
τxx

(
∂u

∂x

)
+ τxy

(
∂u

∂y
+
∂v

∂x

)
+ τyy

(
∂v

∂y

)]

+
σB2

ρcp
(u sinθ − v cosθ)2 , (2.16)

α and cp are the thermal diffusivity and the specific heat at constant pressure,
respectively. It should be mentioned that the second and third terms in the
right side of Eq.(2.16) are the viscous dissipation and joule heating terms;
respectively. In addition, τxx, τxy, τyy are the stresses of the stress tensor τττ .

2.4 Constitutive model

Bingham [83] constituted the viscoplastic fluids as follows:

A(u) = 0, K(τττ) ≤ τy,

τττ =
(
η + τy

K(u)

)
A(u), K(τττ) > τy,

(2.17)
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where the viscosity η and the yield stress τy are constant, and the two invari-
ants K(u) and K(τττ) are defined below:

2K2(u) = A(u) : A(u), 2K2(τττ) = τττ : τττ . (2.18)

where

A(u) = ∇u +∇uT . (2.19)

Due to the discontinuity in the Bingham model, approximate models such as
the Papanastasiou [84], Bercovier and Engelman [85], and the bi-viscosity [86]
models are used by researchers and different software packages. However, a
constitutive equation for a Bingham fluid fully equivalent to the original form
can be used. This method was proposed and developed by Duvaut and Lions
[87] and Glowinski [88] and the constitutive equation takes the form

τττ = ηA(u) +
√

2 τy ΛΛΛ, 1 : ΛΛΛ = 0, (2.20)

where one may call the second order, symmetric, tensor ΛΛΛ the viscoplasticity
constraint tensor. Note that the traceless condition 1 : ΛΛΛ = 0 has been imposed
on this tensor so that the stress tensor τττ satisfies the condition tr τττ = 0. In
order to demarcate the flow field into unyielded/yielded zones, one requires
that the tensor ΛΛΛ meet the following conditions:

ΛΛΛ : ΛΛΛ =

< 1, A(u) = 0,

1, A(u) 6= 0.
(2.21)

These conditions satisfy those imposed on the stress tensor, viz., K(τττ) ≤ τy
when A(u) = 0, and τy < K(τττ) when A(u) 6= 0. The problem of determining
where the flow is rigid and where it is liquid-like has been shifted to finding
the tensor ΛΛΛ in the flow field such that is satisfies Eq.(2.21). What has been
proposed is important for the following reasons:

(1) The constitutive equations Eqs. (2.20) - (2.21) are defined over the entire
flow domain, not just where the fluid has yielded.

(2) One searches for the solution velocity field u and the viscoplasticity con-
straint tensor ΛΛΛ to determine the yielded/unyielded regions. There are
no singularities because one is not trying to find the location of the yield
surface(s) through the limit of A(u)/K(u) as A(u)→ 0.

(3) However, the equations of motion now involve two unknown fields: a
vector field u, and a symmetric tensor field ΛΛΛ. The latter requires that
there should exist a connection between the velocity field u and ΛΛΛ. Under
Dirichlet boundary conditions, it is possible to prove such a relation. Here,
we provide a summary of the results.
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Λ can be obtained from a simple projection operation as follows [55,80,67]:

Λ = PM

(
Λ + rτyA(u)

)
, ∀r > 0, (2.22)

where M = {µ|µ = (µij)1≤i,j≤2 ∈ (L2(Ω))4, ‖µ‖ ≤ 1 a.e. on Ω} and

PM : (L2(Ω))4 →M (2.23)

is the projection operator defined so that PM(µ) = µ, if ‖µ‖ ≤ 1, and
PM(µ) = µ/ ‖µ‖ otherwise. Note that in the context of Eq. (2.22), the
tensor µ = Λ + rτyA(u) and it is symmetric. Further, the tensor µ must
be dimensionless for Λ is also dimensionless.

where r > 0 is a real number to be specified. Successive iterations are per-
formed till convergence is achieved to the desired level of accuracy. Note that
the yield surface is the boundary between ||ΛΛΛ|| < 1 and ||ΛΛΛ|| = 1. Hence,
the solution of the boundary value problem delivers in the limit both the ve-
locity field as well as the shape and location of the yield surface. For more
information, see [55,67,80,89].

2.5 Dimensional boundary condition

The flow domain is given by Ω = (0, L) × (0, H), and the boundary Γ = ∂Ω.
It is the union of four disjoint subsets:

Γ1 = {(x, y), x = 0, 0 ≤ y ≤ H} , Γ2 = {(x, y), x = L, 0 ≤ y ≤ H} ,(2.24)

Γ3 = {(x, y), 0 ≤ x ≤ L, y = 0} , Γ4 = {(x, y), 0 ≤ x ≤ L, y = H} .(2.25)

The boundary condition for the velocity is straightforward:

u|Γ1
= u|Γ2

= u|Γ3
= 0, u|Γ4

= U0i . (2.26)

The boundary conditions for the temperature are:

T |Γ1
= TH , T |Γ2

= TC , ∂T/∂y|Γ3
= 0, ∂T/∂y|Γ4

= 0 . (2.27)

2.6 Non-dimensional equations

In order to proceed to the numerical solution of the system, the following non
dimensional variables are introduced [59,60,67].
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t∗ =
t U0

L
, x∗ = x/L, y∗ = y/L, u∗ =

u

U0

, pd
∗ =

pd
ρU0

2 , (2.28)

T ∗ = (T − TC)/∆T, ∆T = TH − TC , τττ ∗ =
τττ L

η U0

(2.29)

where U0 is the speed of the upper wall.

