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Abstract 

A differentially weighted operator splitting Monte Carlo (DWOSMC) method is further developed 
to study multi-component aerosol dynamics. The proposed method involves the use of an excellent 
combination of stochastic and deterministic approaches. Component-related particle volume density 
distributions are examined, and the computational accuracy and efficiency of the two-component 
DWOSMC method is verified against a sectional method. For the one-component aerosol system, the 
sectional method is more computationally efficient than the DWOSMC method, while for 
two-component aerosol systems, the DWOSMC method proves to be much more computationally 
efficient than the sectional method. Using this newly modified DWOSMC method, compositional 
distributions of particles can be obtained to determine simultaneous coagulation and condensation 
processes that occur in different regimes of two-component aerosol systems.  
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Nomenclature 

A, B component symbol 

A0(t) analytical value 

A(t) numerical simulation value 

Ci coagulation rate of simulation particle, i 

d particle diameter (m) 

i, j particle label 

I condensation kernel (m3/s) 

K coagulation kernel (m3/s) 

kB Boltzmann constant (J/K) 

M prescribed number of Monte Carlo loops 

n(t) number density of aerosol particles 

N particle number concentration during the simulation interval 

N0 initial particle number concentration 

Nr number of real particles 

Ns number of simulation particles  

Pi probability of coagulation event taking place on particle i 

q0,0 particle number distribution 

q1,0, q0,1 component-related particle volume density distribution 

r1,r2 random number 

t simulation time (s) 

TK temperature (K) 

∆t time-step (s) 

δt time-step (s) 

v, v' particle volume (m3) 
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V total particle volume during the simulation interval (m3) 

V0 initial total volume of aerosol particles (m3) 

Vs the volume of the aerosol simulation system (m3) 

wi weight of simulation particle, i 

X total process 

X1, X2 sub-processes 

Subscripts  

A,B component symbol  

coag coagulation 

cond condensation 

i, j, m, n  index of simulation particles 

Superscripts 

a, b particle moments index 

k particle section index 

Greek letters 

α correction factor 

ε relative error 

ρ particle density 

τ normalized computation time in Eq. (20)  

σ1, σA, σB  condensation kernel factor 

σ standard deviation of the normal distribution 

ξ particle volume density 
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Abbreviations 

DSMC direct simulation Monte Carlo  

DWOSMC differentially weighted operator splitting Monte Carlo  

GDE general dynamics equation 

MC Monte Carlo 

MOM method of moment 

PBE population balance equation 

PSD particle size distribution 

SM sectional method 
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1 Introduction 

Aerosols are essentially multivariate fine particulates involving complex chemical reactions and 
compositions. The dynamic behaviors of aerosol particles are related to many engineering and 
scientific applications and problems such as the natural phenomenon of acid rain formation and 
deposition [1], combustion particulate emissions that can directly affect human health [2], silica and 
titania nanoparticle flame synthesis in pigments and catalysts [3], etc. In these fields, particles often 
consist of multiple components and compositional inhomogeneities, and particle size and 
compositional distributions affect the properties of particles. The interaction effects of aerosol 
chemical compositions and particle properties on the atmosphere, climates and human health are very 
important in atmospheric and environmental research [4]. Particle compositions affect the scope and 
scale of climatic forces. Such particles can play significant role in the Earth’s energy balance by 
taking in and scattering incoming solar radiation, and outgoing thermal radiation [5]. Therefore, air 
pollution, global climate change and the behaviors of atmospheric aerosol particles have increasingly 
attracted the attention of scientists. A complete and scientific understanding of particle component 
compositions, chemical interactions and transformations is required for the effective control of aerosol 
effects on the global climate and human health. For spatially homogeneous aerosols, particles are 
mostly characterized by their sizes, concentrations and chemical compositions, and so it is inevitable 
for multi-component particles to be considered in the study of aerosols [6]. The particle size 
distribution is affected by several physical and chemical phenomena such as those of nucleation, 
coagulation, condensation, deposition, breakage, etc. [7–10]. For atmospheric aerosols, coagulation 
and condensation are the most important processes, as many of the properties of aerosols (light 
scattering, radioactivity and capturing strategies) are dependent on the size and compositional 
distributions of particles. Furthermore, coagulation and condensation processes are very important 
phenomena to the evolution of particle sizes and compositional distributions [11–13]. Therefore, these 
two processes have been widely explored in studies on particle size and compositional distributions. 
 

Dynamics of particle growth are typically described by the population balance equation (PBE) 
[14], which is also known as the general dynamic equation (GDE) [15]. The GDE describing 
simultaneous coagulation and condensation processes is expressed as 

 

∂n(v,t)
∂t

=
1
2
∫ K

v

0
(v−v',v')n(v')n(v-v')dv'−∫ K

∞

0
(v,v')n(v)n(v')dv'−

∂(I0n)
∂v

(v,t) (1) 

