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Abstract

In this paper, an immersed boundary-finite difference lattice Boltzmann is proposed
to simulate fluid-structure interaction of viscoplastic fluids. For simulation of the
viscoplastic fluids, the Bingham model without any regularization of the constitu-
tive law was applied. This method is the combination of Finite Difference Lattice
Boltzmann for modelling the fluid motion and the effect of the solid structure is
studied by the immersed boundary method (IBM). The accuracy of the method for
the simulation of viscoplastic fluids has been validated in a lid-driven cavity. In ad-
dition, the fluid structure interaction part was validated by a lid-driven cavity with
an elastic bottom wall. The fluid-structure interaction in the presence of viscoplas-
tic fluids for rigid and elastic cases have been studied in two different examples.
To study the fluid-structure interaction for a rigid body with the viscoplastic fluid,
a rosette-shaped in a lid-driven cavity has been studied. In the case of the elastic
bodies, the lid-driven cavity filled with viscoplastic fluids by the elastic bottom wall
is simulated. In these studies, the yielded/unyielded sections and streamlines have
been depicted for high Rayleigh numbers. The effects of the unyielded development
on the elastic/deformable parts are presented.
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1 Introduction

Fluid-structure interaction (FSI) problems have received increasing attention
in recent years. The deformations of the solid material are in general large
and tightly coupled to the flowing fluid. The solid and fluid components are
also typically incompressible. This type of system is particularly challenging
to simulate because the governing equations are different in the two regions
and the interface location must be clarified. They occur in many fields of
engineering and applied science. In some FSI problems, fluids have complex
rheological, especially viscoplastic manners, e.g. injection molding, food and
chemical industries, blood flows, etc. As we know the elastic structure deforms
due to fluid action; mainly pressure and viscous stress. So, the alteration of
the viscous stress due to the viscoplastic manner makes the problem more
complicated and influences the deformations due to FSI. There are many dif-
ferent methods to study FSI and one of the most practical method among
them is immersed boundary (IB) method [1]. In this introduction, we explain
viscoplastic fluids, the history of viscoplastc fluids in the selected problem
(a lid-driven cavity), Immersed boundary (IB) method, and finally the back-
ground of the applied Finite Difference Lattice Boltzmann method (FDLBM)
are stated.

1.1 Viscoplastic fluids

Viscoplastic fluids form a special sub-class of non-Newtonian fluids in which
the flow field is divided into two regions: the first is an unyielded zone where
the fluid is at rest or undergoes a rigid motion, and the second where the fluid
flows like a viscous liquid. In fact, below a certain stress yield, the medium
enjoys rigidity; above this yield the medium behaves like an incompressible
viscous fluid. Thus, the location and shape of the yield surface(s), i.e. the
interface between these two sets, is also a part of the solution of flow problems
of such fluids. Bingham [2] constituted the viscoplastic fluids based on the
above description as follows:

A(u) = 0, K(τττ) ≤ τy,

τττ =
(
η + τy

K(u)

)
A(u), K(τττ) > τy,

(1.1)

where the viscosity η and the yield stress τy are constant, and the two invari-
ants K(u) and K(τττ) are defined below:

2K2(u) = A(u) : A(u), 2K2(τττ) = τττ : τττ . (1.2)
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where

A(u) = ∇u +∇uT . (1.3)

1.2 Viscoplastic fluids in a lid-driven cavity

Fluid flow behaviors inside lid driven cavities have been the subject of exten-
sive computational and experimental studies over the past years (Ghia et al.
[3], Botella and Peyret [4], Bruneau and Jouron [5], Shahin and Owens [6],
Deng et al. [7], Hou et al. [8]). The lid-driven square cavity flow has been
used as a benchmark problem for many numerical methods as it covers a wide
range of complex hydrodynamics encompassing recirculation, different vortices
structures, singularity, instability, and transition.The lid-driven cavity flow is
the motion of a fluid inside a rectangular cavity created by a constant transla-
tional velocity of one side while the other sides remain at rest. The lid-driven
cavity of visco-plastic fluids have been employed to demonstrate the accuracy
of different methods and regularizations in order to simulate viscoplastic ma-
terials. Sanchez [9] scrutinised a first order operator spilitting method for the
solution of the time dependant variational inequality modeling of Bingham
fluids in a lid-driven cavity. Dean and Glowinski [10] studied computational
methods for numerical simulation of unseteady Bingham viscoplastic fluids
in a lid-driven cavity. The operating splitting method was utilised for the
time-discritization. Mitsoulis and Zisis [11] studied the benchmark problem
of flow in a lid-driven square cavity which was filled with a Bingham fluid.
The the Bingham constitutive equation was modified by the Papanastasiou
model [12]. The constitutive equation was solved together with the conser-
vation equations using the finite element method (FEM) as the Bingham
number varied between Bn = 0 and 1000. It should be noted that just the
creeping fluid (Re=0) was conducted in this study. Neofytou [13] investigated
non-Newtonian fluids with generalised Newtonian constitutive equations us-
ing a numerical scheme based on the finite volume formulation. Among the
studied non-Newtonian fluids, the modified and regularized Bingham model
based on the Papanastasiou model [12] was analysed in a lid-driven cavity.
Vola et al. [14] proposed a numerical method to calculate unsteady flows of
Bingham fluids without any regularization of the constitutive law in a lid-
driven cavity. The strategy was based on the combination of the character-
istic/Galerkin method to cope with convection and of the Fortin–Glowinsky
decomposition/coordination method to deal with the non-differentiable and
nonlinear terms that derive from the constitutive law. The results were pre-
sented for both creeping and non-creeping flows. Huilgol and You [15] studied
incompressible and compressible Bingham fluids in a lid-driven cavity, us-
ing the exact Bingham model for the constitutive equation as the operator-
splitting numerical method was applied to solve the problem. It was indicated
that the variational inequalities for incompressible viscoplastic fluids depends
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largely on the existence of the viscoplastic constraint tensor. Olshanskii [16]
applied semi-staggered finite-difference method to simulate Bingham fluids in
a lid-driven cavity using the exact Bingham model. A special stabilization is
introduced to be achieved optimal approximation properties of the scheme.
Zhang [17] investigated the Augmented Lagrange method for Bingham fluid
flows in a lid-driven square cavity. Equal-order piecewise linear finite element
spaces were applied for both the velocity and the pressure approximations.
A mesh adaptive strategy was also proposed based on the regularity of the
numerical solutions. Aposporidis et al. [18] studied and simulated the Bing-
ham fluid flow problem, considering both the exact and a regularized model
in a lid-driven cavity. They introduced a new formulation for the regularized
Bingham flow equations. In addition, their applied mixed formulation com-
pared to a non-regularized solver based on the Augmented Lagrange method.
Santos et al. [19] investigated the effect of inertia and rheology parameters on
the flow of viscoplastic fluids inside a lid-driven cavity using a stabilized finite
element approximation.The viscoplastic material behavior was simulated by
the de Souza Mendes and Dutra model which is called SMD fluid. The SMD
model is essentially a regularized viscosity function that involves only rheo-
logical properties of the material. The incompressible balance equations were
coupled with the non-linear SMD model and were approximated by a multi-
field Galerkin least-squares method in terms of extra-stress, pressure and ve-
locity.The numerical simulations were validated through the comparison with
literature results, for flows of Bingham fluids. Syrakos et al. [20] studied the
creeping square lid-driven cavity flow of a Bingham plastic as the test case
and the constitutive equation were regularised by the Papanastasiou model.
They utilised the the standard SIMPLE pressure-correction algorithm, which
was used to solve the algebraic equation system that is produced by the finite
volume discretisation. It was shown that using the SIMPLE algorithm in a
multigrid context dramatically improves convergence, although the multigrid
convergence rates were much worse than for Newtonian flows. The numerical
results were compared with reported results of other methods. However, they
noted that the convergence of the method becomes slow at high values of the
Bingham number and the regularisation parameter. In addition, with the use
of a modified multigrid method, the convergence was accelerated considerably
compared to the single-grid SIMPLE method. Syrakos et al. [21] extended
their previous work on the creeping flow of a Bingham fluid in a lid-driven
cavity, to the study of inertial effects, using a finite volume method and the
Papanastasiou regularisation of the Bingham constitutive model. They em-
phasized that the equations become stiffer and more difficult to solve, while
the discontinuity at the yield surfaces causes large truncation errors using the
finite volume method (FVM). It was added that by regularising the Bingham
constitutive equation, it is easy to extend such a solver to Bingham flows
since all that this requires is to modify the viscosity function. In this study,
they attempted to investigate the strengths and weaknesses of such a method
by applying it to the lid-driven cavity problem for a range of Bingham and
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Reynolds numbers (up to 100 and 5000 respectively). By employing techniques
such as multigrid, local grid refinement, and an extrapolation procedure, they
reduced the effect of the regularisation parameter on the calculation of the
yield surfaces. Nevertheless, it was reported that the weakness of FVM be-
comes more noticeable with the rise of the Bingham number. Muravleva [22]
implemented the Uzawa-like algorithm to simulated viscoplastic fluids in a
lid-driven cavity as the exact Bingham model was applied in the simulation.
In addition, the operator-splitting method was used with employing different
time-discretization and space-discretization. The results for the steady-state
problem verified as they compared to those in the literature for the shape and
location of the yield surface.

