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Abstract 

The vibro-acoustic modelling of a panel-cavity system is of prime importance for the 

building industries, exemplified by the noise insulation of single or double skin façade. 

The vibro-acoustic analysis of such systems in the mid-to-high frequency range is 

computational costly and technically challenging due to the complex wavelength 

composition. In the present paper, the Condensed Transfer Function (CTF) approach is 

revisited to tackle this problem. It is demonstrated that the calculation efficiency of the 

CTF method can be greatly increased by properly selecting the Condensation Functions 

(CFs) and exploiting their physical characteristics. In particular, owing to their spatial 

wavy features, the complex exponential functions can better match the structural 

wavelength variations so that the velocity on the plate-cavity interface can be described 

by using a much reduced CF set as compared with the gate functions which are widely 

used in the previous works. Numerical results show a piecewise convergence behavior 

of the calculation which is further exploited for establishing a criterion for the 

truncation of the CFs. The proposed criterion allows the determination of a sub-set of 

the CFs for any prescribed frequency band for the calculation of the system response in 

a progressive and piecewise manner, resulting in a great increase in the computational 

efficiency. 
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1. Introduction 

The modelling of the noise insulation of building façades usually involves the 

vibro-acoustic interaction between panels (representing glasses or concrete walls) and 

cavities (representing rooms or inner cavities between glasses), typically in the 

frequency range [100 Hz – 5 kHz]. In the current state-of-the-art, most existing 

evaluations on the acoustic performances of façades and windows are based on simple 

empirical formulas. When compared with the actual experimental data, however, these 

formulas are shown to be too approximate to meet the need for allowing parameter 

variations at the design stage [1]. Meanwhile, accurate modelling tools such as the finite 

element method (FEM) are extremely computational costly to be used for optimization 

purposes. Therefore, the lack of proper simulation and optimization tools which are 

capable of handling rooms of large size with high modal densities in the mid-to-high 

frequency range is a big challenge.  

This problem of general relevance is investigated in this paper by adopting a 

representative configuration comprising a rectangular cavity coupled with a flexible 

panel to simulate a typical room. The framework of this study is based on the 

Condensed Transfer Function (CTF) approach [2] which has already shown its ability 

and versatility in partitioning complex vibro-acoustic problems like panel-cavity 

systems. In the CTF approach, the sub-systems are first separately modelled by 

decomposing the interaction force and the velocities on the interface over a set of basis 

functions, referred to as condensation functions (CFs). The sub-system models are then 

assembled based on the force equilibrium and velocity continuity conditions on their 

interface. To increase the efficiency of the method to reach the mid-to-high frequency, 

an interface model reduction technique is proposed by reducing the number of CFs used 
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in the calculation. 

The development of dedicated methods for the mid-to-high frequency vibro-

acoustic modelling has always been a challenge. Main challenges root in filling the gap 

left over by the low frequency methods like modal-based methods [3] or the finite 

element method (FEM)[4-6] and the high-frequency statistical energy analyses 

(SEA)[7-9]. Assumptions and approximations adopted in these methods are well 

established, which define and limit their respective application ranges at the same time. 

In the mid-to-high frequency range, the presence of the short wavelength components 

challenges the conventional deterministic modelling methods by the exorbitant 

computational cost incurred. The long wavelength ones, however, fail to meet the SEA 

assumptions, due to the insufficient modal overlap and the unavailability of the rigorous 

coupling loss factors[10]. For instance, for the double skin façades, the inner cavity 

between the two glasses and the internal thick glass may have a low modal density 

whereas the acoustic room may exhibit thousands of modes within the same frequency 

range.  

In recent years, several strategies have been adopted for tackling the mid-frequency 

problems. Some attempts consist in reducing the frequency limit of the higher 

frequency methods like the SEA method, exemplified by Statistical modal Energy 

distribution Analysis (SmEdA) [11]. The method consists in relaxing the modal energy 

equipartition assumption used in the traditional SEA. Instead of using the power 

balance between subsystems used in the SEA, the power balance equations between the 

resonant modes of different subsystems are established. Circumventing modal energy 

equipartition allows the handling of subsystems with a relatively low modal overlap[11], 

as well as the evaluation of the spatial distribution of the energy density within 

subsystems[12]. Other enhanced SEA methods include energy finite element analysis 
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(EFEA) [13], which improves the SEA by allowing the damping and the excitation to 

be spatially distributed over a system. However, similar to other methods based on SEA, 

the EFEA is limited by the requirement of high modal density, thus hampering its use 

in the mid-frequency range. Another typical type of approach consists in combining 

different methods by capitalizing on their respective advantages based on the structural 

fuzzy theory[14]. Typically, a complex system is divided into a master structure and 

fuzzy attachments, which can be modelled by different methods. For instance, in the 

hybrid FEM-SEA approach [15], subsystems with long wavelengths are described by 

FEM whereas those with short wavelengths by the SEA. These hybrid methods allow 

adding more details to the classical SEA model whilst avoiding the handling of the 

entire system by the FEM. 

