
On a submerged wave energy converter with
snap-through power take-off

Lixian Wanga,b,c,∗, Hui Tangc, Yanghua Wud

aKey Laboratory of High Performance Ship Technology (Wuhan University of Technology),
Ministry of Education, China

bDepartments of Naval Architecture, Ocean and Structural Engineering, School of
Transportation, Wuhan University of Technology, China

cDepartment of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon,
HKSAR, China

dSchool of Mechanical & Aerospace Engineering, Nanyang Technological University,
Singapore 639798, Singapore

Abstract

This paper investigates the performance of a bistable snap-through power take-

off (PTO) operating inside a submerged wave energy converter (WEC). The

equation of motion of the surging WEC is derived in the time domain using the

Euler-Lagrange equations. The dynamic response of the WEC in regular waves

is studied first. It is found that the wave amplitude has a significant impact

on the energy conversion efficiency with the proposed energy extraction mech-

anism. With larger waves impacting on the WEC, the conversion efficiency of

the present nonlinear PTO increases significantly. Three response regimes, i.e.

local oscillation, aperiodic snap-through, and periodic snap-through, of the non-

linear PTO system are observed with various wave amplitudes. This nonlinear

feature is quite different from the linear PTO mechanism that is independent

of the wave amplitude. Further, the dynamic response of the nonlinear WEC

subjected to irregular wave sea conditions is investigated. Parametric studies

have been carried out to determine the optimum operating conditions of the

bistable device in order to maximize the wave energy extraction. The utiliza-

tion of the snap-through PTO can enhance the efficiency of the WEC over its
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linear counterpart in irregular waves.

Keywords: Nonlinear wave energy converter, Submerged cylinder,

Snap-through PTO, Efficiency, Two-body system

1. Introduction

Renewable energy is energy that comes from resources that are replenished

continuously such as the sun, wind, ocean current and wave. These sources of

energy have been explored globally as conventional sources of energy such as

fossil fuel are limited and will be depleted in the foreseeable future. Furthermore,5

conventional sources of energy create pollution and carbon dioxide emission,

posing a severe threat to the environment. Hence, it is vital to find a reliable and

clean substitution for sustainable development. Compared with other renewable

energy such as wind and solar energy, wave energy is superior in terms of energy

density and stability [1, 2].10

To extract wave energy, various technologies have been proposed since the

1970s, which have been well reviewed in Refs. [1–3], just naming a few. Based on

the working principle, wave energy converters can be categorized as oscillating

water column, overtopping devices, and oscillating body systems. Most of the

oscillating water column wave energy converters (WECs) are located nearshore15

while the oscillating body systems are often deployed in deep water (>40 m),

where wave energy is more intensive. Among the oscillating-body based WECs,

the oscillating body can be either floating (e.g. [4–7]) or submerged (e.g. [8–

14]). Compared with floating WECs, submerged WECs are superior in terms

of survivability during sea storms when they are located offshore in deep water20

[15]. Submerged WECs such as the Bristol Cylinder device invented by Evans

et al. [9] have been studied extensively [8, 10, 14]. Advantages of the Bristol

Cylinder WEC include shedding excessive power levels, reducing excessive wave

loads, and avoiding “end stop” problems. Recently, Evans & Porter [11] and

Crowley et al. [12, 13] further enhanced the efficiency of the submerged WEC25

technologies.
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Generally, an efficient wave energy extraction device is designed by being

resonant at the incident wave frequency. However, there are two major dif-

ficulties for this kind of resonant WECs: one is that the response efficiency

curve is narrow banded of wave periods if it is resonant at a certain frequency;30

the other is that resonant WECs are required to be of large size for a typical

Northern Atlantic wave period (10 s). Therefore, the irregularity in the ocean

waves will pose a serious problem for such WECs. To overcome these chal-

lenges, many studies were carried out by using control strategies such as the

linear/nonlinear passive control [16], latching control [17–19], declutching con-35

trol [20], and reactive control [21], etc. Various control techniques dedicated

to increasing power production of WECs have been summarized in Ref. [22].

However, most control strategies (e.g. latching and declutching control) require

that the wave information is known as a prerequisite in order to predict the

wave forces acting on the WECs. The performance of these control techniques40

may be significantly diminished if the prediction deviation of wave informa-

tion of real sea state is considered [23]. Besides, additional sensors, activators

and processing elements are needed to implement these control strategies, thus

leading to high installation costs and maintenance difficulties. Apart from con-

trol strategies, multi-resonant devices [11, 12] or nonlinear snap-through power45

take-offs (PTOs) [5, 24] were also used to enhance WEC efficiency. Evans &

Porter [11] introduced a multi-resonant WEC consisting of a submerged buoy-

ant circular cylinder tethered to the sea bed by inextensible mooring lines. An

internal mass-spring-damper PTO is located within the cylinder. In this way, a

two-body wave energy converter is created. This allows the use of the internal50

mass to further improve the performance of the WEC [25]. The idea behind this

concept is to tune devices to be resonant at a broader range of incident wave

periods in realistic sea state. Inspired by this, Crowley et al. [12] introduced

a novel internal PTO device comprising multiple pendulums within the sub-

merged cylinder. Apart from multi-resonant PTOs, Zhang and his co-workers55

[4, 5] initiated the use of the nonlinear snap-through PTO to increase the power

extraction of a heaving WECs. The snap-through mechanism is made up by
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two oblique linear springs and a linear damper connected to a mass. Details of

this bistable mechanism are reported in [26]. It was found that the nonlinear

PTO system outperforms its linear PTO counterpart in waves of relatively low60

frequencies. Similar conclusions were made in Ref. [24] by using other types of

bistable PTOs. In these bistable PTO based WECs, the floating buoy itself is

used as the mass experiencing snap-through.

