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Abstract 

The unsteady behavior of a sweeping impinging jet is measured experimentally using time-

resolved particle image velocimetry. For the configuration with a jet-to-wall spacing ratio L/dh = 8, 

an approximately linear increase in the sweeping frequency is observed with Reynolds numbers 

(Re) between 2.7 × 103 and 9.3 × 103, especially at high Reynolds numbers. The saturation of the 

sweeping jet, at which the maximum deflection angle is reached, occurs at Re = 6.7 × 103. Special 

focus is then placed on the spatial and temporal variations of unsteady flow fields at two Reynolds 

numbers Re = 4.0 × 103 and 9.3 × 103. The unsteady behavior in the near-exit region is first 

compared. At a higher Reynolds number, the jet in the near-exit region remains at the maximum 

deflection angle for a longer time during one oscillation cycle with more concentrated jet 

momentum, resulting in a faster switching process. In the near-wall region at Re = 4.0 × 103, the 

sweeping impinging jet exerts a large region of influence due to the oscillation motion of the impact 

region along the wall. The time-averaged velocity components and velocity fluctuating components 

near the wall show double peaks on both outer sides and a minimum in the middle of the near-wall 

region. At Re = 9.3 × 103, due to the rapid and intensive sweeping process, the jet column breaks 

in the near-exit region, resulting in a weak flow in the middle of the near-wall region. Accordingly, 

the profiles of the time-averaged velocity components and velocity fluctuating components show 

higher double-peak values but an even lower minimum value. Finally, the state-of-the-art dynamic 

mode decomposition method is used to capture the main flow behavior of distinct frequencies at 

these two selected Reynolds numbers. Bounded by the breaking location of the jet column, the flow 

with a superharmonic oscillation frequency in the middle of the near-wall region disappears at Re 

= 9 × 103. Therefore, the energetic flow patterns are found to be more evenly distributed in the 

near-exit region than in near-wall region. The phase correlation between the captured flow patterns 

is determined by projecting the phase-averaged flow fields onto the most energetic modes.  

Keywords: Sweeping jet; Impingement; TR-PIV; LIF; DMD.  
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Nomenclature 

A  Linear mapping between flow fields 

a𝑖  Mode coefficients of DMD  

C  Companion matrix  

d  Diameter of PIV tracking particles 

dh  Hydraulic diameter 

f  Oscillation frequency of the sweeping jet 

L  Jet-to-plate spacing 

ṁ  Flow rate  

N  Total number of flow field 

r  Correlation coefficient 

ti  Time 

U  Discrete velocity matrix in DMD analysis 

USJ  Sweeping jet velocity 

u  Velocity component along axial direction  

ui  Instantaneous velocity  

�̃�𝑖(𝑡)  Phase-correlated contribution to the velocity 

〈𝑢𝑖(𝑡)〉  Phase-averaged velocity 

𝑢′
𝑖(𝑡)  Velocity fluctuating components 

ve  Entire signal of the different velocity 

vs  Segment of the entire signal of the different velocity 

v  Velocity component along transverse direction  

𝑥  Axial coordinate 
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𝑦  Transverse coordinate  

Greek symbols 

β  Phase angle of the sweeping jet oscillation in time domain 

θmax  Maximum deflection angle in space domain 

𝜆  Eigenvalues of companion matrix C 

ρ  Density of PIV tracking particles 

Φ𝑛(𝒙)  DMD spatial mode 

φ  Angle of the oscillator’s diverging nozzle 

Abbreviations 

DMD  Dynamic mode decomposition 

LIF  Laser-induced fluorescence 

RMS  Root mean square 

PIV  Particle image velocimetry 

POD  Proper orthogonal decomposition 

TR-PIV  Time-resolved particle image velocimetry 
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1. Introduction 

Impinging jets, which can substantially improve heat transfer rates in the impact region, have 

been widely used for applications such as gas turbines, aircraft de-icing, and metallurgy (Han and 

Goldstein, 2001). However, their realization with a steady jet may not be efficient due to the limited 

region of influence centered on the impact region. In practice, a dense array of such jets is usually 

needed at the cost of a high flow rate. In this regard, the sweeping jet, which relies on a fluidic 

oscillator generating a temporally continuous but spatially oscillating jet in the transverse direction, 

can significantly extend the spatial extent of the impingement flow and improve the wall heat 

transfer. These effects have been confirmed by heat transfer measurements (Camci and Herr, 2002) 

and numerical studies (Thurman et al., 2016; Lundgreen et al., 2017). There is little doubt that the 

intensified wall heat transfer results primarily from spatiotemporal variation in the sweeping 

impinging jet flow, which differs fundamentally from a steady jet. 

 

Quite a few efforts have been made to delineate the dynamics of sweeping jets issuing into an 

unbounded field. Inside the fluidic oscillator, due to the Coanda effect, the main jet is attracted to 

one sidewall in the interaction region of the fluidic oscillator. Near the jet exit, a small portion of 

the main jet stream returns through a feedback channel to the oscillator’s inlet, causing the jet to 

detach and flip to the opposite side. Accordingly, the jet issued from the diverging nozzle exhibits 

a periodic sweeping motion in the transverse direction with a frequency up to 20 kHz (Gregory et 

al., 2013). Inside the fluidic oscillator, a phase-dependent analysis of flow patterns was undertaken 

using particle image velocimetry (PIV) measurements from Bobusch et al. (2013a) and Woszidlo 

et al. (2015), who identified a growing recirculation bubble between the main jet and attachment 

wall that was fed by the feedback flow and caused the main jet to oscillate. The internal interaction 

was also found to affect the external oscillation behaviors. Via surface-oil-flow visualization and 

hot-wire measurement, Koklu (2016) found that extending the jet exit substantially increased the 

jet deflection angle due to the Coanda effect between the jet and diverging exit wall. Similarly, 

Ostermann et al. (2015a) and Bobusch et al. (2013b) determined the influence of the oscillator’s 
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divergence angle on the sweeping jet and claimed that a small divergence angle of the jet exit (φ = 

90º) resulted in the attachment of the jet to the exit wall and thereby increased the jet’s maximum 

deflection angle more than a larger divergence angle (φ = 125º). As for the sweeping impinging jet, 

measurements by Camci and Herr (2002) convincingly showed better heat transfer performance of 

a sweeping jet over a steady slot jet. Tesař (2009) determined a substantially higher total heat 

transfer rate in the sweeping impinging jet than in the steady jet, reaching an increase of 180% to 

200% in some regimes. A recent numerical study of the sweeping impinging jet by Lundgreen et 

al. (2017) also determined an improvement in the heat transfer rate over the steady jet. An 

experimental study of Agricola et al. (2017) revealed that the impingement heat transfer of the 

sweeping jet is improved by an increase in Reynolds number. However, although a considerable 

increase in wall heat transfer is gained with the sweeping impinging jet (Camci and Herr, 2002; 

Tesař, 2009; Lundgreen et al., 2017), no experimental study has been conducted to elucidate the 

spatiotemporally varying flow behavior. 

 

This study determines the unsteady behavior of a sweeping impinging jet. Experiments are 

carried out in a water tank using laser-induced fluorescence (LIF) visualization and planar time-

resolved PIV (TR-PIV) measurement. The unsteady flow fields of six jet flow rates are investigated, 

corresponding to six Reynolds numbers (Re) between 2.7 × 103 and 9.3 × 103. The flow dynamics 

at two selected Reynolds numbers are discussed intensively in terms of phase-averaged velocity 

fields, vorticity fields, and velocity fluctuating components. Time-averaged velocity components 

and fluctuating components are also examined. Furthermore, the state-of-the-art dynamic mode 

decomposition (DMD) method is used to reveal energetic flow behavior at distinct frequencies. 

