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Abstract 20 

A damage identification method named “pseudo-excitation” (PE) approach was established 21 

previously, the principle of which resides on local examination of perturbation of structural 22 

dynamic equilibrium conditions. While showing significant sensitivity to structural damage 23 

with small sizes, the approach exhibited high vulnerability to measurement noise due to the 24 

involvement of high order derivatives of the vibration displacements in the expression of the 25 

damage index. On the other hand, several baseline parameters, for example, Young’s 26 

Modulus and Density, are of necessity for the implementation of the approach, considered 27 

as a factor that limits the practical application of the approach. A “weak” formulation of the 28 

PE approach was established to circumvent the interference from measurement noise. 29 

However, the weak formulation of two-dimensional (2D) structural component has not been 30 

developed, and the reliance of the weak formulation on baseline parameters remains an issue 31 

unsolved. In this paper, the 2D weak formulation of the PE approach was proposed by 32 

introducing a weighting function in terms of 2D Gauss function. Through an integration 33 

operation, the selected weighting function was shown able of significantly highlighting the 34 

feature of structural damage and largely suppressing noise influence. Furthermore, a 35 

statistical strategy was developed to estimate the values of baseline parameters inversely, 36 

which signifies the elimination of the dependence of PE approach on pre-obtained baseline 37 

parameters. As a proof-of-concept investigation, multi-damage in a plane structure 38 

consisting of both beam and plate components were identified by using the modified damage 39 

identification method. And a hybrid data fusion algorithm was then used to enhance the 40 

accuracy of damage detection, revealing not only the locations, but also the sizes of damaged 41 

zones. 42 

Keywords: damage identification, dynamic equilibrium, vibration, statistical estimation, 43 

measurement noise 44 

45 



 

Introduction 46 

In recent decades, structural health monitoring (SHM) techniques have been largely 47 

developed with the aim of continuous and automated structural damage evaluation. The 48 

majority of existing SHM techniques were established based on characteristics either of 49 

guided wave propagation or structural vibration. The guided-wave-based methods (using for 50 

instance Lamb waves (Gao et al. 2014; Gao et al. 2016; Ihn and Chang 2008; Liu et al. 2016; 51 

Ostachowicz et al. 2009; Su et al. 2006; Wu et al. 2015; Zhao et al. 2007;)) possess high 52 

sensitivity to structural damage with significantly small size. The accuracy of the methods, 53 

however, could be largely limited due to the complex geometries or boundary conditions of 54 

the structure under inspection. Moreover, active excitation is of necessity for the generation 55 

of wave signals, involving relatively complex experimental configurations. The vibration-56 

based methods (Farrar et al. 2001; Fan and Qiao 2011; Joshuva and Sugunaran 2017), on the 57 

other hand, can be implemented based on the changes in a number of different vibration 58 

signatures, for example, eigen-frequencies (Guo and Li 2011; Lee and Chung 2000; Salawu 59 

1997), mode shape or modal curvature (Cao et al. 2013; Kim et al. 2003;  Pandey et al. 1991), 60 

electro-mechanical impedance (Giurgiutiu and Rogers 1998;), flexibility matrix (Aoki and 61 

Byon 2001; Pandey and Biswas 1994; Siddesha and Manjunath 2017; Yan and Golinval 62 

2005) and damping properties (Kawiecki 2001). In engineering applications, these vibration 63 

signatures are convenient to obtain under structural operational state, without any necessity 64 

of active excitation. The effectiveness of traditional guided-wave- or vibration-based 65 

methods, however, largely depend on the obtainment of benchmark structures and baseline 66 

signals that need to be established numerically or experimentally, which considered as a 67 

drawback that limits the efficiency and accuracy of damage identification. To circumvent 68 

such a limitation, a new method relying on the examination of local perturbation of structural 69 

dynamic equilibrium, named Pseudo-excitation (PE) approach, was proposed by the authors 70 



 