where n is the number concentration of particles with a volume v, the coagulation kernel K(v,v') is the 
rate of particles with a volume v coagulating with particles with a volume v'. The condensation rate 
I0(v,t) is typically related to the surface area of particles. The term shown on the left side of Eq. (1) 
describes the evolution of the number density of particles with volume v. The first two terms on the 
right side denote the particle number density variations resulting from coagulation processes, and the 
third term on the right side denotes particle number density variations attributable to condensation. 
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Over the past several decades, considerable efforts have been made to numerically solve the 
aerosol GDE, and most of these efforts have been devoted to solving one-component aerosol 
processes [16,17,12,18,19]. Other researchers have focused on multi-component aerosol processes. 
Gelbard and Seinfeld [6] developed a sectional method for simulating variations in aerosol particle 
size and compositional distributions for coagulation, chemical reaction and growth processes. Later 
on, Gelbard [20] developed a moving-sectional method for modeling multi-component condensation. 
Kim and Seinfeld successively proposed a moving sectional method [21], a numerical technique 
coupling repeated upwind difference method (RUD) and the Taylor-Galerkin method (TGFEM) [22] 
to obtain the multivariable size-composition distributions of aerosol systems based on simultaneously 
occurring coagulation and condensation processes. Katoshevski and Seinfeld [23] first developed an 
analytical solution for multi-component aerosol dynamics based on particle condensation/evaporation. 
Based on this method, Katoshevski and Seinfeld [24] further proposed an analytical-numerical 
method for the solution of multi-component aerosol GDE accounting for growth, removal, particle 
sources, and coagulation. Sun et al. [25,26] sequentially used the sectional and Monte Carlo methods 
to simulate two-component aerosol dynamics including coagulation and condensation processes. 
Korhonen et al. [5] introduced a size-segregated multi-component aerosol dynamics model for the 
investigation of tropospheric layer aerosol particles. Matsoukas et al. [27], Efendiev [28], and Zhao 
and Zheng [29] simulated the two-component coagulation of different kernels using the Monte Carlo 
method. Matsoukas et al. [30] introduced the aggregative mixing degree, which can influence particle 
size and compositional distributions. Later, Lee et al. [31] demonstrated that the steady-state mixing 
degree is the single parameter to determine the width of the compositional distribution in 
bicomponent aggregation systems. Zhao et al. [32,33], and Zhao and Kruis [34] further studied the 
evolution of the aggregative mixing degree for different aggregation regimes and initial conditions of 
two-component aggregation. Palaniswaamy [35] used the direct simulation Monte Carlo (DSMC) 
method to investigate multi-component aerosol dynamics of coagulation, deposition, growth, and 
source reinforcement. Fu et al. [13] developed a finite element method for solving multi-component 
aerosol dynamic equations based on processes of coagulation and condensation.  

 
For a two-component aerosol system that only considers coagulation and condensation processes, 

the governing equation becomes [29,36],  
 

∂n(vA,vB,t)
∂t

= 
1
2
∫ ∫ K(vA − vA

' ,vB − vB
' ,vA

' ,vB
' , t)

vB

0

vA

0
𝑛(vA − vA

' ,vB − vB
' , t)𝑛(vA

' ,vB
' , t)dvA

' dvB
'

− n(vA,vB,t)∫ ∫ K(vA,vB,vA
' ,vB

' , t)𝑛(vA
' ,vB

' , t)dvA
' dvB

'
∞

0

∞

0
−

∂(IAn)
∂vA

(vA,vB,t)

−
∂(IBn)

∂vB
(vA,vB,t) 

(2) 

where vA and vB are the volume of A-component and B-component within a particle with a total 
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volume of vA+vB, respectively; n(vA,vB,t) is the number density of particles with a volume of vA+vB 
at time t such that n(vA,vB,t)dvAdvB denotes the number concentration of particles in the size range 
of A-component vA  to vA+dvA , and the size range of B-component vB  to vB+dvB ; 

K(vA,vB,vA
' ,vB

' , t) is the coagulation kernel between one particle of volume (vA,vB) and another 
particle of volume (vA

' ,vB
' ). The coagulation of two particles results in the production of a new 

two-component particle with a volume of (vA+vA
' , vB+vB

' ) and the destruction of two previous 
particles. IA and IB are the condensation rate coefficients of the A-component and B-component, 
respectively. The occurrence of a condensation event either in the A-component or the B-component 
would vary (either an increase or decrease depending on the derivative of the condensation rate with 
particle volume) the number density of particles of state (vA, vB) as expressed in Eq. (2). 

 
The double integral and nonlinear features of Eq. (2) render it difficult to solve. Conventional 

numerical methods for solving the GDE of aerosols are classified as two types of mathematical 
models: deterministic and stochastic models. Deterministic models mainly include the sectional 
method (SM) [8] and method of moments (MOM) [37–40], which are comparatively efficient at 
solving the GDE of mono-variant systems. The stochastic model typically refers to the Lagrangian 
Monte Carlo method. Compared to deterministic methods, a major shortcoming of the Monte Carlo 
(MC) method relates to its computational time and computer memory usage. However, in addressing 
multicomponent problems, the MC method is more worthy of consideration in that considering more 
than one component does not add considerable complexity to the arithmetic programming [25]. On the 
other hand, for the deterministic method, considering more components inevitably increases the 
complexity of the algorithm while enhancing innate fluctuations and numerical diffusion [29]. 

 
Monte Carlo simulations are able to capture the history, trajectory, particle size distribution and 

multi-variate information of aerosol particles. They are robust and straightforward in addressing 
stochastic processes. The MC method was originally proposed by [41] and applies laws of probability 
to the natural sciences. It was then developed to simulate rarefied gas flows problems [42,43] and 
dispersed particle related problems [16]. Unlike deterministic methods, it does not directly solve the 
GDE for aerosol dynamics, as it instead uses numerical particles to simulate the behaviors of real 
particles. For this reason, the MC method can solve aerosol dynamics problems from several random 
samplings drawn from the particle system. The discrete and probabilistic nature of the MC method 
renders it ideally suitable for addressing particle dynamics of the same nature [44]. Furthermore, 
every numerical particle has its own size, composition and morphology, and the use of more 
component dimensions does not significantly increase the complexity of the algorithm [45]. Thus, 
compared to other methods, MC methods are increasingly being used to manage multivariate and 
polydispersed systems.  
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Compared to deterministic methods, such as SMs and MOMs, one disadvantage of traditional MC 
methods relates to conflicts between the computational accuracy and efficiency owing to their 
stochastic and statistical characteristics. Both the computational accuracy and efficiency are highly 
related to the number of simulation particles used in MC methods. When high levels of computational 
accuracy are required, considerable computer memory and computational time requirements apply 
[16]. However, with the rapid development of computer technologies, computers with more memory 
space and that operate at faster speeds are being developed, and the computational costs (i.e., memory 
and time consumption) of MC methods are thus no longer a major issue. Furthermore, “weighted 
simulation particles” [46,47] are widely used in MC methods due to the large number of real particles 
in systems simulated. To further overcome issues related to computational costs and accuracy levels, 
Zhao et al. [48] developed a differentially weighted Monte Carlo (DWMC) method that proved to be 
quite efficient and effective at simulating aerosol coagulation, and then the DWMC method was 
further used to investigate the two-component coagulation of aerosol dynamics systems. On the other 
hand, the deterministic method tends to be more efficient at simulating aerosol condensation and 
nucleation processes, and for simulating gas phase flows. Celnik et al. [49] and Menz et al. [50] 
accomplished the full-coupling of soot particles with the gas phase using the operator splitting 
technique where the soot particles are simulated using the Monte Carlo method and the gas phase is 
solved using an implicit ordinary differential equation (ODE) solution accordingly. Zhou et al. [17] 
and Liu and Chan [18] also recently used the operator splitting technique to couple the stochastic 
Monte Carlo method with deterministic methods for aerosol dynamics. Recently, Liu and Chan [51,52] 
proposed a differentially weighted operator splitting Monte Carlo (DWOSMC) method that couples 
the operator splitting technique with the differentially weighted Monte Carlo method to efficiently 
examine complex dynamic behaviors of aerosols including those of nucleation, coagulation, 
condensation, etc. In the present study, the newly developed DWOSMC method is further extended to 
simulate multi-component aerosol dynamic processes in which only coagulation and condensation 
processes are considered owing to their significance for the evolution of particle size and 
compositional distributions. The method is proven capable of capturing composition and size 
distributions and bivariate compositional distributions of aerosols. As no explicit solutions for 
two-component complex aerosol systems are available, the two-component DWOSMC method is 
initially verified by a sectional method, and the computation efficiency levels of the two methods are 
compared based on one- and two-component aerosol simulation systems.  

