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Abstract— Cascade dynamic nonlinear systems can describe a

wide class of engineering problems, but little efforts have been
devoted to the identification of such systems so far. One of the
difficulties comes from its non-convex characteristic. In this paper,
the identification of a general cascade dynamic nonlinear system
is rearranged and transformed into a convex problem involving a
double-input single-output nonlinear system. In order to limit the
estimate error at the frequencies of interest and to overcome the
singularity problem incurred in the least square based methods,
the identification problem is thereafter decomposed into a
multi-objective optimization problem, in which the objective
functions are defined in terms of the spectra of the unbiased error
function at the frequencies of interest and are expressed as a
first-order polynomial of the model parameters to be identified.
The coefficients of the first-order polynomial are derived in an
explicit expression involving the system input and the measured
noised output. To tackle the convergence performance of the
multi-objective optimization problem, the bargaining game
theory is used to model the interactions and the competitions
among multiple objectives defined at the frequencies of interest.
Using the game theory based approach, both the global
information and the local information are taken into account in
the optimization, which leads to an obvious improvement of the
convergence performance. Numerical studies demonstrate that
the proposed bargaining game theory based algorithm is effective
and efficient for the multi-objective optimization problem, and so
is the identification of the cascade dynamic nonlinear systems.

Index Terms— Cascade Dynamic Nonlinear Systems, Game
Theory, System Identification, Frequency Domain.

I. INTRODUCTION

HE signal processing for nonlinear feature extractions in
nonlinear systems attracts increasing attentions due to its

significant application value in many engineering problems.
For example, nonlinear characteristics (e.g., the second-order
or the third-order harmonics) of Lamb waves can be used for
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structural health monitoring applications [1, 2]. In such systems,
in addition to the damage-induced nonlinear components,
nonlinearities can also be generated from other constituents of
the system (which can be regarded as subsystems) such as
transducers, bonding layers as well as measurement devices.
Although some of the nonlinear components, e.g.,
power-amplifier and transducer nonlinearities, can be
apprehended using pre-distortion techniques [3, 4], the
handling of other components from the physical system itself is
difficult to be apprehended. For example, the bonding-layer
nonlinearity and the damage-induced nonlinearity. Moreover,
due to the existence of the system damping, the corresponding
subsystems behave like dynamic nonlinear systems, in which
the past inputs and/or the past outputs intervene in the nonlinear
systems. Such system can therefore be modeled as a general
cascade dynamic nonlinear system [2], which is the model
under the consideration in this paper.

Pioneering works in nonlinear system identification have
been largely devoted to the Wiener model (linear-nonlinear
system) [5-10] and the Hammerstein model (nonlinear-linear
model) [11, 12]. The Hammerstein-Wiener model can deal with
a cascade nonlinear system involving
nonlinear-linear-nonlinear combinations, in which both
nonlinear subsystems are static nonlinear. In this paper, we will
investigate the cascade of two dynamic nonlinear systems.
Existing techniques based on the Hammerstein-Wiener model,
such as the iterative method [13, 14], the maximum-likelihood
method [15], the over-parametrization method [16, 17], the
biconvex based method [18], and the frequency domain method
[19] cannot be directly applied to the identification of the
cascade dynamic nonlinear systems.

Despite its wide application value in representing a large
class of physical problems, cascade dynamic nonlinear systems
have received little attention as far as the identification is
concerned. One of the fundamental problems is that the
identification problem is inherently non-convex. As an
example, the input backlash nonlinearity and the output static
nonlinearity were first identified together and then separated
via the Kozen-Landau decomposition algorithm [20, 21]. In [22,
23], an odd nonlinearity was assumed for the input system, and
in [24-26] an iterative gradient based approach was proposed.
The non-convex characteristic has been shown to lead to
problems like the local minimum.

Note that some of the nonlinear features needed to be
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described in the frequency domain, exemplified by the
second-order harmonics and the third-order harmonics for
power amplifiers [11] and structural health monitoring
problems [2]. Therefore, it is desirable that the identification of
the cascade dynamic nonlinear systems be conducted in the
frequency domain such that the nonlinear features can be
directly captured with the estimate error being guaranteed at the
frequencies of interest. In this way, the nonlinear cost function
(error function) can be defined and optimized directly in the
frequency domain, which is more straightforward and more
accurate to study the harmonics based features when compared
with the indirect time-domain approach. The latter requires the
identification in the time domain first and thereafter uses the
fast Fourier transformation. The whole process contributes to a
global estimate error which can be obtained. The error at the
frequencies of interest, however, cannot be guaranteed. To
tackle this problem, some previous attempts were made to
conduct the frequency-domain based identification of cascade
nonlinear systems. For example, the best linear approximation
(BLA) method was proposed for the identification of the
Wiener model [27], the Hammerstein model [28, 29], and the
Wiener-Hammerstein model [30] in the frequency domain.
BLA, however, fails in the identification of the cascade
dynamic nonlinear systems because the Bussgang theorem does
not hold for dynamic nonlinearities [31]. The Volterra series
based frequency-domain method is a powerful tool for dynamic
nonlinear systems [32-35] (e.g., nonlinear ordinary differential
equations (NODE) and nonlinear autoregressive with
exogenous input (NARX) model) under the convergence
conditions [33, 36-38]. The generalized frequency response
function [39, 40] and the output spectrum function were studied
[41]. Thereafter, the characteristic relationship between the
output spectrum and the parameters of interest was investigated
[42-45]. However, very few efforts have been devoted to the
identification of cascade nonlinear systems using Volterra
series based frequency-domain method.