Inspired by the above nonlinear PTO studies, in this paper, we proposed

a submerged cylinder WEC containing an internal mass-spring-damper snap-65

through PTO, as shown in Fig. 1. To investigate the performance of this

two-body system WEC, the equations of motion are derived in the time domain

using the Euler-Lagrange equations. Instead of the frequency-domain method,

a time-domain numerical method using fourth-order predictor-corrector Adams-

Bashforth-Moulton method [27] is adopted to solve the system of ordinary dif-70

ferential equations. The performance of this WEC subjected to either regular

or irregular waves is studied.

2. WEC with snap-through PTO

As shown in Fig. 1, the proposed WEC consists of a submerged circular

cylinder, a mooring line and an internal PTO mechanism. The same as the75

submerged WECs in the work of Evans & Porter [11] and Crowley et al. [12],

this device is assumed to span a narrow wave tank. So the problem can be

treated as two dimensional and the submerged cylinder is of unit length in the

third direction. The cylinder is selected such that its buoyancy is larger than

its weight. As such, the mooring line connecting the cylinder center and a fixed80

pivot is taut and the cylinder is restrained to pitch around this pivot. Located

inside the cylinder is a PTO that comprises of a mass-spring-damper system.

Different from the simple mass-spring-damper system, the present PTO consists

of two oblique linear springs connecting to an internal mass. This arrangement

yields a nonlinear restoring force acting on the mass. Due to this nonlinear85

force, two stable equilibrium positions exist for the internal mass [26]. It will
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thus oscillate around one of the two stable equilibrium positions if the motion is

small, and oscillate between the two stable equilibrium positions if the motion

is large, indicating a snap-through motion.
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Figure 1: Submerged cylinder WEC with the nonlinear PTO

3. Mathematical formulations90

In order to investigate the performance of the proposed WEC, the dynamic

response of this WEC subjected to incident waves is analyzed. The present WEC

is a two degree-of-freedom dynamic system: the pitch motion of the submerged

cylinder and the horizontal surge motion of the internal mass relative to the

cylinder. Assume that the pitch angle of the cylinder is small, the vertical force

acting along the mooring line balances the difference between the buoyancy and

the gravity of this WEC. In this study, this difference is assumed in the same

order with the buoyancy acting on the cylinder (see Section 4.1). With the small-

motion assumption, the wave forces are not comparable with the buoyancy.

Thus, the mooring line keeps taut and its length does not vary during the

motion of the cylinder. The heave of the cylinder is of second-order and thus

can be neglected in the present analysis. To deal with these coupled motions,

the equations of motion are readily derived from the Euler-Lagrange equations.

θ and x are selected as two generalized coordinates, representing pitch of the

submerged cylinder and relative surge of the internal mass, respectively. When
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the aforementioned snap-through based PTO is incorporated into the submerged

cylinder, as depicted in Fig. 1, the potential energy Ve(x) stored in the new

system is

Ve(x) = s0

(√
x2 + l2 − l0

)2
(1)

and the kinetic energy Te(θ, x) carried by this system is

Te(θ, x) =
1

2
m(ẋ+ Lθ̇)2 +

1

2
ML2θ̇2 (2)

where s0 is the stiffness constant of the springs, l0 their original length, l the

half distance between the two ends of springs that are fixed on the cylinder, m

the internal mass, L length of the mooring line, M the mass of the submerged

cylinder per unit length. ẋ and θ̇ denote the horizontal velocity of the internal

mass and the angular velocity of the submerged cylinder, respectively. In the

above two equations, Eq. 1 represents the elastic potential energy stored in the

two oblique springs of the internal PTO. Note that since the heave of the cylinder

is ignored in this study, the gravitational potential energy is omitted. The second

equation, i.e. Eq. 2, denotes the kinetic energy stored in both the internal mass

(m) and the submerged cylinder (M). Similar to [11], in the present study

the cylinder is forced into horizontal surge motion in the framework of small-

amplitude linearized theory, thus the rotational kinetic energy is not taken into

account in Eq. 2. By applying the Euler-Lagrange equations, the equations of

motion for this system are

(m+M)L2θ̈ +mLẍ+ (Mw −M −m)gLθ = FwaveL (3)

and

mLθ̈ +mẍ+ cẋ+ 2s0

(
1− l0√

x2 + l2

)
x = 0 (4)

where ẍ and θ̈ denote the horizontal acceleration of the internal mass and the

angular acceleration of the submerged cylinder, respectively. The damping of

the damper in the internal PTO is represented by c. The last term on the left

hand side of Eq. 3 describes the restoring force exerted by the mooring line,

which is the horizontal component of the tension force in the mooring line. The95
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mooring tension force is estimated from the force balance involving the buoyancy

Mwg(≡ ρπR2g) and gravities of the submerged cylinder and the internal mass.

Fwave on the right hand side of Eq. 3 represents the horizontal wave force acting

on the submerged cylinder.