The phase correlation between the distinct flow patterns is finally determined by projecting the 

phase-averaged flow fields onto a reduced basis of DMD modes. 
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2. Experimental approaches 

2.1 Test platform 

The geometry of the fluidic oscillator explored in this study is shown in Fig. 1, which is 

commonly used in previous studies (Bobusch et al. 2013a; Woszidlo et al. 2015). The jet throat has 

a square cross section with a height (h) of 5 mm, resulting in a hydraulic diameter (dh) of 5 mm. 

The depth of the oscillator is 5 mm, and the nozzle has a diverging angle (φ) of 90º and a length 

of 30 mm at the exit. The experiments are performed in a water tank as shown in Fig. 2. The fluidic 

oscillator is placed at center of the tank. The distance between the oscillator and the side walls of 

the tank is at least 80dh (in both y and z directions) to avoid the side effect. Since the laser sheet is 

shot from top to bottom through the impingement plate, a rim is added to obstruct the water in order 

to avoid unstable liquid interface. Water is channeled from an overhead settling chamber and driven 

by gravity into the oscillator. A flowmeter monitors and controls the volume flow rate of the jet 

with an uncertainty level of 2.5%. By tuning the flowmeter, six supplied flow rates between 13.3 

× 10-6 and 46.7 × 10-6 m3/s are applied, as listed in Table 1. The jet velocity (USJ) is calculated 

based on the flow rate and the cross-section area of the oscillator throat. The corresponding 

Reynolds numbers based on the jet velocity and hydraulic diameter range from 2.7 × 103 to 9.3 × 

103, well below the critical Reynolds number of 10 × 103, beyond which a fully developed 

turbulence state is achieved (Dimotakis, 2000). The spacing between the jet exit and impingement 

plate (L/dh) is fixed at 8. The impingement flat plate is made of transparent plexiglass to allow the 

measurement laser sheet to pass through. The origin of the coordinate system is set at the center of 

the jet exit, with the x-axis pointing in the jet’s axial direction and the y-axis pointing in the 

transverse direction (i.e., the direction of the jets’ sweeping motion), as shown in Fig. 2. 

 

2.2 LIF visualization 

LIF is used to visualize the flow patterns induced by the sweeping impinging jet. As shown in 

Fig. 2, a 5-W, 532-nm-wavelength diode-pumped solid-state continuous-wave laser provides a laser 

sheet approximately 1 mm thick. A fluorescent dye, rhodamine-B, that was thoroughly premixed 
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with the jet supply water in the settling chamber is used to visualize and track the flow structures. 

A high-speed camera (Mikrotron, MC1362) with a 60-mm lens (Nikon) is used to capture the view 

of interest (0 < x/dh < 8, −16 < y/dh < 16) at 300 Hz. As shown in Fig. 2, LIF visualization is 

performed on the mid-span plane (x-y plane). 

 

2.3 TR-PIV measurement 

TR-PIV is used to measure the highly unsteady flow fields. The TR-PIV measurement has a 

setup similar to that of the LIF visualizations. Like the LIF visualization, TR-PIV measurement is 

performed on the same plane spanning in the transverse direction. The scaling pixel/mm is about 

10 pixel/mm. To facilitate the PIV measurements, the entire water tunnel is seeded with glass beads 

(ρ ≈ 1050 kg/m3, d ≈ 10 μm) as tracer particles. A high-speed camera (dimax HS4, pco.) operates 

at a dynamics sampling rate ranging between 1.5kHz to 3kHz depending on the Reynolds number. 

A multigrid cross-correlation technique (Raffel et al., 2013), in combination with subpixel 

recognition by Gaussian fitting (Yasuhiko et al., 2000), is applied with a final interrogation window 

size of 32 × 32 pixels with 50% overlap. In this time-resolved measurement, a measurement grid 

of velocity vectors with a spacing of 1.5 × 1.5 mm is then obtained. Due to the strong velocity 

gradient on the jet shear layer, more tracking particles are added to the settling chamber to ensure 

that there are at least 10 particles per interrogation window. As the major source of uncertainty, the 

root-mean-square fluctuation of the PIV-measured particle displacement is estimated to be about 

0.08 pixel in the field images (Willert and Gharib, 1991). Therefore, the uncertainties in the 

measurements determined by recursive image interrogation are approximately 1% in the axial and 

transverse direction velocity components when the particle displacement is about 8 pixels in the 

interrogation window. To accelerate the computation process, the correlation scheme on the raw 

seeding pictures is based 1-2, 3-4, 5-6, etc. The sampling frequency of the flow vector field is at 

least two orders of magnitude higher than the examined oscillation frequency of sweeping jets, 

which is adequate to resolve the major frequencies in the unsteady flow fields. The total recording 

time is also dynamic to ensure at least 50 cycle periods are captured for each cases.  
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3. Data analysis 

3.1 Phase-averaging method 

The phase indicator is needed to reveal the phase-dependent variation of the sweeping impingement 

jet. Woszidlo et al. (2015) obtained the phase-averaged flow fields of internal and external fluidic 

oscillators based on time-resolved reference signals from pressure sensors. In our study, the 

sampling rate of the TR-PIV measurement is at least two orders of magnitude higher than the 

oscillation frequency of the sweeping jet, which provides adequate temporal resolution for phase 

identification. Therefore, the velocity information extracted from individual PIV snapshots is used 

for phase identification. As shown in Fig. 3, two specific locations in the flow field are selected to 

yield time-resolved values of difference between the transverse velocities (along y direction). These 

locations are in near-exit region and are symmetrical about the centerline of the jet exit to yield a 

signal (i.e., time-resolved values of velocity difference) with a high signal-to-noise ratio. Like the 

procedures used by Ostermann et al. (2015b) and Woszidlo et al. (2015), a numerical low-pass filter 

is imposed on the signal to reduce the noise while maintaining its phase and amplitude information, 

as shown in Fig. 4a. The entire signal is then correlated with a segment of the same signal to yield 

the correlation coefficient as 

𝑟(𝑘) =
1

𝑀
∑ 𝑣𝑠[𝑚]𝑣𝑒[𝑚 + 𝑘]

𝑀

𝑚=1

 (1) 

where 𝑣𝑒 is the entire signal, 𝑣𝑠 is the segment of the entire signal. M is the data size of 𝑣𝑠, and 

is approximately half of an oscillation period in length. Previous study revealed that the location 

of 𝑣𝑒 has no significant influence on the result (Woszidlo et al. 2015). This yields an oscillating 

correlation coefficient where every other change of sign marks a full period, as shown in Fig. 4b. 