1.3 Immersed boundary method (IBM)

Peskin [23] introduced the immersed boundary method (IBM) in 1971 when
he studied the flow in heart valves. Peskin and his colleagues applied the
IBM for multifaious problems of biological fluid mechanics [24–29]. In IBM,
Cartesian Eulerian grid points are employed for the solution of governing equa-
tions and Lagrangian points to represent the boundary of immersed objects.
The main idea in this method is applying the physical boundary as a de-
formable elastic fiber with high stiffness. A small deformation or movement
of the boundary will yield a force that tends to restore the boundary back to
its original shape or position. They applied the immersed boundary method
in different problems for Newtonian isothermal fluids flows in the absence
of other external forces. In fact, the immersed boundary method is a mixed
Eulerian–Lagrangian finite difference method for computing the flow interact-
ing with an immersed boundary. Goldstein et al. [30] used a novel technique
related to Peskin’s immersed boundary approach to introduce solid surfaces
into a simulated flow field. The N-S equations permit the presence of an ex-
ternally imposed body force that may vary in space and time. Forces were
chosen to lie along a desired surface and to have a magnitude and direction
opposing the local flow such that the flow was brought to rest on an ele-
ment of the surface. For unsteady viscous flow the direct calculation of the
needed force is facilitated by a feedback scheme in which the velocity was
used to iteratively determine the desired value. They utilized the approach
to simulate 2D flow around cylinders, 3D turbulent channel flow where one
boundary was simulated with a force field, and turbulent channel flow over a
riblet-covered surface. Lai and Peskin [31] presented a formally second-order
accurate immersed boundary method and tested in this paper. It should be
noted the applied force term is a special case of the used force term in the
study of Goldstein et al. [30]. They applied the scheme to simulate the flow
past a circular cylinder and study the effect of numerical viscosity on the ac-
curacy of the computation by comparing the numerical results with those of a
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first-order method. The numerical evidence demonstrated that the presented
scheme had less numerical viscosity and was therefore a better choice for the
simulation of high Reynolds number flows with immersed boundaries. They
applied a Newtonian incompressible fluids flows. Zhu and Peskin [32] reported
the computer simulation of a flapping flexible filament in a flowing soap film
using the immersed boundary method. They studied filament mass and elas-
ticity, gravity, air resistance, and the two wires that bound the flowing soap
film. The incompressible viscous N-S equations, which were used to describe
the motion of the soap film and filament, were discretized on a fixed uniform
Eulerian lattice while the filament equations were discretized on a moving La-
grangian array of points. The interaction between the filament and the soap
film was handled by a smoothed approximation to the Dirac delta function.
The delta function approximation was used not only to interpolate the fluid
velocity and to apply force to the fluid (as is commonly done in immersed
boundary computations), but also to handle the mass of the filament, which
was represented in this study as delta function layer of fluid mass density sup-
ported along the immersed filament. So, in this study, the Lagrangian elastic
force term is the combination of the stretching/compression and the bending
forces. Kim and Peskin [32] extended the IBM to cover the case of a massive
boundary. They solved the N-S equations with a variable mass density. They
proposed a new and simple way to give mass to the elastic boundary and show
that the method can be applied to many problems for which the boundary
mass is important. They proposed the method with the name of ”penalty im-
mersed boundary (pIB) method” to calculate the inertial force and ensure the
numerical stability. They introduced two boundaries, one of them is massive
boundary having all the mass of the elastic immersed boundary, and the other
is a massless boundary. So, they replaced the inertia force with a restoring
force in order to make the two boundaries move close together. Zhu et al.
[34] applied the IBM for Lattice Boltzmann method (LBM) as an alternative
N-S equations solver. They used 3D LBM (D3Q19) within the IBM to sim-
ulate a viscous flow past a flexible sheet tethered at its middle line in a 3D
channel and determine a drag scaling law for the sheet. The added external
force due to IBM in this study was similar to the study of Zhu and Peskin
[32], including the stretching/compression and bending terms. Tian et al. [35]
introduced a modified penalty approach into the flow-structure interaction
solver that combines an immersed boundary method (IBM) and a multi-block
LBM to model an incompressible flow and elastic boundaries with finite mass.
In this study, the inertial force of the thin solid structure is incorporated by
connecting this structure through virtual springs to a ghost structure with
the equivalent mass. Actually, the applied force due to immersed boundary
is similar to the study of the proposed method (pIB) in the study of Kim
and Peskin [32]. To demonstrate the ability of the approach, they studied an
elastic filament flapping in the Karman gait and the entrainment regions near
a cylinder. Zhu et al. [36] considered a deformable plate interacting with a
non-Newtonian fluid flow in three dimensions. A power-law function was used