The objective of the present work is to investigate the
identification of a general cascade dynamic nonlinear system in
frequency domain. Firstly, to tackle the non-convex
characteristic, a cascade dynamic nonlinear system is
rearranged, and the estimate error function of the identification
problem is cast into a double-input single-output (DISO)
nonlinear function. In this way, the identification problem is
transformed into a convex problem. Secondly, in order to
guarantee the estimate error at each frequency of interest, the
identification problem is decomposed into a set of
sub-problems that are defined at the same frequency. The
identification problem then becomes a multi-objective
optimization one. Although the convex characteristic holds in
the decomposition of the multi-objective problem, an effective
and efficient algorithm is not straightforward. Despite the
success of the gradient descent method, Newton method,
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the
Levenberg-Marquardt (LM) algorithm in dealing with
single-objective optimization problems, for the multi-objective
case, the ‘jump’ phenomenon may exist between two
consecutive iterations, which would be more obvious

especially when the number of sub-problems is large, and
therefore would deteriorate the convergence performance of the
identification. Although evolution algorithms, for example, the
genetic algorithm and the simulated annealing algorithm, are in
principle applicable to this multi-objective optimization
problem, potential limitations exist to hamper their practical
implementation. For example, the adjustment of the parameters
(e.g., the commute rate for GA) may depend on the experience,
and the local search performance needs to be improved because
the feedback information of the current candidate solution is
not full employed for generating the new candidate solutions.
To tackle these problems, the present work makes use of the
bargaining game theory to model the interactions and
competitions among various sub-problems in the
multi-objective optimization. The sub-problems defined at the
frequencies of interest can determine their own strategies
according to the preceding competition result. The bargaining
game theory based algorithm (BGTA) employs both the global
and the local information in the multi-objective optimization
process, therefore would greatly improve the convergence
performance.

The contributions of this paper are summarized as follows:
1) To transform the non-convex problem into a convex problem,
the cascade dynamic nonlinear systems are rearranged,
allowing the identification problem to be modeled as a DISO
Volterra system. Note that both of the two sub-systems are
dynamic nonlinear; 2) To guarantee the estimate error at the
frequencies of interest, the identification problem is
decomposed into a multi-objective optimization problem; the
unbiased error function is given, and the spectrum of the
unbiased error function is demonstrated to be a first-order
polynomial of the model parameters of the cascade dynamic
nonlinear systems to be identified, such characteristic
relationship will greatly facilitate the multi-objective
optimization in the frequency domain; 3) To develop an
effective and efficient algorithm for the multi-objective
optimization problem, bargaining game theory is employed to
model the interactions and competitions among various
sub-problems, which would greatly improve the convergence
performance of the multi-objective optimization problem.

The remaining part of the paper is arranged as follows: In
section II, the model under the consideration and the
identification problem are formulated. In section III, the
bargaining game theory based identification of the cascade
dynamic nonlinear systems is proposed. Numerical results and
discussions are presented in section IV. Finally, conclusions are
presented in section V.

II. MODEL UNDER THE CONSIDERATION AND PROBLEM
FORMULATION

A. Model under the consideration
Volterra model was widely reported in the literature to

characterize a dynamic nonlinear system. Here we study a
cascade dynamic nonlinear system as the cascade of two
Volterra models as shown in Fig. 1(a), in which ( )f u and



( )h x are given as polynomial nonlinearities
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where ( )x k is an unmeasurable intermediate variable, ( )u k
and ( )y k are the system input and output, respectively.

1, , in n are the difference orders with the maximum order fN
and hN , and i is the nonlinear order with the maximum order

fI and hI , respectively. ( )ic
  and ( )ic  are the nonlinear

parameters of model and . Denote  ( ), , ( )x k x k N x and

 ( ), , ( )y k y k N y .

(a)

(b)

(c)
Fig. 1 Cascade dynamic nonlinear systems. (a) is a
straightforward model of a cascade dynamic nonlinear system,
(b) is an intermediate transformation of model (a), and (c) is the
model under the consideration, which is a rearranged model of
(a).