Another typical strategy consists in extending the application range of the low-

frequency methods to higher frequencies. The Trefftz methods such as the wave-based 

method (WBM) [16] and the Variational Theory of Complex Rays (VTCR) [17] are 

typical examples. In these methods, approximate solutions of the global response are 

developed using exact solutions of the subsystem motion equations as shape functions 

and by respecting the boundary conditions between subsystems through a weak 

formulation. In general, the size of the resultant model is much smaller than that of the 

equivalent FE model, so as to reach the mid-frequency range. Various versions of such 

methods exist depending on the choice of the shape functions and the way the boundary 

conditions and the coupling between subsystems are handled. The Component Modal 

Synthesis (CMS) models [18] were developed to speed up finite element computations 

and then to increase the frequency range of applicability of this method. Each 

component is separately treated in terms of its uncoupled modes and the components 

are then assembled using basis functions defined on the interface. There is a large 



6 
 

amount of literature devoted to CMS models. Only a few presentative works are cited 

here. For example, Craig [19] compares the efficiency of using different component 

modes and concludes that the models based on interface constraint modes together with 

the fixed-interface normal modes are the most effective. In the early form of the CMS 

method, the number of constraint modes is equal to the number of degree of freedom at 

the subsystem interface. For subsystems coupled continuously along a line or a surface 

(like for acoustic building applications), the number of interface modes can become 

prohibitive. In order to reduce the degrees of freedom along the coupling interface, a 

modal-based approach [20] was proposed to describe the mid-frequency vibration 

transmission from a long-wavelength source and a short-wavelength receiver using the 

uncoupled free-interface modes. Different examples also include the generalized-

interface-dofs method [21] or the characteristic-constraint modes method [18]. Mace 

and Shorter [22] proposed a local modal/perturbational method that takes the uncertain 

properties of the considered system into account for the mid-to-high frequency analyses. 

Uncertainty is introduced at the subsystem level. A perturbation technique relates small 

changes in the local modal properties to those in the global modal properties. A Monte 

Carlo simulation is then used to estimate the variability of the frequency response function 

statistics. This approach was applied to coupled rods. 

The Patch Transfer Function (PTF) method [23] was developed for partitioning 

acoustic [22] or vibro-acoustic [23, 24] problems for enlarging the frequency range of 

the vibro-acoustic simulation. The method divides the interface into patches using a 

wavelength-based criterion. For each subsystem, the uncoupled transfer functions 

between each pair of patches need to be calculated, a priori, before being assembled in 

the final stage. PTF can be seen as an extension of the well-known receptance approach 

which is commonly used in dynamic analyses for assembling point-coupled mechanical 
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structures. The PTFs can be calculated by different means. For instance, for subsystems 

of finite sizes, they can be calculated from the subsystem modes for simple geometry 

or from the finite element method for complex geometry. For infinitely large acoustic 

subsystems, they can be estimated from boundary element method or the Rayleigh 

integral as in [22, 25], or be measured as in [24] for characterizing poroelastic materials 

used in automotive. 

Though intuitive, question still remains on whether discretization by patches is the 

best way forward in terms of calculation efficiency. In fact, for the modelling of large 

systems, such as the noise transmission through a building of practical size, the number 

of patches (i.e. the degree of freedom in the discretized system) may be very large when 

reaching the mid-to-high frequency range. This makes the direct application of the PTF 

method difficult, if not impossible. To tackle this issue, attempts were made to extend 

the PTF approach to further explore other types of discretization schemes, aiming at 

reducing the number of degree of freedoms and increasing the computation efficiency. 

As a typical example, the CTF approach generalizes the patches, i.e. the basis functions, 

of the PTF approach to any function sets over the coupling junction such as the complex 

exponential functions and the Chebyshev polynomials. The sub-system motions, which 

will be referred to as condensed velocities, are decomposed in terms of the CFs and 

assembled together along the interface based on continuity conditions. Up to now, the 

CTF approach has only been applied to the modelling of the interaction between two 

line-coupled vibrating mechanical systems, exemplified by the coupling between two 

panels [2] and a naval application involving a cylindrical shell coupled with non-

axisymmetric internal frames [25]. Its application to surface coupled vibro-acoustic 

system, with the inherently more complex wavelength mixing, has not been dealt with 

yet.  
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These problems motivate the present work. We aim at exploring ways to increase 

the calculation efficiency of the CTF method without losing its accuracy by reducing 

the interface degrees of freedom, i.e. the number of CFs for the presented method. 

Firstly, the basic theory of the CTF approach is recalled using a benchmark problem 

comprising a panel-cavity system. The panel is first assumed to be simply supported so 

that the system provides analytical solutions for model validation purposes. Clamped 

case will be considered at a later stage. Through numerical studies, the ability of the 

CTF method to model the structural-acoustic interaction is verified. Two types of CFs 

(gate functions and complex exponential functions) are investigated and compared in 

terms of the modelling efficiency and accuracy. In particular, the advantages of the 

complex exponential functions are highlighted and explained in terms of their physical 

wavelength matching characteristics. A selection criterion of the CFs is then proposed, 

aiming at boosting the CTF method for the mid-to-high frequency simulations. The 

proposed criterion allows the use of a suitably chosen and reduced CF sub-set to 

significantly reduce the number of degree of freedom of the system on one hand, and 

to allow the calculation in a piecewise manner in different frequency bands on the other 

hand. All in all, this allows an effective and accurate simulation of the panel-cavity 

system in the mid-to-high frequency range. 

2. Formulation 

For the completeness, the basic theory of the CTF method is briefly summarized 

using a benchmark panel-cavity system. Examples of the CTFs are given, and their 

convergence conditions are introduced. Note that the CTF method is a generalized 

version of the previous PTF method. 
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2.1 Basic theory of the CTF method 

Consider a rectangular acoustic cavity with one of its walls being covered by a 

vibrating panel while the others being acoustically rigid, as shown in Fig. 1. The panel 

is subjected to a prescribed harmonic sound pressure excitation 𝑃𝑒 with an angular 

frequency ω. The two subsystems, structural (panel) and acoustic (cavity), denoted by 

superscript s and a, respectively, are coupled over their interface Ω which is two 

dimensional. 