By substitution of Eqs. (2.28) and (2.29) into Eqs. (2.12) - (2.16) and drop-
ping the asterisks ∗ for convenience, the following system of non-dimensional
equations is derived:

∂u

∂x
+
∂v

∂y
= 0, (2.30)

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
= −∂pd

∂x
+

1

Re

(
∂τxx
∂x

+
∂τxy
∂y

)
+

Ha2

Re

(
v sinθ cosθ − u sin2θ

)
,

(2.31)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂pd

∂y
+

1

Re

(
∂τxy
∂x

+
∂τyy
∂y

)
+

Gr

Re2 T

+
Ha2

Re

(
u sinθ cosθ − v cos2θ

)
, (2.32)

∂T

∂t
+u

∂T

∂x
+v

∂T

∂y
=

1

Re Pr

(
∂2T

∂x2
+
∂2T

∂y2

)
+

Ec

Re

[
τxx

(
∂u

∂x

)
+ τxy

(
∂u

∂y
+
∂v

∂x

)
+ τyy

(
∂v

∂y

)]

+
Ha2 Ec

Re
(u sinθ − v cosθ)2 , (2.33)

In the case of the exact Bingham model (Huilgol [89]), the non-dimensional
stresses are given by

τxx =

[
2

(
∂u

∂x

)
+
√

2 BnΛxx

]
, (2.34a)

τyy =

[
2

(
∂v

∂y

)
+
√

2 BnΛyy

]
, (2.34b)
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τxy =

[(
∂u

∂y
+
∂v

∂x

)
+
√

2 BnΛxy

]
, (2.34c)

ΛΛΛn+1 = PM

(
ΛΛΛn + PrBnAn

1

)
· (2.35)

The non-dimensional parameters for the problem are as follows:

Grashof number:

Gr =
ρ2 βg L3 ∆T

η2
. (2.36)

Prandtl number:

Pr =
η

ρα
, (2.37)

Reynolds number:

Re =
ρU0L

η
, (2.38)

Bingham number:

Bn =
τy L

η U0

. (2.39)

Hartmann number:

Ha = BL
√
σ/η , (2.40)

Eckert number:

Ec =
U0

2

cp ∆T
(2.41)

Since the U0 and ∆T are equal to unity, the Eckret number has an inverse
proportion to the specific heat at constant pressure Ec ∝ 1

cp
. The cp for dif-

ferent viscoplastic fluids in various temperatures can be ranged over 102 and
104 J/kg K. So, we studied the Eckret numbers of Ec = 0, 10−4, 10−3, and
10−2 here. As the most vicoplastic materials in the cited ranges have cp =
103, we have studied other parameters, e.g. Reynolds numbers, aspect ratios,
Bingham numbers at constant Eckret number of Ec = 10−3.
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2.7 Non-dimensional boundary condition

The flow domain is given by Ω = (0, 1)× (0,AR), and the boundary Γ = ∂Ω.
It is the union of four disjoint subsets:

Γ1 = {(x, y), x = 0, 0 ≤ y ≤ AR} , Γ2 = {(x, y), x = 1, 0 ≤ y ≤ AR} ,(2.42)

Γ3 = {(x, y), 0 ≤ x ≤ 1, y = 0} , Γ4 = {(x, y), 0 ≤ x ≤ 1, y = AR} .(2.43)

The boundary condition for the velocity is straightforward:

u|Γ1
= u|Γ2

= u|Γ3
= 0, u|Γ4

= i . (2.44)

The boundary conditions for the temperature are:

T |Γ1
= 1, T |Γ2

= 0, ∂T/∂y|Γ3
= 0, ∂T/∂y|Γ4

= 0 . (2.45)

3 The numerical method

The LBM equations and their relationships with continuum equations have
been explained in details in Huilgol and Kefayati [78,79]. Here, just a brief
description about the main equations would be cited. In addition, the applied
algorithm has been described and the studied problem equations in the LBM
are mentioned.

3.1 The Continuity and Momentum equations

To have the continuity and momentum equations, a discrete particle distri-
bution function fα is defined over a D2Q9 lattice where it should satisfy an
evolution equation:

∂fα
∂t

+ ξξξα · ∇xfα − Fα = − 1

ε φ
(fα − f eqα ), (3.1)

where ε is a small parameter to be prescribed when numerical simulations are
considered. φ is the relaxation time and Fα is the body force term.
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Associated to each node is a lattice velocity vector ξξξα. It is defined as follows:

ξξξα =


(0, 0), α = 0,

c (cos Θα, sin Θα) α = 1, 3, 5, 7,

c
√

2(cos Θα, sin Θα), α = 2, 4, 6, 8.

(3.2)

Here, the angles Θα are defined through Θα = (α − 1)π/4, α = 1, · · · , 8.
The constant c has to be chosen with care for it affects numerical stability;
its choice depends on the problem. The method for finding the parameter c
which satisfies the Courant-Friedrichs-Lewy (CFL) condition is described in
the Appendix.

The equilibrium distribution function, f eqα , is different from the conventional
ones adopted by previous researchers, who normally expand the Maxwellian
distribution function. In the present approach, we expand f eqα as a quadratic
in terms of ξξξα, using the notation of linear algebra:

f eqα = Aα + ξξξα ·Bα + (ξξξα ⊗ ξξξα) : Cα, α = 0, 1, 2, · · · , 8. (3.3)

Here, the scalars Aα are defined through

A0 = ρ− 2p

c2
− ρ|u|2

c2
, Aα = 0, α = 1, 2, · · · , 8. (3.4)

The vectors Bα are given by

B1 =
ρu

2c2
= Bα, α = 1, 3, 5, 7; Bα = 0, α = 0, 2, 4, 6, 8. (3.5)

Next, the matrices Cα are such that C0 = 0; C1 = Cα, α = 1, 3, 5, 7; C2 =
Cα, α = 2, 4, 6, 8, where

C1 =

C11 0

0 C22

 , C11 =
1

2c4
(p+ρu2− 1

Re
τxx), C22 =

1

2c4
(p+ρv2− 1

Re
τyy),

(3.6)

C2 =

 0 C12

C21 0

 , C12 = C21 =
1

8c4
(ρuv − 1

Re
τxy). (3.7)

The body force term Fα in (3.1) can be defined as
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Fα = 0, α = 0, 2, 4, 6, 8, (3.8a)

Fα =
1

2c2
N · ξξξα, α = 1, 3, 5, 7 (3.8b)

where

N =
Gr

Re2 T +
Ha2

Re

[(
v sinθ cosθ − u sin2θ

)
i +

(
u sinθ cosθ − v cos2θ

)
j
]

(3.9)

It should be noted that the macroscopic variables (u, v, T , p); here, are non-
dimensional.