By substituting ( )x k in into sub-system , it is obvious that
the identification of the cascade dynamic nonlinear system

shown in Fig. 1(a) turns into the optimization of a polynomial
up to (Ih+1)-th order (i.e.,    hI

i ic c   ), which is a non-convex

problem. Therefore, the parameters ( )ic
  and ( )ic  cannot be

uniquely determined. To overcome the non-convex
characteristic, we split sub-system into two parts as

( ) ( ) ( )h x k h  x x . (3)

Given a ( )h x , we can construct a nonlinear autoregressive
exogenous (NARX) model
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can be denoted as ( ) ( , )h g  x x y . Therefore,
( ) ( ) ( , )h x k g  x x y holds. Fig. 1(a) can then be converted to

Fig. 1(b). But the unmeasurable intermediate variable x still
exists in the model. Substitute x into ( , )g x y ,
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Denote the difference order of parameter , ( )p qd   in
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Substitute and into model Fig. 1(b), the following equation
can be obtained:
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Moving ( )y k in from the left-hand side to the right-hand

side, the corresponding parameter is  0,1(0) 1d 


. Note that

multiplying a non-zero constant onto both sides of the equation
will not make any difference for identifying , which is the
so-called scale deflection problem [18, 46, 47]. To avoid the
scale deflection, we assume that the parameter of ( )y k in is

non-zero, i.e.,  0,1(0) 1 0d  
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as
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( )v k is the Gaussian white noise with zero mean and variance
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Remark 1: Given the cascade dynamic nonlinear model shown
in Fig. 1(a), there exists an equivalent model shown in Fig. 1 (c)
that can be described by -, which is the model under the
consideration in this paper.
Remark 2: If the model in Fig. 1(a) is simply identified via a
high-order Volterra model, the individual sub-system in the
cascade cannot be uniquely and accurately determined because
the identification is a non-convex problem. With the
transformation from Fig. 1(a) to Fig. 1(c), once the model - is
identified, the first sub-system can be obtained as
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Remark 3: If we only consider the identification of model -
without the transformation from Fig. 1(a) to Fig. 1(c), the two
nonlinear sub-systems, ( )f u and ( )h x , cannot be uniquely
estimated either, and only the general Volterra model can be
obtained.
Assumption 1: A multi-frequency excitation, i.e.,

1
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is assumed, where , ,q q qA   are the amplitude, the frequency,
and the phase for the q-th sinusoidal input, respectively. As
assumed after , the noise satisfies 2( ) ~ (0, )v k N  .

B. Identification of cascade dynamic nonlinear systems
Given the model -, the identification of the cascade dynamic

nonlinear systems boils down to identifying the coefficients
( )ic  and , ( )p qd  from the given input ( )u k and the

measurable output ( )y k . The intermediate variable ( )x k is
unmeasurable. The identification problem can be expressed in
time domain as
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where
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are the coefficients to be identified,
 ( ), , ( M)k k   with M the number of observed errors,

and  denotes a metric with a certain norm. y is the output
with noise v .
Assumption 2: In this paper, we assume that the maximum
nonlinear order I and If, and the maximum difference order N
and Nf are known. The following work then focus on the
identification of the model parameters  .



Remark 4: The identification of the cascade model presented
in Fig. 1(a) is non-convex, which may be solved using
evolution algorithms. However, the evolution algorithms may
be time-consuming, and the identification cannot be guaranteed
to achieve the global optimum. After rearranging the model to
the one shown in Fig. 1(c) and considering the identification
problem - as a DISO system with u and y being the two new
inputs and the error function  as the new output, the error
function is linear in parameters, and therefore is a convex
function. The rearrangement of the cascade dynamic nonlinear
model from Fig. 1(a) to Fig. 1(c), therefore, transform the
identification problem from a non-convex problem into a
convex problem.
Remark 5: The identification problem - may be solved with the
least square method  T Tˆ  


   , which could potentially

become singular especially when the number of parameters to
be identified is large. Even when a global optimum is obtained,
if the nonlinear features are to be described in the frequency
domain and the estimate error at the frequencies of interest
needs to be quantified, the evolution algorithms and the least
square method can only provide the total estimate error but
cannot guarantee the errors at the frequencies of interest. These
motivate the present work to deal with the identification
problem - in the frequency domain directly.

III. GAME THEORY BASED FREQUENCY DOMAIN
IDENTIFICATION APPROACH

In this section, the identification problem - is dealt with in
the frequency domain. Firstly, the error function  k will be
expressed as the output of a DISO nonlinear system, and its
output spectrum will be given as an explicit polynomial
function of the input spectra. Once the output spectrum of
 k is obtained, the identification problem - can be conducted

in the frequency domain by optimizing the output spectra in the
whole frequency range  . In this case, we need to consider the
output spectrum of error  k at each frequency of interest,
then, the identification problem is converted into a
multi-objective optimization one. Note that the effective and
efficient handling of a multi-objective optimization problem is
not straightforward. To tackle this problem, the bargaining
game theory is employed to model the interactions and
competitions among the sub-problems defined at the
frequencies of interest, leading to the proposition of BGTA,
conducive to the multi-objective optimization problem.