 

Fig. 1. The panel-cavity configuration and coordinate system 

 A set of 𝑁𝑥 × 𝑁𝑦  orthonormal functions {𝜑𝑝𝑞}
1≤𝑝≤𝑁𝑥,1≤𝑞≤𝑁𝑦

, referred to as 

Condensation Functions (CF), is employed to approximate the velocities and the forces 

on the coupling interface Ω. The value of 𝑁𝑥 and 𝑁𝑦 should warrant the convergence 

of the results, which will be discussed later. In the present case, the CFs may be written 

in a separable form as 𝜑𝑝𝑞(𝑥, 𝑦)  = 𝜑𝑝(𝑥)𝜑𝑞(𝑦), although the separable form is not a 
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necessary requirement of the general CTF approach. One assumes that the velocity 

𝑈𝛼(𝑥, 𝑦) and the force 𝑃𝛼(𝑥, 𝑦) can be approximated by the condensation functions 

for each subsystem 𝛼 (𝛼 ∈[s, a]) with a sufficient accuracy.  

For the structural subsystem, the condensed mobility between 𝜑𝑝𝑞  and 𝜑𝑘𝑙 

defined and calculated as: 

,
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in which <𝑓, 𝑔> is a scalar product defined as ∫ 𝑓(𝑥, 𝑦)𝑔∗(𝑥, 𝑦)𝑑𝑆
Ω

 with 𝑔∗ being 

the complex conjugate of 𝑔, and 
s

pqU  is the uncoupled normal velocity on Ω when 

the structural subsystem is subjected to an external excitation 𝑃𝑠(𝑥, 𝑦) = 𝜑𝑝𝑞(𝑥, 𝑦) . 

Additionally, the uncoupled condensed free velocity 𝑢̃𝑝𝑞 of the structural subsystem 

is defined by 

𝑢̃𝑝𝑞
𝑠 =< 𝑈̃𝑠, 𝜑𝑝𝑞 >,                         (2) 

where 𝑈̃𝑠 is the uncoupled velocity of the structural subsystem over Ω when only an 

external excitation exists.  

For the acoustical subsystem, the condensed impedance ,

a

kl pqZ  is defined as: 
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with 
a

pqP  being the uncoupled acoustic pressure on Ω when the acoustical subsystem 

is subjected to the prescribed velocity 𝑈𝑎(𝑥, 𝑦) = 𝜑𝑝𝑞(𝑥, 𝑦). Similarly, the uncoupled 

condensed free acoustic pressure 𝑝𝑝𝑞 of the acoustical subsystem is defined by 

𝑝𝑝𝑞
𝑎 =< 𝑃̃𝑎, 𝜑𝑝𝑞 >,                         (4) 

where 𝑃̃𝑎 is the uncoupled acoustic pressure of the acoustical subsystem at Ω when 
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only the internal sound sources exist. In the present case, this value is null. 

Then one can approximate the normal velocity and the normal force distribution 

on the interface for each subsystem 𝛼 ∈[s, a] as: 
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where 𝑢𝑝𝑞
𝛼  and 𝑝𝑝𝑞

𝛼  are the amplitudes of normal velocity and the normal force 

distribution with respect to the condensation function 𝜑𝑝𝑞. 

On the other hand, the velocity continuity and force equilibrium principle over the 

coupling interface write 

{ 𝑈𝑠 = 𝑈𝑎

𝑃𝑠 = −𝑃𝑎.                            (6) 

If CFs are orthogonal, one deduces from Eqs. (5-6) the following relationship: 

{
𝑢𝑝𝑞

𝑠 = 𝑢𝑝𝑞
𝑎

𝑝𝑝𝑞
𝑠 + 𝑝𝑝𝑞

𝑎 = 0
.                           (7) 

Otherwise, similar, but more complex expression can also be developed to link up the 

components of different amplitudes of normal velocity and the normal force terms.   

The superposition principle for passive linear systems can then be used to write the 

condensed velocities of the panel 𝑢𝑝𝑞
𝑠  and the condensed pressure of the cavity 𝑝𝑝𝑞

𝑎   

from the condensed mobility and impedance (see Ref. [2] and [25] for details). From 

the resulting equations and Eq. (7), a linear equation system is obtained which can be 

cast into a matrix form as: 

s a c + = I Y Z U u%.                        (8) 

where cU  is the unknown vector of the condensed normal velocities, u% is the vector 

of the condensed free velocities characterizing the external excitations, s
Y  is the 

matrix of the condensed mobility of the panel, a
Z  is the matrix of the condensed 
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impedance of the cavity, and I is an identity matrix. It should be reiterated that the 

orthogonality property of the CFs is not necessary from a theoretical point of view. 

However, using the property leads to Eq. (7) and then to an equation system which can 

be written on a very succinct form (i.e. Eq. (8)). Moreover, it is not a restriction to 

consider this property as it is easy to orthogonalize a set of non-orthogonal functions 

with the well-known Gram-Schmidt procedure. 

In the current cavity-plate configuration, s
Y  and a

Z  can be obtained using the 

modal expansion method and the analytical expression of the mode shapes of the panel 

(when simply-supported) and the cavity, respectively. Since these two quantities are 

both frequency independent, a database can be established beforehand for each sub-

system. For more complex cases when the analytical mode shapes are unavailable, 

numerical tools like FEM can be employed. For the considered case, the condensed 

mobility of the panel is given by: 

𝑌𝑝𝑞,𝑘𝑙
𝑠 =

𝑖𝜔

𝜌𝑠ℎ
∑

𝐶𝑝𝑞,𝑚𝐶𝑘𝑙,𝑚
∗

Λ𝑚(𝜔𝑚
2 −𝜔2+2𝑖𝜉𝑠𝜔𝑚𝜔)𝑚 ,                   (9) 

where 𝜌𝑠 is the density of the panel, h is the panel thickness, 𝜉𝑠 is the damping ratio 

of the panel assumed to be equal for all the panel modes, 𝜔𝑚 is the natural frequency 

of the mth panel mode, Λ𝑚 = ∫ 𝜙𝑚
2 𝑑𝑉 and 𝐶𝑝𝑞,𝑚 = ∫ 𝜑𝑝𝑞𝜙𝑚𝑑𝑆 where 𝜙𝑚 is the 

mth panel mode shape, and S is the area of the panel. Similarly, the acoustic impedances 

of the cavity a
Z  can be written as: 