Based on the resulting oscillating correlation coefficient, a phase angle is assigned to each 

simultaneously recorded PIV snapshot. The size of the phase angle window for averaging is 3º for 

this study because it sufficiently reduces noise while maintaining the detailed flow features. As 

such, more than 150 instantaneous flow fields are used for phase averaging. The autocorrelation 

method does not provide a consistent starting point for all windows. Therefore, they are phase-
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aligned based on the phase-averaged differential signal. In this study, the cycle begins when the jet 

is at the deflection position furthest to the left, that is, β / π = 0, as shown in Fig. 3. When the jet 

switches to the deflection position farthest to the right, β / π = 1. On the other hand, β / π changes 

from -1 to 0 when the jet switches from the right to the left side. The locations of the two reference 

sampling points vary at different flow rates due to the change in the maximum jet deflection angle 

θmax. Please note that the β is defined in time, whereas θ is defined in space. The deflection angle 

of the jet θ in space may not change linearly with the time step β / π during the switching process, 

which will be investigated in the following section. The oscillation frequency is also calculated 

based on the differential velocity signal from the two reference positions. 
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3.2 DMD analysis 

The DMD method separates a flow field into its mean value and higher modes that describe 

the fluctuations in the field. Unlike proper orthogonal decomposition (POD) analysis method, 

which extracts flow structures based on their energy ranking, DMD extracts flow structures based 

on their contributions to flow dynamics. By extracting spatial modes based on frequency content, 

DMD a suitable method to analyze dynamics of a flow system involving multiple frequency 

components like in the present study. Detailed information regarding the fundamentals and 

mathematical processes of the DMD algorithm was described by Schmid (2010; 2011). Examples 

for successful use of this method were presented by Liu and Zhang (2015), who identified and 

reconstructed the modes in a flow over a finite blunt plate, and Wen et al. (2015), who examined 

the dominant frequency distribution of synthetic jets in a separated flow. The mathematical 

description of DMD is only briefly introduced here. 

 

In DMD, a time sequence of flow field data is organized by a matrix 

𝑈1
𝑁 = {𝒖1, 𝒖2, ⋯ , 𝒖𝑁} (2) 

where ui is a vector representing a snapshot of the flow field at time ti and N is the total number of 

tested flow fields. Consider another matrix 𝑈2
𝑁+1, The coefficients of the linear combination are 

stacked in a companion matrix C such that: 

𝑈2
𝑁+1 = 𝐴𝑈1

𝑁 ≈ 𝑈1
𝑁𝐶 (3) 

where the eigenvalues λi of C are approximations to some of the eigenvalues of a higher-dimension 

inter-snapshot linear map A. QR-decomposition of the data sequence 𝑈1
𝑁 is used to calculate the 

companion matrix C. After the decomposition, the resulting dynamic modes can be expressed as: 

Φ𝑖 =  𝑈1
𝑁𝑣𝑖 (4) 

where Φ𝑛(𝒙) is the spatial basis mode function and 𝑣𝑖 is the ith eigenvector of C. Although the 

long-time averaged flow field is kept in the velocity sequences, the corresponding DMD mode (Φ0) 

is removed after the decomposition, in order to focus on the unsteady ones. The magnitude of the 
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dynamic mode Φ𝑖 are defined as ||Φ𝑖||, and normalized by the norm of the full matrix Φ. The 

frequency of Φ𝑖 is then defined as 𝑓 = Im{log(𝜆𝑖 )}/2πΔt.  

 

In current study, the instantaneous flow field snapshots at least 50 sweeping cycles are used.  

Due to the computational limitation of the workstation, the sampling frequency of the flow field 

snapshot is reduced to 333Hz and 500Hz for the cases of Re = 4.0 × 103 and 9.3 × 103, respectively. 

This sampling frequency is still two orders larger than the sweeping frequency at these two 

Reynolds numbers, respectively. 
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4. Results and discussion 

Fig. 5 shows the overall performance of the oscillator, which plots the variation trend of the 

jet’s maximum deflection angle θmax and the jet’s Strouhal number Sh against the Reynolds number. 

The maximum deflection angle is obtained from the u and v components of the highest velocity 

magnitudes in the near-exit region from the long-time averaged flow field. As shown in Fig. 5a, the 

maximum deflection angle increases with the Reynolds number and reaches a saturation value of 

about θmax = 81º at Re = 6.7 × 103 due to the constraint of the oscillator geometry. Previous studies 

have revealed that sweeping frequency f almost increases linearly with the supply flowrate (Tesař 

et al. 2013). By defining the Strouhal number Sh as 

Sh =  
𝑓𝑑ℎ

𝑈𝑆𝐽
 

(5) 

, previous studies found that Sh is almost a constant value regardless of the Re. In current study, 

Fig. 5b illustrates that Strouhal number Sh is almost a constant value, especially after Re = 5.3× 

103. As the Reynolds number increases from lower value, Sh decreases a little. As revealed by 

Bobusch et al. (2013 a) and Woszidlo et al. (2015), a separation bubble inside the oscillator between 

the main jet and the wall of the interaction region is responsible for pushing the jet to the opposite 

side and causing the external jet deflection. From current observations, the change in the Reynolds 

number is expected to affect the flow interaction inside the fluidic oscillator to some extent, which 

results in the changing of the maximum deflection angle as well as the Strouhal number Sh.  

 

The unsteady behavior in the near-exit region is believed to have a direct effect on the 

impingement behavior. Two Reynolds numbers are selected (i.e., Re = 4.0× 103 and 9.3 × 103), with 

moderate and saturated deflection angles, respectively. At the lower Reynolds number Re = 4.0 × 

103, the jet sweeping motion is apparent with a moderate deflection angle θmax = 40º without 

attaching to the diverging exit wall. At the higher Reynolds number Re = 9.3 × 103, the jet maximum 

deflection angle is in a saturated state with a value θmax = 83º, and the jet can fully attach to the 

diverging exit wall. The time-resolved jet deflection angle θjet, the jet peak velocity Umax, the jet 
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width, and the jet mass flow rate are obtained from phase-averaged flow fields with a phase interval 

of π/18. Because of the jet’s considerable lateral extent, an appropriate comparison of the jet’s 

properties must be performed at a fixed distance from the jet throat. Therefore, a polar coordinate 

system is adopted. As shown in Fig. 3, the jet deflection angle and jet properties are obtained along 

an arc with a distance of 5.5dh from the jet throat, that is, 3dh to the center of the jet exit along the 

centerline. The jet width is the normal width of the local velocity profile with U≥50%Umax. The 

mass flow rate is calculated based on the jet width and the spatially averaged velocity. Based on 

the spatial resolution and velocity uncertainty in current PIV measurement, the uncertainty of the 

jet width and mass flow rate are about 12% according to the mean values. Fig. 6a plots the time-

resolved jet deflection angle θjet at Re = 4.0 × 103. The temporal variation of the jet deflection angle 

indicates that the sweeping motion appears sinusoidal. Fig. 6b plots the jet peak velocity, jet width, 

and jet mass flow rate oscillating around their corresponding mean values. The RMS values are 

about 0.07, 0.12 and 0.07, respectively. The instantaneous jet properties show no remarkable trend 

with the variation in jet deflections. Two weak peaks along the plot of the jet width are captured at 

around β / π = ±1/2, which correspond to the zero-deflection angle. At Re = 9.3 × 103, as shown in 

Fig. 7a, the time-resolved jet deflection angle does not follow the corresponding sine wave as well 

as that at Re = 4.0 × 103. The jet experiences a rapid switching process from one side of the exit to 

the other, which is indicated by the steep slope of the change in the jet deflection angle around β / 

π= ±1/2. In contrast, the jet appears to remain on the maximum deflection angles for a longer period 

with an expected slower motion at around β / π= 0 and ±1. This is believed to be caused by the 

Coanda effect between the jet and the diverging exit wall. When the jet is at the maximum 

deflection position, the jet is attaching to the diverging exit wall. The Coanda effect forces the jet 

to stay at this position for a longer time. This effect was also used to increase the jet maximum 

deflection angle in previous study (Koklu 2016). Accordingly, the instantaneous jet peak velocity, 

jet width, and jet mass flow rate at different deflection angles oscillate more significantly, as shown 

in Fig. 7b. The RMS values are about 0.17, 0.23 and 0.09, respectively. The maximum jet width 

corresponds to the zero-deflection angle at around β / π = ±1/2. In addition, it is accompanied by 

the highest mass flow rate and the lowest jet peak velocity. The opposite is true for the maximum 