 

2 Mathematical model 

 In our previous study [52], a differentially weighted operator splitting Monte Carlo (DWOSMC) 
method was proposed for one-component aerosol systems by using the operator splitting technique to 
combine stochastic MC and deterministic integration methods. In the present study, the DWOSMC 
method is further developed to simulate multi-component aerosol systems. A brief outline of the 
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algorithm’s application to two-component systems is given as follows: 

(a) Start M Monte Carlo loops. 
(b) Initialization. The initial value of particle properties (size, weight, number concentration, 

component composition, etc.) is first assigned according to an initial compositional distribution. 
During the simulation of the DWOSMC method, the weights of different simulation particles can 
differ. For a two-component aerosol system, wi is defined as, 

wi = 
Nr(vA,vB)
Ns(vA,vB)

 (3) 

where Nr(vA,vB)  is the number of real particles of A-component volume size vA  and 
B-component volume size vB,  and where Ns(vA,vB) is the number of simulation particles 
representing these real particles Nr(vA,vB). In the present study, the weights of all simulation 
particles are set to the same value wi,0 at the time of initialization. The initial size v0 and number 

density distributions n(vA,vB,0) of the particles are set according to the initial distributions 
assigned. 

(c) Choose a time step δt. A variable time scale is determined by different aerosol dynamic processes. 
Specifically, the characteristic time scale used for coagulation events is written as: 

∆tcoag= min|
∀i(Vs/ ∑ Kij



Ns

j=1,j≠i

) (4) 

where Vs and Ns are the volume of the aerosol simulation system and the total number of simulation 
particles, respectively. Kij

  is the normalized coagulation kernel for simulation particles i and j. Kij
  

is not only related to the size or state of particles but is also related to the weights of the two 
coagulated particles: 

Kij
 =2Kijwjmax(wi,wj)/(wi+wj) 

where Kij is the coagulation kernel of particles i and j. 

For condensation events, the characteristic time scale is written as: 

∆tcond = min|
∀i( vi/I0(v)) (5) 

where vi is the volume of particle i and where I0(v) is the condensation kernel. 
 
To guarantee the accuracy of the proposed method in simulating both condensation and 
coagulation processes, an appropriate time step that is smaller than both characteristic time scales 
of the two events should be used. In the present study, the time step is written as:  

δt = α min(∆tcoag, ∆tcond) (6) 

where α is an empirical parameter set as 0.01 [53,54] during calculation to ensure that an accurate 
integration of aerosol dynamic processes is achieved. 
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(d) Integration. Stochastic and deterministic aerosol dynamic processes are managed by applying the 
second-order Strang splitting method which is expressed as: 

exp(δtX)=exp (
1
2

δtX2) exp(δtX1)exp (
1
2

δtX2)+𝒪(δt3) (7) 

where X is the total process of two sub-processes, X1 refers to the coagulation process, and X2 
refers to the condensation process. 
Within the time step, the condensation process is first calculated for the first half time-step of δt/2, 
and then the coagulation process is simulated for one time-step δt. Finally, the condensation 
process is calculated for the last half time-step of δt/2. The integration procedure used for the 
total process of the two sub-processes for one time-step is described in steps (e) to (g). 

(e) Integration of condensation for a time-step of δt/2. 
The condensation event affects the particle size distribution of aerosols because it produces larger 
particles. In two-component systems, there are two condensation kernels (i.e., one for component 
A and one for component B) written as IA(vA) and IB(vB), respectively. In the present study, all 
particles are assumed to be spherical and that the volume of particles is the sum of their two 
components after the condensation event, which is written as,  

dvi(vA,vB,t)
dt

= IA(vA)+IB(vB) (8) 

Specifically in the present study, within a time-step of δt/2, the condensation event is calculated 
as: 
 

vi
' = vi + (IA(vA)+IB(vB))δt/2 (9) 

                              wi
' = wi (10) 

where wi and vi refer to the weight and volume of simulation particle i, respectively, before the 

condensation event and wi
' , and vi

'  refer to the weight and volume of simulation particle i, 
respectively, after the condensation event. 

(f) Integration of coagulation for a time-step of δt. 
The simulation of coagulation is based on the DWMC method proposed by Zhao et al. [48,53]. 
The occurrence of coagulation events between two particles is based on probability selections. 
During simulation, the probability of coagulation events taking place in particle i within δt is 
calculated as:  

Pi = 1−exp(−VsCiδt/2) (11) 

where Vs is the volume of the simulation system and Ci is the coagulation rate of simulation 
particle i based on the probabilistic coagulation rule written as:   
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Ci = 
1

Vs
2 ∑ Kij



Ns

j=1,j≠i

 (12) 

where Ns is the simulation particle number and Kij
  is the normalized coagulation rate for particles i 

and j: 

Kij
  = 2Kijwjmax(wi,wj)/(wi+wj)     (13) 