𝑍𝑝𝑞,𝑘𝑙
𝑎 = 𝑖𝜔𝜌0𝑐0

2 ∑
𝐶𝑝𝑞,𝑛𝐶𝑘𝑙,𝑛

∗

Λ𝑛(𝜔𝑛
2 −𝜔2+2𝑖𝜉𝑎𝜔𝑛𝜔)𝑛                  (10) 

where 𝜌0 is the air density, 𝑐0 is the speed of sound in the air, 𝜉𝑎 is the damping 

ratio of the cavity assumed to be equal for all the cavity modes, 𝜔𝑛 is the natural 

frequency of the nth acoustic mode, Λ𝑛 = ∫ 𝜙𝑛
2𝑑𝑉 and 𝐶𝑝𝑞,𝑛 = ∫ 𝜑𝑝𝑞𝜙𝑛𝑑𝑆 where 

𝜙𝑛 is the th cavity mode shape, and V is the volume of the cavity. The condensed 
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mobilitiy and the condensed impedance matrix can be estimated using the analytical 

expression in Eqs. 9 and 10, respectively. Substituting Eqs. 9 and 10 into Eq. 8, the 

coupled velocity and the interaction force on the interface can be obtained, respectively, 

as: 

1
1( )c s a e

−
− = + U Y Z P                       (11) 

where e
P  is the external excitation written under the CF coordinate. The acoustic 

pressure at any given point M inside the cavity can then be deduced from: 

( ) ,

a a a

M pq pq

p q

P M Z u=                      (12) 

where ,

a

M pqZ is the acoustic impedance of the cavity between the CFs 𝜑𝑝𝑞 and the 

point M, defined by ( ),

aa
pqM pqZ P M=  with ( )

a

pqP M  being the pressure at M 

when the cavity is excited by a prescribed velocity 𝑈𝑎(𝑥, 𝑦) = 𝜑𝑝𝑞(𝑥, 𝑦) on Ω. This 

quantity can be estimated similarly to the condensed impedances using a modal 

expansion. 

2.2 Two examples on the condensation functions and their convergence rules 

2.2.1 Gate functions 

The gate functions are defined as: 

𝜑𝑝𝑞(𝑥, 𝑦) = {

1

√𝐿𝑔𝑥𝐿𝑔𝑦
       if (𝑝 − 1)𝐿𝑔𝑥 ≤ 𝑥 ≤ 𝑝𝐿𝑔𝑥, (𝑞 − 1)𝐿𝑔𝑦 ≤ 𝑦 ≤ 𝑞𝐿𝑔𝑦

0           elsewhere                                                                
,  (13) 

where 𝐿𝑔𝑥  and 𝐿𝑔𝑦  are the lengths of the gate function and p and q are the gate 

indices in x and y directions, respectively. As illustrated in Fig. 2, each condensed 

mobility term 𝑌𝑘𝑙,𝑝𝑞 physically corresponds to the velocity response 𝑈𝑘𝑙 when a unit 

excitation 𝑃𝑝𝑞  is applied. When the gate functions are employed, the CTF method 
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retreats to the PTF method as a special case. Owing to the intuitive and explicit physical 

meaning of the gate functions, the corresponding condensed mobility and impedance 

can be obtained using various calculation schemes, or even from experimental 

measurements. 

 

Figure 2. The working principle of gate functions 

The convergence criterion for the PTF is well established [23], stipulating that at 

least two gate functions are needed to describe a wavelength, analogous to the spatial 

Shannon criterion used in signal processing. Therefore, for a given structural or 

acoustical wavelength λ, the length of the gate functions Lgx and Lgy should satisfy:  

𝐿𝑔𝑥 ≤
𝜆

2
, 𝐿𝑔𝑦 ≤

𝜆

2
.                        (14) 

2.2.2 Complex exponential functions 

The complex exponential functions are given by 

𝜑𝑝𝑞(𝑥) =
1

√𝐿𝑥𝐿𝑦
exp (𝑖

2𝑝𝜋𝑥

𝐿𝑥
)exp (𝑖

2𝑞𝜋𝑦

𝐿𝑦
).              (15) 

in which 𝑝 ∈[0, ±1, ±2, …, ±𝐼𝑚𝑎𝑥
𝑥 ] and 𝑞 ∈[0, ±1, ±2, …, ±𝐼𝑚𝑎𝑥

𝑦
] are the 

function indices in x and y directions, respectively. Different from the case of the gate 

functions in which the coupling interface is divided into more intuitive ‘patches’, the 
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use of the exponential functions spatially decomposes the velocity and the force over 

the entire coupling interface. 

In the following, we will consider a similar convergence criterion than the one 

proposed in Ref. [25] for the line coupled mechanical structures. In the present case of 

a panel-cavity system coupled over a surface, it can be expressed as:  

𝐼𝑚𝑎𝑥
𝑥 ≥

2𝐿𝑥

𝜆
− 1 and 𝐼𝑚𝑎𝑥

𝑦
≥

2𝐿𝑦

𝜆
− 1.               (16) 

This criterion will be verified through numerical simulations and analyses hereafter. 

3. Analyses and Improvement 

In the following numerical analyses, the dimension of the cavity is set to be 

2.5m×2m×3m (x×y×z). The plate is assumed to be simply-supported to facilitate the 

model validation. The panel is 1.8mm thick, located at z=0 forming one wall of the 

enclosure. The panel is made of glass and it has a Young’s modulus 7.2×1010Pa with a 

Poisson’s ratio 0.2 and mass density 2.53×103kg/m3. Damping ratios 𝜉𝑎 and 𝜉𝑠 are 

set to 0.001 and 0.01 for the cavity and the panel, respectively. An oblique acoustic 

excitation with an amplitude of 20Pa impinges on the panel, with both the dihedral 

angle and the intersection angle with x axis being 45° (i.e. 𝛾=𝜃=45° in Fig. 1). The 

use of the oblique incident excitation ensures the excitation of more panel modes to get 

the complexity needed for the analyses. The frequency band of interest is [1, 1000] Hz. 