The main equations of the discrete particle distribution function (3.1) is solved
by the splitting method of Toro [90]. Hence, the equations can be separated
into two parts. The first one is the streaming section which is written as

∂fα
∂t

+ ξξξα · ∇xfα − Fα = 0. (3.10)

Eqs.(3.10) has been solved with the method of Lax and Wendroff [91] and the
following equations are used.

fn+1
α (i, j) = fnα (i, j)− ∆t

2∆x
ξα (i) [fnα (i+ 1, j)− fnα (i− 1, j)]

− ∆t

2∆y
ξα (j) [fnα (i, j + 1)− fnα (i, j − 1)] +

∆t2

2∆x2
ξα

2 (i) [fnα (i+ 1, j)− 2fnα (i, j) + fnα (i− 1, j)] + Fα(i)∆t+

∆t2

2∆y2
ξα

2 (j) [fnα (i, j + 1)− 2fnα (i, j) + fnα (i, j − 1)] + Fα(j)∆t , (3.11)

∆x and ∆y are lattice spacing in x and y directions; respectively. ∆t is the
time increment.

In Eqs.(3.11), we have put

ξα(i) = ξξξα · i, ξα(j) = ξξξα · j, Fα(i) = Fα · i, Fα(j) = Fα · j. (3.12)

The second part is the collision section which is as follows:
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∂fα
∂t

= − 1

εφ
(fα(x, t)− f eqα (x, t)), (3.13)

Eqs.(3.13) can be solved by using the Euler method and the choice of εφ is
taken as the time step (∆t). That is

fα(x, t+ ∆t)− fα(x, t)

∆t
= − 1

εφ
(fα(x, t)− f eqα (x, t)), (3.14)

from which one obtains

fα(x, t+ ∆t) = f eqα (x, t), (3.15)

3.2 The Energy Equation

In order to obtain the energy equation, an internal energy distribution function
gα is introduced and it is assumed to satisfy an evolution equation similar to
that for fα. Thus,

∂gα
∂t

+ ξξξα · ∇xgα −Gα = − 1

εφ
(gα − geqα ). (3.16)

Here, geqα has a monomial expansion:

geqα = Dα + ξξξα · Eα, (3.17)

One way of satisfying the above is to assume, as before, that the scalars are
given by Dα = D1, α = 1, 3, 5, 7, and Dα = D2, α = 2, 4, 6, 8,. In this problem,
the non-dimensional parameters are obtained as follows:

D0 = T, D1 = 0, D2 = 0. (3.18)

Regarding the vectors, it is assumed that E0 = 0, Eα = E1, α = 1, 3, 5, 7; Eα =
E2, α = 2, 4, 6, 8, where

E1 =
uT + Ec

Re
[(u τxx + v τxy) + (u τyx + v τyy)]

2 c2
. (3.19)

The parameterGα can be defined as (See Eqs.3.44–3.48 in Huilgol and Kefayati
[78])
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Gα = 0, α = 0, 2, 4, 6, 8, (3.20a)

Gα =
Ec Ha2

Re
(u sin θ − v cosθ)2 , α = 1, 3, 5, 7 (3.20b)

The main equations of the internal energy distribution function are solved by
the splitting method of Toro [90]. Hence, the equations can be separated into
two parts. The first one is the streaming section which is written as

∂gα
∂t

+ ξξξα · ∇xgα −Gα = 0. (3.21)

Eqs.(3.21) have been solved with the method of Lax and Wendroff [91] and
the following equations are used.

gn+1
α (i, j) = gnα (i, j)− ∆t

2∆x
ξα (i) [gnα (i+ 1, j)− gnα (i− 1, j)]

− ∆t

2∆y
ξα (j) [gnα (i, j + 1)− gnα (i, j − 1)] +

∆t2

2∆x2
ξα

2 (i) [gnα (i+ 1, j)− 2gnα (i, j) + gnα (i− 1, j)] +Gα(i)∆t+

∆t2

2∆y2
ξα

2 (j) [gnα (i, j + 1)− 2gnα (i, j) + gnα (i, j − 1)] +Gα(j)∆t (3.22)

The second part is the collision section which is as follows:

∂gα
∂t

= − 1

εφ
(gα(x, t)− geqα (x, t)). (3.23)

Eqs.(3.23) can be solved by using the Euler method and the choice of εφ is
taken as the time step (∆t). That is

gα(x, t+ ∆t)− gα(x, t)

∆t
= − 1

εφ
(gα(x, t)− geqα (x, t)), (3.24)

from which one obtains

gα(x, t+ ∆t) = geqα (x, t). (3.25)
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The local and the average Nusselt numbers at the hot wall with the utilization
of the dimensionless parameters are obtained from

Nu = −
(
∂T

∂x

)∣∣∣∣∣x=0

, (3.26)

Nuavg =
1

AR

∫ AR

0
Nu dy. (3.27)

3.3 Boundary conditions

One of the main advantages of the current approach is that boundary con-
ditions can be incorporated in a manner similar to macroscopic methods, in
contrast with other methods utilised for solving LBM equations. The latter
employ complicated special relationships for the discrete particle distribution
function (fα) and the internal energy distribution function (gα) for each kind
of boundary conditions and problems [96,97]. For example, methods such as
on-grid and mid-grid bounce back are used when the velocity is zero on the
boundary; when the boundary is in motion, bounce-back is used along with
a set of linear equations to determine the boundary values fα. In the method
used here, the boundary conditions of fα and gα can be obtained directly
from the macroscopic values on the boundaries due to the relationships of
the macroscopic values with fα and gα. As a result, in this method, bound-
ary conditions, especially the Dirichlet conditions, can be included in various
problems similar to macroscopic methods and no special equations for fα and
gα are needed to incorporate the boundary conditions. Therefore, we apply
the cited macroscopic values (velocities and temperatures) on the boundary
conditions directly.