Particle i is selected as the first coagulation particle when Pi satisfies,  

       r1≤  Pi (14) 
where r1 is a random number of between 0 and 1 generated from a uniform distribution. 
A second coagulation particle j is selected when Eq. (15) is satisfied, and then the coagulation 
event is managed between particles i and j; otherwise the remaining particles are checked until the 
second particle j is selected. 

r2≤  Kij
 /max(Kmn

 )|
∀m,∀n (15) 

where r2 is a number of between 0 and 1 randomly generated from a uniform distribution.  
After the coagulation event, the previous particles are replaced with two newly weighted 
simulation particles, and the conservation of volume is considered while the properties of these 
particles are changed. The coagulation process is described as [29]: 
 

If     wi=wj, {
wi

' =wi/2; vi
' =vi+vj, vi,A

' =vi,A+vj,A, vi,B
' =vi,B+vj,B;

wj
' =wj/2; vj

' =vi+vj; vj,A
' =vi,A+vj,A, vj,B

' =vi,B+vj,B;
 (16a)  

If   wi≠wj,

{
 
 

 
 

wi
' =max(wi,wj)-min(wi,wj);vi

' =vm|wm=max(wi,wj)⁡
;

vi,A
' =vm,A|wm=max(wi,wj)⁡

, vi,B
' =vm,B|wm=max(wi,wj)⁡

 ;

wj
' =min(wi,wj);vj

' =vi+vj;                                  
 vj,A

' =vi,A+vj,A, vj,B
' =vi,B+vj,B;                            

 

 
 

(16b) 

where wi
' ,  wj

' , vi
'  and vj

'  represent the weight or volume of newly created simulation particles i and 
j after the coagulation event. vi,A

' , vi,B
' ,  vj,A

'  and vj,B
'  are the volumes of components A and B in 

newly created simulation particles i and j after the coagulation event. In the present study, the 
density of particles is assumed to be constant, and so the conservation of particle volumes in Eq. 
(16) denotes the conservation of mass during the coagulation event.  

(g) Condensation is integrated for a time-step of δt/2. The calculation procedure is the same as that 
used in step (e). 

(h) The properties of simulation particles are updated to obtain information (size, composition and 
number density, etc.) on the particles, as the particles are assumed to be spherical before and after 
coagulation and condensation events, and thus particle diameters can be easily derived. 
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(i) Repeat steps (c) to (h) until the predetermined stopping time tstop is reached, and then exit the 
current Monte Carlo loop. 

(j) Start a new Monte Carlo loop if calculated Monte Carlo loop number R is smaller than 
predetermined Monte Carlo loop number M. Otherwise the averaged results are obtained to output 
the information of the aerosol system. In the present study, eight Monte Carlo loops are carried 
out. 
 
 
Fig. 1 presents a flowchart of the full algorithm of the two-component DWOSMC method.  

 

Fig. 1  Flowchart of the two-component DWOSMC algorithm.  

3 Results and Discussion 

In the present study, the performance of the multi-component DWOSMC method is evaluated 
using a sectional method [8], which is also further developed according to Kim and Seinfeld's [21] 
concept of a moving sectional method that describes the two-component system. First, the DWOSMC 
and sectional methods are evaluated in a simple one-component case for which analytical solutions 
exist. Then, two-component systems with different kernels and initial particle size distributions are 
examined to determine the capacity for the multi-component DWOSMC method to simulate aerosol 
dynamics. In the present study, different cases are successively investigated to study simultaneous 
coagulation and condensation processes. For the sectional method, particles only exist at discretized 
nodes, and the aerosol size spectrum is divided into 50~70 sections. The same number of nodes is also 
used for the DWOSMC method to store the particle size and compositional distributions of aerosols. 
In our previous study [52], the impact of the number of simulation particles on the computational 
efficiency and accuracy of the DWOSMC method is examined. Herein, unless otherwise stated, the 
present simulations are performed on 4000 simulation particles.  

 
3.1 One-component coagulation and condensation case 

In the present study, this developed multi-component DWOSMC method is firstly used to 
calculate a one-component aerosol system by setting the growth kernels of components A and B to be 
the same. The results are verified by analytical solutions, and compared with the sectional method 
[8,21] and a non-weighted direct simulation Monte Carlo (DSMC) method [56] to evaluate the 
computational efficiency and accuracy of this DWOSMC method. 

 
For a one-component aerosol system, constant kernel coagulation and linear kernel condensation 

are considered in Case I. Particles are initially uniformly distributed, the initial total particle number 
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concentration is N0 = 105/m3, and the initial average particle volume is v0 = 1×10-22 m3. Analytical 
solutions for dimensionless particle number concentration N(t)/N0, and total particle volume 
concentration V(t)/V0 are given by [11], 

N(t)/N0 =
1

1 + K0N0t/2
 (17) 

V(t)/V0 = exp(σ1t) (18) 

In Case I, the constant coagulation kernel is K = K0 where K0 = 5×10−6 m3/s, and the linear 
condensation kernel is I = σ1v, σ1 =2×10−2/s [55]. Numerical simulation time tstop is taken as 200 s. 

 
 

 

Fig. 2  Time evolution of (a) dimensionless particle number concentration N/N0 and total particle 
volume V/V0 ; and (b) the relative error  (%) for N/N0 obtained from the SM, DWOSMC and DSMC 
methods, and the corresponding normalized computation time  , for Case I.  

Fig. 2(a) shows the time evolution of dimensionless particle number concentration N/N0 and total 
particle volume V/V0. For simultaneously occurring coagulation and condensation processes, the 
particle number density level decreases over time due to the coagulation event, and the total particle 
volume increases over time due to the condensation process. As was expected, excellent matches are 
found from the SM, DWOSMC and DSMC methods and from the analytical solutions.  

 
The computational accuracy and efficiency of the three methods are then examined further. The 

relative error  (%) of the particle number concentration and normalized computational time τ are 
shown in Fig. 2(b). The relative error ε and normalized computational time τ are respectively, 
defined by the following equations. 

ε = |A(t)-A0(t)|/A0(t) (19) 

τ = t/tSM (20) 

where A0(t) is the value obtained from the analytical solution, where A(t) is the value obtained from 
the three corresponding methods (i.e., SM, DWOSMC, and DSMC), where tSM is the computation 
time required for SM, and where t is the amount of computing time required for corresponding 
methods (SM, DWOSMC, and DSMC). 