6



for the constitutive equation of the non-Newtonian fluid. The lattice Boltz-
mann equation (the D3Q19 model) was employed for modeling the fluid flow.
The immersed boundary (IB) method was utilized for modeling the flexible
plate and handling the fluid-plate interaction. They, actually, improved their
previous study in Zhu et al. [34] from Newtonian fluid to power-law fluid.

1.4 The numerical method

Lattice Boltzmann method (LBM) has been demonstrated to be a very effec-
tive mesoscopic numerical method to model a broad variety of complex fluid
flow phenomena. Lattice Boltzmann method (LBM) combined with Finite
Difference Method (FDM) has been applied for this problem. It was demon-
strated to be a successful mesoscopic method for simulation of Non-Newtonian
fluids. Independency of the method to the relaxation time in contrast with
common LBM provokes the method to solve different non-Newtonian fluid
energy equations successfully as the method protects the positive points of
LBM simultaneously. Huilgol and Kefayati [37] explained and derived the two
and three dimensional equations of continuum mechanics for this method and
demonstrated that the theoretical development can be applied to all fluids,
whether they be Newtonian, or power law fluids, or viscoelastic and viscoplas-
tic fluids. Following the previous study, Huilgol and Kefayati [38] derived the
two and three dimensional equations of this method for the cartesian, cylindri-
cal and spherical coordinates. Kefayati and Huilgol [39] applied this method
to simulate the steady flow in a pipe of square cross-section when the pipe
is filled with a Bingham fluid. The problem was solved employing the Bing-
ham model without any regularisation. In the next step, Kefayati and Huilgol
[40] utilized the mesoscopic method to conduct a two-dimensional simulation
of steady mixed convection in a square enclosure with differentially heated
sidewalls when the enclosure is filled with a Bingham fluid. The problem was
solved by the Bingham model without any regularisations and also by applying
the regularised Papanatasiou model.

1.5 The objectives

The main aim of this study is to introduce an innovative mesoscopic method to
simulate fluid-structure interaction for viscoplastc fluids as the yielded/unyielded
sections have been displayed and the boundary between the fluid and solid
parts are clarified. Based on our best knowledge, this is the first study for
fluid-structure interaction in viscoplastic fluids based on immersed boundary
method. In fact, this approach covers the both complicated subjects (Fluid-
structure interaction and Viscoplastic fluids) simultaneously. To validate the
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proposed approach for the problem, we compared the results of fluid-structure
interaction and viscoplastic fluids, separately. The applied method, which is
based on Lattice Boltzmann Method (LBM), has the advantage of this method
compared to macroscopic numerical methods (Finite Volume Method (FVM)
and Finite Element Method (FEM)). In this approach, the application of the
method in the form of the code and the running time declines considerably.
For example, we solved the natural convection of viscoplastic fluids with this
method in [40] and the running time just took 11232 seconds where we solved
the problem by FEM [46] with the same computer and took 95400 seconds.
It demonstrates clearly the advantage of the applied approach for viscoplastic
fluids in the case of running time. In addition, the method was, easily; im-
plemented compared to FEM in the case of transferring to the programming
codes.

In this study, the Bingham model without any regularization has been studied.
A FDLBM, applying IBM have been employed to study the problem numeri-
cally. Moreover, it is endeavoured to express the effects of different parameters
on the fluid flow as well as yielded/unyielded zones. The obtained results were
validated with previous numerical investigations.

2 The mathematical model

2.1 Governing equations

The general macroscopic governing equations based on mass and momentum
conservation laws for incompressible flows and conservative materials can be
written as:

∇ · u = 0 , (2.1)

ρa +∇p−∇ · τττ = f , a =
∂u

∂t
+ (u · ∇)u , (2.2)

f = fe + fi is the total force term which is the combination of the external
force terms fe and the force term due to the IBM fi. τττ is the extra stress
tensor and follows the Bingham model which was mentioned in the Eq.(1.1).
Due to the discontinuity in the Bingham model, approximate models such as
the Papanastasiou [12], Bercovier and Engelman [41], and the bi-viscosity [42]
models are used by researchers and different software packages. However, a
constitutive equation for a Bingham fluid fully equivalent to the original form

8



can be used. This method was proposed and developed by Duvaut and Lions
[43] and Glowinski [44] and the constitutive equation takes the form

τττ = ηA(u) +
√

2 τy ΛΛΛ, 1 : ΛΛΛ = 0, (2.3)

where one may call the second order, symmetric, tensor ΛΛΛ the viscoplasticity
constraint tensor. Note that the traceless condition 1 : ΛΛΛ = 0 has been imposed
on this tensor so that the stress tensor τττ satisfies the condition tr τττ = 0. In
order to demarcate the flow field into unyielded/yielded zones, one requires
that the tensor ΛΛΛ meet the following conditions:

ΛΛΛ : ΛΛΛ =

< 1, A(u) = 0,

1, A(u) 6= 0.
(2.4)

These conditions satisfy those imposed on the stress tensor, viz., K(τττ) ≤ τy
when A(u) = 0, and τy < K(τττ) when A(u) 6= 0. The problem of determining
where the flow is rigid and where it is liquid-like has been shifted to finding
the tensor ΛΛΛ in the flow field such that is satisfies Eq.(2.4). What has been
proposed is important for the following reasons:

(1) The constitutive equations Eqs. (2.3) - (2.4) are defined over the entire
flow domain, not just where the fluid has yielded.