A. Output spectrum of the error function   

It is well-known that in a forward problem, i.e., from input
( )u k to intermediate variable ( )x k and then the output ( )y k

and noised output ( )y k , the identification is unbiased because
the noise only exists in the output ( )y k , and  ( ) ( )E y k y k
holds. Unfortunately, in model , the noise is involved in the new
input ( )y k , and the identification becomes a biased estimation.

To tackle the problem, the bias of model is given firstly.
Theorem 1: The bias of model is given as
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and
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where  is the standard derivation of the noise v , and

     0 0 0 1 0 1 0,1 , , 1 , , 1 ,, , , , , , , , ,
l li i j i j i j j i j j i j jn n n n n n
          

is a partition of the set  1, ,p p qn n 
where

0 0 1, 1 ,= = , ,i j i j jn n   and
0 1 0 1, 1 ,l l li j j i j j jn n

         .

1, , lj j are even numbers larger than 2, and 0 lj j q   .
Denote  0 , , lj j a partition of set  1 , , in n , the summation

 
0 lj j q  



 stands for the sum of   on all partitions of the set

 1, ,p p qn n  ,  
0

1

1
j

  , and

( ) 1 3 5 ( 1)s sj j       . (22)
It can be observed that and form a recursion calculation

because a high-order product  
0

1

j

j
  in can be recursively

calculated using the low-order product  
0

1

r

r
  in , i.e., 0 0j r .

The recursion terminates with the following condition:
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Proof: For model , the following equation holds,
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where  E  denotes the expectation of   , and
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The problem then becomes the high-order moments of the
noise ( )v k , which can be given as [48]:

0                  is odd, 
( ( ))

( )          is even,
s

s

s
E v k

s s 


 


(26)

where ( ) 1 3 ( 1)s s      . Substituting into , and note that
holds, the bias  ( ) ( )k E k  can be obtained.

Let 0q j and 0p  , and substitute these two values into ,
then is straightforward. This completes the proof. □
Example 1: Given 4

4 (1,1,1,1) ( 1)g d y k   . All the partitions
of the set  1 2 3 4, , ,n n n n can be given as

  1 2 3 4, , ,n n n n ,     1 2 3 4, , ,n n n n ,     1 3 2 4, , ,n n n n ,

    1 4 2 3, , ,n n n n ,     2 3 1 4, , ,n n n n ,     2 4 1 3, , ,n n n n , and

    3 4 1 2, , ,n n n n . Then the bias can be obtained as
4 2 2 4 2 2( ) (4) 6 ( 1) (2) 3 6 ( 1) .k y k y k            

Note that  2 2( 1) ( 1)y k E y k   2 holds. Therefore,

 4 2 2( ) 3 6 ( 1)k E y k      .

Theorem 2: The spectrum of the expectation of the unbiased
error function  ( ) ( )E k k  can be given as a first-order
polynomial with respect to the parameters to be identified as
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where ( )ic  and , ( )p qd  are the model parameters to be

identified, and  F denotes the Fourier transform, and the
coefficients of the first-order polynomial can be obtained as
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and ( )U  and  Y  are the spectra of ( )u k and the noised

output ( )y k , respectively.  E  denotes the expectation of

  .
Proof: Note that the unbiased error function can be given as
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which can be considered as a double-input single-output
nonlinear system because both of ( )u k and ( )y k are
measurable. The following equations hold [49]:
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Taking the Fourier transform on both sides of and
substituting the above two equations into the Fourier transform
lead to the results in -. For and , by taking the Fourier transform
on both sides of and , respectively, and then following the
similar procedures for proving -, the results can thereafter be
obtained. This completes the proof. □
Remark 6: It is worth noting that the spectrum of the
expectation of the unbiased error function is a first-order
polynomial of the model parameters to be identified (i.e.,  ),



and the coefficients of the first-order polynomial,  
1 , , in n 

and  
1 , , in n  , are both independent of  . According to [50],

is therefore a convex function with respect to the model
parameters to be identified,  , which means that the
optimization of at each given frequency  is a convex
optimization problem.

B. Frequency domain based modeling of multi-objective
convex optimization

Given the output spectrum of the expectation of the
unbiased error function at frequency  , i.e.,   in , the
identification problem - can then be investigated in the
frequency domain based on the L∞ -norm by minimizing the
maximum error over the entire frequency range  ,

  argmin     max ,   


(33)

where   denotes the module of   . Problem is a

convex optimization problem with   given in .