 

In Fig. 2 (b) the relative errors  obtained from the three methods are quite small and are mostly 
less than 1%. On the other hand, it is observed that the relative error obtained from the DSMC is 
greater than that derived from the SM and DWOSMC. Furthermore, much less computation time is 
required for the DWOSMC than for the DSMC, proving that the DWOSMC is much more 
computationally accurate and efficient than the DSMC. Furthermore, the relative error obtained from 
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the SM is extremely small at less than 0.2% for the whole numerical simulation for Case I. As the SM 
closely reflects the analytical solution shown in Figs. 2(a) and (b), it is used to verify the proposed 
two-component DWOSMC method in the present study. 

 
The particle number distributions are examined for Case I as shown in Fig. 3, which shows that 

initially uniform distributed particles evolve into a normal distribution over time. Satisfactory 
agreement is found between the SM and Monte Carlo methods. 

  
 
 

Fig. 3  Evolution of particle number distributions obtained from the sectional (solid line), DWOSMC 
(scattered solid points) and DSMC (scattered unshaded points) methods for Case I. 
 

 
 

3.2 Two-component coagulation and condensation process and constant coagulation kernel 
cases 

For a multi-component aerosol system, the component-related volume density of particles is of 
interest. The total volume density of a particle is defined as [57,58],  

ξ(v,t) = vn(v,t) (21) 

The i-th component related volume density of particle of volume v is 

ξi(v,t) = vi(v,t)n(v,t) (22) 

Specifically, for a two-component system, ξA(v,t) and ξB(v,t) are the volume density values of 
the A-component and B-component, respectively, and then ξ(v,t)= ξA(v,t)+ ξB(v,t). 

When particles are divided into multiple sections by size, the component-related volume density 
of vl,k < vk < vu,k in size in the k-th section is  

qa,b
k (t) = ∫ vA

a (v,t)vB
b (v,t)n(v,t)dv

vu,k

vl,k

 (0≤a,b≤1) (23) 

 
where vl,k and vu,k are the lower and upper bounds of the volumes of particles in the k-th section, 
respectively and v = vA+vB. Specifically, q0,0

k  is the particle number concentration of the k-th section. 
q1,0

k , and q0,1
k  are the particle volume densities of components A and B in the k-th section, 

respectively.  
 
In the following studied cases, the component-related volume densities of particles are presented 

in all particle volume sections where the particle volume is converted into a particle diameter as an 



15 
 

independent variable. Therefore, q0,0 is the particle number distribution and q1,0 and q0,1 are the particle 
volume density distributions of components A and B, respectively.  

3.2.1 Initially uniformly distributed and compositionally equal volume case 
The initial particle size distribution is considered to be uniform for Case II. The initial total 

particle number is N0 = 105/m3, and the initial average particle volume is v0 = 1×10-22 m3 and consists 
of particles with equal volumes of components A and B. The constant coagulation kernel is given by            
K0 = 5×10−6 m3/s, and linear condensation kernels for components A and B are given by IA = σAvA, 
σA =1×10−3/s, and IB = σBvB, σB =2×10−3/s, respectively. A numerical simulation time of 200 s is 
used. 

 
Fig. 4 shows the time evolution of the dimensionless particle number concentration N/N0 and total 
particle volume V/V0 as well as the particle number distribution for simulation times t of 20, 60, 100 
and 200 s. In Fig. 4(a), the particle number concentration and total particle volume obtained by using 
the DWOSMC method are in excellent agreement with those derived from the SM. In Fig. 4(b), as the 
initial particle diameter is uniform and small, when the simulation time is 20 s, the particle number 
density of small diameters is quite large. In addition, as simulation time advances, both coagulation 
and condensation events take place, and the particle number distribution evolves to a normal 
distribution after 100 s and 200 s of simulation time. From Figs. 4(a) and (b), the results of the 
DWOSMC method coincide with those derived from the SM.  

 

 

 
Fig. 4   Time evolutions of (a) N/N0 and V/V0 and (b) particle number distributions obtained from the 
SM (solid line) and DWOSMC method (scattered solid points) for Case II. 
 

The time evolutions of particle volume density distributions of components A and B for Case II 
are shown in Figs. 5(a) and 5(b), respectively. It is shown that the variation tendencies of particle 
volume density distributions for components A and B are quite similar over time while the peak value 
of q1,0, and q0,1 moves along the larger diameter d. This occurs because both coagulation and 
condensation processes generate a larger average particle diameter. From Fig. 5 (a) and (b), the results 
obtained from the DWOSMC agree well with those of the SM. Hence, the DWOSMC method can 
predict two-component particle volume distributions for constant coagulation kernels and linear 
condensation kernels. 

  

Fig. 5   Time evolutions of particle volume density distributions of (a) A-component and (b) 
B-component obtained from the SM (solid line) and DWOSMC method (scattered solid points) for 
Case II. 

3.2.2 Initially uniformly distributed and compositionally different volume case 
The initial particle size distribution is considered to be uniform while the compositions of 

components A and B are different for Case III. The initial total particle number is N0 = 105/m3 and the 
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initial average particle volume is v0=1×10-22 m3, in which the volumes of components A and B are vA0 

= v0/3 and vB0 = 2v0/3, respectively. Coagulation and condensation kernels are the same as those used 
for Case II. A simulation period of 200 s is used. 

Fig. 6   Time evolution of (a) N/N0 and V/V0 and (b) particle number distributions obtained from the 
SM (solid line) and DWOSMC method (scattered solid points) for Case III. 

The time evolution of dimensionless particle number density N/N0 and total particle volume V/V0, 
as well as the particle diameter distribution of q0,0 for simulation times 60 s and 200 s for Case III are 
shown in Fig. 6. For N/N0 and V/V0, results obtained from the SM and DWOSMC method show 
excellent agreement with one another. For q0,0, the distribution of q0,0 suffers fluctuations when the 
simulation time is 60 s, and fluctuations resulting from the DWOSMC method tend to be greater than 
those of the SM, but the distribution curve for these two methods share the same patterns. The 
distribution of q0,0 is normal when the simulation period reaches 200 s, and results obtained from the 
DWOSMC method and SM agree well with one another. 