(2) One searches for the solution velocity field u and the viscoplasticity con-
straint tensor ΛΛΛ to determine the yielded/unyielded regions. There are
no singularities because one is not trying to find the location of the yield
surface(s) through the limit of A(u)/K(u) as A(u)→ 0.

(3) However, the equations of motion now involve two unknown fields: a
vector field u, and a symmetric tensor field ΛΛΛ. The latter requires that
there should exist a connection between the velocity field u and ΛΛΛ. Under
Dirichlet boundary conditions, it is possible to prove such a relation. Here,
we provide a summary of the results. First, we define a set

M =
{
µµµ|µµµ = µµµT , µµµ = (µij)1≤i,j≤2 ∈ (L2(Ω))2, ||µµµ|| ≤ 1 a.e. on Ω

}
(2.5)

and a projection operator PM through

PM(q) =
q

max(1, ||q||)
, a. e. in Ω, ∀q ∈ (L2(Ω))2. (2.6)

Thus, let ΛΛΛ0 be given, say it is 0. If ΛΛΛn is known, use the constitutive relation
Eq.(2.3) to solve for the velocity field un, and find ΛΛΛn+1 through the projection:

ΛΛΛn+1 = PM

(
ΛΛΛn + rτyA(u)n

)
, (2.7)

where r > 0 is a real number to be specified (It should be noted that the
acceptable values of r were reported between 0 < r < η/2τ 2

y in Dean et al. [47]
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and 0 < r < 2η/τ 2
y in Muravleva [22]). Successive iterations are performed till

convergence is achieved to the desired level of accuracy. Note that the yield
surface is the boundary between ||ΛΛΛ|| < 1 and ||ΛΛΛ|| = 1. Hence, the solution
of the boundary value problem delivers in the limit both the velocity field as
well as the shape and location of the yield surface. For more information, see
[39,40,45,46].

2.2 The Finite Difference Lattice Boltzmann – Immersed Boundary Method

To have the continuity and momentum equations, a discrete particle distribu-
tion function fα is defined where it should satisfy an evolution equation:

∂fα
∂t

+ ξξξα · ∇xfα −Gα = − 1

ε φ
(fα − f eqα ), (2.8)

where ε is a small parameter to be prescribed when numerical simulations
are considered. φ is the relaxation time. The parameter of Gα is is the term
representing the total force effect on the distribution function.

To proceed, one assumes that fα has the following expansion:

fα = f eqα + εf (1)
α + ε2f (2)

α +O(ε3). (2.9)

The novelty of the approach by Fu and So [48,49] lies in expanding the equi-
librium lattice function f eqα as a quadratic in the particle velocity ξα :

f eqα = Aα + ξα ·Bα + (ξα ⊗ ξα) : Cα, (2.10)

where Bα is a vector and Cα is a 2 × 2 symmetric matrix. The following
relations must hold:

8∑
α=0

f eqα = ρ, (2.11)

8∑
α=0

f eqα ξα = ρu, u = ui + vj, (2.12)

8∑
α=0

f eqα ξα ⊗ ξα = M, (2.13)

8∑
α=0

f (n)
α = 0, n ≥ 1, (2.14)

8∑
α=0

f (n)
α ξα = 0, n ≥ 1. (2.15)
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where

M =

ρu2 + p− τxx ρuv − τxy
ρuv − τxy ρv2 + p− τyy

 . (2.16)

In the above set, ρ is the density, u and v are the components of the velocity
field u in the x and y directions respectively, τxx, τxy = τyx, τyy are the stresses
which can be defined through any relevant constitutive relation.

Associated to each node is a lattice velocity vector ξξξα. It is defined for D2Q9
as follows:

ξξξα =


(0, 0), α = 0,

σ(cos Θα, sin Θα) α = 1, 3, 5, 7,

σ
√

2(cos Θα, sin Θα), α = 2, 4, 6, 8.

(2.17)

Here, the angles Θα are defined through Θα = (α − 1)π/4, α = 1, · · · , 8.
The constant σ has to be chosen with care for it affects numerical stability;
its choice depends on the problem. The method for finding the parameter σ
which satisfies the Courant-Friedrichs-Lewy (CFL) condition is described in
the Appendix.

It was demonstrated that the relation between the above parameters and non-
dimensional macroscopic values are as follows [37]

A0 = ρ− 2p

σ2
− ρ|u|2

σ2
+
τxx + τyy

2
, Aα = 0, α = 1, 2, · · · , 8. (2.18)

B1 =
ρu

2σ2
= Bα, α = 1, 3, 5, 7; Bα = 0, α = 0, 2, 4, 6, 8. (2.19)

Next, the matrices Cα are such that C0 = 0; C1 = Cα, α = 1, 3, 5, 7; C2 =
Cα, α = 2, 4, 6, 8, where

C1 =

C11 0

0 C22

 , C11 =
1

2σ4

(
p+ ρu2 − τxx

)
, C22 =

1

2σ4

(
p+ ρv2 − τyy

)
,

(2.20)

C2 =

 0 C12

C21 0

 , C12 = C21 =
1

8σ4
(ρuv − τxy) . (2.21)

The total force effect on the distribution function Gα can be defined as
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Gα = 0, α = 0, 2, 4, 6, 8, (2.22a)

Gα =
1

2σ2
f · ξξξα, α = 1, 3, 5, 7 (2.22b)

2.3 Computation procedure

The main equations of the discrete particle distribution function Eq.(2.8) is
solved by the splitting method of Toro [50]. Hence, the equations can be sep-
arated into two parts. The first one is the streaming section which is written
as

∂fα
∂t

+ ξξξα · ∇xfα −Gα = 0. (2.23)

Eqs.(2.23) has been solved with the method of Lax and Wendroff [51] and the
following equations are used.

fn+1
α (i, j) = fnα (i, j)− ∆t

2∆x
ξα (i) [fnα (i+ 1, j)− fnα (i− 1, j)]

− ∆t

2∆y
ξα (j) [fnα (i, j + 1)− fnα (i, j − 1)] +

∆t2

2∆x2
ξα

2 (i) [fnα (i+ 1, j)− 2fnα (i, j) + fnα (i− 1, j)] +Gα(i)∆t+

∆t2

2∆y2
ξα

2 (j) [fnα (i, j + 1)− 2fnα (i, j) + fnα (i, j − 1)] +Gα(j)∆t , (2.24)