4 Results and discussion

4.1 Code validation and grid independence

Lattice Boltzmann Method (LBM) has been employed in the numerical sim-
ulation of mixed convection flow in a lid-driven cavity filled with a Bingham
fluid in the presence of a magnetic field. This problem has been investigated
at different Reynolds numbers of (Re = 100, 500 and 1000), Bingham numbers
(Bn = 0, 1, 5 and 10), Hartmann numbers (Ha = 0, 2, and 5), the aspect ratio
(AR = 0.25, 1, and 4), and Eckert number (Ec = 0, 10−4, 10−3, and 10−2),
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while the Grashof and prandtl numbers are fixed at Gr = 104 and Pr = 1. To
justify the accuracy of the selected ranges, please see the references [16–29,59–
63]. Since, in higher Hartmann numbers than Ha = 5 for high aspect ratios
(AR = 4), unyielded parts fill the entire enclosure, the Hartmann number is
limited to Ha = 5 in the studied cases. An extensive mesh testing procedure
was conducted to guarantee a grid independent solution. Seven different mesh
combinations were explored for the case of Re = 100, Ha = 2, Bn = 1, Ec
= 10−3, AR = 1, and θ = 0◦. It was confirmed that the grid size (200*200)
ensured a grid independent solution as portrayed in Table 1. To demonstrate
the accuracy of the present results, MHD mixed convection of power-law fluids
and non-Newtonian nanofluids were studied, using this code by the present
code. Kefayati [92,93] analyzed laminar mixed convection of non-Newtonian
nanofluids in a square lid-driven cavity in the presence of a magnetic field in
different boundary conditions by the present code. Kefayati [94,95] simulated
the effect of a magnetic field on mixed convection of shear-thinning fluids in
a square lid-driven cavity with various boundary conditions under the com-
bined buoyancy effects of thermal and mass diffusion by the present code. To
verify the accuracy of the code for mixed convection of Bingham, it should
be noted that Kefayati and Huilgol [67] utilized the present code to conduct
a two-dimensional simulation of steady mixed convection in a square enclo-
sure with differentially heated sidewalls when the enclosure was filled with a
Bingham fluid. The problem was solved by the Bingham model without any
regularisations. In addition, we set the time step ∆t = 0.0001 for this calcu-
lation and based on the validations, the final (developed) stage was defined
at the non-dimensional time t∗ = 90. To see the process of convection and
yielding before the final stage, Fig.2 presents the isotherms, streamlines, and
yielded/unyielded zones at Re= 1000, AR = 0.25, Ec = 10−3, Bn = 1, θ = 0◦,
and Ha = 2 in different non-dimensional time (t∗ = 5, 10, 20, 50, and 90).
The running time for the selected grid (200*200) and non-dimensional time
(t∗ = 90) is 9283 seconds. The value of c in the numerical method was varied
in each iteration according to the Appendix.

4.2 Effect of Hartmann number

The figure 3 presents the isotherms for different Hartmann numbers and aspect
ratios at Bn = 1, θ = 0◦, Ec = 10−3, and Re = 100. It is obvious that the
gradient of temperature on the hot wall decreases generally as the aspect ratio
grows. When the power of the magnetic field rises, the isotherms move across
of the enclosures less than lower Hartmann numbers. This movement of the
isotherms demonstrates that the convection process decrease where at AR =
4 and Ha = 5 the isotherm behave similar to a pure conduction.

The figure 4 illustrates the streamlines for different Hartmann numbers and
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aspect ratios at Bn = 1, θ = 0◦, Ec = 10−3, and Re = 100. As Hartmann
number increases from Ha = 0 to 5, the main vortex in the cavity changes in
the middle of cavity. It exhibits the movement of streamline diminishes inside
of the cavity and confirms the convection process decreases significantly in
various aspect ratios. The shapes of the streamlines in different aspect ratios
demonstrate that the increase in the aspect ratio from AR = 0.25 to 4 reduces
the movement of the fluid flow substantially.

The figure 5 indicates the yielded and unyielded zones for different Hartmann
numbers and aspect ratios at Bn = 1, θ = 0◦, Ec = 10−3, and Re = 100.
It displays the change of aspect ratio causes the unyielded section to alter
considerably. At Ha = 0 and AR = 0.25, the majority of the unyielded part
is generated in the middle of the cavity; although there are small sections of
unyielded parts in different parts of the enclosure. For AR = 1, the majority
of the unyielded part is created on the top left side of the enclosure. For AR
= 4, the unyielded sections are produced close to side walls and their sizes are
different from other aspect ratios. When Hartmann number increases from Ha
= 0 to 2, the shape, location and size of the unyielded part change in different
aspect ratios. For AR = 0.25, the unyielded part expands significantly in the
same position at Ha = 0. But, for AR = 1, the size of the unyielded section
enhances marginally and the plastic part on the top left side moves to the
bottom and top middle of the enclosure. For AR = 4, the unyielded regions
close to the side wall in the absence of the magnetic field expand at Ha = 2
and two solid sections in the middle of the cavity close to the top and bottom
horizontal sides are generated. The rise of Hartmann number from Ha = 2
to 5 does not alter the size of the unyielded part at AR = 0.25 markedly.
However, the unyielded sections augment considerably at AR = 1 and 4. It
demonstrates that the yielded parts on the bottom side of the cavity converts
to unyielded material at AR = 1 and Ha = 5. At AR = 4, the most parts of
the cavity fills with the unyielded part and just there is small yielded sections
on the top of the enclosure.