16 

 

of the jet deflection angle at around β / π= 0 and ±1, which is accompanied by the highest jet peak 

velocity. According to Woszidlo et al. (2015), the variation in the jet properties may be due to the 

internal dynamics of the fluidic oscillator, that is, the change in the blocking effect of the separation 

bubble and the jet impingement on the internal wall. From the current observations, the diverging 

exit wall may also contribute to the oscillation of the jet properties. Under the combined effect, the 

jet in the near-exit region remains on the maximum deflection angle for a longer time with more 

concentrated jet momentum. 
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4.1 LIF Visualization 

Figs. 8 and 9 present sequences of snapshots to show the sweeping motion of the jets at the 

two selected Reynolds numbers from the qualitative LIF visualizations. The correlation between 

the flow behavior in the near-exit region and the near-wall impact region are focused. Since the 

flow field is generally symmetrical to the centerline, the oscillating flow during one half cycle at 

four phase angles (i.e., β / π = −1/9, 2/9, 5/9, and 8/9) are selected. During this half cycle, the jet 

sweeps from the left side to the right side of the flow field. At the lower Reynolds number Re = 4.0 

× 103 as shown in Fig. 8, the jet sweeps with a moderate deflection angle in the near-exit region. 

Accordingly, the impact region on the wall also oscillates from the middle of the near-wall region 

to the left outer side. Therefore, the sweeping impinging jet can cover a large region of influence 

on the wall in a time-averaged sense. In addition, two interesting observations can be made. Due 

to the curved jet column during the sweeping motion, a phase difference exists between the fluid 

motions in the near-exit and impact regions. At a phase angle β / π = 8/9 as shown in Fig. 8d, the 

jet in the near-wall region sweeps to the right side, whereas the jet in the impact region remains on 

the left side. In addition, the flow in the impact region remains on the outer side for a long time. 

For example, from phase angles β / π = 2/9 to 8/9, a persistent flow on the left outer side is found 

in the impact region, which will dissipate in the following half cycle. Due to the impermeability 

constraint of the impingement plate, the persisting impinging flow generates a wall-jet flow at β / 

π = 5/9, as shown in Fig. 8c, which is commonly found in a steady impinging jet (Hadžiabdić and 

Hanjalić, 2008). Due to the symmetry of the flow field, another wall-jet flow will form on the right 

side of the flow field in the following one half cycle. 

 

At the higher Reynolds number Re = 9.3 × 103, the sweeping jet’s maximum deflection angle 

reaches its saturation status, as shown in Fig. 9. Consistent with that revealed in Fig. 7a, the 

switching process of the jet from one side to the other is more intense. A sharp turning corner in 

the jet column is captured during the switching process, which resulting in a more significant phase 

difference between the jet flow in near-exit region and in near-wall region than that at Re = 4.0 × 
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103. As shown in Fig. 9c, the turning corner can occur near the jet exit, at about 3dh. From the time-

resolved deflection angle as revealed in Fig. 7a and the corresponding velocity field measured by 

PIV, the tangential velocity caused by the transverse sweeping motion around the turning corner is 

calculated to be close the local jet velocity along the jet column. At locations farther from the jet 

exit, the tangential velocity will surpass the jet velocity, resulting in a sharp turning corner. This 

sharp turning corner causes the jet column to “break” in the near-exit region before it impinges on 

the wall. Therefore, the impact region around the middle of the near-wall region is not captured. 

LIF visualization also confirms that the jet can attach to both sides of the diverging exit wall. Due 

to the Coanda effect, the jet remains on the most deflected angle for a longer time in the near-exit 

region. 
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4.2 PIV measurements 

In Figs. 10 and 13, half oscillation periods at Reynolds numbers Re = 4.0 × 103 and 9.3 × 103 

are presented at four selected phase angles β / π = −1/9, 2/9, 5/9, and 8/9. The contours of axial (x-

axis direction) and transverse (y-axis direction) velocity components are presented. The flow fields 

are normalized by the sweeping jet velocity USJ. Respective uniform velocity vectors are added to 

enhance the visibility of the dynamics. In addition, it has been well documented that the edge shear 

layer surrounding the jet is one of the main processes that influence a jet’s dynamics and heat 

transfer (Hadžiabdić and Hanjalić, 2008). Therefore, the vorticity field is also plotted to show the 

interaction between the jet shear layer and the impingement wall. Velocity fluctuating components 

along the axial and transverse directions are also plotted to show the distribution of jet turbulence, 

as calculated from phase-averaged flow fields. The investigated flow field consists of a turbulent 

jet with a highly periodic sweeping motion. Hence this periodic motion can be seen as an organized 

wave in a turbulent shear flow (Greco et al. 2016). For this reason, the phase-averaged velocity 

fluctuating components are calculated through the application of the triple decomposition (Hussain 

and Reynolds, 1970; Kitsios et al., 2010): 

u𝑖(𝑡) = 𝑈 + �̃�𝑖(𝑡) + 𝑢′
𝑖(𝑡) (6) 

where 𝑈 is the time-averaged velocity component, �̃�𝑖 is the phase-correlated contribution to the 

velocity and 𝑢′
𝑖 is the velocity fluctuating components. 

The phase-averaged velocity is 

〈𝑢𝑖(𝑡)〉 =  lim
𝑁→∞

1

𝑁
∑ 𝑢𝑖(𝑡 + 𝑛𝜏)

𝑁−1

𝑛=0

 
(7) 

where N is the number of the instantaneous flow fields at same phase and n is a natural number. 

The phase-correlated organized contribution to velocity is 

�̃�𝑖(t) =  〈𝑢𝑖(𝑡)〉 −  U (8) 

and the fluctuating components are evaluated as 

𝑢′
𝑖(t) =  u𝑖(𝑡) − 〈𝑢𝑖(𝑡)〉 (9) 
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The PIV-measured flow quantities in a half oscillation period at Re = 4.0 × 103 are presented 

in Fig. 10. Fig. 10a plots the phase-averaged flow field at phase angle β / π = −1/9. Like that 

revealed by LIF visualization, the jet column is curved during the sweeping process. The contour 

of the axial velocity and velocity vectors show that the jet in the near-exit region approaches its 

left-most position, whereas the jet flow in the near-wall impact region is at the middle of the near-

wall region. The plot of transverse velocity shows that two wall-jet flows are formed outboard of 

the near-wall region. Because the jet flow simply switches back from the right side, the outboard 

wall-jet flow on the left side is believed to be induced in the previous cycle. In order to reveal the 

impinging process, phase-averaged velocity magnitude profiles along four transvers lines at 

different distance from the impingement plate are extracted. As shown in Fig. 11, the jet velocity 

decreases generally when the jet is approaching to the wall at the locations far from the 

impingement plate (2.31dh～1dh). At the location close to the wall (0.33dh), the impingement plate 

presence causes an adverse pressure gradient leading to an abrupt velocity decrease (O’Donovan, 

2005; Greco et al., 2016). As such, a plateau around the impact region (y ≈-2dh) is formed along 

the velocity profile. In addition, another peak is induced on the right side of the flow field (y ≈9dh). 

As shown by the velocity vectors in Fig. 10a, the impinging flow on the near-wall region deflect 

more on transverse direction when it meets the impinging plate and forms the wall-jet flow. Strong 

local vorticity and velocity fluctuating components are found not only around the impact region 

but also at the deflection region of the flow where the wall-jet flow starts. The plots of the axial 

and transverse velocity fluctuating components also confirm the moderate jet turbulence, which 

can be up to 15% of the jet velocity.  