 
Fig. 7 shows the particle volume density distributions of components A and B for different 

simulation periods (60 s and 200 s). From Fig. 7 (a), while the distribution trends of the two methods 
are similar for a simulation time of 60 s, some fluctuations result from the DWOSMC method. While 
such fluctuations vanish when the simulation period reaches 200 s and while the distributions of q1,0, 
and q0,1 increase and broaden, results obtained from the DWOSMC method agree well with those 
derived from SM. 

 

Fig. 7   Particle volume density distributions of q1,0 and q0,1 for simulation times (a) t = 60 s and (b) t 
= 200 s obtained from the SM (solid line) and DWOSMC method (scattered solid points) for Case III. 

3.2.3 Initially non-uniformly distributed and compositionally different volume case  
The initial particles are initially exponentially distributed according to Eq. (24) [12], and the 

compositions of components A and B are different for Case IV. The initial total particle number is N0 

=105/m3, and the initial average particle volume is v0 = 1×10-22 m3, in which the volumes of 
components A and B are vA0 = v0/3, vB0 = 2v0/3, respectively. Coagulation and condensation kernels 
used are the same as those used for Case II. A simulation period of 200 s is used. 

 n(vA,vB,0) = N0/v0×exp (−
v(vA,vB,0)

v0

) (24) 

 
From Fig. 8(a) it is remarkable that dimensionless particle number density N/N0 and total particle 

volume V/V0 values obtained from the two methods (i.e., the SM and DWOSMC method) are in 
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excellent agreement with one another. The particle number distributions observed at simulation times 
t = 20 s and 200 s are shown in Fig. 8(b), and it should be noted that for the initially exponentially 
distributed case, the PSD for simulation time t = 20 s more closely reflects a normal distribution than 
it does for initially uniformly distributed Case II. Particles are normally distributed when the 
simulation time reaches 200 s. The results obtained from the DWOSMC method are in excellent 
agreement with those derived from SM. 
 

Fig. 8   Time evolution of (a) N/N0 and V/V0 and (b) particle number distributions obtained from the 
SM (solid line) and DWOSMC method (scattered solid points) for Case IV. 

The component related particle volume density distributions of q1,0, and q0,1 obtained over 
simulation periods t = 20 s and 200 s are shown in Fig. 9(a) and Fig. 9(b), respectively. It can be 
clearly observed that the particle volume density distributions of both components increase and grow 
broader, and that the difference between the particle volume density distributions of components A 
and B is pronounced. Particle volume density distributions obtained through the DWOSMC are 
consistent with those derived from the SM. 

  

Fig. 9   Particle volume density distributions of q1,0 and q0,1 for simulation times (a) t = 20 s and (b) t 
= 200 s obtained from the SM (solid line) and DWOSMC method (scattered solid points) for Case IV. 
 

3.3 Two-component coagulation and condensation process and the sum coagulation kernel case 

The coagulation kernel is no longer constant and is written as K = K0(vi + vj) [48] for Case V. The 

initial particle size distribution satisfies a normal distribution according to Eq. (25), and the 
compositions of components A and B are different. The initial total particle number is N0 = 1011/m3 
and the initial average particle volume is v0= ×10-19 m3, in which the volumes of components A and B 
are vA0= v0/3, vB0= 2v0/3, respectively. The standard deviation σ is 2×10-18 m3. The linear condensation 
kernels for components A and B are given by IA = σAvA , σA = 1×10−3/s, IB = σBvB  and 
σB =2×10−3/s, respectively. A simulation period of 100 s is used. 

n(vA,vB,0) =
N0

√2πσ
×exp(−

(v(vA,vB,0)− v0)
2

2σ2 ) (25) 

 

The time evolution of dimensionless particle number density N/N0 and total particle volume V/V0 
and the particle number distribution of q0,0 for simulation times 10 s and 100 s are shown in Fig. 10 
for Case V. As was expected, for N/N0 and V/V0, results obtained from the DWOSMC and SM are in 
agreement with one another. For the particle size distribution shown in Fig. 10(b), as particles are 
initially normally distributed, when the simulation time reaches 10 s, the distribution of q0,0 closely 
reflects a normal distribution. In contracts to patterns found from the other cases, the peak diameter of 
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particles almost remains at the same value for Case V. The results obtained from the SM and 
DWOSMC method are in excellent agreement with one another. 

   

Fig. 10   Time evolution of (a) N/N0 and V/V0 and (b) particle number distributions obtained from the 
SM (solid line) and DWOSMC method (scattered solid points) for Case V. 

 
 
 
 
Fig. 11 shows the particle volume density distributions of components A and B for the simulation 

times of 10 s and 100 s. From  
 
Fig. 11 (a) and (b), while the peak diameter of the q0,0 distribution does not change, the peak 

diameter of q1,0 and q0,1 tends to be larger. As the time period reaches 100 s, the distributions of q1,0, 
and q0,1 become broader and more closely reflect normal distributions. The results obtained from the 
DWOSMC method are in excellent agreement with those derived from the SM. 

 
 
Fig. 11   Particle volume density distributions of (a) q1,0 and (b) q0,1 for simulation times t =10 s and 
t =100 s obtained from the SM (solid line) and DWOSMC method (scattered solid points) for Case V. 

3.4 Two-component coagulation and condensation process and the free molecule regime case 

Coagulation and condensation processes are considered to occur in a free molecule regime (where 
the diameter of particles is smaller than the mean free path of air) for Case VI. In the free molecule 
regime, the coagulation kernel is determined as [17], 

K(vi, vj) = (
6
π
)2/3(

πkBTK

2ρ
)
1/2

(
1
vi
+

1
vj

)
1/2

(vi
1/3 + vj

1/3)2 (26) 

where vi  and vj are the volumes of two coagulated particles i and j, respectively, and TK is 

temperature, kB is Boltzmann’s constant and 𝜌 is the density of particles. 
 

The initial particle size distribution satisfies a normal distribution in Eq. (25), and the 
compositions of components A and B are different. The initial total particle number is N0 = 1012/m3 
and the initial average particle volume is v0 = 3×10-18 m3, in which the volumes of components A and 
B are vA0 = v0/3 and vB0 = 2v0/3, respectively. The standard deviation σ is 1×10-18 m3. The linear 
condensation kernels of components A and B are given by IA = σAvA, σA =1×10−3/s, IB = σBvB and 
σB = 2×10−3/s, respectively. A simulation period of 100 s is used. 