Proof: From Remark 5, it is shown that   is a convex
function with respect to the model parameters to be identified,
 , and so is   . The pointwise maximum

  max     is a convex function [50]. Problem then

comes to minimize a convex function over a convex region, and
therefore is a convex optimization problem. This completes the
proof. □
Remark 7: The convex optimization problem needs further
tactic treatment in order to get an effective and efficient
algorithm. Noted that the objective function in is
non-differentiable, the module   at each frequency  is

differentiable exclude the singularities. A naive gradient based
method, e.g., in each step choose the gradient of  s that

 s    max     , may lead to the ‘jump’

phenomenon, i.e., the sudden increase of the cost function
between two consecutive iterations, which is a key issue
affecting the convergence performance of the multi-objective
optimization problem.

In the following, the game theory is introduced to model the
behaviors of the optimization process and to establish an
effective and efficient algorithm for the multi-objective
optimization problem .

C. Bargaining game theory based multi-objective
optimization

Given the multi-objective optimization problem , classical
optimization algorithms can well employ the local information
to update the coefficients, by using, for example, the gradient
based strategy. Problems, however, may occur in such
optimization process such as the jump phenomenon, resulting

from the lack of global information in the coefficient updating
process. Evolution algorithms may offer an alternative to the
problem, but most of them such as the genetic algorithm cannot
make full use of the local information, detrimental to the local
searching. In this section, the bargaining game theory is used to
overcome such problems through a simultaneous consideration
of both the global and local information. Firstly, the definition
of the game model for a multi-objective optimization problem
is given. Then the game theory based behavior modeling of the
interactions and competitions among all multiple objectives is
presented, which provides a feasible way to achieve the optimal
strategy (i.e., the estimated optimal coefficients). The Nash
equilibrium of the behavior modeling is demonstrated. Finally,
a game theory based algorithm is summarized for the
multi-objective optimization problem .

Definition 1: The multi-player bargaining game model
involves:

Players: The frequency  in the frequency range  , i.e.,
  . Denote the number of players as  .
Strategy set: R , where  denotes the dimension of

the coefficients  with R being a real number set.
Utility set:       , where   is the utility of

player  given as

   1     (34)

and the system utility is defined as
   arg max min arg min max

 
 

 
    

 
. (35)

Assumption 2: In order to guarantee an agreement in the
bargaining game, it is assumed that   0  ,   holds
if player  decides not to enroll in the bargaining game.
Behavior modeling: In the sth-round of the bargaining, the
behavior can be modeled as:

Step 1: Given the strategy s and the indicator  , each
player (   ) calculates its utility  s  . If

 s    holds, player  generates its new strategy

   1s s      r  (36)

such that    1s s     holds, where  T1, ,r rr = is a

random vector with sr randomly generated in

 1,1 ,  1, ,s    , and  is a given constant step; otherwise,

the new strategy for player  should reduce its utility, i.e.,

   1s s     .

Step 2: Each player  sends their new strategy

 1s  to all other players   ,    . Each player

 should calculate its utility  ;s    based on the player

 ’s strategy and feedback to player  .
Step 3: Each player  calculates the minimum utility of

its own strategy, i.e.,
   1,min min ;s s


  

    
   . (37)



Step 4: All the players negotiate and choose the maximum
utility, i.e.,

 1,max 1,minmax .s s



 

   (38)

If 1,max ,maxs s   , choose the corresponding player’s
strategy as the strategy of this round’s bargaining, i.e.,

 1 1s s    , (39)
and calculate the indicator as

 1 1  ;s s


 


    


  , (40)

where  is the number of the players; go to step 5. Otherwise,
if 1,max ,maxs s   , the new strategy of this round should be
directly rejected, then go to step 1 for generating new strategies.

Step 5: End of the round’s negotiation.
Remark 8:According to in step 4, the maximum system utility

1,maxs is chosen among all the players’ utilities. Therefore, the

new strategy 1s in and the indicator 1s  in would involve
the global information. In step 1, each player generates its own
new strategy independently via a local searching, and obviously,
the local information is employed. Both the global and local
information are considered in the multi-objective optimization
problem, which would improve the convergence performance
of the optimization.
Remark 9: The indicator  in represents an approximation of
the targeted system utility. For  s    in step 1, if player

 still chooses to maximize its own utility, the corresponding
strategy will have a larger chance to reduce the other players’
utilities, and consequently will reduce the system utility. Other
players would have a greater chance to reject this strategy. In
order to help achieve an agreement, player  should choose
its new strategy such that    1s s     holds.
Theorem 3: After several rounds of negotiations, the
multi-player bargaining game finally converges to the Nash
equilibrium, which means that no unilateral deviation in the
strategy by any single player  is profitable for that player,
i.e.,

         * * *, , , ,                   
(41)

where  *
 is the optimal strategy set of the player  ,

 *
 is the optimal strategy set of all other players except

for player  , and    is the utility of player  with

strategy set  . The strategy    * *
1     is the

optimal solution of the multi-objective optimization problem .
Proof: Suppose that there exists a strategy   such that