Additionally, according to Eqs. (14) and (16), the number of the condensation functions 

should be determined by the shorter wavelength among the subsystems. Because the 

number used for the two subsystems needs be equal to be assembled together in Eq. (8), 

the number of functions to be used is then selected according to the subsystem whose 

wavelength at 1000Hz is shorter. In the present case, the shorter wavelength comes 
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from the acoustic system with a smallest wavelength of 0.17m. This results in a 

minimum of 174 condensation functions. In the present case, 180 gate functions will be 

used (15 for x direction and 12 for y direction) in the calculation. For the complex 

exponential functions, the convergence criteria Eq. (16) impose 𝐼𝑚𝑎𝑥
𝑥 = 𝐼𝑚𝑎𝑥

𝑦
= 6, 

giving a total of 169 terms in the calculation. 

Table 1 tabulates the number of modes and modal overlap factor in the one-third 

octave frequency bands. To better quantify the frequency range, we define the start of 

the so-called mid-frequency range when the modal overlap factor of either subsystem 

is close to one. In the present case, the so-called mid-frequency domain begins at the 

third octave band with a center frequency of 500 Hz. 

Table 1 Number of modes and modal overlap factor of the panel and the cavity in 

different one-third octave frequency bands 

Center frequency of 

the 1/3 octave band 

(Hz) 

Number of modes Modal overlap factor 

Panel Cavity Panel Cavity 

250 3 26 0.21 0.07 

315 5 49 0.26 0.21 

400 8 94 0.33 0.43 

500 10 167 0.41 0.84 

630 11 334 0.52 1.69 

800 17 634 0.74 3.38 

1000 19 1247 0.83 6.77 

 

3.1 Acoustic Pressure 

The sound pressure is calculated at an arbitrarily chosen point within the enclosure 

(0.5, 1.3, 2)m. The calculated sound pressure level (SPL) is given in Fig. 3, in which 

the results using two different CFs are compared with the reference solution obtained 

from the analytical results based on the exact wave method, which has been fully 

validated in a previous paper [26]. It can be seen that the pressure prediction by both 
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types of CFs agree well with the reference result in the low frequency range. However, 

the performance of the gate functions slightly deteriorates as compared with their 

complex exponential counterparts in the higher frequency range, especially at the 

troughs of the curves where system becomes less dynamic. Similar results are observed 

when averaging the acoustic pressure within the entire cavity. Generally speaking, the 

convergence criteria Eqs. (17, 19) ensure acceptable calculation accuracy for both types 

of CFs. 

 

Fig. 3 SPL (with reference to 2x10-5 Pa) using two types of CFs compared with 

reference solutions 

3.2 Analyses of the CTF method 

As the CTF method converges similarly whatever the considered CFs are (i.e. gate or 

complex exponential), some intermediary quantities of the method with different CFs will 

be investigated in order to reveal properties which could be used to reduce the number of 

degree of freedom (i.e. number of CFs) and then enlarge the applicable range of CTF to the 
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mid frequency range. Two variables are to be analyzed, namely the condensed impedance 

of the cavity and the condensed normal velocity when the panel is coupled to the cavity. 

Since these two variables are frequency dependent, a single frequency, 800 Hz, is selected 

for analyses. 

3.2.1 Condensed impedance 

For the cavity, the condensed impedance ,

a

kl pqZ  calculated from the complex 

exponential functions and the gate functions are shown in Figs. 4(a) and 4(b), 

respectively. The x-axis and y-axis are the serial number of the condensation functions 

𝜑𝑝𝑞 following the order: [𝜑11, 𝜑12, …𝜑1𝑞, 𝜑21, 𝜑22,…𝜑𝑝𝑞], in which p, q = [0, 1, 

2,…] for the gate functions and p, q = [0, 1, -1, 2, -2…] for the exponential functions. 

It is observed in Fig. 4(a) that, for the complex exponential functions, the condensed 

impedance terms along the diagonal region have much larger values than those on the 

off-diagonal area. Even this strong coupling within the diagonal region seems to be 

dominated by a limited number of combinations rather than all diagonal terms. Almost 

all off-diagonal combinations appear to be so small that they can be neglected during 

the calculations, revealing the possibility for further approximations with the CTF 

method. As for the gate functions, Fig. 4(b) shows that the condensed impedance terms 

are not as concentrated as in the case of the complex exponential functions. All 

combinations of pq and kl are of comparable importance to be considered during the 

calculation, leaving less rooms in making further simplifications to increase the 

calculation efficiency using gate functions. Analyses show similar behaviors for the 

condensed impedance at other frequencies as well as the condensed mobility (not 

shown here). 
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(a) 

 

 (b) 

Fig. 4 Modulus of the condensed impedance between condensation functions: (a) 

complex exponential functions at 800 Hz; (b) gate functions at 800 Hz. 