(Xu et al. 2011; Xu et al. 2013);. Specifically, the damage index of the PE approach was 71 

derived based on the equation of motion for different types of structural components, e.g., 72 

beam, plate or shell components. And the locations and sizes of the damaged zones can be 73 

revealed according to the singularities of the damage indices, which correspond to perturbed 74 

dynamic equilibrium conditions. The PE approach was proven capable of detecting damage 75 

with satisfactory sensitivity, without any prior knowledge from the baseline signals or 76 

benchmark structures. However, the method suffers from interference of measurement noise 77 

due to the involvement of high-order derivatives of structural vibration displacements in the 78 

expressions of the damage indices. On the other hand, some baseline parameters (Young’s 79 

Modulus, density, etc.) of the inspected structure still need to be obtained before the 80 

implementation of the method, deemed as an obstacle that limit the effectiveness and 81 

efficiency of the original PE approach.  82 

The “weak” formulation of the PE index for one-dimensional (1D) beam component was 83 

proposed (Xu et al. 2015a), where different expanded forms can be established to include 84 

the measurement of different mechanical quantities, e.g., vibration displacement and 85 

structural surface strains. The main task of the weak formulation is to reduce the influence 86 

of measurement noise on the accuracy of damage identification. Moreover, by assuming 87 

point-wise satisfaction of dynamic equilibrium along a beam structure, the PE approach 88 

shows potential of damage identification without any dependence on structural baseline 89 

parameters (Xu et al. 2015b). In this study, the application of the modified PE approach was 90 

extended to characterize multi-damage in 2D structures. The weak formulation of 2D 91 

damage index was established, relying on which damage features can be largely highlighted, 92 

benefiting from the effectiveness of noise reduction. In addition, the assumption of point-93 

wise satisfaction of dynamic equilibrium was made along 2D plate structure. Thus damage 94 

can be detected without baseline parameters. Moreover, some baseline parameters of the 95 



 

inspected structure can be inversely estimated in a statistical manner, showing promising 96 

potential in engineering practices. As a proof-of-concept investigation, multi-damage in a 97 

plane structure, containing both beam and plate components, were identified experimentally 98 

using the proposed method. A hybrid data fusion algorithm was then used to enhance the 99 

accuracy of damage detection, revealing not only the locations, but also the sizes of damaged 100 

zones. 101 

 102 

Modified PE Approach Based on “Weak” Formulation 103 

For a damaged plate structure as shown in Fig. 1, the 2D damage index of the original PE 104 

approach can be expressed as (Xu et al. 2013): 105 

( ) ( ) ( )2DI , , ,x y D x y h w x y =  − ,                                                                (1a) 106 

where 107 

( )
( ) ( ) ( )4 4 4

4 2 2 4

, , ,
, 2

w x y w x y w x y
x y

x x y y

  
 = + +

   
  .                                                (1b) 108 

In the above equations, ( ),w x y  is the vibration displacements; D  is the bending stiffness 109 

equal to ( )3 2/12 1Eh − , where E ,  ,  , h  and   are the Young’s Modulus, density, 110 

Poisson’s ratio,  thickness and angular vibration frequency of the plate, respectively. In 111 

numerical computation, Eq. (1b) can be expressed in a discrete form by using a finite 112 

difference scheme (Xu et al. 2013). Equation (1a) was derived based on the equation of 113 

motion for plate structure, indicating the local dynamic equilibrium condition of 114 

infinitesimal plate element. For an element without damage and external excitation, 115 

( )DI ,x y  in Eq. (1a) should be zero because of the satisfaction of dynamic equilibrium 116 

condition. Where damage exists, ( )DI ,x y  will show drastic fluctuations in magnitudes, 117 



 

particularly at the boundaries of the damaged zone, due to the violation of the local 118 

equilibrium condition in Eq. (1a). 119 

 120 

From the above equations, it can be seen that a variety of baseline parameters, including the 121 

Young’s modulus and different parameters associated with structural geometries, should be 122 

obtained for the construction of Eq. (1a). With the purpose of eliminating the reliance of the 123 