3.1. Wave energy converter equipped with snap-through PTO in regular waves100

In order to determine the wave force Fwave due to normally incident regular

waves in deep water, linear wave theories are applied. As such, the present

problem is simplified as a linear superposition of a wave diffraction problem

and a wave radiation problem. The total horizontal wave force can be obtained

through

Fwave ≡ Fex + Frad (5)

where Fex and Frad represent wave exciting force and wave radiation force, re-

spectively. The wave exciting force Fex can be calculated by using the Haskind’s

relationship [28]: its magnitude for a regular incident wave of amplitude A and

frequency ω can be written as

|Fex(ω)| = A

√
ρg2B11(ω)

ω
(6)

where B11 denotes the wave damping of the submerged cylinder in the horizontal

direction. Therefore, the wave exciting force can be expressed as

Fex(t) = |Fex| cos(ωt) (7)

Since there is a nonlinear term appearing in Eq. 4, the wave radiation

force cannot be calculated by assuming constant added mass and hydrodynamic

damping. Instead, the free-surface memory effect has to be included. Therefore

the resulting wave radiation force Frad can be written as [29]

Frad(t) = −A11(∞)Lθ̈ −
∫ t

−∞
K11(t− τ)Lθ̇(τ)dτ (8)

where A11(∞) denotes the infinite-frequency limit of the frequency-dependent

added-mass. The kernel in the convolution integral on the right hand side of
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Eq. 8 is calculated by [30]

K11(t) =
2

π

∫ ∞
0

B11(ω) cos(ωt)dω (9)

The kernel can be determined if the frequency-dependent damping coefficient

B11 is known. We use the multipole expansion method [31] to calculate both

the added-mass and damping coefficients of the submerged cylinder for wave

frequencies (0,∞). At both frequency limits, i.e., ω → 0 and ω → ∞, B11(ω)

are essentially zero [32]. To calculate A11(∞), the Kramers-Kronig relations [33]105

are used. Given the added-mass coefficient at a finite frequency ω, A11(ω), and

damping coefficients over a range of frequencies (0,∞), the infinite-frequency

limit of the frequency-dependent added-mass A11(∞) can be obtained. In ad-

dition, the free-surface memory effect shown in the convolution integral in Eq.

8 decays rapidly with time after a few tens of seconds [34]. Therefore, both110

the integration intervals in Eqs. 8 and 9 can be replaced by finite values. This

method is adopted in the present simulations since it is able to accelerate the

computation of integration without loss of accuracy.

After both the wave exciting force Fex and wave radiation force Frad are

determined, the horizontal wave force Fwave acting on the submerged cylinder

is sought by using Eq. 5. Substituting Eqs. 5, 7, and 8 into Eq. 3, the equations

of motion (Eqs. 3 and 4) for the WEC system can be rewritten into matrix form

 [m+M +A11(∞)]L2 mL

mL m

 θ̈

ẍ

+

 0 0

0 c

 θ̇

ẋ

+

 (Mw −M −m)gL 0

0 2s0

(
1− l0√

x2+l2

)  θ

x

 =

 Fex(t)L−
∫ t
−∞K11(t− τ)L2θ̇(τ)dτ

0


(10)

With Eq. 10, the dynamic response of the WEC in regular waves can then

be solved in the time domain. The fourth-order Adam-Bashforth-Moulton inte-

gration method is applied to solve the second-order ordinary differential Eq. 10.

Once the time history of the internal mass velocity (ẋ) is obtained, the average
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extracted power by the internal PTO over a time interval of length τ can be

evaluated using

Pavg =
1

τ

∫ τ

0

cẋ2dt (11)

After obtaining the average extracted power, the efficiency of the present WEC

is calculated using

E =
Pavg
Pw

(12)

where Pw is the power carried by the incident waves. For a regular incident wave

of amplitude A and frequency ω in deep water, the wave power is computed by

Pw = ρA2g2/4ω (13)

Based on the above analysis, the efficiency of the present WEC in regular

waves depends on 13 parameters, i.e., L, D, R, M , m, s0, c, l0, l, ω, A, ρ

and g. Here D is submergence of the submerged cylinder. According to the

Buckingham Pi theorem, 10 independent non-dimensional parameters can be

identified to determine the power conversion efficiency

E = f(L′, D′,M ′,m′, s′0, c
′, l′0, γ, kR, kA) (14)

where L′ = L/R, D′ = D/R, M ′ = M/πρR2, m′ = m/πρR2, s′0 = s0/πρgR,

c′ = c/πρ
√
gR3, l′0 = l0/R, and γ = l/l0. The last two non-dimensional quan-115

tities, kR and kA, represent the non-dimensional incident wave frequency and

steepness, respectively, where k is wave number. Although the total wave force

Fw is not listed as an independent parameter, it will be non-dimensionalized as

F ′w = Fw/πρgR
2 for convenience. The primes in Eq. 14 denote non-dimensional

values of each quantity and, for the sake of simplification, they will be omitted120

hereafter.

3.2. Wave energy converter equipped with snap-through PTO in irregular waves

3.2.1. Wave spectrum

In this study, only one-directional normally incident irregular wave are con-

sidered and the water depth is assumed infinite. To describe the irregular waves,
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a wave spectrum which shows the distribution of wave energy as a function of

frequency is often used. In this study, the Pierson-Moskwitz wave spectrum

for fully developed sea is chosen. The energy density for this wave spectrum is

defined by [35]

SPM (ω) =
0.3125

2π
H2
sTp

(
ωTp
2π

)−5
exp

[
−5

4

(
ωTp
2π

)−4]
(15)

in which Hs and Tp denote the significant wave height and peak wave period,

respectively. Assume that most of the energy in the above wave spectrum is

distributed in the frequency range (ωL, ωH) and it is divided into a sequence of

N elements such that

∆ω = (ωH − ωL)/N, ω̂i = (ωi−1 + ωi)/2,
1

2
A2
i = S(ω̂i)∆ω (16)

in which Ai denotes the amplitude of the i-th wave component for frequency

ω̂i. In this study, it is assumed that all the wave components propagate towards

the WEC in one-direction. Thus, the free surface elevation can be obtained by

summing up all of the wave components without considering wave direction

η(t) =

N∑
i=1

Ai cos (ω̂it+ εi) (17)

where εi is the phase of the i-th wave component and is chosen randomly between

0 and 2π. To illustrate the random waves, the wave spectrum and associated125

wave elevation of a random wave with significant wave height Hs = 4 m and

peak wave period Tp = 10 s are plotted in Figs. 2(a) and 2(b), respectively.