 

At a phase angle β / π = 2/9 (Fig. 10b), the jet in the near-exit region begins to sweep to the 

right side of the flow field, as shown by the plot of axial velocity. In contrast, the impact region 

oscillates to the left outboard location around y / dh = −3. The transverse velocity in the impact 

region increases in strength compared with the axial velocity due to the jet’s deflected angle, which 

deflects the jet’s momentum more in the transverse direction. Steady jets have a common problem 

of the location of the jet shear layer where high turbulence is located. The jet shear layer usually 
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bends and diverges before reaching the surface, and this divergence carries the flow turbulence 

away from the impingement surface, at least from the impact region around the stagnation point 

(Tesař, 2015). The plot of the vorticity contour shows that the windward shear layer of the current 

sweeping jet impinges directly on the wall due to the curved jet column during the switching 

process, which can enhance the turbulence in the impact region. In the plots of velocity fluctuating 

components, an obvious mismatch can be seen between the locations of the axial and transverse 

velocity fluctuating components. Strong axial velocity fluctuating components are found in the 

near-exit region and on the right side of the jet column; in contrast, strong transverse velocity 

fluctuating components are found approaching the wall and on the left side of the jet column. These 

findings are consistent with the velocity distributions in the near-exit and near-wall regions. 

 

At phase angle β / π = 5/9 (Fig. 10c), the jet in the near-exit region is sweeping to a deflection 

position of almost zero. The jet in the near-wall region remains on the left side of the flow field, 

resulting in persistent impingement. Therefore, the different distribution of the velocity 

components between the near-exit and near-wall regions is more significant. During the switching 

process, the plot of vorticity shows that the windward jet shear layer experiences significant 

stretching. The jet shear layer is shed from the jet column and attaches to the wall. The distribution 

of velocity fluctuating components is consistent with that of the velocities. Much greater velocity 

fluctuation in the axial direction is induced in the near-exit region, whereas its counterpart is mostly 

in the impact region on the left side. At β / π = 8/9 (Fig. 10d), the jet in the near-exit region arrives 

at its right-most right-side position. The flow patterns are similar to β / π = −1/9 mirrored at the 

centerline of the flow field. By plotting the flow fields at β / π = −1/9 and 8/9 together, this 

symmetry is more obvious, as shown in Fig. 12. The impact region then begins to oscillate to the 

right side of the near-wall region. 

  

The PIV-measured flow quantities in a half oscillation period at Re = 9.3 × 103 are presented 

in Fig. 13. At a phase angle β / π = −1/9, the jet in the near-exit region is at the left-most deflection 

position. However, the flow at the impact region on the right side remains strong, as shown by the 
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plots of the axial and transverse velocities. Due to the increased jet deflection angle, the distance 

between the impact regions on both outboard sides also increases. A near-wall vortex is induced at 

the deflection region of the impinging flow on the furthest outboard right side (circle indicated by 

arrow). Correspondingly, strong local vorticity and velocity fluctuating components are also 

induced between the near-wall vortex and impingement plate. In addition, an entrainment flow is 

observed very close to the exit, as shown by the velocity vectors in the plot of axial velocity. As 

revealed by Bobusch et al. (2013a), a vortex can form in the diverging nozzle at the inactive region, 

entraining fluid from outside the flow field. 

 

At a phase angle β / π = 2/9, the impinging flow on the right side dissipates rapidly, as shown 

by the plot of transverse velocity. The jet in the near-exit region begins to sweep to the right side 

of the flow field, whereas the jet flow in the near-wall region remains at its left-most position. Due 

to the rapid and intense switching process, as revealed by the change in the time-resolved jet 

deflection angle (Fig. 7a), the main jet column begins to break, as indicated by the lower-velocity 

region near the exit, as shown in the plot of axial velocity. At a phase angle β / π = 5/9, the jet 

column breaks with a sharp turning corner in the near-exit region at around x / dh = 3, which is 

shown clearly by the plot of transverse velocity. The jet in the near-exit region is passing through 

the centerline of the flow field, whereas a large region of the jet flow with a strong transverse 

velocity is left behind on the left side. As the flow impinges on the wall, a new strong near-wall 

vortex (circle indicated by an arrow) is formed on the left side. At a phase angle β / π = 8/9, the jet 

in the near-exit region approaches its right-most position. The flow patterns are similar to those of 

β / π = −1/9 mirrored at the centerline of the oscillator. A strong impinging flow begins to form on 

the right side of the near-wall region. 

 

In Fig. 14, profiles of jet speed along the centerline (y = 0) of the flow fields at the two selected 

Reynolds numbers are presented. In general, the sweeping jets suffer a more significant decay than 

a continuous steady jet does (Ghasemi et al. 2015). This is partly due to the jet sweeping motion 

which causes a larger influencing area, and partly due to the relatively high turbulent level of the 
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jet flow. Since the jet has a larger spreading angle at the higher Reynolds number, the jet flow 

decays more significantly, which could limit its impinging effect, especially in the middle of the 

near-wall region. It is worth noting that, in current coordination system, there is still a distance of 

about 2.5dh from the origin point (x = 0 in Fig. 14) to the jet throat. The distributions of the time-

averaged velocity components and fluctuating components in transverse direction in the near-exit 

region and near-wall region at Re = 4.0 × 103 and 9.3 × 103 are shown in Fig. 15. At Re = 4.0 × 103 

in the near-exit region (x = 3.4dh), the axial velocity component shows a local minimum at the 

centerline (around y = 0) and a maximum near y/dh ≈ −1.4 (also y/dh  ≈ 1.4 on the other side of the 

flow field, not shown here) as shown in Fig. 15a. The location of the peak value is closely related 

to the half-maximum jet deflection angle (θmax/2 = 20º) and distance from the exit (x = 3.4dh). The 

double-peak profile shows that the sweeping motion of the jet can cause uneven distribution of the 

jet momentum. The axial velocity component in the near-wall region (x = 7.7dh) also shows double-

peak profile. At the higher Reynolds number Re = 9.3 × 103, the axial velocity in the near-exit 

region has a peak located at a further outboard location near y/dh = 3.5 due to the large maximum 

deflection angle. The peak value of the axial velocity, however, becomes smaller. This is partly 

because the jet dissipates more significantly with a larger deflection angle (or spreading area), and 

partly become the flow is more directed to transverse direction. In the near-wall region, the 

influenced area becomes larger due to the larger deflection angle of the sweeping jet. However, the 

axial velocity around the middle of the near-wall region is even lower than that at Re = 4.0 × 103, 

indicating the remarkably uneven spatial distribution of the impingement effect. As discussed 

above, this uneven distribution is caused by the longer residence time of the jet on the maximum 

deflection angle and the breaking up of the jet column. 