In Eqs.(2.24), we have put

ξα(i) = ξξξα · i, ξα(j) = ξξξα · j, Gα(i) = Gα · i, Gα(j) = Gα · j. (2.25)

Initial conditions for all macroscopic quantities (u0, v0, p0) including the bound-
ary points are given. The initial values of f 0, eq

α including the boundary points
are determined. These are used as initial values to start the calculation.
With fα at time t (including the boundary points) known, intermediate values
f Iα is calculated by solving Eqs.(2.24).
Using these f Iα, the corresponding macroscopic quantities (uI , vI , pI) for all
interior grid points are calculated.
The boundary conditions for the macroscopic level are then set as in the finite
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difference method.
Using the macroscopic quantities thus determined over the complete domain
including the boundary points and invoking Eqs.(2.10), the corresponding
f I, eqα is obtained, including all of the boundary points.

The second part is the collision section which is as follows:

∂fα
∂t

= − 1

εφ
(fα(x, t)− f eqα (x, t)), (2.26)

Eqs.(2.26) can be solved by using the Euler method and the choice of εφ is
taken as the time step (∆t). That is

fα(x, t+ ∆t)− fα(x, t)

∆t
= − 1

εφ
(fα(x, t)− f eqα (x, t)), (2.27)

from which one obtains

fα(x, t+ ∆t) = f eqα (x, t), (2.28)

Due to Eqs.(2.28), the collision step is completed by setting the new value
at time t+ ∆t as f I, eqα . Since each set of macroscopic quantities will map
uniquely to an equilibrium distribution function and vice versa, the macro-
scopic quantities thus obtained are, in fact, the values at time t+ ∆t, i.e.,
(u, v, p)t+∆t = (uI , vI , pI).

In the Finite Difference Lattice Boltzmann Method (FDLBM) adopted here,
the iteration and recovery of the pressure field is similar to the SIMPLE
method of Patankar and Spalding [52,53]. As is well known, the SIMPLE
method is a guess-and-correct procedure for the calculation of the pressure
field. In each iteration, the velocity field is obtained from the first guessed
pressure field. Next, using the corrected velocity field, it is possible to find the
corrected pressure and this process continues till a very small or zero mass
residual is obtained, since the zero mass residual demonstrates that the di-
vergence of the velocity vector field is zero. In FDLBM, the criteria, which
is the mass residual in the SIMPLE method, is the difference between the
sum of the distribution functions and the fixed density. Thus, the correction
of the pressure field and the subsequent correction of the velocity field con-
tinues till a small or zero difference exists between this sum and the density.
For an in-depth discussion of these matters, see [49]. So, in this approach, the
density is assumed constant (ρ = 1) for the case of incompressible fluid and
the convergence criteria for different meshes is obtained as follows:
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Error = |ρ− 1| = (∆t)2 = 10−8

One of the main advantages of the current approach is that boundary con-
ditions can be incorporated in a manner similar to macroscopic methods, in
contrast with other methods utilised for solving LBM equations. The latter
employ complicated special relationships for the discrete particle distribution
function (fα) for each kind of boundary conditions and problems [54,55]. For
example, methods such as on-grid and mid-grid bounce back are used when
the velocity is zero on the boundary; when the boundary is in motion, bounce-
back is used along with a set of linear equations to determine the boundary
values fα. In the method used here, the boundary condition of fα can be
obtained directly from the macroscopic values on the boundaries due to the
relationships of the macroscopic values with fα. As a result, in this method,
boundary conditions, especially the Dirichlet conditions, can be included in
various problems similar to macroscopic methods and no special equations for
fα are needed to incorporate the boundary conditions. Therefore, we apply
the cited macroscopic values on the boundary conditions in directly.

3 Code validation and grid independence

3.1 Lid-driven cavity of Newtonian fluids

In this section, we first test the accuracy of the lid-driven cavity filled with
Newtonian fluid at different Reynolds numbers (Re = 100, 400 and 1000). In
the present analysis, we have taken the fluid to be laminar, steady, isothermal,
incompressible and two dimensional. The flow domain is given by Ω = (0, L)×
(0, L), and the boundary Γ = ∂Ω.

Γ1 = {x|x = {x, y} , x = 0 or L, 0 ≤ y ≤ L} , (3.1a)

Γ2 = {x|x = {x, y} , 0 ≤ x ≤ L, y = 0} , (3.1b)

Γ3 = {x|x = {x, y} , 0 ≤ x ≤ L, y = L} . (3.1c)

The boundary condition for the velocity is straightforward: u|Γ1
= u|Γ2

= 0
and u|Γ3

= uri. In the case of Newtonian fluid, the second term in Eq.(2.3)
is equal to zero, the stress tensor is τττ = ηA(u). The non-dimensional govern-
ing equations based on the above assumptions, boundary conditions and the
following non-dimensional variables are as

x̄ =
x

L
, ū =

u

ur
, p̄d =

pd
ρu2

r

. (3.2)
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where ur is the the speed of the upper wall, pd is the dynamic pressure. By
dropping the bar notation, the following system of non-dimensional mass and
momentum equations is derived:

∇.u = 0 , (3.3)

u .∇u = −∇pd +
1

Re
∇2u (3.4)

The Reynolds number is given by:

Re =
Lρ ur
η

. (3.5)

For solving the problem by FDLBM, in Eqs.(2.20)-(2.21), just we need to
replace the stress tensors by τττ = 1

Re
A(u), the total force effect on the distri-

bution function in Eq.(2.22) should be equal to zero (Gα = 0). The density
is selected ρ = 1, the top wall velocity is fixed at ur = 1, and the time step
is equal to ∆t = 0.0001. An extensive mesh testing procedure has also been
conducted to guarantee a grid independent solution. Five different mesh com-
binations were explored for the case of Re= 1000. It was confirmed that the
grid size (200*200) ensures a grid independent solution as portrayed in Table.1.
To check the accuracy of the present results, the code was validated with pub-
lished studies in the literature on the lid-driven cavity flow [3–8]. The results
in Table.2 show a good agreement between the compared studies.