PE approach on structural baseline parameters, the damage index in Eq. (1a) was modified 124 

to be 125 

( ) ( ) ( )*, , ,x y x y w x y =  − ,                                                                                    (2a) 126 

where 127 

      ( )
( )DI ,

,
x y

x y
D

 =   and  
2

* h

D

 
 = .                                                                          (2b) 128 

It can be seen that all baseline parameters have been included in the expression of  * . The 129 

value of *  can be estimated in a statistical manner, which will be introduced in the 130 

following section. 131 

The 1D weak formulation of PE approach was developed for the purpose of noise reduction 132 

and enabling the flexibility of measuring multiple types of mechanical quantities for damage 133 

detection, e.g., vibration displacement and surface strains (Xu et al. 2015a). In this study, the 134 

weak formulation for 2D PE approach was derived based on Eq. (2a), expressed as 135 

( ) ( ) ( ), , , dxdyx y x y x y


 =  .                                                                                  (3a) 136 

Substituting Eq. (2a) into (3a) yields 137 

( ) ( ) ( ) ( ) ( )*, , , dxdy- , , dxdyx y x y x y w x y x y  
 

 =   .                                           (3b) 138 

In the above equations ( ),x y  is a weighting function;    is a 2D region within which the 139 

integration was operated. For the selection the form of ( ),x y , a main consideration is to 140 



 

effectively suppress the influence of measurement noise without sacrificing the signal 141 

feature subject to damage. Another important consideration is to enhance the flexibility of 142 

damage detection by enabling the measurement of multiple mechanical quantities. The latter 143 

task has been achieved in 1D case, where the weak formulation was expanded based on 144 

partial integration principle. For 2D case, the weak formulation in Eq. (3) is also possible to 145 

be expanded based on principles such as the Greens’s theorem. However, relevant study is 146 

beyond the scope of this work. Therefore, the effectiveness of noise reduction is deemed as 147 

the major criteria for the selection of ( ),x y .  Moreover, after the form of ( ),x y  being 148 

fixed, the size of the integration region  , needs to be adjusted to obtain optimal accuracy 149 

of damage identification. 150 

 151 

Estimation of Structural Baseline Parameters 152 
 153 
In practical applications, structural damage is regarded as local event. Thus, along the 154 

surface of the structure of interest, most areas can be assumed to be under their intact state, 155 

which means that the value of Eq. (3b) can be assumed to be zero, i.e.,  156 

( ) ( ) ( ) ( )*, , dxdy- , , dxdy=0x y x y w x y x y  
 
  .                                                         (4a) 157 

Then  *  can be derived to be 158 

( ) ( )

( ) ( )
*

, , dxdy

, , dxdy

x y x y

w x y x y











=



.                                                                                        (4b) 159 

It can be seen that at the damaged zones, Eq. (4a) does not actually hold, and the calculated 160 

*  will differ from its actual value. Along the entire structural surface under inspection, 161 

however, Eq. (4a) does hold and a large number of *  values can be calculated and distribute 162 

around the actual value of * . Thus the actual value of *  can be estimated in a statistical 163 

way, by calculating the average of all *  values along the inspected area. Furthermore, 164 



 

depending on the estimated * , some baseline parameters can be calculated inversely 165 

according to Eq. (2b). For example, the Young’s Modulus of the structure can be estimated 166 

when the geometric parameters and the vibration frequency of the plate are given. 167 

 168 

For 1D structural components, i.e., beams, the baseline parameters can be estimated in an 169 

analogous way as presented by Eq. (4a). Since the details of deriving 1D weak formulation 170 

have been provided in (Xu et al. 2015a), only the expression for the inverse estimation of 171 

baseline parameters, developed in this study, is given as 172 

( ) ( )

( ) ( )
*

dx

dx

x x

w x x











=



.                                                                                          (4c) 173 

Equation (4c) can be easily understood since it is a regressive form of Eq. (4b). ( )w x  and 174 