 

The profiles of transverse velocities at these two Reynolds numbers are generally similar to 

those of the axial velocities; however, close examination of Fig. 15a still reveals the different 

features. First, the transverse velocity increases more significantly with the Reynolds number since 

the larger deflection angle turns the jet momentum more in the transverse direction. Second, a small 

region of opposite transverse velocity (indicated by the black arrow) is found at the edge of the 
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sweeping-jet flow field. As shown in the phase-averaged flow field (Fig. 10), the surrounding fluid 

is attracted to the jet column due to the pressure gradient caused by the high-speed jet flow. In 

addition, a local peak can be seen at the most outboard locations (indicated by the red arrow) in the 

near-wall region at Re = 9.3 × 103, which is believed to be caused by the near-wall vortex induced 

by the strong impinging flow outboard of the near-wall region. This near-wall vortex can strengthen 

the transverse velocity near the wall by its favorable rotation direction. As shown in Fig. 15b, 

distributions of the velocity fluctuating components are similar to those of the velocities. At the 

higher Reynolds number, in addition to the major double peaks of velocity fluctuation in the near-

wall region, local peaks of high fluctuation are also induced by the near-wall vortex at the most 

outboard locations in not only the transverse but also the axial directions. 
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4.3 DMD analysis 

As revealed in the phase-averaged flow fields, the motions of the sweeping impinging jet 

differ significantly at different regions. A previous study (Bobusch et al., 2013a) also revealed that 

the internal flow field of a sweeping jet consisted of superharmonic oscillations. To further reveal 

the complicated dynamics, DMD analysis is applied to the time-resolved PIV snapshots at two 

Reynolds numbers Re = 4.0 × 103 and 9.3 × 103. 

 

At Re = 4.0 × 103, the DMD analysis shows that the dominant flow patterns occur at the 

maximum deflection angle. As shown in Fig. 16a, all eigenvalues of the DMD spectra in this highly 

periodic flow lies on a unit circle (Mezic et al 2005; Rowley et al. 2009). As shown in Fig. 16b, 

mode 1 captures the jet-oscillation frequency with much higher energy than the others. The 

corresponding fluctuating flows are located on the two outer sides of the flow field, as shown in 

Fig. 16c. The flow behaviors captured by the real part of mode 1 correspond to the most deflected 

flows in the near-exit region, whereas the imaginary part corresponds to the outboard flows in the 

near-wall region. Previous study revealed that both real parts and the imaginary parts of the DMD 

mode contribute to the description of flow dynamics (Muld et al. 2012). In current study, the phase 

difference between the real and imaginary parts describes the convection process of the jet from 

the near-exit region to the near-wall region. With lower energy, mode 2 captures flow along the 

centerline of the flow field, as shown in Fig. 16d. Such flow patterns have a frequency twice that 

of the jet-oscillation frequency due to the definition of one oscillation period, which corresponds 

to the time during which the sweeping jet switches from one side to the other and back. During this 

period, the jet passes the center line of the flow field twice. Similarly, the real part of mode 2 largely 

captures the flow in the near-exit region and the imaginary part for the near-wall region. 

 

To examine the phase correlation between these major flow patterns, phase-averaged flow 

fields with a phase interval of π/18 are projected onto the two most energetic modes. The 

corresponding phase coefficient is obtained by 
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α𝑖
𝑛 = 𝑈𝑛 ∙ Φ𝑖/||Φ𝑖|| (10) 

where n is the nth of phase-averaged flow fields and i is the ith of DMD modes. The corresponding 

phase coefficients of the mode real parts are plotted in Fig. 17. Because these distinct flow patterns 

captured by modes 1 and 2 occur at different phase angles, one coefficient wanes while the other 

waxes. The flow captured by the real part is about π/4 earlier than that captured by the imaginary 

part (not shown here). This corresponds to the advection of the flow from the near-exit region to 

the near-wall region (Liu et al., 2014). 

 

By plotting the temporal variations of the DMD modes, the phase correlations between the 

most energetic flow patterns can be presented more intuitively. As indicated by the dashed lines in 

Fig. 17, three phase angles (β / π = 0, 1/2, and 1) are selected. The flow patterns captured by each 

DMD mode at different phase of the sweeping cycle are obtained by adding the real and imaginary 

parts of the mode and weighted by the phase coefficients, which is an inverse operation of Eq. 10. 

At β / π = 0, the jet is arriving at the left-most position in the phase-averaged flow field, as shown 

in Fig. 18a. The coefficient of real part of mode 1 is near the positive peak value (Fig. 17). Therefore, 

a strong flow is captured by mode 1, with the positive axial velocity on the left side of the flow 

field, as shown in Fig. 18b. In contrast, the coefficient of the real part of mode 2 is near zero. 

Because a phase delay occurs between the coefficients of the real and imaginary parts of mode 2, 

the weak flows captured by mode 2 are resulted mostly from the imaginary part with a positive 

axial velocity in the near-wall region, as shown in Fig. 18c. Note that DMD mode 0 captures a 

time-averaged flow field with positive axial velocity. The addition of the fluctuation modes with 

the time-averaged mode can result in strong jet flow on the left side of the flow field and weak flow 

around the middle of the near-wall region. At a phase angle β / π =1/2, the jet in the near-exit region 

is at the zero-deflection position in the phase-averaged flow field, whereas the jet in the near-wall 

region remains on the left side of the flow field. Therefore, the flows captured by the real part of 

mode 1 are relatively weak because the corresponding coefficient is near zero. The weak flows 

captured by mode 1 are mostly due to the imaginary part and contribute to the flows in the near-

wall region. In contrast, the flows captured by the real part of mode 2 strengthen because the 
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coefficient is at its positive peak. A strong flow with positive axial velocity around the centerline 

is added to the jet flow in the near-exit region. At the end of this half oscillation cycle β / π = 1, the 

jet arrives at the right-most position. Accordingly, the flows captured by mode 1 are near those at 

β / π = 0 mirrored at the centerline of the flow field, indicating the completion of the half oscillation 

cycle. For mode 2, the captured flows become similar to those at β / π = 0, indicating the completion 

of an entire oscillation cycle. 

 

At Re = 9.3 × 103, as shown in Fig. 19, the energy spectrum is similar to that at Re = 4.0 × 

103, but with higher frequencies. It can be seen that mode 3 has a frequency near that of mode 2, 

whereas its frequency is near that of mode 1 at Re = 4.0 × 103. Because the current sampling 

frequency is much higher than the oscillation frequency (at least two orders higher), DMD analysis 

can resolve even a minor frequency difference between the modes. The flow patterns captured by 

mode 3 are very similar to those captured by mode 2, but with a minor difference in frequency. 

Unlike that at Re = 4.0 × 103, captured by the imaginary part of mode 1, the flow at the impact 

region is stronger and coupled with the near-exit flow on the other side of the flow field, as shown 

in Fig. 19c, because the impinging flow is more persistent in the outboard impact region, as shown 

in the phase-averaged flow fields (Fig. 13). As such, the flow at the impact region and the near-exit 

flow on the same side have a phase difference of π. In addition, the flow with superharmonic jet-

oscillation frequencies in mode 2 is only captured in the near-exit region, but not in the near-wall 

region, due to the weak flow, as shown in Fig. 19d. This finding confirms that the spatial 

distribution of the energetic flow patterns is remarkably uneven in the near-wall region at the higher 

Reynolds number. This is closely related to the uneven sweeping motion and the breaking of the 

jet column in the near-exit region, as discussed above. It is interesting to see that the flow with a 

superharmonic jet-oscillation frequency in mode 2 is bound to x/dh  ≈ 3, which coincides with the 

location of the sharp turning corner where the jet column breaks (Fig. 13c). Within this bounded 

near-exit region, the energetic flow patterns are more evenly distributed than those in near-wall 

region. 
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Phase correlations of the real parts of the first two DMD modes are presented in Fig. 20. 