3.2 Lid-driven cavity of viscoplastic fluids

In the second validation, the lid-driven cavity filled with Bingham fluid is
studied. So, we follow the Eq.(2.3) for the stress tensor and with the cited
non-dimensional variables in Eq.(3.2), the studied non-dimensional equations
are

u .∇u = −∇pd +
1

Re
∇.τττ , (3.6)

For solving the problem by FDLBM, in Eqs.(2.20)-(2.21), just we need to re-

place the stress tensors by τττ =
[
A(u) +

√
2BnΛΛΛ

]
, the total force effect on the

distribution function in Eq.(2.22) should be equal to zero (Gα = 0), and ΛΛΛ in

Eq. (2.7) changes in this problem to ΛΛΛn+1 = PM

(
ΛΛΛn+rBn

Re
An

1

)
. The Bingham
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number is Bn = τy L
η ur

. The density is selected ρ = 1, the top wall velocity is
fixed at ur = 1, and the time step is equal to ∆t = 0.0001. An extensive mesh
testing procedure was conducted to guarantee a grid independent solution.
Seven different mesh combinations were explored for the case of Re=1000 and
Bn=10. The present code was tested for grid independence by calculating the
u and v velocities in the middle of the cavity. It was confirmed that the grid
size (250-250) ensures a grid independent solution as portrayed by Table.3 .
The accuracy of the applied code in a lid-driven cavity is validated through
a comparison with Neofytou [13]. The results are shown in Fig.1 where the
u and v velocities profiles demonstrate the accuracy of the present simula-
tion for Bn = 1 and Re = 100. In addition, the yielded/unyielded region and
the streamlines are validated by Syrakos et al.[21] at Re=1000 and Bn=10 in
Fig.2. The yielded and unyielded parts have been specified by white and black
colors in the contour; respectively. It should be mentioned that Neofytou [13]
and Syrakos et al.[21] have applied the regularized method of Papanastasiou
model in their studies. Results of the FDLBM using the Bingham model is
compared with the result of Dean and Glowinski [10]. The streamlines and the
yielded/unyielded regions in Fig.3 are depicted at Re = 0.53, Bn = 0.1 which
refer to the values of U = 1, µ (η) =1, g (τy) = 0.1 in the study of Dean and
Glowinski [10] where the values of Reynolds and Bingham numbers found by
Huilgol and You [15].

3.3 A bottom elastic wall in a lid-driven cavity

To demonstrate the accuracy of the code for the immersed boundary through
fluid-structure interaction, we study the deformation of a soft wall by fluid
flow, in a lid-driven cavity flow filled by a Newtonian fluid. The cavity is 2
× 2, and the deformable bottom volume is initially 2 × 0.5 occupied by a
neo-Hookean wall and the upper part filled with fluid. The lid velocity is

ur = 0.5


sin2(πx/0.6), 0 ≤ x ≤ 0.3,

1 0.3 < x < 1.7,

sin(π(x− 2)/0.6), 1.7 ≤ x ≤ 2.0.

(3.7)

The fluid and solid dynamic viscosities are ηf = ηs = 0.2. This case has
been studied by many researchers [56–59] with different methods. We applied
the Reynolds number of Re = 5 as Huang and Sung [57] used this Reynolds
number for this case. Here, we utilized the IBM-FDLBM to solve the problem.
The basic macroscopic equations and the process is similar to the lid-driven
cavity of Newtonian fluid. The only difference is the presence of the force term
due to the IBM. For this problem, the force term due to immersed boundary
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method is as follows:

fi(x, t) =
∫

F(s, t) δ (x−X(s, t)) ds (3.8)

∂X(s, t)

∂t
= u(X(s, t), t) =

∫
u(x, t) δ (x−X(s, t)) dx (3.9)

The δ is a two-dimensional Dirac delta function and mentioned [23–29]

δ(x) = δ(x) δ(y) (3.10)

δ(x) =


1

4h
(1 + cos(π x

2h
)), |x| ≤ 2h,

0, |x| ≥ 2h,
(3.11)

where h = ∆x = ∆y

F(s, t) = Fs(s, t) + Fb(s, t) (3.12)

The stretching/compression force Fs at mth node, a finite-difference scheme
is used, i.e.,

Fs(s, t) =
∂

∂s

[
T (s)

∂X

∂s

]
(3.13)

T (s) is the tension which is computed by Hook’s law as follows

T (s) = Ks

(∣∣∣∣∣∂X

∂s

∣∣∣∣∣− 1

)
(3.14)

∂

∂s

[
T (s)

∂X

∂s

]
m

=
Tm+1/2 tm+1/2 − Tm−1/2 tm−1/2

∆s
(3.15)

where t is the unit tangent vector defined at each point and is written

t =
∂X

∂s
(3.16)

The bending force term is Fb as
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Fb(s, t) = Kb
∂4X

∂s4
(3.17)

where

∂4X

∂s4
=

Xm+2 − 4Xm+1 + 6Xm − 4Xm−1 + Xm−2

∆s4
(3.18)

In this problem, the stretching and bending coefficients are fixed at Ks = 0.1
and Kb = 0.0001; respectively. In this study, the selected Eulerian grid is 200
× 100 in x, y directions where ∆x = ∆y = 1/100. For the immersed boundary
points, we use set of M Lagrangian points which is equal to M = 100 and the
initial boundary mesh width is ∆s = 0.01. The present results were compared
with previous studies in Fig.4 and demonstrates a good agreement.

4 Numerical examples

4.1 Complex rigid body

In the first example, we studied the fluid flow and yielded/unyielded sections
around a rigid complex geometry. We simulated a lid-driven cavity filled with
viscoplastic fluids in the presence of a rigid rosette-shaped where the lid ve-
locity is equal to ur = 1. The rosette shape of the cylinder is obtained by
considering the following relationship between the local radius Ra (distance
from the center of the cylinder and a point on the surface) and the angle θ
made with the vertical axis [60].