3.2.2 Condensed velocity 

The coupling velocity 𝑈(𝑥, 𝑦) = ∑ 𝑢𝑝𝑞𝜑𝑝𝑞(𝑥, 𝑦)𝑝,𝑞  on the interface is analyzed. 
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𝑢𝑝𝑞  represents the contribution from the particular CF term 𝜑𝑝𝑞  to the coupled 

velocity. Figure 5 shows this quantity normalized with respect to the largest value at 

each frequency, be it for the complex exponential functions or the gate functions, within 

[0, 1000] Hz. The x-axis is the frequency and the y-axis is again the CTF serial number 

pq arranged in the same way as in Fig. 4. It can be seen from Fig. 5(a) that, for the 

complex exponential functions and for each frequency, there always exist some 

dominant terms holding a higher weight than the others, which are consistent with the 

behavior of the condensed impedance and the condensed mobility. It can then be 

surmised that the coupling velocity, which is the key parameter connecting the coupled 

subsystems, might be estimated by using a small number of CF terms if one knows how 

to choose them. Additionally, these dominant terms change as the frequency varies. As 

to the gate functions in Fig. 5(b), at any given frequency, the contributions from 

different terms are rather uniform, showing no particular dominant pattern. This can be 

explained by the mathematical properties of the gate functions. Indeed, as opposed to 

the continuous and wavy feature of the complex exponential functions, gate functions 

show discontinuities in their spatial distribution. As a result, it is naturally more difficult 

to map the waveform of the velocity over the interface, unless an increasing number of 

terms are used. For the complex exponential functions, however, the calculation 

efficiency could be greatly increased if only dominating terms can be extracted within 

a frequency band. This will be further exploited hereafter. 
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(a) 

 

 (b) 

Fig. 5 Normalized velocity contributions of different condensed functions in the 

frequency band [0, 1000] Hz: (a) complex exponential functions; (b) gate functions.  

3.3 Model reductions using complex exponential functions. 

To extract the dominating terms in the complex exponential functions, two 
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generalized wavelength terms are defined to characterize their wavy nature based on 

their function wavelength and the wavelength of the vibrating panel or that of the 

acoustic cavity. It is found that the dominating CF terms have a close tie with the 

wavelength of the two subsystems. A selection rule for the exponential functions is then 

proposed accordingly, which allows truncating the series terms by keeping the most 

dominant ones so that the size of the system matrix [Y] and [Z] can be reduced.  

3.3.1 Generalized wavelength of the CTF 

Two generalized wavelengths 𝜆𝑐𝑎  and 𝜆𝑐𝑠  are defined to connect the 

condensation functions with the acoustic cavity and vibrating structural, respectively, 

as: 

𝜆𝑐𝑎 =
𝜆𝑐,𝑝𝑞

𝜆𝑎
                            (17) 

𝜆𝑐𝑠 =
𝜆𝑐,𝑝𝑞

𝜆𝑠
                            (18) 

where 𝜆𝑐,𝑝𝑞 is the wavelength of the complex exponential function 𝜑𝑝𝑞(𝑥, 𝑦), defined 

as 

𝜆𝑐,𝑝𝑞 =
2𝜋

√(
2𝑝𝜋

𝐿𝑥
)

2
+(

2𝑞𝜋

𝐿𝑦
)

2
,                       (19) 

and 𝜆𝑎 and 𝜆𝑠 are the acoustic wavelength and structural wavelength, respectively, 

which are frequency dependent. For convenience, those acoustic modes with 𝜆𝑐𝑎 

smaller than one are referred to as the inertia dominated modes, otherwise, they are 

called stiffness dominated modes [27]. The same rule also applies to structural modes 

characterized by 𝜆𝑐𝑠. Using the definition, 𝜆𝑐𝑎 and 𝜆𝑐𝑠 at 250Hz, 650Hz, and 800Hz 

are calculated for the complex exponential functions used in the last section and shown 

in Figs. 6(a), 6(b), and 6(c), respectively. Note that 650Hz is the critical frequency of 

the panel. In these figures, the y-axis is the |𝑢𝑝𝑞| from each condensation function 
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normalized with respect to the largest value of |𝑢𝑝𝑞|. Figs. 6(a) and 6(c) have two x-

axes, with 𝜆𝑐𝑠 on the bottom and 𝜆𝑐𝑎 on the top, both being arranged in an increasing 

order. The sequence of the condensation functions remains the same for the two x-axes, 

because 𝜆𝑐,𝑝𝑞 is frequency independent and both 𝜆𝑎 and 𝜆𝑠 are fixed numbers for 

any given frequency. Fig. 6(b) has only one x-axis since  𝜆𝑐𝑎 = 𝜆𝑐𝑠  at the critical 

frequency. 

In Fig. 6(a), two reference dash lines are plotted at 𝜆𝑐𝑎=1 and 𝜆𝑐𝑠=1 for the ease 

of analyses. It can be seen that most of the dominating terms are located around the two 

reference lines and more on their right side than the left side, which means a more 

predominant contribution from the inertia modes than the stiffness modes. Comparing 

the three sub-figures in Fig. 6, it can be seen that this phenomenon occurs at all the 

three frequencies being analyzed. In Fig. 6(c), more inertia terms are involved when the 

frequency increases, while the stiffness terms still have little contribution. Particularly 

in Fig. 6(b), the coupling is strongly dominated by the four terms close to 𝜆𝑐𝑎 = 𝜆𝑐𝑠 =1, 

i.e. 𝜑±3,±3(𝑥, 𝑦) with a function wavelength of 0.521m, as compared with the critical 

wavelength of the system of 0.523m. This shows that the two subsystems strongly 

interact at the critical frequency and this strong coupling can be characterized by a very 

small number of condensation functions with close wavelengths.  

Another noteworthy phenomenon is the location of the term which has the largest 

contribution. It is closer to 𝜆𝑐𝑎=1 at the lower frequency (Fig. 6(a)) but much closer to 

𝜆𝑐𝑠=1 at the higher frequency (Fig. 6(c)). This is because 250Hz (Fig. 6(a)) is before 

the critical frequency in which the acoustic wavelength is larger than that of the panel. 

Therefore, the acoustic cavity is a large wavelength subsystem, contrary to the 

supersonic case of 800Hz (Fig. 6(c)).  

Generally speaking, it can be concluded that, at any prescribed frequency and 
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within a band, those CF terms which feature a better spatial wavelength match with the 

system would dominant the system responses. This explains why complex exponential 

functions outperform the gate functions in terms of both accuracy and efficiency. It can 

be surmised that there could be other function sets which are more efficient to model a 

system if the function wave of which match the structure wave characteristics. For 

example in an acoustic-black-hole structure, one may use wavelet to achieve a better 

modelling efficiency [28]. However, it is beyond the scope of this paper and will be 

explored in the future works. 