The figures 6 demonstrate the effect of the Hartmann number on the local
Nusselt number on the hot wall, horizontal velocities in the middle of the cav-
ity (x = 0.5) as well as the temperature profile and vertical velocities at y =
0.5 for Bn = 1, θ = 0◦, Ec = 10−3, AR = 1, and Re = 100. It shows that
the local Nusselt number at Y < 0.8 declines gradually as Hartmann number
increases. But, the local Nusselt number shows nearly the same pattern at
Y > 0.8. It shows that the curved shape of temperature at Ha = 0 alters to
a linear one at Ha = 5 which demonstrates the convection process drops con-
siderably. The same behaviour is observed in the vertical velocity due to the
rise of Hartmann number. In other words, the enhancement of magnetic field
strength diminishes the vertical velocity magnitude steadily. The magnitude
of the maximum horizontal velocity declines regularly as the Harmann num-
ber increases. It also shows that position of the maximum horizontal velocity
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moves from the Y = 0.4 at Ha = 0 to Y = 0.8 at Ha = 5.

Table 2 shows the average Nusselt number on the hot wall for different Hart-
mann numbers at Bn = 1, θ = 0◦, Ec = 10−3, and Re = 100. It indicates
that the increase in the aspect ratio enhances the average Nusselt number
in various Hartmann numbers. In addition, the rise of Hartmann number in
different aspect ratios decreases the average Nusselt number gradually.

4.3 Effect of Bingham number

The figure 7 presents the isotherms for different Bingham numbers and aspect
ratios at Ha = 0, Ec = 10−3, and Re = 100. At Bn = 1, it is evident that
the increase in the aspect ratio alters the shape of the isotherms significantly
since the isotherms on the hot wall come together more and more. In fact, the
drop of the gradient of isotherms on the hot wall in the fixed buoyant flow
causes the cited pattern to be created. In other words, the trend demonstrates
that the convection process has weakened with the increase in the aspect
ratio. Increasing the Bingham number to Bn = 5 affects the isotherms for
various aspect ratios marginally, although the isotherms demonstrate that the
heat transfer decreases slightly; this is can be seen from the isotherms of T
= 0.3 and 0.2 evidently. However, the isotherms of the aspect ratio AR =
4 are influenced significantly by the rise of Bingham number from Bn = 1
to 5 compared to other aspect ratios. However, at Bn = 10, the increase in
the Bingham number has caused the isotherm gradients on the hot wall to
decline and as a result, the convection process is weakened. Obviously, as
the Bingham number increases, conductive heat transfer dominates the region
next to the hotter wall, while next to the cooler one, convective heat transfer
occurs. However, the movement of the upper plate to the right means that
convective heat transfer can never disappear totally, for any finite Bingham
number. Although, the isotherms at AR = 4 and Bn = 10 behave similar to
a pure conduction process since the isotherms are nearly parallel to the side
walls of the cavity.

The figure 8 illustrates the streamlines for different Bingham numbers and
aspect ratios at Ha = 0, Ec = 10−3, and Re = 100. For different Bingham
numbers, clockwise circulations have occupied the cavity in different aspect
ratios where the buoyancy effect alters as the Bingham number changes. For
Bn = 1, the strength movement of the vortex due to the rise of the aspect
ratio from AR = 0.25 to 4 proves that the convection procedure has been
intensified by the rise of the aspect ratio. In fact, the intensity of the inertia
force compared to the forced convection causes the core of the main circulation
to move to the middle of the cavity at AR = 4 from the corner side at AR
= 0.25. The inclination of the streamlines cores to the middle of the cavity
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at Bn = 5 confirms that natural convection has strengthened and the role of
the forced flow has become weak. In addition, the streamlines on the bottom
of the cavity removes slightly due to the generation of the unyielded section
. The trend is followed at Bn = 10 where the streamlines are removed on the
bottom half of the cavity; notably at AR = 4. It is clear that the core of the
main circulation becomes closer to the upper section and therefore it can be
stated that the increase in the Bingham number decreases the free convection
influence generally and ameliorates the forced flow effect.

The figure 9 indicates the yielded and unyielded zones for different Bingham
numbers and aspect ratios at Ha = 0, Ec = 10−3, and Re = 100. It shows
that the rise of the Bingham number for various aspect ratios enhances the
unyielded zone steadily. As Bingham number increases from Bn = 1 to 5, the
unyielded sections expand considerably at AR = 0.25 and 4. But, at AR = 1,
more than the half of the cavity space belongs to yielded zones. In addition,
at Bn = 5, the unyielded parts are concentrated in the middle of the cavity
at AR = 0.25, and the bottom and left top side of the cavity at AR = 1. At
Bn = 10, the majority of the cavity fills with the solid region for aspect ratios
AR = 0.25 and 4; however, the increment of the unyielded zones at AR = 1
is less than AR = 0.25 and 4.

The figures 10 demonstrate the effect of the Bingham number on the local
Nusselt number on the hot wall, horizontal velocities in the middle of the
cavity (x = 0.5) as well as the temperature profile and vertical velocities at y
= 0.5 for Bn = 1, Ec = 10−3, AR = 1, and Re = 100. As the Bingham number
increases from Bn = 1 to 5, the local Nusselt number drops at Y < 0.5
as the decline of the local Nusselt number by the rise of Bingham number
decreases gradually between 0 < Y < 0.5 where the local Nusselt numbers
in Bingham numbers of Bn = 1 and 5 are the same at Y = 0.5. The main
reason of the trend is the generation of the unyielded part at Y < 0.5 for
Bn = 5. But, between 0.6 < Y < 0.9 the local Nusselt number at Bn = 5
is higher than those values at Bn = 1. The rise of Bingham number from
Bn = 5 to 10 does not alter the local Nusselt number at Y < 0.5 since the
unyielded parts are present in this section and therefore the heat transfer does
not change. It should be noted the maximum values of local Nusselt numbers
are observed at Y = 0.2, 0.9, and 0.8 for Bn = 1, 5, and 10; respectively. It
is noticeable that the vertical velocity in the middle of the cavity drops as
the Bingham number increases. It indicates that the strength of the natural
and forced convection forces becomes increasingly weak in comparison to the
viscous flow resistance for increasing values of the Bingham number. Hence,
the fluid movement becomes more sluggish and eventually it leads to a drop
in convection with the rise of Bingham number. This statement is further
supported by the dimensionless temperature profiles as they become smoother
in the middle of the cavity with declining Bingham numbers. The decrease in
the curvature of the temperature and velocity distributions demonstrates that
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the convection process weakens as the Bingham number enhances. Another
phenomenon which has the potential to distinguish the role the Bingham
number plays in decreasing the convection transport is the horizontal velocity
in the middle of the cavity. The horizontal velocity progressively becomes
linear with the rise of the Bingham number as a result of the weakening of
convective transport.