Ra(θ) = R (1 + a cos8θ) (4.1)

where R is the radius of the reference circular cylinder, and a is a rosette-shape
factor. For the rigid body, we applied the method of Lai and Peskin [31] for
the force term due to immersed boundary method is as follows:

fi(x, t) =
∫

F(s, t) δ (x−X(s, t)) ds (4.2)

∂X(s, t)

∂t
= u(X(s, t), t) =

∫
u(x, t) δ (x−X(s, t)) dx (4.3)
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F(s, t) = k (Xe(s)−X(s, t)) (4.4)

Xe(s) = xc +R (1 + a cos(2π ∗ 8x)) ∗ cos(2πx) (4.5)

where xc = (xc, yc) is the center of the shape in the cavity. In this problem,
we applied the grid 250*250 for the cavity, and the number of points on the
immersed boundary is M = 250 and the step is ∆s = 1/250. The stiffness was
fixed at k = 1000 and the applied Dirac delta function is similar to Eqs.(3.10)–
(3.11). It should be noted the other applied parameters in FDLBM are the
same as the lid-driven cavity filled with the viscoplastic fluid. Fig.5 demon-
strates the streamlines, and yielded/unyielded sections for different Bingham
numbers at Re = 200, R = 0.1, xc = 0.5, and a = 0.6. It exhibits that the
increase in Bingham number causes the unyielded section to enlarge signifi-
cantly where the unyielded regions spread to different areas of the cavity. At
Bn = 5, the bottom half of the cavity is occupied by the unyielded parts and
therefore the horizontal and vertical velocities are zero in the section which
results in having no streamlines in this part of the cavity. Fig.6 depicts the
streamlines and the yielded/unyielded regions in different parameters in the
studied shape at Re = 200, and Bn = 1. In the figure (a), we investigated the
eccentric shape at xc = 0.7, R = 0.1, and a = 0.6. It demonstrates another
small vortex in streamlines is generated around the rigid body. Moreover, the
shape, size and position of the unyielded sections change considerably. In fig-
ure (b), the size of the rigid shape changes as the radius increases by 2 times
for the concentric case at xc = 0.5, R = 0.2, and a = 0.6. In figure (c), the
parameter of a is analysed in the studied shape which changes the sizes of
leaves in the Rosette shape at xc = 0.5, R = 0.2, and a = 0.2. Fig.7 depicts
the streamlines and the yielded/unyielded regions in different Reynolds num-
bers at Bn = 2, xc = 0.5, R = 0.2, and a = 0.2. The streamlines confirms that
the rise of Reynolds number results in the movement of the circulation core
due to the rise of the forced flow. Moreover, the increase in Reynolds number
diminishes the unyielded part in the center of the cavity steadily.

4.2 Deformable bodies

In this part, the studied case of lid-driven cavity with deformable bottom wall;
which was employed as a validation, were studied when the Newtonian fluid
part was replaced with a viscoplastic fluid. So, the methodology is similar to
the Eqs.(3.8)–(3.18). In this simulation, the lid-velocity is fixed ur = 1 and the
cavity is 1×1 where the solid part occupies the bottom side from x = 0 to 0.25.
In this problem, we applied the grid 250*250 for the cavity, and the number
of points on the immersed boundary is M = 250 and the step is ∆s = 1/250.
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The stretching/compression and bending rigidity coefficients were fixed at
Ks = 0.1 and Kb = 0.0001; respectively. The applied Dirac delta function is
similar to Eqs.(3.10)–(3.11). It should be noted the other parts in order to solve
by FDLBM is similar to the lid-driven cavity filled with the elastic wall and
viscoplastic fluids. Fig.8 demonstrates the streamlines, and yielded/unyielded
sections for different Bingham numbers of Bn = 1 and 5 at Re = 200. It is clear
that the unyielded part is generated the same as a simple lid-drive cavity and
just it is generated on the top of the interface position between the viscoplastic
fluid and the solid part. Fig.9 shows the streamlines, and yielded/unyielded
sections for different Reynolds numbers at Bn = 5. It is clear that the elastic
interface becomes more solid as Reynolds number enhances. In addition, the
streamline and yielded/unyielded sections demonstrate the same trend as the
lid-drive cavity towards the increase in Reynolds number. Fig.10 exhibits the
interface position between the solid volume and the viscoplastic fluids for
different Bingham and Reynolds numbers. It demonstrates that the rise of
Bingham number provokes the alteration of the elastic interface to decline;
especially from Bn = 0 to 1, in different Reynolds numbers. Moreover, it
reveals that the augmentation of Reynolds number changes the elastic interface
position in different Bingham numbers.

5 Conclusion

A numerical approach combining the immersed-boundary method and the
Finite Difference lattice Boltzmann method is proposed to simulate the inter-
action between elastic structures/complex rigid bodies and a viscoplastic fluid
flow. The constitutive equation for the Bingham fluid has been applied to the
problem without any regularisation. The surface force of the immersed bodies
on the fluid is spread into the bulk region as a body force, and the fluid kine-
matics is simulated by solving the Finite Difference lattice Boltzmann method
equation. This proposed method has the ability to be applied for different non-
Newtonian fluids for various previous proposed immersed boundary methods
whether complicated rigid geometries or deformable sections. However, here,
we concentrated on viscoplastic fluids which is more complicated than other
forms of non-Newtonian fluids and also for this subclass of non-Newtonian flu-
ids, it is necessary to clarify the yielded/unyielded sections. In addition, the
generation of unyielded parts (solid regions) in viscoplastic fluids can affect the
deformed parts and this part of this problem can be found by this approach.
The studied case is a lid-driven cavity and this approach was validated for
Newtonian and viscoplastic fluids by comparison with previous studies. To
verify the accuracy of the applied code for the deformable/elastic parts, a lid-
driven cavity with a bottom elastic section was studied and showed a good
agreement with previous studies. To demonstrate the ability of the proposed

20



method for the case of a complex rigid body in viscoplastic fluids, we studied a
rosette-shaped in a lid-driven cavity for different Reynolds and Bingham num-
bers. In addition, different positions and forms of the studied rigid body were
depicted. Finally, the fluid flow and yielded/unyielded sections were presented
in a lid-driven cavity with the bottom elastic section, that the viscoplastic
material fills the fluid section. It was demonstrated that the rise of Bingham
number declines the change of the elastic interface due to the increase in the
unyielded parts. In fact, the enhancement of Bingham number causes the un-
yielded sections to expand and the fluid flow movement (velocity) to drop
considerably. From Eqs.(3.8) to (3.18), the decline of the fluid flow movement
(velocity) decreases the deformation due to the bottom elastic wall. Moreover,
the increases in Reynolds number (or the forced flow) decreases the movement
of the elastic interface.
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Appendix

Here, we shall discuss the stability of the numerical scheme. Finding the pa-
rameter σ, we multiply f eqα with |ξξξα|2/2 and take the sum, which leads to

8∑
α=0

1

2
f eqα |ξξξα|

2 = p+
1

2
ρ |u|2 − τxx + τyy

2
. (A1)

Next, it is easy to verify that

8∑
α=0

Gα|ξξξα|2 = 0. (A2)