10



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.5

1.0

1.5

2.0

2.5

S P
M

   
(m

2
s)

(rad/s)

(a) wave spectrum

0 400 800 1200 1600 2000
-4

-3

-2

-1

0

1

2

3

4

  (
m

)

t  (s)

(b) wave elevation

Figure 2: A random wave with significant wave height Hs = 4 m and peak wave period

Tp = 10 s
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3.2.2. Equations of motion

Most formulations on the equations of motion of the above WEC in irregular

waves are the same as those for regular waves. The only difference between the

two scenarios is the calculation of the wave force. In irregular waves, the wave

exciting force is written as

Fex(t) =

N∑
i=1

Γex(ω̂i)Ai cos (ω̂it+ ϕi + εi) (18)

where Γex(ω̂i) is the wave excitation force coefficient and ϕi is the phase response

of the wave excitation force for the ith regular wave component. Using Eq. 6,130

the wave excitation coefficient is given by Γex(ω̂i) =
√
ρg2B11(ω̂i)/ω̂i.

In irregular waves, wave loads are functions of significant wave height Hs and

peak wave period Tp. Therefore, the power conversion efficiency is a function of

the following parameters:

E = f(L′, D′,M ′,m′, s′0, c
′, l′0, γ,H

′
s, T

′
p) (19)

Note that Hs and Tp in Eq. 19 are non-dimensionalized as H ′s = Hs/R and

T ′p = Tp/
√
R/g, respectively. The primes in Eq. 19 are also omitted hereafter

for simplification, as done for Eq. 14.

When calculating the efficiency of WEC in irregular waves by Eq. 12, the

power carried by irregular waves defined by the Pierson-Moskwitz wave spec-

trum is computed by

Pw =
ρg2

2

∫ ∞
0

ω−1SPM (ω)dω (20)

4. Results and discussions135

4.1. Model validation

To validate the present modeling framework, the time-domain solution is

validated by comparing its results with the frequency-domain based results for

a simplified case, i.e., a tethered, submerged cylinder equipped a linear PTO

inside. For this simplified case in regular waves, the last term on the left hand140
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side of Eq. 4 is simply replaced by 2s0x. The frequency-domain analysis is

described in detail in the appendix. By adopting the WEC parameters of a

coupled mass/spring/damper system in [11], L = 3, m = 0.6, M = 0.15, and

D = 1.25 are used for the present WEC. Moreover, this WEC is tuned to achieve

its maximum efficiency (i.e., 50% [8, 12]) at the wave frequency k0R = 0.7. The145

tuned frequency is used to determine the spring stiffness and damping of the

linear PTO mechanism with Eqs. A.13 and A.14, respectively. The simulation

results including power extraction efficiency and the motion amplitudes are

plotted in Figs. 3 and 4, respectively. It can be seen that the time-domain

method produces the same results as using the frequency-domain method. In150

addition, observed from Fig. 4, the amplitudes of the cylinder and internal mass

motions are found in the same order of the wave amplitude. This confirms the

validity of the small-amplitude oscillation assumption, and hence the feasibility

of applying the present time-domain method to the investigation of the WEC

equipped with the nonlinear PTO mechanism.155
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Figure 3: Comparison of efficiencies of the WEC between the present time-domain and

frequency-domain methods for the linear PTO
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Furthermore, from the linear PTO analysis, a series of efficiency curves a-

gainst tuned wave frequencies k0R can be obtained. Figure 5 shows these effi-

ciency curves with tuned wave frequencies ranging from 0.2 to 0.7. When the

tuned frequency is set as k0R = 0.7, the efficiency reaches about its theoretical

maximum (50%) over a broad range of frequencies (from kR = 0.6 to 1.2). This160

is because the WEC is able to achieve multiple resonances with the tuned wave

frequencies k0R = 0.7 [11]. However, the wave frequency (kR) of the realistic

sea situation is usually located far from the kR range of [0.6, 1.2]. For example,

taking T = 10 s as a typical peak wave period in the northern Atlantic and

R = 5 m as the radius of the submerged cylinder, the corresponding dimension-165

less peak wave frequency is kR = 0.2, much smaller than the tuned frequency

k0R = 0.7. Consequently, the efficiency of this WEC with the linear PTO is as

low as 3.2% with the typical peak wave period T = 10 s. In order to improve the

efficiency of the WEC, the nonlinear PTO mechanism shown in Fig. 1 instead

of the linear PTO is proposed in this study.170
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Figure 5: Efficiency varying with wave frequency for the linear PTO tuned to different wave

frequencies
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4.2. The nonlinear WEC in regular waves

As the first step, the power conversion efficiency of the nonlinear WEC in

regular waves is studied. As revealed in Eq. 14, this efficiency is a function

of the input wave parameters kA and kR. Note that kA shall be smaller than

0.01π to satisfy the small-amplitude wave assumption. After carrying out the175

time convergence study, the time step dt = T/50 is found appropriate and is

therefore used in the ensuing simulations.