Because the real parts of the modes capture the flows in the near-wall region, they are about π/4 

later than the imaginary parts. Unlike that at Re = 4.0 × 103, the coefficients of mode 2 have 

relatively large negative values. Together with the flow captured by mode 2, they can result in a 

flow with negative axial velocity in the near-exit region. The temporal variations of the two DMD 

modes at the three phase angles (as shown in Fig. 20) are presented in Figure 21. At β / π = 0, as 

shown in Fig. 21a, the jet is at the left-most position in the phase-averaged flow field. Therefore, 

mode 1 captures a strong deflected jet flow with positive axial velocity on the left, as shown in Fig. 

21b. In mode 2, as shown in Fig. 21c, a flow with negative axial velocity is captured in the near-

exit region because the corresponding phase coefficient is at its negative peak. Such flow 

contributes to the entrainment flow near the exit in the phase-averaged flow field. At β / π = 1/2, 

the jet in the near-exit region is at the zero-deflection position; it breaks up and leaves a strong 

impinging flow in the near-wall region on the left side of the phase-averaged flow field. Therefore, 

the flow captured by the real part of mode 1 is weak, whereas the imaginary part contributes a near-

wall flow on the left of the flow field. In mode 2, a flow with strong positive axial velocity is 

captured in the near-exit region around the centerline of the flow field, contributing to the jet flow 

in the near-exit region in the phase-averaged flow field. At β / π = 1, the jet arrives at its right-most 

position. As mode 1 completes a half oscillation cycle, mode 2 varies for an entire oscillation cycle.  
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5. Conclusions 

In this study, the unsteady behavior of a sweeping impinging jet at L/ dh = 8 is experimentally 

investigated with TR-PIV. With an increase in the Reynolds number from 2.7 × 103 to 9.3 × 103, 

the results show an approximately linear increase in the sweeping frequency, especially at the 

higher Reynolds numbers. The saturation of the sweeping jet is reached at Re = 6.7 × 103. The 

unsteady flow behavior of the sweeping impinging jet at two selected Reynolds numbers Re = 4.0 

× 103 and 9.3 × 103 is then examined with the phase-averaged flow fields. State-of-the-art DMD 

analysis is conducted to capture the energetic events superimposed in the unsteady flow. 

The unsteady behavior in the near-exit region is compared by examining the time-resolved jet 

deflection angle, the instantaneous jet width, and the peak velocity. At Re = 4.0 × 103, the sweeping 

motions in the near-exit region are more evenly distributed, and the jet width and peak velocity are 

relatively constant. At the higher Reynolds number Re = 9.3 × 103, the jet in the near-exit region 

shows more uneven sweeping motions. The jet remains at the maximum deflection angle for a 

longer time during one oscillation cycle with a narrower jet and a higher peak velocity, resulting in 

a faster switching process. 

At Re = 4.0 × 103, due to the oscillation motion of the impact region along the wall, the 

sweeping impinging jet exerts a large region of influence. The flow in the impact region is found 

to remain on the outer sides of the near-wall region for a long time, generating a wall-jet flow. 

Therefore, by plotting the time-averaged velocity components and velocity fluctuating components 

near the wall, the profiles of the impingement effect show a double peak on both outer sides and a 

minimum in the middle of the near-wall region. 

At Re = 9.3 × 103, due to the rapid and intensive sweeping process, the jet column breaks in the 

near-wall region. This, together with the uneven sweeping motions of the sweeping jet in the near-

exit region, results in a strong impinging flow on both outer sides but a weak flow in the middle of 

the near-wall region. A near-wall vortex is also induced by the strong impinging flow. The profiles 

of the time-averaged velocity components and fluctuating components have a higher double-peak 

value but an even lower minimum value at the middle of the near-wall region than those at the 
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lower Reynolds number. In addition, the local peaks of the impingement effect at most outboard 

sides of the near-wall region are also induced by the near-wall vortex. 

The DMD analysis of the jet flow at Re = 4.0 × 103 demonstrates that the dominant first DMD 

mode featured by the jet-oscillation frequency corresponds to the most deflected flows. The second 

mode with twice the jet-oscillation frequency mostly captures the flows passing through the 

centerline of the flow field. At Re = 9.3 × 103, the first DMD mode shows that the impinging flow 

is stronger and remains in the impact region for a longer time. Therefore, the impinging flow at the 

impact region and the jet in the near-exit region on the same side of the flow field has a phase 

difference of π. The spatial distribution of the most energetic flow behavior is remarkably uneven 

in the near-wall region. Bounded by the location where the jet column breaks, the energetic flow 

patterns in the near-exit region are more evenly distributed. 

As a result of this investigation, a better understanding of the unsteady behavior of sweeping 

impinging jets is achieved, and it should be helpful for future applications and optimizations of 

sweeping impinging jets in heat transfer. For example, in order to provide a more even distribution 

of the impingement, the jet-to-exit distance can be optimized based on current findings. In addition, 

using multiple sweeping jets is another option. But the oscillation phase between the neighbor 

sweeping jets should be synchronized in order to better apply array of them. The synchronization 

problem will be investigated in further work. 
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Figure captions 

Figure 1 Sketch of the fluidic oscillator and its sweeping motion (not in scale, all dimensions in mm). 

Figure 2 Sketch of experimental setup (not in scale). 

Figure 3 Phase-averaged flow field. The black dots indicate the sampling locations to identify the phase 

angle of each individual PIV snapshot. The horizontal black line indicates the exit of jet nozzle. 

The light blue arc indicates the location where to extract the jet deflection angle and jet properties. 

Figure 4 Period identification from an improved reference signal. (a) Differential values of transverse 

velocities at two positions symmetrical to the centerline of the flow field in the near-exit region. 

(b) Period identification based on correlation method. 

Figure 5 (a) The jet’s maximum deflection angle θmax with error bar (uncertainty is obtained based on spatial 

resolution of PIV measurement) versus Reynolds number, and (b) Strouhal number Sh versus 

Reynolds number. 

Figure 6 (a) Time-resolved deflection angle, (b) jet properties near the exit (peak jet velocity, jet width, and 

mass flow rate), at Reynolds number Re = 4.0 × 103. 

Figure 7 (a) Time-resolved deflection angle, (b) jet properties near the exit(peak jet velocity, jet width, and 

mass flow rate), at Reynolds number Re = 9.3 × 103. 

Figure 8 Instantaneous flow structures visualized by LIF at Reynolds number Re = 4.0 × 103. 

Figure 9 Instantaneous flow structures visualized by LIF at Reynolds number Re = 9.3 × 103. 

Figure 10 Phase-averaged flow fields at Re = 4.0 × 103, from top to bottom: axial velocity, transverse velocity, 

vorticity, velocity fluctuating components along axial and transverse directions. 

Figure 11 Phase-averaged velocity magnitude at β / π = -1/9 along four transvers lines at locations with 

different distance from impingement plate at Re = 4.0 × 103. 

Figure 12 Contour of phase-averaged axial velocity at Re = 4.0 × 103 in two phase-symmetric position, left 

part at β / π = -1/9 and right part at β / π = 8/9. 

Figure 13 Phase-averaged flow fields at Re = 9.3 × 103, from top to bottom: axial velocity, transverse velocity, 

vorticity, velocity fluctuating components along axial and transverse directions. 

Figure 14 Time-averaged velocity speed along the centerline (y = 0) at two selected Reynolds numbers. 

Figure 15 Time-averaged axial (left) and transverse (right) velocity components (a), and velocity fluctuating 

components (b), at the near-exit region (x = 3.4dh) and near-wall region (x = 7.7dh) at two selected 

Reynolds numbers. 

Figure 16 (a) Imaginary versus real parts of eigenvalues at Re = 4.0 × 103, (b) energy and frequency captured 

in each DMD mode (size of the solid cycle indicates the captured fluctuating energy), (c-d) flow 

structures of the first two DMD modes (the real part is on the left, the imaginary part is on the 

right). 