    *,           * *,       for all

strategies  *
 but it is not a Nash equilibrium. Resulting

from the competition characteristic among all the players in the
multi-objective optimization, at least one of the player’s
utilities will be decreased by unilaterally deviating from the

strategy, namely:
         * * *, , ,  ,  ,                        

which means that the minimum utility has been decreased. Note
that the goal of the optimization is to maximize the minimum
utility. Therefore, in the negotiation (step 4), the new strategy
will be chosen as  *

1s    , and   will be rejected.
The assumption does not hold and none of the players can
benefit by unilaterally deviating its strategy. Therefore, the
strategy    * *

1     is the Nash equilibrium of the
multi-objective bargaining game model. This completes the
proof. □

The following algorithm is summarized to provide a
step-by-step negotiation process to achieve the optimal strategy
of the multi-player bargaining game model, and so is the
optimal estimate of the multi-objective frequency-domain
based identification problem .

In the initialization, the coefficients 0 and the indicator 0
can be randomly given. After several rounds of bargaining,
Algorithm 1 will converge to the Nash equilibrium, and the
optimal estimation can therefore be obtained. Owing to the use
of the global information, the system utility in Algorithm 1
increases successively as the iterative bargaining goes on, that
is, the maximum error in monotonously decreases, which will
greatly improve the convergence performance of the
multi-objective identification problem .
Remark 10: Although finding the Nash equilibrium in a game
is a NP problem, Algorithm1 together with the behavior
modelling can achieve the Nash equilibrium. The reasons are: 1)
the multi-objective optimization problem in (or ) is a convex
problem, so there only exists a single Nash equilibrium in the
game; 2) according to Algorithm 1 and the behavior modelling,
a higher utility (i.e., a smaller estimate error at the frequencies
of interest) can be guaranteed after each negotiation until reach
the Nash equilibrium, which means that the current strategy
gets closer to the Nash equilibrium after each negotiation, and
after several rounds of negotiations (can be determined by the
targeted utility targeted or the estimate error acceptable at the
frequencies of interest), the strategy can reach the Nash
equilibrium.
Remark 11: The bargaining game theory algorithm (BGTA) is
proposed to solve the multi-objective optimization problem
where the objective function given in is based on L∞ -norm.
There also exist other criteria to characterize the objective
function, e.g., the L1-norm or L2-norm that integrate the module
or squared module over the entire frequency range. With these
norms, the estimate error at the frequencies of interest would be
more conservative (much larger than the estimate error
provided by the proposed BGTA method) because it is a total
estimate error that integrates the error over the whole frequency
range. If the L1-norm or L2-norm is selected as the criterion to
formulate the objective function, the proposed BGTA method
cannot be directly applied to the single-objective optimization
problem. We will consider these criteria in our further study.



TABLE I. ALGORITHM TO ACHIEVE THE NASH EQUILIBRIUM
Algorithm1: Achieving the optimal strategy of the
multi-player bargaining game model
1. Initialization: s=1, given 0s   , 0  , the step  for

updating the strategy s , and the targeted system utility

targeted .
2. Bargaining:

while targeted  s  

2.1 each player generates its new strategy  1s 

according to in step 1 in the behavior modeling. The
player’s utility is given in where the corresponding
unbiased error function is given in .

2.2 each player calculates the minimum utility
 1,mins  of its own strategy  1s  according

to .
2.3 calculate the maximum system utility 1,maxs

according to . If 1,max ,maxs s   , the strategy is
directly rejected, then go to 2.1; otherwise, update the
strategy 1s and the indicator 1s  according to and ,
respectively, and s=s+1.

end

Remark 12: To guarantee a unique solution, the frequencies
taken into account in the identification problem (i.e., the
number of players considered in the bargaining game) should
be greater than or at least equal to the number of model
parameters to be identified.
Remark 13: In the above, we demonstrate that the bargaining
game theory based multi-objective optimization is a convex
problem and a unique optimal solution exists. Generally, a
small step  can ensure the convergence of the numerical
simulation to the optimal solution with a large number of
bargaining, and a large step  with a small number of
bargaining. If the step  is too large, the numerical simulation
may not converge to the optimal solution. It is difficult to
provide an analytical and explicit criterion for the step  to
guarantee the convergence of the numerical simulation. Instead,
we can give two or more different steps  , if the solutions of
these different steps are the same, the numerical simulations
can be considered as converging to the optimal solution.
Otherwise, we can reduce the step  , until the results using
different steps are the same.

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

Examples are investigated using the cascade dynamic
nonlinear system described by -. Note model is a Volterra
model, and model a NARX model, which can be merged to the
general system - that describes the cascade dynamic nonlinear
systems.