Before calculating the efficiency of the WEC using Eq. 12, we first need

to determine the average power extracted using Eq. 11. As stated by [36], it

is necessary to select a proper time interval τ in Eq. 11. This is because the180

average power extracted in the case of aperiodic snap-through (Figs. 8(b) and

9(c)) may not give a converged value. In this study, the simulation lasts for

200T . For the calculation of the averaged power, the numerical results of the

last 100T is used in order to avoid the initial transient effects. In Fig. 6, the

average power extracted by the case of aperiodic snap-through is plotted against185

time interval τ . In this plot, the convergence bounds of ±5% (red horizontal

lines) of the final value (at τ/T = 100) are also shown. It is shown that the

selected time interval 100T is sufficient to settle the averaged power inside the

5% bound. Therefore, this time interval is used in Eq. 11 to compute the

average power extracted by the WEC in the following simulations.190
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Figure 6: Convergence of average extracted power calculated with various lengths of time

interval: regular waves of kA/0.01π = 0.5 and kR = 0.2

Before the studies on the effects of wave parameters, we first investigate

effects of the nonlinear snap-through parameters l0 and γ on the performance of

the WEC. Three tuned wave frequencies have been considered including k0R =

0.2, 0.4, and 0.7, which are chosen based on the efficiency curves for the linear

PTO shown in Fig. 3. The low tuned frequency k0R = 0.2 is selected to195

represent the single-peak, narrow-banded efficiency curve, while the high tuned

frequency k0R = 0.7 is selected to represent a broad-banded efficiency curve.

The amplitude and frequency of the regular wave are fixed at kA/0.01π = 0.5

and kR = 0.4, respectively. Both the snap-through PTO parameters γ and l0

vary with an interval of 0.1.200

The variations of efficiency with different nonlinear PTO parameters l0 and

γ are plotted in Fig. 7. It is seen that when l0 is larger than 0.3, the efficiency

variation with l0 is within 5% for all the three tuned frequencies. This shows

that the efficiency of the WEC is insensitive to the original length of the oblique

springs when l0 exceeds 0.3. When l0 is less than 0.3, the effect of l0 on the205
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efficiency differs with the tuned frequency. For example, the efficiency increases

with the increase of l0 with the medium tuned frequency k0R = 0.4 while this

is not true with the low and high tuned frequencies of k0R = 0.2 and 0.7,

respectively. Compared with l0, the efficiency of the present WEC is found

more sensitive to γ. With the low and medium tuned frequencies k0R = 0.2210

and 0.4, the efficiency generally decreases with the increase of γ ranging from

0.1 to 0.9, except that the efficiency shows fluctuations with γ when l0 is as

small as 0.1. While with the high tuned frequency k0R = 0.7, the efficiency

curve appears a peak within the considered range of γ. With l0 = 0.1, the

peak efficiency Emax = 41% occurs at γ = 0.5 while for other values of l0, the215

efficiency peak shifts to γ = 0.6. From Fig. 7, efficiency of the present WEC is

more sensitive to γ rather than l0 when the WEC is subjected to regular waves.
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Figure 7: Effects of the nonlinear PTO parameters l0 and γ on the power extraction efficiency

of the WEC in regular waves of kR = 0.4 and kA/0.01π = 0.5 with different tuned frequencies
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4.2.1. Effect of wave amplitude kA

In this section, the effect of wave amplitude kA on the efficiency of the

nonlinear snap-through WEC is studied. Except the wave parameters (kA and220

kR), the other parameters on the right hand side of Eq. 14 are set the same

as those in the convergence test, i.e., L = 3, m = 0.6, M = 0.15, D = 1.25,

γ = 0.5, l0 = 0.1, s0 = 0.279, and c = 0.156. The wave amplitude kA of regular

waves varies from 0.1 to 0.9 of its maximum allowed value (=0.01π). Three

different wave frequencies, i.e. kR = 0.2, 0.4, and 1.0, are considered. Figures 8225

∼ 10 present the time responses of the internal mass’ relative surge displacement

x, as well as the phase diagrams describing the relation between ẋ and x. By

increasing kA at the wave frequency kR = 0.2, three distinct response regimes

are observed in Fig. 8. At small wave amplitude such as kA/0.01π = 0.1

(see Fig. 8(a)), the internal mass oscillates about one of its stable equilibrium230

positions that are depicted by two red dots.
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Figure 8: Time responses (left) and phase diagrams (right) of the internal mass to regular

waves of frequency kR = 0.2

21



190 192 194 196 198 200
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

x/
R

t/T

 kA/0.01 = 0.1

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

v/
(R

/g
)0.

5

x/R

(a) kA/0.01π = 0.1

190 192 194 196 198 200
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

x/
R

t/T

 kA/0.01 = 0.5

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

v/
(R

/g
)0.

5

x/R

(b) kA/0.01π = 0.5

190 192 194 196 198 200
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

x/
R

t/T

 kA/0.01 = 0.9

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

v/
(R

/g
)0.

5

x/R

(c) kA/0.01π = 0.9

Figure 9: Time responses (left) and phase diagrams (right) of the internal nonlinear PTO to

regular waves of frequency kR = 0.4
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Figure 10: Time responses (left) and phase diagrams (right) of the internal nonlinear PTO to

regular waves of frequency kR = 1.0
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When the wave amplitude increases to a medium amplitude such as kA/0.01π =

0.5, the internal mass snaps aperiodically between the two stable equilibrium

positions, as shown in Fig. 8(b). This aperiodic response is also called as

intermittent snap-through. Further increase of the wave amplitude leads to the235

occurrence of the internal mass undergoing periodic snap-through. Figure 8(c)

shows that with the wave amplitude kA/0.01π = 0.9, the internal mass produces

large constant response loops enclosing both stable equilibrium positions. This

result reveals that increasing the wave amplitude of regular waves will lead to

three response regimes in order, i.e., local oscillation, aperiodic snap-through,240

and then periodic snap-through.