Table 3 demonstrates the average Nusselt number on the hot wall for different
Bingham numbers and aspect ratios at Ha = 0, Ec = 10−3, and Re = 100.
It demonstrates that the increase in Bingham number decreases the average
Nusselt umber for different aspect ratios gradually. Further, the rise of aspect
ratio in different Bingham numbers decreases the average Nusselt number
considerably.

4.4 Effect of the Reynolds number

The figure 11 reveals the isotherms, streamlines, and yielded/unyielded parts
for different Reynolds numbers at Bn = 1, Ha = 2, AR = 1, Ec = 10−3,
and θ = 0◦. It is evident that the increase in the Reynolds number alters
the shape of the isotherms significantly since the isotherms on the hot wall
come together more and more. In fact, the augmentation of the forced flow
in the fixed buoyant flow causes the cited pattern to be created. In other
words, the trend demonstrates that the convection process has strengthened
with the increase in Reynolds number. However, it also shows that the effect
of Reynolds number enhancement is more noteworthy from Re = 100 to 500
while the changes are insignificant from Re = 500 to 1000. The movement
of the core circulation from the center at Re = 100 to the top right corner
at Re = 1000 proves the forced convection compared to the natural one to
enhance steadily. The unyielded zone enhance considerably; noticeably on the
bottom of the cavity, as Reynold number increases from Re = 100 to 500. It
confirms that natural convection has weakened and the role of the forced flow
has become significant. But, the rise of the Reynolds number from Re = 500
to 1000, diminishes the unyielded part on the bottom side of the enclosure
while a solid part in the top middle of the enclosure is generated.

Table 4 exhibits the average Nusselt number on the hot wall for different
Reynolds numbers at Ha = 2, Bn = 1, θ = 0◦, and Ec = 10−3. It shows the
average Nusselt number increases significantly as Reynolds number enhances
in different aspect ratios. In addition, it is observable the average Nusselt
number declines generally when the aspect ratio rises. However, the drop due
to the aspect ratio does not follow the same ratio. It depicts that the increase
in the aspect ratio from AR = 0.25 to 1, decreases the average Nusselt number
nearly by 550%, 500%, and 350% for Re = 100, 500, and 1000; respectively. The
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rise of the aspect ratio from AR = 1 to 4, reduces the average Nusselt number
nearly by 200%, 150%, and 160% for Re = 100, 500, and 1000; respectively.

4.5 Effect of the inclination of the magnetic field

The figure 12 presents the isotherms for different inclinations of the magnetic
field and aspect ratios at Bn = 1, Ha = 5, Ec = 10−3, and Re = 100. It
demonstrates that the rise of the magnetic field angle alters the isotherms
clearly; however, the change is not the same in various aspect ratios and angles.
At AR = 0.25, it is evident that the increase in the magnetic field angle
causes the gradient of the isotherm on the hot wall to decline significantly
and the movement of the isotherm between the cold and hot walls to drop
considerably. But at AR = 1, the enhancement of the magnetic field angle
increases the movement of isotherms between the side walls slightly. At AR
= 4, the parallel isotherms similar to a pure conduction at θ = 0◦ changes to
curved manners of isotherms due to the rise of convection at θ = 90◦.

The figure 13 illustrates the streamlines for different inclinations of the mag-
netic field and aspect ratios at Bn = 1, Ha = 5, Ec = 10−3, and Re = 100.
At AR = 0.25, the increase in the magnetic field angle provokes the core of
the streamlines move from the center of the enclosure to the left side and the
streamlines on the bottom of the cavity disappears gradually. It demonstrates
that the convection process weakens when the magnetic field angle rises. But
by contrast, the movement of the streamlines between the horizontal sides
enhance markedly and the core of the streamline moves to the center of the
enclosure gradually. The pattern clearly demonstrates the rise of the mag-
netic field angle improves the convection process. At AR = 4, the increase in
the magnetic field angle changes the streamline utterly and the core of the
streamline moves from the top of the enclosure to the center of the enclosure.
It confirms that the movement of the fluid flow strengthens substantially and
therefore the convection process augments.

The figure 14 displays the yielded/unyielded parts for different inclinations of
the magnetic field and aspect ratios at Bn = 1, Ha = 5, Ec = 10−3, and Re
= 100. The increase in the magnetic field angle from θ = 0◦ to 60◦ enhances
the unyielded part at AR = 0.25, but the unyielded section dropped consid-
erably at AR = 1 and 4. The rise of the the magnetic field angle from θ =
0◦ to 90◦ augments the unyielded section slightly at AR = 0.25. At AR = 1,
the unyielded section develops in the center of the enclosure vastly, but the
unyielded part in the bottom corners of the enclosure diminishes. In addition,
at AR = 4, the unyielded zone disappears in the most parts of the enclosure
and there are just two concentrated unyielded zone close to the side walls.
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Table 5 indicates the average Nusselt number on the hot wall for different
inclinations of the magnetic field and aspect ratios at Ha = 5, Bn = 1, Ec
= 10−3, and Re = 100. At AR = 0.25, the rise of the magnetic field angle
decreases the average Nusselt number gradually. At AR = 1, the enhancement
of the magnetic field angle increases the average Nusselt number from θ = 0◦

to 60◦ steadily, but drops slightly at θ = 90◦. At AR = 4, the average Nusselt
number declines as the magnetic field angle rises especially at θ = 90◦.

4.6 Effect of the Eckert number

The figure 15 presents the isotherms, streamlines, yielded/unyielded sections
for different aspect ratios and Eckert numbers at Bn = 1, Ha = 5, θ = 30◦,
and Re = 100 (The solid red line (Ec=0.01), and the dashed green line (Ec =
10−4)). It demonstrates that the increase in the Eckret number does not change
the isothems, streamlines, and yielded/unyielded zones noticeably. However,
it should be noted that there is a more visible alteration due to the Eckret
number effect at AR = 0.25 compared to other aspect ratios.