( ) 0.6 ( ) 0.2 ( 2) 0.6 ( ) ( 1),x k u k u k u k u k     (42)

( ) ( ) 0.4 ( 1) ( 2) 0.6 ( 1) ( )
    0.1 ( 1) ( 2) 0.1 ( 1) ( 4)
    0.6 ( 1) ( ) ( 1) 0.3 ( 1) ( 2) ( 3),

y k x k y k y k y k u k
y k u k y k u k
y k u k u k y k u k u k

     
     
      

(43)

( ) ( ) ( ),y k y k v k  (44)
where

1 1 2 0,1

0,2 1,1 1,1

1,1 2,1 2,1

(0) 0.6,  (2) 0.2,  (0,1) 0.6,  (0) 1,
(1, 2) 0.4,  (0,1) 0.6,  (2,1) 0.1,
(4,1) 0.1,  (0,1,1) 0.6,  (2,3,1) 0.3 .

c c c d
d d d
d d d

    

   

    

The input is given as
s s( ) 0.3sin(2 ) 0.3sin(4 2),u k T k T k     (45)

where s 0.025 sT  is the sampling time interval. In typical
structural health monitoring applications, the received signal
has a signal-to-noise ratio (SNR) around 60 dB [51]. Therefore,
the SNR of the white Gaussian noise ( )v k is firstly set to be
60dB in the simulation. The effect of signals with different
SNR will be studied later.

Adopting least square method mentioned in Remark 5,

 T Tˆ  


   , and considering a simple case that only

identifies the first sub-system with f 2I  and f 2N  , the

matrix T  is singular. Therefore, the least square method is
unavailable.

Fig. 2 shows the output spectra, ( )Y  , with and without
noise, respectively. It can be observed that there exist multiple
harmonics in the frequency range of ( )Y  (only the first 20 Hz
range is shown in Fig. 2 because the sampling time interval is
0.025s with a data length of 1s) although only two frequencies
are involved in the input (shown in , i.e., 1 Hz and 2 Hz), due to
the nonlinearities involved in the first and second subsystems -.
As the output frequency increases, the output spectrum without
noise shows a downward tendency. For the noised output case,
the output spectrum follows the same descending trend for the
lower-order frequency components, before tending to a
constant as the output frequency increases. The reason is that
the noise in the numerical study is a Gaussian white noise,
which has a constant power spectra density.

Fig. 3 shows the identification results of the cascade
dynamic nonlinear system with three different initial model
parameters. The expectation of the noised output spectrum

( ( ))E Y  and  1 2( ) ( )E Y Y   in the proposed BGTA method

are obtained via 100 measurements. It can be seen that after
several rounds of negotiations, the estimated coefficients
converge to their respective true values, which also indicates
that the proposed BGTA converges to the Nash equilibrium in
the multi-objective optimization.



Fig. 2 Output spectrum Y(ω).

Fig. 3 Identification of the cascade dynamic nonlinear system based on the
bargaining game modeling with different initial model parameters.

Fig. 4 Comparisons of the convergence performance of the proposed BGTA
and the gradient based naive method.

Fig. 4 shows the comparison of the convergence
performance between the proposed BGTA and the gradient
based naive method mentioned in Remark 7. It can be seen that
the gradient based naive method has obvious ‘jump’

phenomenon between two consecutive iterations (shown in the
sub-figure), i.e., the estimate error suddenly increases to a large
error in the iteration, which deteriorates the convergence
performance of the optimization. This is due to the fact that
only local information is considered in the optimization (the
gradient is employed). This ‘jump’ phenomenon will be even
worse when the estimate error become smaller. As to the
proposed BGTA with different initial coefficients, Fig.4 shows
a much-improved convergence behavior. In fact, the estimate
error quickly reduces with the increasing number of the
iteration for all cases. Meanwhile, as pointed out in remark 6,
the proposed BGTA employs both the local information and the
global information in the optimization. Therefore, no ‘jump’
phenomenon appears, which is also responsible for the
improved convergence performance compared with the
gradient based naive method. It can also be observed that when
the proposed BGTA achieves the optimal strategy, the gradient
based naive method is still far from convergence. The
effectiveness, efficiency, and the superiority of the proposed
game theory algorithm can therefore be demonstrated.

It can be observed that the convergence rate (number of
iterations to convergence) of the proposed BGTA may depend
on the given initial model parameters, e.g., case 3 converges
with 2×104 iterations, and case 1 with 5.4×104 iterations. The
given step  in and the maximum utility targeted in Algorithm
1 (or the maximum estimate error acceptable at the frequencies
of interest) will also influence the number of iterations to the
convergence. It ranges from twenty to forty minutes for the four
numerical simulations in Fig. 3 and Fig. 4, which is acceptable as
an offline identification algorithm. To improve the efficiency,
either the L1-norm or L2-norm can be considered to characterize
the identification as a single-objective optimization problem,
which will only provide a total estimate error in the whole
frequency range instead of a tight estimate error at the
frequencies of interest that can be obtained by the proposed
BGTA method.