Apart from the low wave frequency kR = 0.2, results from high wave fre-

quencies kR = 0.4 and 1.0 are also obtained, as shown in Figs. 9 and 10,

respectively. Unlike the three response regimes observed at the wave frequency

kR = 0.2, only two response regimes of the internal mass are shown for the245

wave frequency kR = 0.4 with the given range of wave amplitude. With the

largest wave amplitude, i.e. kA/0.01π = 0.9, only the aperiodic snap-through

takes place as shown by the phase diagram in Fig. 9(c). With smaller wave

amplitudes such as kA/0.01π = 0.5 or 0.1, the local oscillation around one sta-

ble equilibrium position occurs, as revealed by Figs. 9(a) and 9(b). When the250

wave frequency becomes kR = 1.0, the increase of wave amplitude within the

investigated range will not change the nature of response but only increase the

amplitude of the response orbits. This is clearly illustrated in Fig. 10 where

only local oscillation happens for all wave amplitudes. From Figs. 8 ∼ 10, it

is concluded that the effect of wave amplitude on the dynamic response of the255

internal PTO is sensitive to the wave frequency.

From above, it is seen that the wave amplitude plays a significant role on the

dynamic response of the internal nonlinear PTO. Consequently, the efficiency

of the present WEC shall also be very dependent on the wave amplitude. The

efficiency of the present WEC at various wave amplitudes is plotted in Fig. 11 in260

which the efficiencies with the linear PTO at the three wave frequencies are also

shown in horizontal dash lines of different colors. Unlike the linear PTO, the
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efficiency with the nonlinear snap-through PTO varies with the wave amplitude.

At the small frequency kR = 0.2, the present snap-through WEC is able to

extract more power than its linear counterpart over the wave amplitude range.265

For example, its efficiency is about 6 times of its linear counterpart with the

wave amplitude kA/0.01π = 0.77. The great enhancement of power conversion

efficiency is due to the periodic snap-through of the internal mass in the PTO

as shown in Fig. 8(c). However, at higher frequencies such as kR = 0.4, the use

of the nonlinear PTO is found to reduce the power extraction when the wave270

amplitude reaches a threshold. When the wave amplitude kA/0.01π exceeds

0.66, it performs worse than the linear PTO. When the wave frequency further

increases to kR = 1.0, the power extraction by using the nonlinear PTO is lower

than that of the linear one over the present range of wave amplitude.

On the other hand, the response regimes are also reflected on the efficiency275

curve apart from the dynamic responses shown in Figs. 8, 9, and 10. At

wave frequency kR = 1.0, the efficiency curve varies smoothly within the wave

amplitude range from Fig. 11. This is because at this frequency only the

local oscillation takes place without regime transition (see Fig. 10). While

for the frequency kR = 0.4, a transition from local oscillation to aperiodic280

snap-through is noticed around the wave amplitude threshold kA/0.01π = 0.66.

Therefore, there appears an abrupt change of power conversion efficiency near

this threshold, as shown in Fig. 11. For the case of kR = 0.2, two transitions

of response regimes are seen from Fig. 8. These two transitions occurs around

kA/0.01π = 0.33 and 0.65 as seen from the efficiency curve.285
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Figure 11: Efficiency of the nonlinear WEC varying with wave amplitude with regular wave

of frequencies kR = 0.2, 0.4, and 1.0

4.2.2. Effect of wave frequency kR

In this section, the effect of wave frequency kR on the nonlinear WEC ef-

ficiency is studied. Again the other parameters on the right hand side of Eq.

14 are fixed the same as those in the convergence test except the wave param-

eters (kA and kR). The wave frequency kR ranges from 0.1 to 2 in this study.290

Similarly to Section 4.2.1, the time histories of the internal mass’ relative surge

displacement x and the phase diagram, ẋ vs. x, are plotted at different kR, as

shown in Figs. 8 ∼ 10. Table 1 summarizes the response regimes for regular

waves with various wave amplitudes (kA/0.01π = 0.1, 0.5, 0.9) and frequencies

(kR = 0.2, 0.4, 1.0). At small wave amplitude such as kA/0.01π = 0.1, only local295

oscillation response regimes are observed for all these frequencies kR = 0.2, 0.4

and 1.0 (see Figs. 8(a), 9(a), and 10(a)). When the wave amplitude increases to

kA/0.01π = 0.5, the wave frequency shows its influence on the response regime.

Both local oscillation and aperiodic response regimes are seen from Figs. 8(b),

9(b), and 10(b). Further increase of the wave amplitude to kA/0.01π = 0.9,300
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Table 1: Response regimes for regular waves with various wave amplitudes and frequencies

kR

kA/0.01π
0.1 0.5 0.9

0.2 Local Oscillation Aperiodic Snap-through Periodic Snap-through

0.4 Local Oscillation Local Oscillation Aperiodic Snap-through

1.0 Local Oscillation Local Oscillation Local Oscillation

three response regimes are observed from Figs. 8(c), 9(c), and 10(c). At the

low frequency kR = 0.2, the snap-through takes place as shown in Fig. 8(c).

From Table 1, it can be concluded that the snap-through is prone to occur in

large-amplitude and low-frequency waves.

The efficiency between the present snap-through WEC and the correspond-305

ing linear WEC is compared at various wave frequencies, as shown in Fig. 12.