( )x  in Eq. (4c) are the 1D vibration displacement and weighting function; ( )x  equals to 175 

( )4 4d / dw x x ;   represents a 1D integration region with a selected length. It should be noted 176 

that for beam components, the baseline parameters are included in 
*  according to 177 

* 2 /S EI  = , where S  and I  are the cross-section area and cross-sectional moment of 178 

inertia, respectively. 179 

 180 

The implementation process of damage identification is illustrated by a flow chart as shown 181 

in Fig. 2. It should be emphasized that given the form of weighting function, the size of   182 

has a major influence on the accuracy of damage detection. A small   could lead to high 183 

precision of damage detection by highlighting the local feature of damage, but probably will 184 

be associated with unacceptable noise influence because of insufficient signal averaging 185 

within  . A larger   could provide satisfactory noise reduction but may lead to low 186 

detection precision due to “over-smoothing” of the damage feature. Therefore, optimal 187 



 

detection accuracy corresponds to a balance between the detection precision and the noise 188 

reduction effect. In the following study, the relative size of   are adjusted referring to the 189 

vibration wavelengths of tested structures, i.e., for 2D case, the ratio of the side length of   190 

to the vibration wavelength. Based on a data fusion algorithm, detection signals subject to 191 

different ratios are combined to provide the optimal detection results. The 2D data fusion 192 

algorithm used is  193 

, hybrid , arithmetic , geometrici j i j i j− − − =                                                                                               (5a) 194 

where 195 

, arithmetic ,

1

1 K

i j i j L

LK
− −

=

 =  ,                                                                                                              (5b) 196 

, geometric , 1 , 2 , ,
K

i j i j i j i j L i j K− − − − − =      .                                                                         (5c) 197 

In the above equations. , hybridi j−  is the damage index value at point (i,j) treated by hybrid 198 

fusion. , arithmetici j−  and , geometrici j−  represent damage index treated by arithmetic and 199 

geometric fusion algorithm, respectively. K is the number of the total groups of data use for 200 

fusion, and L is the index of an individual data group. 201 

 202 

Experimental Validation 203 

Setup 204 

Experimental validation was carried out to examine the reliability of the developed strategy 205 

in identifying multiple damaged zones in a plane structure containing both beam and plate 206 

components. The front and back views of the plane structure are shown in Fig 3(a) and (b), 207 

respectively. The structure was made of aluminum 6061 with a density of 2.7 kg/m3 and a 208 

Young’s modulus of 68.9 GPa. The thickness of the aluminum panel is 3 mm. The structure 209 

was fixed-supported on a testing table (NEWPORT® ST-UT2). From Fig 3(b), it can be 210 

seen that multi-damage was introduced in both the beam and the plate components. 211 



 

Specifically, there are four damaged zones in the three beam components (beam I, II and III), 212 

in terms of through-width notches measuring 4 mm in length and 1.3 mm in depths. In beam 213 

III there are two damaged zones. A square damaged zone was created in the plate component, 214 

the side length and depth of which are 8 mm and 1.3 mm, respectively. 215 

 216 

The plane structure was excited on the back side using an electro-mechanical shaker 217 

(B&K® 4809) located at the excitation point as shown in Fig. 3(b), in which the excitation 218 

point is 95 mm and 130 mm from the lower and the right boundary of the structure. A 219 

scanning Doppler laser vibrometer (Polytec○RPSV-400B) was used to measure the vibration 220 

displacements of the structure within the inspection regions. As shown in Fig. 3(a), the 221 

square inspection region on the plate component is 
2210 210 mm  in size, containing 222 

61 61  measurement points. It should be noted that the excitation point is not within the 223 

inspection region, but with a distance of 13 mm from the lower edge of the inspection region. 224 