Table 6 demonstrates that the average Nusselt number on the hot wall for
different Eckert numbers and aspect ratios at Ha = 5, Bn = 1, θ = 30◦, and
Re = 100. It indicates that the average Nusselt number declines marginally as
the Eckert number increases in different aspect ratios. However, the average
Nusselt number is influenced by the rise of Eckert number at AR = 0.25 more
than other aspect ratios.

5 Concluding Remarks

The mixed convection of viscoplastic fluids in a lid-driven cavity with different
aspect ratios in the presence of a magnetic field has been analysed by Lattice
Boltzmann method (LBM). The present study has been conducted with the
main parameters in the following ranges: the Reynolds number (Re = 100, 500,
and 1000), the Hartmann number (Ha = 0, 1, 2, and 5), the Bingham number
(Bn = 1, 5, and 10), the aspect ratio (AR = 0.25, 1, and 4), the inclination
of the magnetic field (θ = 0◦, 30◦, 60◦ and 90◦), and Eckert number (Ec =
0, 10−4, 10−3, and 10−2) while the Grashof and Prandtl numbers are fixed at
Gr = 104 and Pr = 1; respectively. This investigation is performed for various
values of the mentioned parameters and the conclusions are summarised as
follows:

• The enhancement of the Reynolds number increases the heat transfer for dif-
ferent aspect ratios, Hartmann numbers, and Bingham numbers and causes
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the yielded/unyielded sections to alter.

• The rise of the aspect ratio decreases the heat transfer while augments the
yielded/unyielded zones.

• The positions of the unyielded regions change in different aspect ratios.

• The increase in Hartmann number enlarges the unyielded sections and de-
creases the heat transfer in various aspect ratios and Reynolds numbers.

• The augmentation of the Bingham number reduces the heat transfer and
increases the unyielded section in the cavity in different aspect ratios and
Hartmann numbers.

• The rise of the aspect ratio increases the effect of the Hartmann number on
the heat transfer and the unyielded part.

• The increase in the magnetic field angle from θ = 0◦ to 90◦ at AR = 0.25
decreases the heat transfer and increases the unyielded region considerably.

• The rise of the magnetic field angle from θ = 0◦ to 90◦ at AR = 4 enhances
the heat transfer and diminishes the unyielded region significantly.

• The enhancement of the magnetic field angle from θ = 0◦ to 90◦ at AR =
1 alters the heat transfer and the yielded/unyielded parts.

• The Eckert number in the studied range based on practical values has in-
significant influences on heat transfer and yielded/unyielded parts in various
aspect ratios.

• In the studied marginal effect of Eckret number, the drop of heat transfer
at AR = 0.25 are more than AR = 1 and 4.
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Appendix

Here, we shall discuss the stability of the numerical scheme. Finding the pa-
rameter c, we multiply f eqα with |ξξξα|2/2 and take the sum, which leads to

8∑
α=0

1

2
f eqα |ξξξα|

2 = p+
1

2
ρ |u|2 − τxx + τyy

2
. (A1)

Next, it is easy to verify that

8∑
α=0

Fα|ξξξα|2 = 0. (A2)

Hence,

∂

∂t

[
p+

1

2
ρ|u|2 − τxx + τyy

2

]
+
c2

2
ρ(∇ · u) = O (ε) . (A3)

The Courant-Friedrichs-Lewy (CFL) condition states that [98,99]

K =
u∆t

∆x
+
v∆t

∆y
≤ 1. (A4)

This can be used in (A3) and we obtain

[
|u|2 +

2p− τxx − τyy
ρ

]
+ c2K = O (ε) . (A5)

Thus, the lattice speed c must satisfy

c = Kc

√√√√∣∣∣∣∣τxx + τyy − 2p

ρ
− |u|2

∣∣∣∣∣ , Kc =
1√
K
≥ 1. (A6)

Since the pressure p has to be uniquely defined in a Bingham fluid, one requires
that τxx + τyy = 0;. Thus, reduces to

c = Kc

√√√√∣∣∣∣∣−2p

ρ
− |u|2

∣∣∣∣∣ , Kc =
1√
K
≥ 1 (A7)

As a result, the value c is modified and changes in each iteration as defined
through (A7).
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Nomenclature

A The first Rivlin-Ericksen tensor
AR Aspect ratio of the cavity (AR = H

L
)

Bn Bingham number
c Lattice speed
cp Specific heat capacity at constant pressure
E Electric field strength
Ec Eckert number
F External forces
fα Density distribution functions for the specific node of α
f eqα Equilibrium density distribution functions for the specific node of α
gα Internal energy distribution functions for the specific node of α
geqα Equilibrium internal energy distribution functions for the specific node
of α
g Gravity
Ha Hartmann number
H Enclosure height
J Electric current density
k Thermal conductivity
L Enclosure width
N Body force
Nu Nusselt number
p Pressure
Pr Prandtl number
Re Reynolds number
T Temperature
t Time
x, y Cartesian coordinates
u Velocity in x direction
U0 The speed of the upper wall
v Velocity in y direction

Greek letters

βT Thermal expansion coefficient
φ Relaxation time
Φ Electrical potential
τττ Stress tensor
τy Yield stress
ξ Discrete particle speeds
∆x Lattice spacing in x direction
∆y Lattice spacing in y direction
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∆t Time increment
α Thermal diffusivity
ρ Density of fluid
σ Electrical conductivity of the fluid
ΛΛΛ The viscoplasticity constraint
θ The inclined angle of the magnetic field

Subscripts

avg Average
C Cold
d Dynamic
H Hot
x, y Cartesian coordinates
α Specific node
s Static
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Table 1
Grid independence study at Re = 100, Ha = 2, Bn = 1, Ec = 10−3, AR = 1, and
θ = 0◦