It is seen that the present snap-through WEC is able to extract more power

than its linear counterpart at lower frequencies. However, the efficiency be-

comes smaller when the wave frequency is higher than a critical frequency. For

the small wave amplitude kA/0.01π = 0.1, the critical frequency is kR = 0.55.310

Moreover, the efficiency curve with this small amplitude is smooth around the w-

hole frequency range. This is simply because only the local oscillation response

regime exists for the whole range. While for the other two wave amplitudes

(kA/0.01π = 0.5 and 0.9), there appear transitions between different response

regimes when varying wave frequencies.315
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Figure 12: Efficiency of the nonlinear WEC varying with wave frequency with regular wave

of amplitudes kA/0.01π = 0.1, 0.5, and 0.9

4.3. The nonlinear WEC in irregular waves

In this section, the effects of wave parameters of irregular waves including

Hs and Tp on the efficiency of the nonlinear snap-through WEC are investigat-

ed. Before the studies on the effects of wave parameters, effects of the nonlinear

snap-through PTO parameters l0 and γ on the performance of the WEC are320

investigated. Here the significant wave height and peak wave period of the ir-

regular wave are fixed at Hs = 0.8 and Tp = 14, respectively. The variations of

efficiencies with the different nonlinear PTO parameters l0 and γ are shown in

Fig. 13 with the tuned frequency k0R = 0.4. The maximum achievable efficien-

cy with the nonlinear PTO is Emax = 21% which is about 38% higher than that325

with the linear PTO. In this case, the nonlinear snap-through mechanism oper-

ates with l0 = 0.2 and γ = 0.3. Therefore, in the following parametric studies

we fix the system parameters of the present WEC as: s0 = 0.1861, c = 0.0684,

γ = 0.2, l0 = 0.3.
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Figure 13: Effects of the nonlinear PTO parameters l0 and γ on the power extraction efficiency

of the WEC in irregular waves of Hs = 0.8 and Tp = 14 with the tuned frequency k0R = 0.4

4.3.1. Effect of significant wave height Hs330

In this section, the effect of significant wave height Hs on the WEC efficiency

is studied. The dimensionless significant wave height of the irregular wave is

selected to range from Hs = 0.2 to 1.4. Three different dimensionless peak wave

periods, i.e. Tp = 5.6, 14, and 22.4 are considered. Simulations of the WEC

equipped with the linear PTO are also carried out for comparison. The efficiency335

of the WEC in waves of various wave significant wave heights Hs is plotted in

Fig. 14. For the linear PTO, very slight efficiency variations are observed. This

is not surprising since for the linear WEC system, i.e., the WEC with the linear

PTO, its efficiency is independent on the incident wave amplitude. However,

as for the nonlinear PTO, the change of the efficiency with various significant340

wave heights is significant. For example, along the Tp = 5.6 curve the efficiency

of the WEC with Hs = 0.2 is about 54% larger than that with Hs = 1.4. For

both Tp = 14 and 22.4 cases, an efficiency peak appears within the selected

range of significant wave height, i.e., 21% and 6.4%, respectively. For the case

of Tp = 5.6, the efficiency of the WEC with the nonlinear PTO monotonically345
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decreases with the significant wave height. On the other hand, the efficiency of

the WEC with the nonlinear PTO is found larger than that with the linear PTO

for both Tp = 14 and 22.4 cases. The maximum efficiency enhancement by use

of the snap-through PTO is about 37.3% and 157% respectively. However, for

the case of Tp = 5.6, the linear PTO has greater efficiency than the nonlinear350

counterpart. The maximum difference is about 6.6%. Therefore, the use of the

snap-through mechanism is more preferable with higher peak wave period.
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Figure 14: Effect of the significant wave height on the efficiency of the WEC

4.3.2. Effect of peak wave period Tp

In this section, the effect of peak wave period Tp on the WEC efficiency is

studied. The dimensionless peak wave period of the irregular wave is selected355

to range from Tp = 5.6 to 22.4. Three different dimensionless significant wave

heights, i.e. Hs = 0.2, 0.8, and 1.4 are considered. Results of the efficiency

varying with peak wave period Tp are shown in Fig. 15. It is seen that the

efficiency of WEC with the linear PTO is sensitive to the peak wave period

rather than the significant wave height. This is also illustrated from Fig. 14.360

For the efficiency curve of the WEC containing the linear PTO, there appears
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a peak at Tp = 8.4. For the case of the nonlinear PTO, both the significant

wave height and the peak wave period influence the efficiency of the WEC.

Moreover, the efficiency curves show a peak within the studied Tp range. For

both the medium and large significant wave heights (Hs = 0.8 and 1.4), the365

peak efficiency appears at Tp = 11.2, while for the small significant wave height

(Hs = 0.2), the peak efficiency is located at Tp = 8.4. The use of the nonlinear

WEC leads to the peak shift of the efficiency curve.
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Figure 15: Effect of the peak wave period on the efficiency of the WEC

At last, to show the efficiency variation against both Hs and Tp, Table 2

lists the ratio of efficiencies between WECs with the nonlinear and linear PTOs370

(Enonlinear/Elinear) in irregular waves. The significant wave height affects ef-

ficiency in the case of the nonlinear PTO, while it does not affect efficiency in

the case of the linear PTO (see Fig. 14). Moreover, for the nonlinear PTO, the

efficiency of the WEC is more sensitive to the peak wave period compared with

the significant wave height.375
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Table 2: Ratio of efficiencies between WECs with the nonlinear and linear PTOs