The inspection regions on the beam components are 288 mm  in length. There are 73 225 

measurement points along the central line of each beam component.  226 

 227 

Damage Identification Results 228 

Under an excitation frequency of 1800 Hz, the distribution of the vibration displacements of 229 

the plate component, within the 2D inspection region, is presented in Fig. 4(a). It can be 230 

calculated that the wavelength of the vibration of the plate component, defined as   , is 231 

approximately 0.21 m. Based on the measured vibration displacements, the damaged zone 232 

in the plate component was first identified by using the original formulation of the PE 233 

approach as presented in Eq. (1a). It can be understood that to construct Eq. (1a), all baseline 234 

parameters of the structure need to be known. And it is shown in Fig. 4(b) that even using 235 

the baseline parameters, the constructed signal of the damage indices is incapable of 236 



 

reflecting any damage feature because of the severe interference from measurement noise, 237 

associated with the high-order derivatives of vibration displacements, i.e., ( ),x y  in Eq. 238 

(1b). The density of the 4experimental data in Fig. 4(b) was enlarged by ten times through 239 

an interpolation algorithm before the implementation of weak formulations, aimed at 240 

improving the accuracy of damage detection. 241 

The weak formulation of the PE approach, as shown in Eq. (3a), was then applied to identify 242 

the damage. The form of ( ),x y  in Eq. (3a) was selected according to a 2D Gauss function. 243 

The 2D Gauss function possesses a highly simple form and an explicit function in signal 244 

processing. On the one hand, the 2D Gauss function is able to highlight damage feature due 245 

to its large similarity with the signal feature associated with damage, that is, large local 246 

singularities (peak values). On the other hand, the gauss function is relatively smooth that 247 

can benefit the averaging of measurement noise within the integration region. Specifically, 248 

the general form of a 2D Gauss function is 249 

( )

2 2

22

2

1
, =

2

x y

x y e 


+
−

 ,                                                                                                           (6) 250 

where   is the standard deviation of the Gauss function.   in Eq. (3a) is set to be a square 251 

region, the side length of which is defined as d. It is fixed in the following analysis that 252 

10d = . The 2D Gauss function within   is shown in Fig. 5, from which it can be seen 253 

that the majority of the energy of the Gauss function is included in  , and at the boundaries 254 

of   the values of the function vanish. The position of   was then adjusted along the plate 255 

surface to scan the entire 2D inspection region, and 
*   was calculated according to Eq. (4b). 256 

*  distributions subject to / 0.3d  = , 0.4, 0.5 and 0.6 were calculated,  and the distribution 257 

subject to / 0.4d  =  is shown as an example in Fig. 6. From the figure, it can be seen that 258 

the distribution of 
*  values is relatively smooth converging to an average value, although 259 

some significant fluctuations can be observed due to the influence from measurement noise. 260 



 

Large fluctuations were deemed as outliers that distribute outside a pre-defined bandwidth 261 

(10% of the standard deviation of the entire data), and were excluded from the data set. Then262 

*  was estimated as the average value of the remaining data. The 
*  values subject to 263 

different /d  , as selected above, were further averaged leading to an estimated value of 264 

66.80 10 , around 10% larger than the actual value.  265 

 266 

By using the estimated value of 
* , ( ),x y  was calculated according to Eq. (3b), and the 267 

distributions of ( ),x y  along the 2D inspection region subject to different /d   are shown 268 

in Fig. 7(a) to (d). From the figure, it can be seen that subject to a small value of /d   (i.e., 269 

0.3), the damage feature can be well highlighted by showing a relatively exact size of the 270 

damaged zone. However, noise influence is relatively severe, causing signal disturbances at 271 

the intact region of the plate. On the other hand, the noise can be increasingly reduced along 272 

with enlarged /d  , and under / 0.6d  = , signal disturbances at intact region are largely 273 

suppressed. The damage size, however, is over-estimated under / 0.6d  =  because of the 274 

smoothing effect on the damage feature. An optimal detection accuracy can be found 275 

between / 0.4d  =  and 0.5, corresponding to which a balance between the detection 276 

precision and noise reduction can be achieved. The detection results associated with the four 277 

different /d   were treated using hybrid data fusion algorithm as shown in Eq. (5a) to (5c), 278 

giving rise to the optimal detection result as shown in Fig. 8(a). It can be seen that the 279 

location and size of the square damaged zone are precisely revealed. 280 

 281 

Finally, damage zones were identified in the beam components based on 1D weak 282 

formulation and the parameter estimation method as shown in Eq. (4c). One-dimensional 283 