Mesh size Nuavg |ψmax|

120*120 2.7151 0.0676

140*140 2.5651 0.0688

160*160 2.5384 0.0690

180*180 2.5213 0.0694

200*200 2.5025 0.0696

220*220 2.5025 0.0696

240*240 2.5025 0.0696

42



Table 2
Comparison of the average Nusselt number on the hot wall for different aspect ratios
and Hartmann numbers at Bn = 1, θ = 0◦, Ec = 10−3, and Re = 100

AR = 0.25 AR = 1 AR = 4

Ha = 0 12.8620 3.1302 2.1357

Ha = 2 11.7349 2.5025 1.4673

Ha = 5 9.5171 1.8705 1.2516
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Table 3
Comparison of the average Nusselt number on the hot wall for different aspect ratios
and Bingham numbers at Ha = 0, Ec = 10−3, and Re = 100

AR = 0.25 AR = 1 AR = 4

Bn = 1 12.8620 3.1302 2.1357

Bn = 5 11.0584 2.5025 1.3829

Bn = 10 9.8483 2.2201 1.3036
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Table 4
Comparison of the average Nusselt number on the hot wall for different aspect ratios
and Reynolds numbers at Ha = 2, θ = 0◦, Ec = 10−3, and Bn = 1

Re = 100 Re = 500 Re = 1000

AR = 0.25 11.7349 21.9304 26.6426

AR = 1 2.5025 4.9014 7.2560

AR = 4 1.4673 2.6241 3.7788
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Table 5
Comparison of the average Nusselt number on the hot wall for different aspect ratios
and magnetic field angles at Ha = 5, Re = 100, Ec = 10−3, and Bn = 1

AR = 0.25 AR = 1 AR = 4

θ = 0◦ 9.5171 1.8705 1.2516

θ = 30◦ 9.0332 1.9716 1.2665

θ = 60◦ 7.0443 2.0727 1.3251

θ = 90◦ 6.4587 2.0483 1.7843
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Table 6
Comparison of the average Nusselt number on the hot wall for different Eckert
numbers and aspect ratios at Re = 100, Bn = 1, θ = 0◦, and Ha = 5

Ec = 0 Ec = 10−4 Ec = 10−3 Ec = 10−2

AR = 0.25 9.0488 9.0470 9.0332 8.8930

AR = 1 1.9730 1.9727 1.9716 1.9612

AR = 4 1.2672 1.2671 1.2665 1.2603
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Fig. 1. Geometry of present study
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Fig. 2. The comparison of the isotherms, streamlines and yielded/unyielded parts
in different non-dimensional time (t∗) at Re = 1000, Bn = 1, AR = 0.25, θ = 0◦,
Ec = 10−3, and Ha = 2
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Fig. 3. Comparison of the isotherms for different aspect ratios and Hartmann num-
bers at Bn = 1, θ = 0◦, Ec = 10−3, and Re = 100
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Fig. 4. Comparison of the streamlines for different aspect ratios and Hartmann
numbers at Bn = 1, θ = 0◦, Ec = 10−3, and Re = 100
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Fig. 5. Comparison of the yielded/unyielded sections for different aspect ratios and
Hartmann numbers at Bn = 1, θ = 0◦, Ec = 10−3, and Re = 100
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Fig. 6. Vertical velocity (v) and temperature distribution (T ) at y = 0.5, horizontal
velocity profile (u) at x = 0.5 and the local Nusselt number at the hot wall for
different Hartmann numbers at Bn = 1, θ = 0◦, AR = 1, Ec = 10−3, and Re = 100
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Fig. 7. Comparison of the isotherms for different aspect ratios and Bingham numbers
at Ha = 0, Ec = 10−3, and Re = 100
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Fig. 8. Comparison of the streamlines for different aspect ratios and Bingham num-
bers at Ha = 0, Ec = 10−3, and Re = 100
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Fig. 9. Comparison of the yielded/unyielded parts for different aspect ratios and
Bingham numbers at Ha = 0, Ec = 10−3, and Re = 100
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Fig. 10. Vertical velocity (v) and temperature distribution (T ) at y = 0.5, horizontal
velocity profile (u) at x = 0.5 and the local Nusselt number at the hot wall for
different Bingham numbers at AR = 1, Ha = 0, Ec = 10−3, and Re = 100

59



 

                                           Isotherms                              Streamlines                   Yielded/unyielded 

 

 

 

Re = 100 

 

 

 

 

 

Re = 500 

 

 

 

 

 

Re = 1000 

 

 

 

 

Fig. 11. Comparison of the isotherms, streamlines, and yielded/unyielded parts for
different Reynolds numbers at Bn = 1, Ha = 2, AR = 1, Ec = 10−3, and θ = 0◦

60



 

                                                AR = 0.25                                    AR = 1                            AR = 4 

 

 

 

θ =0
˚
 

 

 

 

 

 

θ = 30
˚ 

 

 

 

 

 

 θ = 60
˚ 

 

 

 

 

 

 

 

θ = 90
˚ 

Fig. 12. Comparison of the isotherms for different aspect ratios and magnetic field
angles at Bn = 1, Ha = 5, Ec = 10−3, and Re = 100
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Fig. 13. Comparison of the streamlines for different aspect ratios and magnetic field
angles at Bn = 1, Ha = 5, Ec = 10−3, and Re = 100

62



 

                                                AR = 0.25                                       AR = 1                            AR = 4 

 

 

 

 

  θ = 0
˚ 

 

 

 

 

 θ = 30
˚ 

 

 

 

 

 

 θ = 60
˚ 

 

 

 

 

 

 

 

θ = 90
˚ 

Fig. 14. Comparison of the yielded/unyielded parts for different aspect ratios and
magnetic field angles at Bn = 1, Ha = 5, Ec = 10−3, and Re = 100
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Fig. 15. Comparison of the isotherms, streamlines, yielded/unyielded sections for
different aspect ratios and Eckert numbers at Bn = 1, Ha = 5, θ = 30◦, and Re =
100 (The solid red line (Ec = 0.01), and the dashed green line (Ec = 10−4))
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