 
Fig. 12 shows the time evolution of dimensionless particle number density N/N0 and total particle 

volume V/V0 as well as the particle number distribution of q0,0 for Case VI. For N/N0 and V/V0, results 
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obtained from the DWOSMC method and SM are in excellent agreement with one another as shown 
in Fig. 12(a). From Fig. 12(b), the distribution curve of q0,0 is steep and narrow for a simulation period 
of 10 s, and the distribution curve of q0,0 is broader and much more gradual as the simulation time 
reaches 100 s. At a simulation time of 10 s, some fluctuations are observed at a peak value of q0,0. 
However, when the simulation time reaches 100 s, the peak diameter of q0,0 is larger, the distribution 
of q0,0 is normal with slight fluctuations, and results obtained from the DWOSMC method and SM 
agree well with one another. 

  

Fig. 12   Time evolution of (a) N/N0 and V/V0 and (b) particle number distributions obtained from the 
SM (solid line) and DWOSMC method (scattered solid points) for Case VI. 

Fig. 13 shows the particle volume density distributions for components A and B for simulation 
times of 10 s and 100 s. Fig. 13(a) shows that the distribution of q1,0 tends to be broader and that the 
peak diameter of q1,0 is larger. Similar variations are found for component B as shown in Fig. 13(b), 
though the value of q0,1 is larger than q1,0 due to the use of different condensation kernels for 
components A and B. The distributions of q1,0 and q0,1 obtained from the DWOSMC method and SM 
agree well with one another.  

 

Fig. 13   Particle volume density distributions of (a) q1,0 and (b) q0,1 for simulation times t= 10 s and 
100 s obtained from the SM (solid line) and DWOSMC method (scattered solid points) for Case VI. 

The normalized combined number density distribution of A-component and B-component (i.e., 
the bivariate compositional distribution) is defined as follows, 

nd=100n(vA,vB,t)/N0 (27) 

In Case VI, bivariate compositional distributions for different simulation times t are shown in Fig. 
14. The contour plot of the normalized bivariate compositional distribution function is mostly 
positioned in the diagonal area based on the dimensionless coordinates of vA/v0 and vB/v0. As 
simulation time increases from t = 20 s to t = 100 s, the normalized bivariate compositional 
distribution function tends to be smaller but distributed across a larger region with respect to 
compositional particle volumes.  

 
Fig. 14   Dimensionless bivariate compositional distributions observed at different simulation times 
t obtained from the DWOSMC method for Case VI. 
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3.5 Computational Accuracy and Efficiency Analysis 

To evaluate the computational accuracy and efficiency of the multi-component DWOSMC 

method proposed in the present study, the calculated relative error  (%) according to Eq. (19) (here 
A0(t) is the value obtained from the sectional method) is shown in Fig. 15; the normalized 
computational time τ according to Eq. (20) (i.e., the reference value is the computational time of Case 
I derived from the SM) for the studied cases is listed in Table 1. In Fig. 15, maximum relative errors 
range within 0.8% for Cases I to IV and 1.2% for Cases V and VI, respectively, showing that even in 
complex two-component systems involving coagulation and condensation processes, the newly 
developed DWOSMC method is computationally accurate and relative errors generated are very small. 
In addition, relative errors obtained from two-component Cases II to VI do not tend to be significantly 
larger than those of one-component Case I. Furthermore, it is well known that the SM is generally 
more computationally powerful than the MC method for one-component systems (e.g., for Case I). 
When the two methods are further extended to consider two-components, Table 1 shows that τ of the 
DWOSMC method generates much smaller values than the SM for most of the two-component cases. 
This is the case because when considering more component information, the programming algorithm 
for the SM correspondingly becomes more complex while the MC method does not. Hence, it is 
concluded that the proposed multi-component DWOSMC method is superior to the SM in terms of its 
computational efficiency in addressing multi-component problems.  

 
 

Fig. 15   Time evolution of the relative error  (%) for N/N0 obtained from the DWOSMC method 
for different cases. 

 
 
Table 1.  Normalized computational time τ derived from different cases using the SM and 
DWOSMC method. 

 

4 Conclusions  

A newly modified differentially weighted operator splitting Monte Carlo (DWOSMC) method is 
developed to simulate two-component aerosol dynamics in the present study. Compared to traditional 
MC methods, the multi-component DWOSMC method proposed in the present study adopts “different 
weights” which is more suitable for obtaining the compositional distributions of particles, especially 
for multi-component systems. In addition, the operator splitting technique renders it applicable and 
more efficient to couple the stochastic MC method with the deterministic integration method.  

 
Different initial size distribution functions and initial compositional distributions are studied under 

various regimes of simultaneous aerosol coagulation and condensation that include three cases 
involving constant coagulation kernel, one case involving sum coagulation kernel and one case 
involving free molecule coagulation kernel. For all of these cases studied, dimensionless particle 
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number density, total particle volume, and component related particle volume density distributions are 
examined, and results obtained from the DWOSMC method agree well with those derived from the 
SM.  

 
The present results and findings show that the multi-component DWOSMC method is more 

computationally accurate and efficient than traditional non-weighted MC methods. Furthermore, the 
SM is more computationally efficient than the DWOSMC when applied to one-component aerosol 
simulation systems while the DWOSMC tends to be more computationally efficient when applied to 
two-component aerosol simulation systems. This is the case because considering more than one form 
of component information does not significantly increase the complexity of the MC algorithm while 
much higher levels of complexity are required to use the SM algorithm to simulate more than one 
component of aerosol dynamics. With such high levels of computational efficiency and accuracy 
based on the specific data and evidence obtained, the newly developed multi-component DWOSMC 
method cannot only predict particle size distributions, but can also determine component-related 
particle volume density and bivariate compositional distributions. 
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Fig. 1    Flowchart of the two-component DWOSMC algorithm. 
 
Fig. 2   Time evolution of (a) dimensionless particle number concentration N/N0 and total particle 

volume V/V0 ; and (b) the relative error  (%) for N/N0 obtained from the SM, DWOSMC and 
DSMC methods, and the corresponding normalized computation time  , for Case I.  