Gauss function was selected as the weighting function, and the length of the 1D integration 284 



 

region   was fixed to be 10 (consistent with that in the 2D case), with   being the 285 

standard deviation. According to / 0.3d  = , 0.4, 0.5 and 0.6 (  here is the 1D vibration 286 

wavelength of the beam components), distributions of *  were calculated according to Eq. 287 

(4c) and then averaged, leading to the estimated value of 
*  being 

67.01 10 , which is 5% 288 

larger than the actual value. The damage identification results subject to the above different 289 

/d   for the three beam components were then treated using a 1D hybrid data fusion 290 

algorithm (analogous with Eq. (5a) to (5c), giving rise to optimal detection results as 291 

presented in Fig. 8(b) to (d), where the x axis corresponds to a bottom-to-top view of the 292 

beam components in Fig. 3(a) and (b). It can be seen that both the locations and sizes of the 293 

damaged zones can be clearly identified. 294 

 295 

Conclusion 296 

It was demonstrated in this study that the PE approach with its weak formulation can be 297 

effectively used to detect damage in one- and two-dimensional structural components 298 

without any prior knowledge of the baseline parameters of the structure under inspection. 299 

By assuming point-wise satisfaction of dynamic equilibrium conditions, the robustness of 300 

the PE approach can be enhanced in a statistical way. From the experimental results, it can 301 

be observed that, based on well-adjusted form and parameters of a weighting function and a 302 

hybrid data fusion algorithm, the method is able to reveal both the locations and sizes of 303 

damage with satisfactory accuracy and well-controlled measurement noise influence. A 304 

single vibration frequency was selected in the experiment for the construction of the damage 305 

indices. It can be anticipated that by using vibration displacements measured under an 306 

increased number of vibration frequencies, the detection accuracy can be further improved 307 

relying on data fusion algorithm. For the estimation of the baseline parameters, the errors 308 

are mainly attributed to measurement noise. Advanced signal processing technique should 309 



 

be adopted in further study aimed at increasing the accuracy of parameter estimation. 310 

Furthermore, besides 2D Gauss function, the effectiveness of other forms of weighting 311 

function is worthy to be explored in future work. 312 
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Figure 1. A schematic diagram of a plate structure containing a small damage zone 393 

 394 

Figure 2. A flow chart for the damage detection procedure for two-dimensional structural 395 

components 396 

 397 

Figure 3. (a) Front view of the plane structure, where the inspection regions on the plate and 398 

beam components are indicated by dashed red lines, and (b) back view of the plane 399 

structure, indicating the locations of the damage zones and excitation point 400 

 401 

Figure 4. (a) Distribution of the measured vibration displacements within the inspection 402 

region on the plate component subject to vibration frequency of 1800 Hz, and (b) 403 

distribution of the damage index constructed using the original PE approach 404 

according to Eq. (1a) based on the vibration displacements 405 

 406 

Figure 5. A two dimensional Gauss function within a square integration region   , with a 407 

side length of 10d =  408 

 409 

Figure 6. Distribution of the values of 
*  within the inspection region on the plate 410 

component of the plane structure, subject to / 0.4d  =  411 

 412 

Figure 7. Damage identification results constructed using Eq. (3a) based on estimated 413 

value of 
*  within the inspection region on the plate component, subject to (a) 414 

/ 0.3d  = , (b) / 0.4d  = , (c) / 0.5d  =  and / 0.6d  =  415 

 416 

Figure 8. Optimal damage identification results treated by data fusion algorithm for the (a) 417 

plate component, (b) beam I, (c) beam II and (d) beam III, as indicated in Fig. 418 

3(a) and (b) 419 
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