 

(a) 
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(b) 

 

(c) 

Fig. 6 Normalized velocity contribution from each complex exponential function, 

arranged according to their function wavelength with respect to acoustic wavelength 

and structural wavelength: (a) 250Hz; (b) 650Hz (critical frequency) (c) 800Hz. 
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3.3.2 A piecewise calculation scheme with CTF method 

Before moving forward to the detailed selection criterion, an error quantification 

can be introduced to evaluate the ability of the CFs to map the velocity field on the 

coupling surface. An error index is defined for the frequency band  [𝜔1, 𝜔2]  as 

20 log10 𝐸𝑝𝑞 where 

𝐸𝑝𝑞 =
1

𝑆(𝜔2−𝜔1)
∫ ∫ ∫ [𝑢𝑐(𝑥, 𝑦, 𝜔) − ∑ 𝑢𝑝𝑞(𝜔)𝜑𝑝𝑞(𝑥, 𝑦)𝑝,𝑞 ]

2𝐿𝑥

0

𝐿𝑦

0

𝜔1

𝜔1
𝑑𝑥𝑑𝑦𝑑𝜔   (20) 

in which 𝑢𝑐  is the panel velocity obtained from the reference method, i.e. wave 

approach [26]. Generally, larger p and q could lead to a smaller error but a reduced 

calculation efficiency. 

For a frequency band [𝑓𝑙 , 𝑓ℎ], the corresponding wavelength range of the coupled 

system is denoted by [𝜆ℎ, 𝜆𝑙]. Three representative scenarios, corresponding to before 

critical, critical and after critical bands, are listed in Table 2 and analyzed.  

Table 2 System critical frequency and the wavelength selection 

Frequency band property Frequency band Wavelength selection 

below critical 𝑓𝑙 < 𝑓𝑐 Hz, 𝑓ℎ < 𝑓𝑐 Hz 𝜆𝑙 = 𝜆𝑎, 𝜆ℎ = 𝜆𝑠 

critical 𝑓𝑙 < 𝑓𝑐 Hz, 𝑓ℎ > 𝑓𝑐 Hz 𝜆𝑙 = 𝜆𝑎, 𝜆ℎ = 𝜆𝑎 

above critical 𝑓𝑙 > 𝑓𝑐 Hz, 𝑓ℎ > 𝑓𝑐 Hz 𝜆𝑙 = 𝜆𝑠, 𝜆ℎ = 𝜆𝑎 

 

Firstly, the selection criterion should include all dominating terms close to 𝜆𝑐𝑎 =1 

and 𝜆𝑐𝑠 =1 for all frequencies within the band. That is to say, the wavelengths of the 

selected exponential functions should cover all the existing wavelengths of the coupled 

system within the frequency band. Furthermore, as indicated in section 3.3.1, the inertia 

modes impose a larger weight on the response than the short wavelength terms do. 

Therefore, more long-wavelength terms should be preserved in the calculation.  

Assuming all the condensation functions that should be kept in the calculation 

have a function wavelength 𝜆𝑐,𝑝𝑞 to satisfy 𝛼𝜆ℎ < 𝜆𝑐,𝑝𝑞 <  𝛽𝜆𝑙, then the coefficient 
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𝛼 and 𝛽 is delimited by 0≤ 𝛼 ≤1 and 𝛽 ≥1, respectively. Apparently, a smaller 𝛼 

or a larger 𝛽 increases the size of the series sub-set, thus providing a better calculation 

accuracy but a reduced efficiency. In particular, when 𝛼=1 and 𝛽 → ∞, the criterion 

coincides with the traditional convergence rule. Therefore, the dominating terms should 

be extracted by properly selecting 𝛽. Figure 7 shows the calculation errors, which are 

obtained based on Eq. 21, for three different one-third octave frequency bands with the 

center frequencies of 630 Hz, 800 Hz and 1000 Hz, respectively. It can be found that 

the error drops as the value of 𝛽  increases and the drop speed slows down from 

𝛽 =1.5 onwards. Particularly, the error for the 630 Hz band is small even for low value 

of 𝛽 . The reason is that the 630 Hz band contains the critical frequency and its 

wavelength variation is relatively not significant so that the response expression is 

dominated by on a few terms, which is consistence with the result shown in Fig. 6b. 

Generally speaking, 𝛽 =1.5 seems to be a good compromise between the accuracy and 

the calculation efficiency. 

 

Fig. 7 CTF calculation error for different 𝛽 values within one-third octave frequency 

bands: 630 Hz, 800 Hz, and 1000 Hz. 
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The proposed selection criterion is applied to calculate the overall pressure 

response of the cavity within the one third octave band with a center frequency of 

630Hz, with the results shown in Fig. 8 using 𝛽=1.5. It can be observed that the system 

responses at the resonance frequencies are well predicted by using only 60 CF terms 

while the old convergence rule would require 80 terms. Slight discrepancies exist at 

some non-resonant frequencies especially in the higher frequency part of the band. The 

corresponding one-third octave band SPL error is calculated, giving 0.13dB within the 

frequency band contained in Fig. 8. The errors in Eq. 20 and the CF terms used by the 

proposed criterion and the traditional criterion for other one-third octave bands are 

listed in Table 3. It can be seen that 𝛽=1.5 leads to a slightly larger but still acceptable 

accuracy as compared to the case of 𝛽=2 for the all bands in the mid-frequency range 

(starting from the band of 500 Hz according to the previous definition) with a further-

reduced system size. It is expected that the accuracy in the low frequency range may 

deteriorate because of the insufficient modal density, exemplified by the band below 

315Hz. As to the model size, the proposed selection criterion obviously reduces the 

number of the CF terms used, i.e. the matrix size in Eq. 8, leading to an expected 

increase in the calculation efficiency. It is understandable that the proposed criterion 

intends to guaranty the calculation accuracy only within the targeted frequency band, 

instead of trying to cover the entire frequency range, as shown in Fig. 9(a), in which 

the lower frequencies are deliberately abandoned. Nevertheless, as shown in Fig. 9(b), 

the proposed criterion can be applied to any arbitrarily selected bands, one at a time so 

that the entire frequency range can be covered by moving the bands in a sequential way. 