Hence,

∂

∂t

[
p+

1

2
ρ|u|2 − τxx + τyy

2

]
+
σ2

2
ρ(∇ · u) = O (ε) . (A3)

The Courant-Friedrichs-Lewy (CFL) condition states that [61,62]

K =
u∆t

∆x
+
v∆t

∆y
≤ 1. (A4)

This can be used in (A3) and we obtain

[
|u|2 +

2p− τxx − τyy
ρ

]
+ σ2K = O (ε) . (A5)

Thus, the lattice speed σ must satisfy

σ = Kc

√√√√∣∣∣∣∣τxx + τyy − 2p

ρ
− |u|2

∣∣∣∣∣ , Kc =
1√
K
≥ 1. (A6)

Since the pressure p has to be uniquely defined in a Bingham fluid, one requires
that τxx + τyy = 0;. Thus, reduces to

σ = Kc

√√√√∣∣∣∣∣−2p

ρ
− |u|2

∣∣∣∣∣ , Kc =
1√
K
≥ 1 (A7)
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As a result, the value σ is modified and changes in each iteration as defined
through (A7).
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Table 1
Minimum values of u (umin) computed along x = 0.5, maximum values of v (vmax)
computed along y = 0.5, minimum values of v (vmin) computed along y = 0.5 at
Re=1000

Mesh umin vmin vmax

100*100 -0.3501 -0.5109 0.3448

150*150 -0.3722 -0.5193 0.3605

200*200 -0.3840 -0.5279 0.3765

250*250 -0.3840 -0.5279 0.3765

300*300 -0.3840 -0.5279 0.3765
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Table 2
(a) minimum values of u computed along x = 0.5 and the corresponding ordinate
ymin, (b) maximum values of v computed along y = 0.5 and the corresponding ab-
scissa xmax, (c) minimum values of v computed along y = 0.5 and the corresponding
abscissa xmin, (d) minimum values of stream function and the corresponding coor-
dinates xmin; ymin.

Reference umin ymin vmax xmax vmin xmin ψmin

Re=100

Present -0.2111 0.4591 0.1802 0.2358 -0.2571 0.8121 -0.1031

Ghia et al. [3] -0.2109 0.4598 0.1809 0.2354 -0.2566 0.8127 -0.1035

Botella and Peyret [4] -0.2140 0.4581 0.1796 0.2370 -0.2538 0.8104 -

Bruneau and Jouron [5] -0.2106 0.4531 0.1786 0.2344 -0.2521 0.8125 -0.1026

Deng et al. [7] -0.2131 -80.1789 - -0.2354 - - -

Sahin and Owens [6] -0.2139 0.4598 0.1808 0.2354 -0.2566 0.8127 -0.1035

Hou et al. [8] - - - - - - -0.1030

Re=400

Present -0.3296 0.2882 0.3083 0.2291 -0.4601 0.8911 -0.1162

Ghia et al. [3] -0.3273 0.2813 0.3020 0.2266 -0.4499 0.8594 -0.1139

Hou et al. [8] - - - - - - -0.1121

Deng et al. [7] -0.3275 - 0.3027 - -0.4527 - -

Sahin and Owens [6] -0.3283 0.2815 0.3044 0.2253 -0.4563 0.8621 -0.1139

Re=1000

Present -0.3840 0.1721 0.3765 0.1586 -0.5279 0.9105 -0.1184

Sahin and Owens [6] -0.38810 0.1727 0.3769 0.1573 -0.5285 0.9087 -0.1188

Ghia et al. [3] -0.3829 0.1719 0.3709 0.1563 -0.5155 0.9063 -0.1179

Botella and Peyret [4] -0.3886 0.1717 0.3769 0.1578 -0.5271 0.9092 -0.1189

Hou et al. [8] - - - - - - -0.1178

Bruneau and Jouron [5] -0.3764 0.1602 0.3665 0.1523 -0.5208 0.9102 -0.1163

Deng et al. [7] -0.38511 - 0.3769 - -0.5228 - -
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Table 3
Minimum values of u (umin) computed along x = 0.5, maximum values of v (vmax)
computed along y = 0.5, minimum values of v (vmin) computed along y = 0.5 at
Re=1000 and Bn=10

Mesh umin vmin vmax

150*150 -0.0798 -0.4191 0.2483

180*180 -0.0809 -0.4220 0.2517

200*200 -0.0815 -0.4295 0.2606

220*220 -0.0819 -0.4311 0.2695

250*250 -0.0824 -0.4320 0.2711

280*280 -0.0824 -0.4320 0.2711

300*300 -0.0824 -0.4320 0.2711
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Fig. 1. Comparison of u and v velocities profiles in the middle of the cavity between
the present results with the results of Neofytou [13] for Re = 100 and Bn = 1
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Fig. 2. Comparisons of the streamlines and the yielded/unyielded regions between
(a) the present study with (b) the results of Syrakos et al. [21] for Re = 1000 and
Bn = 10
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Fig. 3. Comparisons of the yielded/unyielded regions and streamlines between (a)
the present study with the results of (b) Dean and Glowinski [10] for Re = 0.53, Bn
= 0.1 corresponding to U = 1, µ = 1, g = 0.1 in Dean and Glowinski [10]
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Fig. 4. Comparisons of the streamlines and the interface position between the present
study with previous results Zhao et al. [56], Huang and Sung [57], Zhang et al. [58],
Wang and Zhang [59]
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Fig. 5. Comparisons of the streamlines and the yielded/unyielded regions in different
Bingham numbers at Re = 200, R = 0.1, xc = 0.5, and a = 0.6
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Fig. 6. Comparisons of the streamlines and the yielded/unyielded regions in different
parameters in the studied shape at Re = 200, and Bn = 1 (a) xc = 0.7, R = 0.1,
and a = 0.6, (b) xc = 0.5, R = 0.2, and a = 0.6 (c) xc = 0.5, R = 0.2, and a = 0.2
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Re = 1000 

Fig. 7. Comparisons of the streamlines and the yielded/unyielded regions in different
Reynolds numbers at Bn = 2, xc = 0.5, R = 0.2, and a = 0.2
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Fig. 8. Comparisons of the streamlines and the yielded/unyielded regions in different
Bingham numbers at Re = 200
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Re = 1000 

Fig. 9. Comparisons of the streamlines and the yielded/unyielded regions in different
Reynolds numbers at Bn = 5
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Fig. 10. Comparisons of the interface position in different Bingham and Reynolds
numbers
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