Fig. 5 Estimate error at some frequencies of interest.

Fig. 5 shows the estimate errors at the frequencies of
interest. It can be observed that the maximum estimate error is
-105 dB at 11Hz, which is consistent with that shown in Fig. 4.
The estimate error at all other frequencies are smaller.



Fig. 6 Identification of the cascade dynamic nonlinear systems at different
noise levels

.
Fig. 7 The convergence performances at different noise levels.

Fig. 8 Comparison with the tensor based method [52]. |X(ω)| is the magnitude
of the true spectrum of intermediate variable x(k), |XBGTA(ω)| is the magnitude
of the spectrum obtained by the proposed BGTA method, and |XTensor(ω)| is the
magnitude of the spectrum obtained by the tensor based method. (a): first
sub-system, and (b): second sub-system.

Fig. 6 and Fig. 7 show the performance of the proposed
BGTA against different noise levels. When the SNR decreases

from 40 dB to 30 dB, the estimated model parameters well
converge to the true values, demonstrating the robustness of the
proposed algorithm. The expectation of the noised output
spectrum ( ( ))E Y  in the proposed BGTA method are obtained
via 100 measurements for all different noise levels. When the
SNR is set to be 20 dB, although some of the parameters, e.g.,

0,2 (1, 2)d , slightly deviate from the true values, most of the
parameters still converge to the true values. Therefore, the
result is still acceptable. For a SNR lower than 20dB, more
measurements should be used to calculate an accurate
expectation of the noised output spectrum ( ( ))E Y  to make
the estimate results acceptable.

It is shown in section 2 that the identification of the cascade
dynamic nonlinear systems can be transformed into the
identification of a double-input single-output Volterra system.
Although the identification of a Volterra system was widely
studied in the literature, most of the studies focused on a
single-input single-output second-order or third-order Volterra
model [34, 35], which obviously cannot be directly applied to
the present cascade dynamic nonlinear models. In Fig. 8, we
compare the present BGTA method with a tensor based method
that identifies a multiple-input multiple-output Volterra model
[52]. Fig. 8 (a) is the identification result of the first sub-system,
and Fig. 8 (b) is that of the second sub-system. For the second
sub-system, the measured output spectrum ( )Y  and the input
spectrum ( )U  are used to calculate the spectrum of the
intermediate variable BGTA ( )X  . Comparing BGTA ( )X  and

Tensor ( )X  with the true spectrum, we can investigate the
effectiveness of different methods on the identification of the
first and second sub-systems. It can be observed that results
from the BGTA method almost overlap with the true spectrum,

( )X  , outperforming its tensor based counterpart. Plausible
reasons are: 1) the tensor based method is a time domain
method, inevitably embracing all the noise in the identification.
On the contrary, the BGTA method only takes into account the
frequencies shown in Fig. 2 as the frequencies of interest.
Therefore, only the noise at those particular frequencies are
involved in the identification; 2) a regulation term in the
objective function exists in the tensor based method, which
may result in an additional error in the identification.
Furthermore, the tensor based method can only provide a total
estimate error that involves the error at each sampling instance
but cannot quantify and guarantee a tight estimate error at the
frequencies of interest. BGTA method makes this possible,
which is one of distinct contributions of the present work.

V. CONCLUSIONS

Cascade dynamic nonlinear systems can be used to model a
large class of nonlinear systems in engineering practices, but
very few efforts have been devoted to the identification of such
systems. The main difficulty comes from the non-convex
nature of the identification problem. This paper investigated
this problem based on a bargaining game theory model. Firstly,



the cascade dynamic nonlinear systems were rearranged and
converted into an equivalent DISO system, where the estimate
error was considered as the new output, and the system input
and measured noised output as the new inputs. By the same
token, the identification of the cascade dynamic nonlinear
systems was transformed into a convex optimization problem.
Secondly, in order to guarantee the estimate error at the
frequencies of interest, the DISO identification problem was
decomposed into a set of sub-problems defined in the output
frequency range. The spectrum of the unbiased estimation error
function was then given, which was demonstrated to be a
first-order polynomial of the model parameters to be identified
and with independent coefficients. This characteristic
relationship between the unbiased spectrum and the model
parameters to be identified greatly facilitates the optimization
in the frequency domain. Reaching this step, the identification
problem was transformed into a multi-objective optimization
problem. To ensure an effective and efficient multi-objective
optimization, the bargaining game theory was employed to
model the competitions and interactions among the multiple
objectives in the optimization. It was shown that the
consideration of both the global and local information in the
BGTA greatly improves the convergence performance of the
optimization. The proposed formalism allows the identification
of the cascade dynamic nonlinear systems to be conducted in
the frequency domain such that the nonlinear features can be
directly captured with the estimate error being guaranteed at the
frequencies of interest, conducive to numerous engineering
applications requiring the extraction of nonlinear features
related to higher-order harmonics.
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