This sequential calculation scheme is what the piecewise calculation means. This way, 

the calculation efficiency can be maximized in each frequency band of interest. 
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Fig. 8 Calculated SPL using the proposed selection criterion for the one third octave 

frequency band (center frequency: 630Hz). 

Table 3 Performance of the proposed selection criterion 

Center frequency of the one 

third octave bands  

Error  Piecewise terms  CTF terms  

(previous rule) 𝛽 =1.5 𝛽 =2 𝛽 =1.5  𝛽 =2 

250 Hz 1.16 dB 0.21 dB 20 22 31 

315 Hz 1.14 dB 0.47 dB 26 28 40 

400 Hz 0.75 dB 0.52 dB 34 36 51 

500 Hz 0.58 dB 0.49 dB 40 42 64 

630 Hz 0.13 dB 0.02 dB 50 60 80 

800 Hz 0.37 dB 0.06 dB 80 96 137 

1000 Hz 0.04 dB 0.02 dB 122 146 218 
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(a) 

 

(b) 

Fig. 9 Sound pressure level using the proposed criterion targeting two selected one-

third octave bands with the center frequency: (a) 630 Hz; (b) 800 Hz. 

To further assess the performance and the robustness of the proposed criterion, an 

additional case of a cavity with boundary impedance, coupled to clamped panel, is 

considered. The impedance wall is located at y=0 within the XOZ plane as shown in 
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Fig. 1, with a normalized acoustic impedance of 33.5 with respect to the characteristic 

impedance of air 𝜌0𝑐0 [29]. Notice that the sound velocity 𝑐0 =340*(1+0.001i) is 

complex. Therefore, the impedance used here is a complex quantity, including both 

resistance and reactance parts. The changes in the boundary conditions of the cavity 

serve the purpose of breaking down the symmetrical modal shape of the cavity as well 

as its spatial matching with the plate over the coupling surface. In this case, the 

condensed mobility of the panel (Eq. 10) is not obtained analytically. Instead, numerical 

calculations using FEM are conducted. The impedance boundary can either be treated 

as a subsystem to be substituted into Eq. 11, or modelled as part of the entire cavity 

[29]. The former option is adopted in the present case. The calculated frequency band 

is increased to [1000, 1600] Hz. The volume averaged SPL calculated with 𝛽 =1.5 is 

compared with the FEM result in Fig. 10. It can be seen that the proposed piecewise 

calculation scheme predicts well the system response in the entire frequency band of 

interest. However, one observes discrepancies in regions where the system dynamics 

are weak. Three factors might result in these errors: higher frequencies, clamped plate 

boundary and the impedance wall. In Table 3, it can be observed that higher frequencies 

have little effect on the calculation error. Therefore, the change in the system boundary 

could be the main contributing factor. The inherent calculation error of the finite 

element simulation may also be part of the reasons behind these discrepancies. In the 

present case, the calculation time is also observed to be reduced. To give an indicative 

idea, the calculation time is rough 1/5 and 1/2 that of the FEM and conventional CTF, 

respectively. It should be noted that the exact calculation time may vary depending on 

the computer capability and the case under investigation.  

As a final remark, the calculation accuracy using the proposed piece-wise criterion 

and the time required for dealing with a larger cavity, (5 x 3 x 3) m for instance, is also 
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tested. Under the same calculation condition as Fig. 8, the same calculation accuracy is 

achieved, with however a much longer computation time (roughly 20 times). This is 

obviously due to the significant increase of the modal density in the frequency band.  

 

Fig. 10 Sound pressure level using the proposed criterion targeting [1000, 1600] Hz 

(clamped panel and cavity with impedance boundary). 

4. Conclusions 

Aiming at achieving an effective modelling of a coupled panel-cavity system in 

the mid-to-high frequency range, a revisited condensed transfer function method along 

with a series truncation criterion is proposed in this work. As an example, the originally 

established line-coupled CTF method is revisited and applied to the modelling of a 

surface-coupled benchmark vibro-acoustic system comprising a panel and a cavity. The 

validity of the method is verified through comparisons with the reference solutions, 

when both the gate functions and the complex exponential functions are used. 
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Calculation results are found to be similar, albeit small differences, between the two 

types of the CFs. Meanwhile, a piecewise convergence behavior of the complex 

exponential function based CTF method is revealed, allowing a model reduction for 

mid-frequency simulations. This unique feature of the complex exponential functions 

is attributed to their wavy feature and spatial matching with the dynamics of the 

physical system. Based on that, a series selection criterion for the complex exponential 

CFs is proposed to further increase the calculation efficiency. Given a targeted 

frequency band [𝑓𝑙 , 𝑓ℎ ], all complex exponential CFs 𝜑𝑝𝑞  with their wavelengths 

𝜆𝑐,𝑝𝑞 delimited by 𝛼𝜆ℎ < 𝜆𝑐,𝑝𝑞 <  𝛽𝜆𝑙 are kept to form a subset, to be used in the 

calculation. It has been shown that using 𝛼=1 and 𝛽=1.5 can guarantee an acceptable 

prediction accuracy in most of the analyzed cases. Calculation errors might be larger in 

some frequency bands but still within the tolerance level typically required for mid-to-

high frequency modelling. The most significant advantage of the proposed criterion is 

that it allows accurate modelling of the system in a piecewise manner in terms of 

frequency bands at a much-reduced model and calculation cost.  
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