(Enonlinear/Elinear) in irregular waves of various significant wave heights and peak wave

periods

Hs

Tp
5.6 8.4 11.2 14 16.8 19.6 22.4

0.2 0.92 0.86 0.85 1.03 1.27 1.52 1.50

0.4 0.88 0.69 0.67 1.08 1.55 1.91 2.33

0.6 0.75 0.56 0.81 1.26 1.73 2.13 2.57

0.8 0.74 0.54 0.87 1.38 1.68 1.93 2.29

1.0 0.65 0.58 0.97 1.33 1.51 1.78 2.08

1.2 0.61 0.64 1.02 1.30 1.47 1.68 1.89

1.4 0.60 0.70 1.06 1.26 1.40 1.57 1.77

5. Conclusions

In this paper, a submerged wave energy converter equipped with a nonlinear

bistable snap-through PTO system is investigated. The equations of motion of

this two DOF system are derived by the Euler-Lagrange equations. To solve

these motion equations, a time-domain numerical method using the fourth-order380

predictor-corrector Adams-Bashforth-Moulton method is adopted. Both regu-

lar and irregular waves conditions are considered and compared with the results

from a linear PTO. Moreover, parametric studies have been carried out to de-

termine the optimum operating conditions of the bistable device in order to

maximize the energy extraction efficiency. Through this study, the major con-385

clusions are listed as follows:

(a) Snap-through of the internal mass in the PTO mechanism is prone to

take place in large-amplitude and low-frequency incident waves;

(b) Three response regimes, i.e. local oscillation, aperiodic snap-through,390

and periodic snap-through, of the nonlinear PTO system are observed under

various wave conditions;
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(c) The present snap-through WEC is able to extract more power than its

linear counterpart in either lower-frequency regular waves or higher peak period

irregular waves;395

(d) The significant wave height affects efficiency in the case of the nonlinear

PTO, while it has no influence on efficiency with the linear PTO. Moreover, the

efficiency of the WEC with the nonlinear PTO is more sensitive to the peak

wave period compared with the significant wave height.

In this study, what we consider is a two-dimensional problem since the hy-400

drodynamic coefficients in two dimensions are available by using the efficient

analytical method, i.e. the multipole expansion method. In the future de-

velopment, the performance of the three-dimensional WEC consisting of a fi-

nite length cylinder and operating in the open sea will be carried out. For

this problem, instead of analytical methods, it is necessary to use commercial405

software such as WAMIT to determine the hydrodynamic coefficients for the

three-dimensional counterpart. Moreover, as seen from Eqs. 14 and 19, the

efficiency of the present WEC is determined by multiple variables. In this s-

tudy, the optimum condition for a nonlinear PTO is determined by fixing all

other parameters. This only leads to sub-optimum conditions. In the future,410

it is necessary to perform multi-variable optimization in order to maximize the

power capture of the present WEC.
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Appendix A. Frequency-domain analysis of a linear PTO inside the520

submerged wave energy converter

In this analysis, a submerged WEC equipped with a linear PTO (shown in

Fig. 1) consisting of a simple spring-mass-damper system will be investigated.

The non-dimensional equations of motion for this WEC are

(m+M +A11)L2θ̈ +mLẍ+B11L
2θ̇ + (1−M −m)Lθ = FexL (A.1)

mLθ̈ +mẍ+ cẋ+ 2s0x = 0 (A.2)

Defining the cylinder’s surge velocity Lθ̇ = Re(Ue−iωt) and the internal mass’

relative horizontal velocity ẋ = Re(ue−iωt), one obtains

(B11 − iωI)U = Fex + imωu (A.3)

−imω(u+ U) + cu+ 2ius0/ω = 0 (A.4)

where I = m+M +A11 − C0/ω
2, C0 = (1−M −m)/L. Thus we have

Zu = imωFex (A.5)

whereRe(Z) ≡ B11c+m2ω2 − Iω2
(
m− 2s0/ω

2
)
, Im(Z) ≡ −ω

[
B11

(
m− 2s0/ω

2
)

+ cI
]
,

and |Fex| = A
√
B11/πω.

The extracted power is calculated by

P =
1

2
c|u|2 (A.6)

The total power carried by the incident wave is

Pw =
A2

4πω
(A.7)

Therefore the power extraction efficiency of the WEC is

E ≡ P

Pw
=

2cm2ω2B11

(B11c+ k1)2 + ω2(k2 + cI)2
(A.8)

where k1 = m2ω2 − Iω2
(
m− 2s0/ω

2
)

and k2 = B11

(
m− 2s0/ω

2
)
.
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Equation A.8 reveals that both s0 and c can be tuned to achieve high effi-

ciency. Note both k1 and k2 are independent of c, and the following

(B11c+ k1)2

c
= B2

11c+ 2B11k1 +
k21
c
≥ 4B11k1 (A.9)

ω2(k2 + cI)2

c
= ω2

(
k22
c

+ 2k2I + I2c

)
≥ 4ω2Ik2 (A.10)

then

E ≤ 2cm2ω2B11

4B11k1 + 4ω2Ik2
(A.11)

The maximum efficiency is achieved when

c2 =
k21
B2

11

=
k22
I2

(A.12)

With Eq. A.12, the optimal spring stiffness and damping can be determined at

a given frequency ω0,

2s0 = mω2
0 −

I(ω0)m2ω4
0

B2
11(ω0) + ω2

0I
2(ω0)

(A.13)

c =
B11(ω0)m2ω2

0

B2
11(ω0) + ω2

0I
2(ω0)

(A.14)

And the maximum efficiency can be determined after some algebra

Emax =
1

2
(A.15)

This result has also been found by other researchers [8, 12]. At this optimal

condition, furthermore, the oscillation amplitudes for both the internal mass

and the submerged cylinder can be determined as∣∣∣ x
A

∣∣∣2 =
m2B11/ωπ

(B11c+ k1)2 + ω2(k2 + cI)2
(A.16)

∣∣∣∣LθA
∣∣∣∣2 =

∣∣∣ x
A

∣∣∣2 [( 2s0
mω2

− 1

)2

+
c2

m2ω2

]
(A.17)
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