 

Fig. 3  Evolution of particle number distributions obtained from the sectional (solid line), 
DWOSMC (scattered solid points) and DSMC (scattered unshaded points) methods for Case I. 
  
Fig. 4   Time evolutions of (a) N/N0 and V/V0 and (b) particle number distributions obtained from 
the SM (solid line) and DWOSMC method (scattered solid points) for Case II. 
 
Fig. 5   Time evolutions of particle volume density distributions of (a) A-component and (b) 
B-component obtained from the SM (solid line) and DWOSMC method (scattered solid points) for 
Case II.  
 
Fig. 6   Time evolution of (a) N/N0 and V/V0 and (b) particle number distributions obtained from the 
SM (solid line) and DWOSMC method (scattered solid points) for Case III.  
 
Fig. 7   Particle volume density distributions of q1,0 and q0,1 for simulation times (a) t = 60 s and (b) 
t = 200 s obtained from the SM (solid line) and DWOSMC method (scattered solid points) for Case 
III.  
 
Fig. 8   Time evolution of (a) N/N0 and V/V0 and (b) particle number distributions obtained from the 
SM (solid line) and DWOSMC method (scattered solid points) for Case IV. 
 
Fig. 9   Particle volume density distributions of q1,0 and q0,1 for simulation times (a) t = 20 s and (b) 
t = 200 s obtained from the SM (solid line) and DWOSMC method (scattered solid points) for Case 
IV. 
 
Fig. 10   Time evolution of (a) N/N0 and V/V0 and (b) particle number distributions obtained from 
the SM (solid line) and DWOSMC (scattered solid points) for Case V. 
 
Fig. 11   Particle volume density distributions of (a) q1,0 and (b) q0,1 for simulation times t =10 s and 
t =100 s obtained from the SM (solid line) and DWOSMC method (scattered solid points) for Case 
V.  
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Fig. 12   Time evolution of (a) N/N0 and V/V0 and (b) particle number distributions obtained from 
the SM (solid line) and DWOSMC method (scattered solid points) for Case VI. 
 
Fig. 13   Particle volume density distributions of (a) q1,0 and (b) q0,1 over simulation times t= 10 s 
and 100 s obtained from the SM (solid line) and DWOSMC method (scattered solid points) for Case 
VI. 
 
Fig. 14   Dimensionless bivariate compositional distributions observed at different simulation 
times t obtained from the DWOSMC method for Case VI. 
 
Fig. 15   Time evolution of the relative error  (%) for N/N0 obtained from the DWOSMC method 
for different cases. 
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Fig. 1  Flowchart of the two-component DWOSMC algorithm.  
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(a) (b) 

Fig. 2  Time evolution of (a) dimensionless particle number concentration N/N0 and total particle 
volume V/V0 ; and (b) the relative error  (%) for N/N0 obtained from the SM, DWOSMC and DSMC 
methods, and the corresponding normalized computation time  , for Case I.  

  
 
 

 
 
Fig. 3  Evolution of particle number distributions obtained from the sectional (solid line), 
DWOSMC (scattered solid points) and DSMC (scattered unshaded points) methods for Case I. 
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(a) (b) 
Fig. 4   Time evolutions of (a) N/N0 and V/V0 and (b) particle number distributions obtained from 
the SM (solid line) and DWOSMC method (scattered solid points) for Case II. 
 

 

 

 

  

(a) (b) 

Fig. 5  Time evolutions of particle volume density distributions of (a) A-component and (b) 
B-component obtained from the SM (solid line) and DWOSMC method (scattered solid points) for 
Case II. 
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(a) (b) 

Fig. 6  Time evolution of (a) N/N0 and V/V0 and (b) particle number distributions obtained from the 
SM (solid line) and DWOSMC (scattered solid points) for Case III. 

 
 
 
 

  

(a) (b) 

Fig. 7   Particle volume density distributions of q1,0 and q0,1 for simulation times (a) t = 60 s and 
(b) t = 200 s obtained from the SM (solid line) and DWOSMC method (scattered solid points) for 
Case III. 
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(a) (b) 

Fig. 8   Time evolution of (a) N/N0 and V/V0 and (b) particle number distributions obtained from 
the SM (solid line) and DWOSMC method (scattered solid points) for Case IV. 

 

 

 

  

(a) (b) 

Fig. 9  Particle volume density distributions of q1,0 and q0,1 for simulation times (a) t = 20 s and 
(b) t = 200 s obtained from the SM (solid line) and DWOSMC method (scattered solid points) for 
Case IV. 
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(a) (b) 

Fig. 10   Time evolution of (a) N/N0 and V/V0 and (b) particle number distributions obtained from 
the SM (solid line) and DWOSMC method (scattered solid points) for Case V. 

 
 
 

  

(a) (b) 

Fig. 11   Particle volume density distributions of (a) q1,0 and (b) q0,1 for simulation times t =10 
s and t =100 s obtained from the SM (solid line) and DWOSMC method (scattered solid points) 
for Case V. 
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(a) (b) 

Fig. 12   Time evolution of (a) N/N0 and V/V0 and (b) particle number distributions obtained 
from the SM (solid line) and DWOSMC method (scattered solid points) for Case VI. 

 
 
 

  

(a) (b) 

Fig. 13   Particle volume density distributions of (a) q1,0 and (b) q0,1 over simulation time t=10s 
and 100 s obtained from the SM (solid line) and DWOSMC method (scattered solid points) for 
Case VI. 
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(a) (b) 

  

(c) (d) 

 
Fig. 14   Dimensionless bivariate compositional distributions observed at different simulation times t 
obtained from the DWOSMC method for Case VI. 

 

 
 
Fig. 15  Time evolution of the relative error  (%) for N/N0 obtained from the DWOSMC method 
for different cases.  
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List of Table 

 
 

      τ  
 Case 

Methods  

SM DWOSMC 

I 1.0 5.4 

II 63.5 22.4 

III 101.0 24.2 

IV 115.1 24.4 

V 177.2 25.5 

VI 190.1 28.7 
 
Table 1.  Normalized computational time τ derived from different cases using the SM and 
DWOSMC method. 

 
 
 
 

 
 