Figure 17 Phase correlation map of the first two DMD mode coefficients of the real part at Re = 4.0 × 103. 
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Figure 18 Temporal variations of the most energetic flow structures at Re = 4.0 × 103. (a) phase-averaged 

flow fields at three phase angles; (b-c) flow structures captured by each DMD mode pair at the 

three phase angles. 

Figure 19 (a) Imaginary versus real parts of eigenvalues at Re = 9.3 × 103, (b) energy and frequency 

captured in each DMD mode (size of the solid cycle indicates the captured fluctuating energy), 

(c-d) flow structures of the first two DMD modes (the real part is on the left, the imaginary part 

on the right). 

Figure 20 Phase correlation map of the first two DMD mode coefficients of the real part at Re = 9.3 × 103. 

Figure 21 Temporal variations of the most energetic flow structures at Re = 9.3 × 103. (a) Phase-averaged 

flow fields at three phase angles; (b-c) the flow structures captured by each DMD mode pair at the 

three phase angles. 
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Table caption 

 

  

Table 1 Tested flow rates with corresponding jet velocity and Reynolds numbers. 
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Figure 1 

 

  
(a) phase 1 

   

 

 

 

 

 

   

 (b) phase 2 

Sketch of the fluidic oscillator and its sweeping motion (not in scale, all dimensions in mm). 
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Figure 2 

 

  
Sketch of experimental setup (not in scale). 
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Figure 3  

 

Phase-averaged flow field. The black dots indicate the sampling locations to identify the phase angle of each 

individual PIV snapshot. The horizontal black line indicates the exit of jet nozzle. The light blue arc 

indicates the location where to extract the jet deflection angle and jet properties. 
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Figure 4 

 

 

(a)         (b) 

Period identification from an improved reference signal. (a) Differential values of transverse velocities at 

two positions symmetrical to the centerline of the flow field in the near-exit region. (b) Period identification 

based on correlation method. 
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Figure 5 

 

 

(a) 

 

(b) 

(a) The jet’s maximum deflection angle θmax with error bar (uncertainty is obtained based on spatial 

resolution of PIV measurement) versus Reynolds number, and (b) Strouhal number Sh versus Reynolds 

number. 
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Figure 6 

 

 

(a) 

 

 

(b) 

(a) Time-resolved deflection angle, (b) jet properties near the exit (peak jet velocity, jet width and mass flow 

rate), at Reynolds number Re = 4.0 × 103. 
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Figure 7 

 

 
(a) 

 

 
(b) 

(a) Time-resolved deflection angle, (b) jet properties (peak jet velocity, jet width and mass flow rate) near 

the exit, at Reynolds number Re = 9.3 × 103. 
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Figure 8 

 
(a) β / π = -1/9 

 
(b) β / π = 2/9 

 
(c) β / π = 5/9 

 
(d) β / π = 8/9 

Instantaneous flow structures visualized by LIF at Reynolds number Re = 4.0 × 103. 
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Figure 9 

 
(a) β / π = -1/9 

 
(b) β / π = 2/9 

 
(c) β / π = 5/9 

 
(d) β / π = 8/9 

Instantaneous flow structures visualized by LIF at Reynolds number Re = 9.3 × 103. 
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Figure 10 

 

 

 

         

 

 

(a) β / π = -1/9       (b) β / π = 2/9 

 

  



46 

 

 

Figure 10-continued 

 

 

 

 

 

 (c) β / π = 5/9         (d) β / π = 8/9 

Phase- averaged flow fields at Re = 4.0 × 103, from top to bottom: axial velocity, transverse velocity, 

vorticity, velocity fluctuating components along axial and transverse directions. 
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Figure 11 

 
Phase-averaged velocity magnitude at β / π = -1/9 along four transvers lines at different distance from 

impingement plate at Re = 4.0 × 103. 
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Figure 12 

 

 

 

Contour of phase-averaged axial velocity at Re = 4.0 × 103 at two phase-symmetric positions, left part at β / 

π = -1/9 and right part at β / π = 8/9 
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Figure 13 

 

 

 

 

 

(a) β / π = -1/9        (b) β / π =2/9 
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Figure 13- continued 

   

 

 

 

 

 

 (c) β / π =5/9        (d) β / π =8/9 

Phase averaged flow fields at Re = 9.3 × 103, from top to bottom: axial velocity, transverse velocity, 

vorticity, velocity fluctuating components along axial and transverse directions. 
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Figure 14 

 

Time-averaged velocity speed along the centerline (y = 0) at two selected Reynolds numbers. 
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Figure 15 

 

 

  

(a) values at x = 7.7dh are shifted by 0.2. 

 

(b) values at x = 7.7dh are shifted by 0.1. 

Time-averaged axial (left) and transverse (right) velocity components (a), and velocity fluctuating 

components (b), along two transverse lines in the near-exit region (x = 3.4dh) and near-wall region (x = 

7.7dh) at two selected Reynolds numbers.  
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Figure 16 

 

(a)          (b) 

 

 

(c) mode 1 

 
(d) mode 2 

(a) Imaginary versus real parts of eigenvalues at Re = 4.0 × 103, (b) energy and frequency captured in each 

DMD mode (size of the solid cycle indicates the captured fluctuating energy), (c-d) flow structures of the 

first two DMD modes (the real part is on the left, the imaginary part is on the right). 
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Figure 17 

 

Phase correlation map of the first two DMD mode coefficients of the real part at Re = 4.0 × 103. 
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Figure 18 

 

 

  β / π = 0      β / π = 1/2      β / π = 1 

(a) Contour of phase-averaged axial velocity and velocity vectors 

 

 

  β / π = 0      β / π = 1/2      β / π = 1 

(b) mode 1 

 

  β / π = 0      β / π = 1/2      β / π = 1 

(c) mode 2 

Temporal variations of the most energetic flow structures at Re = 4.0 × 103, (a) phase-averaged flow fields at 

three phase angles, (b-c) flow structures captured by each DMD mode pair at the three phase angles. 
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Figure 19 

 

 

(a)         (b) 

 

 

(c) mode 1 

 
(d) mode 2 

 (a) Imaginary versus real parts of eigenvalues at Re = 9.3 × 103, (b) energy and frequency captured in each 

DMD mode (size of the solid cycle indicates the captured fluctuating energy), (c-d) flow structures of the 

first two DMD modes (the real part is on the left, the imaginary part is on the right). 
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Figure 20 

 

 

Phase correlation map of the first two DMD mode coefficients of the real part at Re = 9.3 × 103. 
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Figure 21 

  

 

  β / π = 0      β / π = 1/2      β / π = 1 

 (a)  

 

 

  β / π = 0      β / π = 1/2      β / π = 1 

(b) Mode 1 

 
  β / π = 0      β / π = 1/2      β / π = 1 

(c) Mode 2 

Temporal variations of the most energetic flow structures at Re = 9.3 × 103, (a) phase-averaged flow fields at 

three phase angles, (b-c) flow structures captured by each DMD mode pair at the three phase angles. 
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Table 1 

Tested flow rates with corresponding jet velocity and Reynolds numbers 

Volume flow  

(10-6m3/s) 

Sweeping jet velocity USJ  

(m/s) 

Reynolds number Re (× 103
) 

based on dh 

13.3 0.53 2.6 

20 0.8 4.0 

26.7 1.07 5.3 

33.3 1.33 6.7 

40 1.6 8.0 

46.7 1.87 9.3 

 

 




